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ABSTRACT 

 

Nowadays modern electric power systems consist of large-scale and highly complex 

interconnected transmission systems, thus transmission expansion planning (TEP) is 

now a significant power system optimisation problem. The TEP problem is a large-

scale, complex and nonlinear combinatorial problem of mixed integer nature where the 

number of candidate solutions to be evaluated increases exponentially with system size. 

The accurate solution of the TEP problem is essential in order to plan power systems in 

both an economic and efficient manner. Therefore, applied optimisation methods 

should be sufficiently efficient when solving such problems. In recent years a number 

of computational techniques have been proposed to solve this efficiency issue. Such 

methods include algorithms inspired by observations of natural phenomena for solving 

complex combinatorial optimisation problems. These algorithms have been 

successfully applied to a wide variety of electrical power system optimisation 

problems. In recent years differential evolution algorithm (DEA) procedures have been 

attracting significant attention from the researchers as such procedures have been 

found to be extremely effective in solving power system optimisation problems.  

 The aim of this research is to develop and apply a novel DEA procedure 

directly to a DC power flow based model in order to efficiently solve the TEP problem. 

In this thesis, the TEP problem has been investigated in both static and dynamic form. 

In addition, two cases of the static TEP problem, with and without generation resizing, 

have also been investigated. The proposed method has achieved solutions with good 

accuracy, stable convergence characteristics, simple implementation and satisfactory 

computation time. The analyses have been performed within the mathematical 

programming environment of MATLAB using both DEA and conventional genetic 

algorithm (CGA) procedures and a detailed comparison has also been presented. 

Finally, the sensitivity of DEA control parameters has also been investigated. 
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CHAPTER 1 

INTRODUCTION 

 

1.1 Research Motivation 

 

Electric energy is the most popular form of energy because it can be transported 

easily at high efficiency and reasonable cost. Nowadays the real-world electric power 

systems are large-scale and highly complex interconnected transmission systems. An 

electric power system can be subdivided into four major parts that are generation, 

transmission, distribution and load. The purpose of a transmission system is to 

transfer electric energy from generating units at various locations to the distribution 

systems that ultimately supply the load. Transmission lines that also interconnect 

neighbouring utilities permit economic power dispatch across regions during normal 

conditions as well as the transfer of power between regions during emergency.  

 Over the past few decades, the amount of electric power energy to be 

transferred from generation sites to major load areas has been growing dramatically. 

Due to increasing costs and the essential need for reliable electric power systems, 

suitable and optimal design methods for different sections of the power system are 

required. Transmission systems are a major part of any power system therefore they 

have to be accurately and efficiently planned.  In this research, electric power 

transmission systems are studied with regard to optimising the transmission 

expansion planning (TEP) problem. 

 Electric power transmission lines are initially built to link remote generating

power plants to load centres, thus allowing power plants to be located in regions that 

are more economical and environmentally suitable. As systems grew, meshed 

networks of transmission lines have emerged, providing alternative paths for power 

flows from generators to loads that enhance the reliability of continuous supply. In 

regions where generation resources or load patterns are imbalanced, transmission 

interconnection eases the requirement for additional generation. Additional 

transmission capability is justified whenever there is a need to connect cheaper 

generation to meet growing load demand or enhance system reliability or both.  
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1.2 Problem Statement and Rationale 

 

Transmission expansion planning has always been a rather complicated task 

especially for large-scale real-world transmission networks. First of all, electricity 

demand changes across both area and time. The change in demand is met by the 

appropriate dispatching of generation resources. As an electric power system must 

obey physical laws, the effect of any change in one part of network (e.g. changing the 

load at a node, raising the output of a generator, switching on/off a transmission line 

or a transformer) will spread instantaneously to other parts of the interconnected 

network, hence altering the loading conditions on all transmission lines. The ensuing 

consequences may be more marked on some transmission lines than others, 

depending on electrical characteristics of the lines and interconnection. 

  The electric transmission expansion planning problem involves determining 

the least investment cost of the power system expansion and operation through the 

timely addition of electric transmission facilities in order to guarantee that the 

constraints of the transmission system are satisfied over the defined planning horizon. 

The transmission system planner is entrusted with ensuring the above-stated goals 

are best met whilst utilising all the available resources. Therefore the purpose of 

transmission system planning is to determine the timing and type of new 

transmission facilities. The facilities are required in order to provide adequate 

transmission capacity to cope with future additional generation and power flow 

requirements. The transmission plans may require the introduction of higher voltage 

levels, the installation of new transmission elements and new substations. 

Transmission system planners tend to use many techniques to solve the transmission 

expansion planning problem. Planners utilise automatic expansion models to 

determine an optimum expansion system by minimising the mathematical objective 

function subject to a number of constraints. 

 In general, transmission expansion planning can be categorised as static or 

dynamic according to the treatment of the study period [1]. In static planning; the 

planner considers only one planning horizon and determines the number of suitable 

circuits that should be installed to each branch of the transmission network system. 

Investment is carried out at the beginning of the planning horizon time. In dynamic 

or multistage planning; the planner considers not only the optimal number and 
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location of added lines and type of investments but also the most appropriate times to 

carry out such expansion investments. Therefore the continuing growth of the 

demand and generation is always assimilated by the system in an optimised way. The 

planning horizon is divided into various stages and the transmission lines must be 

installed at each stage of the planning horizon.  

 Many optimisation methods have been applied when solving the transmission 

expansion planning problem. The techniques range from expert engineering 

judgements to powerful mathematical programming methods. The engineering 

judgements depend upon human expertise and knowledge of the system. The most 

applied approaches in the transmission expansion planning problem can be classified 

into three groups that are mathematical optimisation methods (linear programming, 

nonlinear programming, dynamic programming, integer and mixed integer 

programming, benders decomposition and branch and bound, etc.), heuristic methods 

(mostly constructive heuristics) and meta-heuristic methods (genetic algorithms, tabu 

search, simulated annealing, particle swarm, evolutionary algorithms, etc). 

 Over the past decade, algorithms inspired by the observation of natural 

phenomena when solving complex combinatorial problems have been gaining 

increasing interest because they have been shown to have good performance and 

efficiency when solving optimisation problems [2]. Such algorithms have 

successfully applied to many power system problems [3, 4], for example power 

system scheduling, power system planning and power system control. In this 

research, a differential evolution algorithm (DEA) and genetic algorithm (GA) will 

be proposed and developed to solve both static and dynamic transmission expansion 

planning problems by direct application to the DC power flow based model. 

 

1.3 Contributions of the Thesis 

 

The major contribution of this thesis is the research and development of a novel DEA 

procedure and the investigation of the applicability of DEA method when applied to 

both static and dynamic TEP problems. In addition a detailed comparison of various 

DEA strategies used for solving these two electrical power system optimisation 

problems is presented. The most significant original contributions presented and 

investigated in this thesis are outlined as follows: 
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 Firstly, this thesis proposes the methodology where a novel DEA procedure is 

developed and improved by applying several DEA mutation strategies. In order 

to validate its searching capability and reliability, the proposed methodology has 

been tested with some selected mathematical benchmark test functions that are 

as follows: Sphere, Rosenbrock1, Rosenbrock2, Absolute, Salomon, Schwefel 

and Rastrigin functions, respectively. Regarding the obtained results, the 

proposed method performs effectively and gives better solutions in all cases 

when compared with a conventional genetic algorithm (CGA) procedure.      

 Regarding the effectiveness of DEA method as tested on several numerical 

benchmark test functions. The proposed methodology has been successfully 

implemented to solve a real-world optimisation problem that is the static TEP 

problem. For this research, two different scenarios of the static TEP problem, 

with and without generation resizing, have been investigated and reported in this 

thesis. In addition, a heuristic search method has been adopted in order to deal 

with the static TEP when considering the DC power flow based model 

constraints.      

 In addition, this research utilises the proposed effective methodology to deal 

with the dynamic or multistage TEP problem, which is more complex and 

difficult when compared with the static TEP problem. In this thesis, the dynamic 

TEP problem considering the DC power flow based model constraints has been 

analysed and considered in the separation of the planning horizon into multiple 

stages, which is an especially difficult task with regard to large-scale real-world 

transmission systems. A novel DEA method as applied to solve the dynamic TEP 

problem is tested on a realistically complex transmission system the Colombian 

93-bus system. 

 Finally, the influence of control parameter variation on the novel DEA method 

when applied to static and dynamic TEP problems has been investigated in this 

thesis. The simulation results clearly illustrate that the proposed algorithm 

provides higher robustness and reliability of approaching optimal solutions in 

both applications when compared to the CGA procedure. 
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1.4 List of Publications  

 

Arising from this research project, a journal paper and a book chapter have been 

submitted. In addition, three conference papers have been presented and published in 

conference proceedings. The papers are listed as follows: 

 

1.4.1 Refereed Journal Paper: Accepted 

 T. Sum-Im, G. A. Taylor, M. R. Irving and Y. H. Song, “Differential evolution 

algorithm for static and multistage transmission expansion planning,” IET Proc. 

Gener. Transm. Distrib., (Accepted 2009). 

 

1.4.2 Refereed Book Chapter: Submitted 

 T. Sum-Im, G. A. Taylor, M. R. Irving and Y. H. Song, “Differential evolution 

algorithm for transmission expansion planning,” in Intelligent techniques for 

power system transmission, G. K. Venayagamoorthy, R. Harley and N. G 

Hingorani, Ed., Wiley, (Submitted 2008). 

 

1.4.3 Refereed Conference Papers: Published 

 T. Sum-Im, G. A. Taylor, M. R. Irving and Y. H. Song, “A comparative study of 

state-of-the-art transmission expansion planning tools,” Proc. the 41st 

International Universities Power Engineering Conference (UPEC 2006), 

Newcastle upon Tyne, United Kingdom, pp. 267-271, 6
th

-8
th

  Sep. 2006. 

 T. Sum-Im, G. A. Taylor, M. R. Irving and Y. H. Song, “A differential evolution 

algorithm for multistage transmission expansion planning,” Proc. the 42nd 

International Universities Power Engineering Conference (UPEC 2007), 

Brighton, United Kingdom, pp. 357-364, 4
th

-6
th

  Sep. 2007. 

 T. Sum-Im, G. A. Taylor, M. R. Irving and Y. H. Song, “Transmission expansion 

planning using the DC model and a differential evolution algorithm,” Proc. the 

1st School of Engineering and Design Research Student Conference (RESCon 

2008), Brunel University, United Kingdom, pp. 43-44, 25
th

-26
th

  Jun. 2008. 
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1.5 Thesis Outline 

 

Chapter 1 provides an introduction to the transmission expansion planning problem. 

In addition, the research contributions of applying the novel differential evolution 

algorithm to transmission expansion planning problems are presented.   

Chapter 2 presents an overview of static and dynamic transmission expansion 

planning problems including problem formulation, treatment of the planning horizon 

and available literature.   

Chapter 3 provides a review of DEA and genetic algorithms. The optimisation 

process and constraint handing techniques of the proposed algorithm are presented. 

Chapter 4 presents the DEA optimisation procedure and program, which is tested on 

various numerical benchmark functions. The numerical test results and discussion are 

explained in this chapter. 

Chapter 5 provides the implementation and development of the novel differential 

evolution algorithm for solving the static transmission expansion planning problem. 

Moreover the experimental results and comments are discussed in this chapter. 

Chapter 6 presents the implementation of the novel DEA for solving the dynamic 

transmission expansion planning problem. In addition, the numerical test results for 

realistic transmission systems and comments are included in this chapter.  

Chapter 7 gives the interpretations of results from chapter 5 and 6 with regard to 

sensitivity and convergence analysis of the DEA on static and dynamic transmission 

expansion planning problems. 

Chapter 8 presents the overall conclusions of the research reported in this thesis and 

indicates further possible research directions.  

 



CHAPTER 2 

FUNDAMENTALS OF TRANSMISSION 

EXPANSION PLANNING PROBLEM 

 

2.1 Introduction  

 

In general, the objective of electric transmission expansion planning (TEP) is to 

specify addition of transmission facilities that provide adequate capacity and in the 

mean time maintain operating performance of electric transmission system [5]. To 

achieve effective plan, exact location, capacity, timing and type of new transmission 

equipment must be thoroughly determined to meet demand growth, generation 

addition and increased power flow. However, cost-effective transmission expansion 

planning becomes one of the major challenges in power system optimisation due to 

the nature of the problem that is complex, large-scale, difficult and nonlinear. 

Meanwhile, mixed integer nature of TEP results in an exponentially increased 

number of possible solutions when system size is enlarged. 

 To find an optimal solution of TEP over a planning horizon, extensive 

parameters are required; for instance topology of the base year, candidate circuits, 

electricity demand and generation forecast, investment constraints, etc. This would 

consequently impose more complexity to solving TEP problem. Given the above 

information, in–depth knowledge on problem formulation and computation 

techniques for TEP is crucial and therefore, this chapter aims essentially at presenting 

fundamental information of these issues. 

 The organisation of this chapter is as follows: section 2.2 presents the 

overview of treatment of the transmission expansion planning horizon, while in 

section 2.3 the overview and formulation of DC power flow model is introduced. 

Section 2.4 and 2.5 present the problem formulation and the mathematical model of 

static and dynamic transmission expansion planning, respectively.  Section 2.6 

presents the review of solution methods for transmission expansion planning found 

in the international technical literature. Finally, a summary of this chapter is made in 

section 2.7. 
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2.2 Treatment of the Transmission Expansion Planning Horizon 

 

Based on the treatment of planning horizon, transmission expansion planning can be 

traditionally classified into two categories, namely static (single-stage) and dynamic 

(multi-stage) planning. In static planning, only a single time period is considered as a 

planning horizon. In contrast, dynamic planning considers the planning horizon by 

separating the period of study into multiple stages [1]. 

 For static planning, the planner searches for an appropriate number of new 

circuits that should be added into each branch of the transmission system and in this 

case, the planner is not interested in scheduling when the new lines should be 

constructed and the total expansion investment is carried out at the beginning of the 

planning horizon [6]. Many research works regarding the static TEP are presented in 

[5, 8, 11, 14, 15, 19, 21, 22, 25, 67, 68, 74] that are solved using a variety of the 

optimisation techniques.  

 In contrast, time-phased or various stages are considered in dynamic planning 

while an optimal expansion schedule or strategy is considered for the entire planning 

period. Thus, multi-stage transmission expansion planning is a larger-scale and more 

complex problem as it deals with not only the optimal quantity, placement and type 

of transmission expansion investments but also the most suitable times to carry out 

such investments. Therefore, the dynamic transmission expansion planning 

inevitably considers a great number of variables and constraints that consequently 

require enormous computational effort to achieve an optimal solution, especially for 

large-scale real-world transmission systems. Many research works regarding the 

dynamic TEP [6, 12, 13, 19, 68, 73] are presented some of the dynamic models that 

have been developed.   

 

2.3 DC Power Flow 

 

For a long-term TEP study, some assumptions are invented and introduced for 

solving such planning problem, for example, a consideration of the reactive power 

allocation is neglected in the first moment of the planning. In this stage, the main 

concern is to identify the principal power corridors that probably will become part of 
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the expanded system. There are several types of the mathematical model employed 

for representing the transmission network in the TEP study; AC power flow model, 

DC power flow model, transportation model, hybrid model, and disjunctive model 

[8].  

 Basically, the DC power flow model is widely employed to the TEP problem 

and it is frequently considered as a reference because in general, networks 

synthesized by this model satisfy the basic conditions stated by operation planning 

studies. The planning results found in this phase will be further investigated by 

operation planning tools such as AC power flow analysis, transient and dynamic 

stability analysis and short-circuit analysis [3]. In the simulation of this research, the 

DC power flow model is considered as it is widely used in transmission expansion 

planning [5, 8, 25, 66, 67].  

 The formulation of DC power flow is obtained from the modification of a 

general representation of AC power flow, which can be illustrated by the following 

equations. 

 1

[ cos( ) sin( )]

N

i i k ik i k ik i k

k

P V V G B                 (2.1) 

 
1

[ sin( ) cos( )]

N

i i k ik i k ik i k

k

Q V V G B                                        (2.2) 

 where Pi and Qi are real and reactive power of bus i respectively. Vi  and i 

are voltage magnitude and voltage phase angle of bus i respectively. Vk  is voltage 

magnitude at bus k. Gik and Bik are real and imaginary parts of element (i,k) of bus 

admittance matrix respectively. N is total number of buses in the system. 

 To modify AC power flow model to the DC power flow based model, the 

following assumptions are normally considered [7]: 

 Bus voltage magnitude at each bus bar is approximate one per unit ( Vi  = 1 

p.u. for all i buses); 

 Line conductance at each path is neglected (Gik = 0), or on the other hand 

only line susceptance (Bik) is considered in the DC model; 

 Some trigonometric terms of AC model in equations (2.1) and (2.2) can be 

approximated as following terms:  

sin ( i - k)  i - k  and cos ( i - k)  1 
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 Given these assumptions, the AC power flow equation in (2.1) is therefore 

simplified to yield the DC power flow equation as follows: 

 1

( ) , 1,...,

N

i ik i k

k

P B i N                                                                       (2.3) 

 where Bik is the line susceptance between bus i and k. 

 

2.4 Overview of the Static Transmission Expansion Planning  

 

In this section, the static transmission expansion planning is formulated as a 

mathematical problem. The objective of solving this problem is typically to fulfil the 

required planning function in terms of investment and operation restriction. The 

detailed discussion is as follows. 

 

2.4.1 Problem Statement 

In general, transmission expansion planning problem can be mathematically 

formulated by using DC power flow model, which is a nonlinear mixed-integer 

problem with high complexity, especially for large-scale real-world transmission 

networks. There are several alternatives to the DC model such as the transportation, 

hybrid and disjunctive models. Detailed reviews of the main mathematical models 

for transmission expansion planning were presented in [8, 9].  

 

2.4.2 The Objective Function 

The objective of transmission expansion planning is to minimise investment cost 

while satisfying operational and economic constraints. In this research, the classical 

DC power flow model is applied to solve the TEP problem. Mathematically, the 

problem can be formulated as follows. 

  
( , )

min ij ij

i j

v c n                                    (2.4) 

 where v, cij and nij represent, respectively, transmission investment cost, cost 

of a candidate circuit for addition to the branch i-j and the number of circuits added 

to the branch i-j. Here  is the set of all candidate branches for expansion. 
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2.4.3 Problem Constraints 

The objective function (2.4) represents the capital cost of the newly installed 

transmission lines, which has some restrictions. These constraints must be included 

into mathematical model to ensure that the optimal solution satisfies transmission 

planning requirements. These constraints are described as following: 

 

2.4.3.1 DC Power Flow Node Balance Constraint  

This linear equality constraint represents the conservation of power at each node. 

  g d B                                                                        (2.5) 

 where g, d and B is real power generation vector in existing power plants, real 

load demand vector in all network nodes, and susceptance matrix of the existing and 

added lines in the network, respectively. Here  is the bus voltage phase angle vector. 

 

2.4.3.2 Power Flow Limit on Transmission Lines Constraint 

The following inequality constraint is applied to transmission expansion planning in 

order to limit the power flow for each path.  

  0 max( )ij ij ij ijf n n f                                  (2.6) 

 In DC power flow model, each element of the branch power flow in 

constraint (2.6) can be calculated by using equation (2.7): 

  
0( )

( )
ij ij

ij i j
ij

n n
f

x
                        (2.7) 

 where fij, fij
max

, nij, nij
0
 and xij represents, respectively, total branch power flow 

in branch i-j, maximum branch power flow in branch i-j, number of circuits added to 

branch i-j, number of circuits in original base system, and reactance of the branch i-j. 

Here i and j is voltage phase angle of the terminal buses i and j respectively. 

 

2.4.3.3 Power Generation Limit Constraint 

In transmission expansion planning problem, power generation limit must be 

included into the problem constraints. This can be mathematically represented as 

follows: 

  
min max

i i ig g g                                                (2.8) 
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 where gi, gi
min

 and gi
max

 is real power generation at node i, the lower and 

upper real power generation limits at node i, respectively. 

 

2.4.3.4 Right-of-way Constraint 

It is significant for an accurate transmission expansion planning that planners need to 

know the exact location and capacity of the newly required circuits. Therefore this 

constraint must be included into the consideration of planning problem. 

Mathematically, this constraint defines the new circuit location and the maximum 

number of circuits that can be installed in a specified location. It can be represented 

as follows. 

  max0 ij ijn n                                         (2.9)   

 where nij and nij
max

  represents the total integer number of circuits added to the 

branch i-j and the maximum number of added circuits in the branch i-j, respectively.  

 

2.4.3.5 Bus Voltage Phase Angle Limit Constraint 

The bus voltage magnitude is not a factor in this analysis since a DC power flow 

model is used for transmission planning. The voltage phase angle is included as a 

transmission expansion planning constraint and the calculated phase angle ( ij
cal

) 

should be less than the predefined maximum phase angle ( ij
max

). This can be 

represented as the following mathematical expression. 

  
cal max
ij ij

                                                                                        (2.10)   

 

 2.5 Overview of the Dynamic Transmission Expansion Planning  

 

In this section, a mathematical representation of the dynamic transmission expansion 

planning problem is discussed as following details. 

 

2.5.1 Problem Statement 

The purpose of dynamic transmission expansion planning is to minimise the present 

value of investment cost for transmission expansion over an entire planning periods. 

Normally, the problem of dynamic TEP requires a huge computational effort to 



 

 

13 

search for an optimal solution. The DC power flow model was applied to the static 

TEP problem in the previous section and it can be extended to more complex 

dynamic transmission expansion planning as well. The dynamic planning problem is 

a mixed integer nonlinear programming problem that is difficult for solving 

especially medium-scale and large-scale transmission systems. 

 

2.5.2 The Objective Function 

A DC model can be applied to the dynamic planning in order to determine the 

financial investment for the most economical schedule [6]. The investment plan of 

transmission expansion is generally obtained with reference to the base year. 

Considering an annual rate I, the present values of the transmission expansion 

planning investment costs in the base year t0 with a horizon of T stages are as follows: 

 

  

1 0 2 0

0

1 2

1 2

1 2

( ) (1 ) ( ) (1 ) ( )

... (1 ) ( )

( ) ( ) ... ( )

T

t t t t

t t

T

T

inv inv inv T

c x I c x I c x

I c x

c x c x c x

                                              (2.11) 

where 

  01 tt tt

inv I  

 Using the above relations, the dynamic planning for the DC model assumes 

the following form: 

  1 ( , )

min
T

t t t

inv ij ij

t i j

v c n                                   (2.12) 

 where v, c
t
ij, and n

t
ij represents, respectively, the present value of the 

expansion investment cost of the added transmission system, the cost of a candidate 

circuit added to branch i-j at stage t and the number of circuits added to branch i-j at 

stage t. Here  is the set of all candidate right-of-ways for expansion.  
t
inv is the 

discount factor used to find the present value of an investment at stage t. 

 

2.5.3 Problem Constraints 

The objective function (2.12) represents the present value of the dynamic expansion 

planning investment costs of the new transmission lines subject to the restrictions as 
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described in the previous section. Therefore, these planning constraints must also be 

considered in the multi-stage mathematical formulation in order to guarantee that the 

achieved solutions satisfy transmission planning requirements. The constraints of 

dynamic transmission expansion planning can be formulated in a similar fashion to 

those of the static model and are presented as follows: 

  t t t td B g                                                                                 (2.13) 

  

0 max

1

( )

t
t s

ij ij ij ij

s

f n n f                                                         (2.14) 

   

0

1

( )

( )

t
s

ij ij

t t ts
ij i j

ij

n n

f
x

                                              (2.15) 

   ,min ,maxt t t

i i ig g g                                                           (2.16) 

   ,max0 t t

ij ijn n                                      (2.17) 

   
max

1

T
t

ij ij

t

n n                                                   (2.18) 

   cal max
ij ij

                                                                                       (2.19) 

  

 The variables of the dynamic transmission expansion planning constraints in 

(2.13)-(2.19) are similar to those of static transmission expansion planning except the 

addition of the index t, which indicates the specific stage of planning involved. 

 

2.6 Review of Solution Methods for Transmission Expansion 

Planning  

 

Over past few decades, many optimisation techniques have been proposed to solve 

the transmission expansion planning problem in regulated power systems. These 

techniques can be generally classified into mathematical, heuristic and meta-heuristic 

optimisation methods. A review of these methods is discussed in this section. 

 

2.6.1 Mathematical Optimisation Methods 

Mathematical optimisation methods search for an optimal expansion plan by using a 

calculation procedure that solves a mathematical formulation of the planning 
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problem. In the problem formulation, the transmission expansion planning is 

converted into an optimisation problem with an objective function subject to a set of 

constraints. So far, there have been a number of applications of mathematical 

optimisation methods to solve the transmission expansion planning problem, for 

instance, linear programming [10], nonlinear programming [11] and [12], dynamic 

programming [13], branch and bound [14] and [15], mixed-integer programming [16] 

and [17] and Benders decomposition [18].  

 

2.6.1.1 Linear Programming 

In 1970, Garver proposed a linear programming method to solve the transmission 

expansion planning problem [10]. This original method was applied to long-term 

planning of electrical power systems and produced a feasible transmission network 

with near-minimum circuit miles using as input any existing network plus a load 

forecast and generation schedule. Two main steps of the method, in which the 

planning problem was formulated as load flow estimation and new circuit selection 

could be searched based on the system overloads, were presented in [10]. The linear 

programming was used to solve the minimisation problem for the needed power 

movements, whereas the result was called “linear flow estimate”. A circuit addition 

was selected based on the location of the largest overload in this flow estimate. These 

two steps were repeated until no overloads remain in the system.  

 

2.6.1.2 Nonlinear Programming 

In 1984, an interactive method was proposed and applied in order to optimise the 

transmission expansion planning by Ekwue and Cory [11]. The method was based 

upon a single-stage optimisation procedure using sensitivity analysis and the adjoint 

network approach to transmit power from a new generating station to a loaded AC 

power system. The nonlinear programming technique of gradient projection followed 

by a round-off procedure was used for this optimisation method.  

 

2.6.1.3 Dynamic Programming 

Discrete dynamic optimising (DDO) was proposed to solve the transmission 

planning problem by Dusonchet and El-Abiad [13]. The basic idea of this method 
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was to combine deterministic search procedure of dynamic programming with 

discrete optimising a probabilistic search coupled with a heuristic stopping criterion. 

The proposed method provides a way of dealing with two problems, which are size 

and complexity of the procedures for evaluating the performance of alternate 

strategies, through the use of a probabilistic search procedure and dynamic 

programming. Another advantage of this method is the probability through the 

neighbourhood concept to take into account in solution process the planner‟s 

experience. 

 

2.6.1.4 Integer and Mixed-Integer Programming 

In 2003, Alguacil et al. [17] proposed a mixed-integer linear programming approach 

to solve the static transmission expansion planning that includes line losses 

consideration. The proposed mixed-integer linear formulation offers accurate optimal 

solution. Meanwhile, it is flexible enough to build new networks and to reinforce 

existing ones. The proposed technique was tested to Graver‟s 6-bus system, the IEEE 

reliability test system and a realistic Brazilian system whereas the results confirm the 

accuracy and efficiency of this computation approach. 

 

2.6.1.5 Branch and Bound 

Haffner et al. [15] presented a new specialised branch and bound algorithm to solve 

the transmission network expansion planning problem. Optimality was obtained at a 

cost, however: that was the use of a transportation model for representing the 

transmission network. The expansion problem then became an integer linear 

programming (ILP) which was solved by the proposed branch and bound method. To 

control combinatorial explosion, the branch and bound algorithm was specialised 

using specific knowledge about the problem for both the selection of candidate 

problems and the selection of the next variable to be used for branching. Special 

constraints were also used to reduce the gap between the optimal integer solution 

(ILP program) and the solution obtained by relaxing the integrality constraints. 

 

2.6.1.6 Benders and Hierarchical Decomposition  

A new Benders decomposition approach was applied to solve the real-world power 
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transmission network design problems by Binato et al. [18]. This approach was 

characterised by using a mixed linear (0-1) disjunctive model, which ensures the 

optimality of the solution found by using additional constraints, iteratively evaluated, 

besides the traditional Benders cuts. In [18], the use of Gomory cuts iteratively 

evaluated from master sub-problem and the use of Benders cuts evaluated from 

relaxed versions of the slave sub-problem. Gomory cuts within Benders 

decomposition was used to improve the practical convergence to the optimal solution 

of the Benders approach.    

 

2.6.2 Heuristic and Meta-heuristic Methods 

In addition to mathematical optimisation methods, heuristic and meta-heuristic 

methods become the current alternative to solve the transmission expansion planning 

problem. These heuristic and meta-heuristic techniques are efficient algorithms to 

optimise the transmission planning problem. There have been many applications of 

heuristic and meta-heuristic optimisation methods to solve transmission expansion 

planning problem, for example heuristic algorithms [5, 19], tabu search [20], 

simulated annealing [21], genetic algorithms [6, 22, 23, 24], artificial neural 

networks [25], particle swarm [31] and hybrid artificial intelligent techniques [25]. 

The detail of these methods is as discussed below. 

 

2.6.2.1 Heuristic Algorithms  

Constructive heuristic algorithm (CHA) is the most-widely used heuristic algorithms 

in transmission expansion planning. A constructive heuristic algorithm is an iterative 

process that searches a good quality solution in a step-by-step process. Romero et al. 

[19] presented and analysed heuristic algorithms for the transportation model in static 

and multistage transmission expansion planning. A constructive heuristic algorithm 

for the transportation model (TM) of Garver‟s work [10] was extensively analysed 

and excellent results were obtained in [19]. Furthermore, the Garver algorithm was 

extended to accommodate multistage planning, which is especially important to 

define financial investment according to the most economical scheduling. The CHA, 

which was proposed for the generalised transportation model, reaches quality 

topologies for all test systems even though its efficiency decreased as the complexity 
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of system increased [19]. In 2005, Romero et al. [5] proposed constructive heuristic 

algorithm for the DC model in network transmission expansion planning. A novel 

constructive heuristic algorithm worked directly with the DC power flow model in 

[5]. This proposed algorithm was developed from Garver‟s works [10] that was 

applied to the transportation model. The algorithm presented excellent performance 

for systems with low complexity in Garver‟s 6-bus and medium complexity in IEEE 

24-bus. The principal advantage of the algorithm was that it worked directly with the 

solution given by the DC model with relaxed integer variables.  

 

2.6.2.2 Tabu Search 

Tabu search (TS) is an iterative improvement procedure that starts from some initial 

feasible solution and attempts to determine a better solution in the manner of a 

„greatest descent neighbourhood‟ search algorithm [2]. The basic components of the 

TS are the moves, tabu list and aspiration level (criterion). Silva et al. [20] presented 

transmission network expansion planning under a tabu search approach. The 

implementation of tabu search to cope with long-term transmission network 

expansion planning problem was proposed in [20]. Two real-world case studies were 

tested and the results obtained by this approach were a robust and promising 

technique to be applied to this planning problem. The good quality of results 

produced by the intensification phase in both case studies qualifies the strategy used, 

i.e. to look for consistent candidate circuits (those that appear in different plans) to 

build a consistent transmission expansion plan. The principal improvement of this 

approach, comparing with classical methods of optimisation, was related to its ability 

in avoiding local optimum solutions, consequently having a greater chance to find 

the global optimum solution.  

 

2.6.2.3 Simulated Annealing 

Simulated annealing (SA) approach based on thermodynamics was originally 

inspired by the formulation of crystals in solids during cooling [2]. Simulated 

annealing technique has been successfully applied to a number of engineering 

optimisation problems including power system optimisation problems. Romero et al. 

[21] proposed a simulated annealing approach for solving the long-term transmission 
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system expansion planning problem. The proposed method [21] was compared with 

a conventional optimisation method based on mathematical decomposition with a 

zero-one implicit enumeration procedure. In [21], two small test systems were used 

for tuning the main parameters of the simulated annealing process and then the 

proposed technique was applied to a large test system for which no optimal solution 

had been known: a number of interesting solutions was obtained with costs about 7% 

less than the best solutions known for that particular example system obtained by 

optimisation and heuristic methods. 

 

2.6.2.4 Expert Systems  

Expert system is a knowledge-based or rule-based system, which uses the knowledge 

and interface procedure to solve problems. The state of the field of expert systems 

and knowledge engineering in transmission planning was reviewed by Galiana et al. 

[26].  The details of that review were the principal elements of transmission planning, 

including its aim, the principal activities that constituted transmission planning, the 

constraints and prerequisites that must be met by the planner, a general planning 

methodology, and a selection to justify the use of expert systems in transmission 

planning and to indicate area of potential. Moreover, an expert system approach for 

multi-year short-term expansion planning (STEP) was presented in [27] where the 

reactive power management issues were addressed in the multi-year STEP to ensure 

adequate quality of voltage supply and efficiency of transmission system, which 

could be measured by network congestion and percentage losses in the system. An 

expert system approach to STEP using enhanced fast decoupled load flow (FDLF) 

was proposed to address these reactive power issues. 

 

2.6.2.5 Evolutionary Algorithms 

Evolutionary algorithm is based on the Darwin‟s principle of „survival of the fittest 

strategy‟. An evolutionary algorithm begins with initialising a population of 

candidate solutions to a problem and then new solutions are generated by randomly 

varying those of initial population. All solutions are evaluated with respect to how 

well they address the task. Finally, a selection operation is applied to eliminate bad 

solutions. An evolutionary programming approach for transmission network planning 
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in electric power systems was presented in [28]. The proposed evolutionary 

programming algorithm was tested in two electric power systems, including Graver 

6-bus system and the Mexican electric power system.  

 

2.6.2.6 Genetic Algorithms 

Genetic algorithm (GA) is a global search approach based on mechanics of natural 

selection and genetics. GA is different from conventional optimisation techniques as 

it uses the concept of population genetics to guide the optimisation search. GA 

searches from population to population instead of point-to-point search. In 1998, 

Gallego et al. [22] presented an extended genetic algorithm for solving the optimal 

transmission network expansion planning problem. Two main improvements of GA, 

which are an initial population obtained by conventional optimisation based methods 

and the mutation approach inspired in the simulated annealing technique, was 

introduced in [22]. 

 The application of an improved genetic algorithm (IGA) was also proposed to 

solve the transmission network expansion planning problem by Silva et al. [23]. 

Genetic algorithms (GAs) had demonstrated the ability to deal with non-convex, 

nonlinear, integer-mixed optimisation problems, which include transmission network 

expansion planning (TNEP) problem, as it generates better performance than a 

number of other mathematical methodologies. Some special features had been added 

to the basic GAs to improve its performance in solving the TNEP problem for three 

real large-scale transmission systems. Results in [23] showed that the proposed 

approach was not only suitable but a promising technique for solving such a problem.  

 In 2001, Gil and Silva presented a reliable approach for solving the 

transmission network expansion planning problem using genetic algorithms [24]. 

The procedure to find the solution was based on the „loss of load limit curve‟ of the 

transmission system under study, which was produced utilising unfeasible solutions 

found by the GA. A modified procedure made GA more robust to solve the different 

large-scale transmission expansion problems and this proposed method was proved 

to be efficient for solving in two real large-scale power systems [24].   

 In 2004, Escobar et al. [6] proposed an efficient genetic algorithm to solve the 

multistage and coordinated transmission planning problem, which was a mixed 

integer nonlinear programming problem. The proposed GA had a set of specialised 
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genetic operators and utilised an efficient form of generation for the initial population 

that found high quality suboptimal topologies for large size and high complexity 

transmission systems. The achieved results illustrated that an efficient GA was 

effectively and efficiently implemented for multistage planning on medium and large 

size systems.   

 

2.6.2.7 Ant Colony System Algorithm 

Ant colony search (ACS) system was initially introduced by Dorigo in 1992 [32]. 

ACS technique was originally inspired by the behaviour of real ant colonies and it 

was applied to solve function or combinatorial optimisation problems. Gomez et al. 

[29] presented ant colony system algorithm for the planning of primary distribution 

circuits. The planning problem of electrical power distribution networks, stated as a 

mixed nonlinear integer optimisation problem, was solved using the ant colony 

system algorithm. In [29], the ant colony system methodology was coupled with a 

conventional load flow algorithm for distribution system and adapted to solve the 

primary distribution system planning problem. Furthermore, this technique [29] was 

very flexible and it could calculate location and the characteristics of the circuits 

minimising the investment and operation costs while enforcing the technical 

constraints, such as the transmission capabilities, the limits on the voltage 

magnitudes, allowing the consideration of a very complete and detailed model for the 

electric system. 

 

2.6.2.8 Particle Swarm 

Particle swarm optimisation (PSO), using an analogy of swarm behaviour of natural 

creatures, was started in the early of the 1990s. Kennedy and Eberhart developed 

PSO based on the analogy of swarms of birds and fish schooling [30], which 

achieved efficient search by remembrance and feedback mechanisms. By imitating 

the behaviours of biome, PSO is highly fit for parallel calculation and good 

performance for optimisation problems. A new discrete method for particle swarm 

optimisation was applied for transmission network expansion planning (TNEP) in 

[31]. The principle of PSO was introduced and an efficient discrete PSO method for 

TNEP according to its characters was developed by researchers [31]. Moreover, 
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parameter selection, convergence judgment, optimisation fitness function 

construction and PSO characters were also analysed in [31]. Numerical results 

demonstrated that the proposed discrete method was feasible and efficient for small 

test systems. 

 

2.6.2.9 Hybrid Artificial Intelligent Techniques  

Al-Saba and El-Amin [25] proposed the application of artificial intelligent (AI) tools, 

such as genetic algorithm, tabu search and artificial neural networks (ANNs) with 

linear and quadratic programming models, to solve transmission expansion problem. 

The effectiveness of these AI methods in dealing with small-scale and large-scale 

systems was tested through their applications to the Graver six-bus system, the IEEE-

24 bus network and the Saudi Arabian network [25]. The planning work [25] aimed 

to obtain the optimal design using a fast automatic decision-maker. An intelligent 

tool started from a random state and it proceeded to allocate the calculated cost 

recursively until the stage of the negotiation point was reached.  

 

2.7 Conclusions 

 

This chapter has covered the basis of transmission expansion planning problem, 

problem formulation and literature survey on a variety of solution techniques 

application to the planning problem. Over several past decades, researchers have 

worked on transmission expansion planning and set their interest mostly on static 

planning models. Unfortunately, the dynamic and pseudo-dynamic planning models 

are still in an undeveloped status as dynamic planning models have some limitations 

for their application to real-world transmission systems. The transmission expansion 

planning models can be developed and used several different tools, from 

spreadsheets to custom-written programs.  



CHAPTER 3 

FUNDAMENTALS OF DIFFERENTIAL 

EVOLUTION ALGORITHM AND GENETIC 

ALGORITHMS 

 

3.1 Introduction  

 

Evolutionary algorithms (EAs) are heuristic and stochastic optimisation techniques 

based on the principles of natural evolution theory. The field of investigation, 

concerning all EAs, is known as “evolutionary computation”. The origin of 

evolutionary computation can be traced back to the late 1950‟s and since then a 

variety of EAs have been developed independently by many researchers. The most 

popular algorithms are genetic algorithms (GAs), evolutionary programming (EP), 

evolution strategies (ESs) and differential evolution algorithm (DEA). These 

approaches attempt to search the optimal solution of an optimisation problem via a 

simplified model of the evolutionary processes observed in nature and they are based 

on the concept of a population of individuals that evolve and improve their fitness 

through probabilistic operators via processes of recombination, mutation and 

selection. The individuals are evaluated with regard to their fitness and the individual 

with superior fitness is selected to compose the population in the next generation. 

After several iterations of the optimisation procedure, the fitness of individuals 

should be improved while current individuals explore the solution space for the 

optimal value. 

 In this research, a novel differential evolution algorithm is proposed to be 

applied directly to DC power flow based model of transmission expansion planning 

problem. In addition, conventional genetic algorithm is employed to compare its 

achieved results with that of the proposed method. These two optimisation 

techniques are introduced and discussed in this chapter. Moreover, the optimisation 

process and constraint handing techniques of the proposed algorithm are also 

included in this chapter. 
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3.2 Genetic Algorithms 

 

3.2.1 Background and Literature Review  

Genetic algorithm (GA) was first introduced in the book “Adaptation in Natural and 

Artificial Systems” in 1975 and was mainly developed in the USA by J. H. Holland 

[33]. In addition, genetic algorithm was put into practical applications in the late 

1980s and it has been continuously used until now.  

 Genetic algorithm is a mechanism that mimics the process observed in natural 

evolution. It is a general-purpose optimisation method that is distinguished from 

conventional optimisation techniques by the use of concepts of population genetics to 

guide the optimisation search. A population of individuals, representing a potential 

candidate solution to a given problem, is maintained through optimisation process. A 

fitness value of each individual is assigned according to the fitness function to 

indicate the quality of a candidate solution. The individuals then must compete with 

others in the population to generate their offspring. The highly fit individuals that are 

those with higher fitness value have more opportunities to reproduce through 

recombination operation. The offspring inherits genes of their highly fit parents and 

will become even fitter, which represent a better solution to the problem concerned. 

The lowest fit individuals have few opportunities to reproduce and the trace of their 

genes will eventually disappear in the population. Comparison between the newly 

generated offspring and their parents, the best individuals are selected regard to their 

fitness values to form the population of the next generation. By repeating the GA 

optimisation process, the population of individuals will develop into an optimal 

solution of the problem. 

 Over past 20 years, genetic algorithm has been applied to solve various 

engineering optimisation problems, especially electrical power system problems such 

as economic dispatch [34], unit commitment [35, 36], generator/hydrothermal 

scheduling [37, 38], optimal power flow [39], voltage/reactive power control [40], 

capacitor placement [41, 42], generation expansion planning [43], transmission 

expansion planning [22, 23, 24, 44].  

 An advanced engineered-conditioning genetic algorithm hybrid (AEC-GA) 

with applications in power economic dispatch was proposed by Song and Chou in 
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[34]. It was a combined strategy involving local search algorithms and genetic 

algorithms. Moreover, several advanced techniques, which enhanced program 

efficiency and accuracy such as elite policy, adaptive mutation prediction, non-linear 

fitness mapping, different crossover techniques, were also explored in [34]. The 

combination of the nonlinear fitness mapping and the sigma truncation scaling was 

highly beneficial. Overall, the improved efficiency, accuracy and reliability achieved 

by the proposed AEC-GA hybrid demonstrated its advantages in power system 

optimisations in [34]. 

 According to [35], a genetic algorithm was applied to solve the unit 

commitment problem. It was necessary to enhance a standard GA implementation 

with the addition of problem specific operators and the Varying Quality Function 

technique in order to obtain satisfactory unit commitment solutions. The proposed 

GA-UC was tested in the systems up to 100 units and the obtained results of the 

proposed method were compared with Lagrangian relaxation and dynamic 

programming in [35]. 

 A genetic algorithm based approach to the scheduling of generators in a 

power system was presented in [37]. An enhanced genetic algorithm incorporating a 

sequential decomposition logic was employed to provide a faster search mechanism. 

The power of the GA presented in [37] relied on the selection and grading of the 

penalty functions to allow the fitness function that differentiates between good and 

bad solutions. This method guarantees the production of solutions that did not violate 

system or unit constraints. The proposed approach demonstrated a good ability to 

provide accurate and feasible solutions for a medium-scale power system within 

reasonable computational times.  

 According to [38], the problem of determining the optimal hourly schedule of 

power generation in a hydrothermal power system was solved by applying a genetic 

algorithm. In [38], a multi-reservoir cascaded hydro-electric system with a nonlinear 

relationship between water discharge rate, net head and power generation was 

investigated. In addition, the water transport delay between connected reservoirs was 

also included in the problem. The proposed method provided a good solution to the 

short-term hydrothermal scheduling problem and was able to take into account the 

variation in net head and water transport delay factors. 

 An application of parallel genetic algorithm (PGA) to optimal long-range 
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generation expansion planning was presented in [43]. This planning problem was 

formulated as a combinatorial optimisation problem that determined the number of 

newly generation units at each time interval under different scenarios. The PGA 

developed in [43] belonged to the class of coarse-grain PGA in order to achieve the 

trade-off between computational speed and hardware cost.  

 In general, genetic algorithm is a global search method based on the 

mechanics of natural selection and genetics. Its characteristics make GA a robust 

algorithm to adaptively search the global optimal point of certain class of 

engineering problems. There are a number of significant advantages of genetic 

algorithm over traditional optimisation techniques have been described in [45]. 

 GA searches the solution from a population of points that is not a single 

point. Therefore GA can discover a globally optimal point because each 

individual in the population computes independently of each other. GA 

has inherent parallel processing nature. 

 GA evaluates the fitness of each string to guide its search instead of the 

optimisation function. GA only needs to evaluate objective function 

(fitness) to guide its search. Derivatives or other auxiliary knowledge are 

not required by GA. Therefore GA can deal with non-smooth, non-

continuous and non-differentiable functions that are the realistic 

optimisation problems. 

 GA employs the probabilistic transition rules to select generations, which 

are not deterministic rules. Therefore GA has the ability to search a 

complicated and uncertain area to find the global optimum. 

 Although GA has many advantages as above explanation, there are also a 

number of disadvantages of GA that are as follows: 

 GA does not always produce an exact global optimum, which may give 

the local minima (premature convergence). 

 GA requires tremendously high computational time since a great number 

of complicated fitness evaluations. 
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3.2.2 Basis of Genetic Algorithms and Optimisation Process 

Genetic algorithms are the most popular form of EAs and belong to the class of 

population-based search strategies. They work in a particular way on a population of 

strings (chromosomes), in which each string represents a possible candidate solution 

to the problem being optimised and each bit (or group of bits) represents a value for a 

decision variable of the problem. Firstly, each candidate solution is encoded and each 

encoding represents an individual in the GA population. The population is initialised 

to random individuals (random chromosomes) at the beginning of the GA 

optimisation process and GA then explores the search space of possible 

chromosomes for better individuals. The GA search is guided regard to the fitness 

value return by an environment, which provides a measure of how well each adapted 

individual in term of the problem solving. Therefore, the fitness value of each 

individual determines its probability of appearing or surviving in future generations. 

Codification is an essential process of GA and binary encoding of the parameters is 

traditionally employed. It has been mathematically proven that the cardinality of the 

binary alphabet maximises the number of similarity template (schemata) in which 

GA operates and hence enhances the search mechanism. The main concept of GA 

optimisation process is illustrated in figure 3.1 and a simple GA involves the 

following steps: 

 Encoding: Code parameters of the problem as binary strings of fixed 

length; 

 Initialisation: Randomly generate initial population strings, which evolve 

to the next generation by genetic optimisation operators; 

 Fitness Evaluation: Compute and evaluate each string‟s fitness, which 

measures the quality of solutions coded by strings; 

 Selection: Permit highly-fit strings as parents and produce offsprings 

according to their fitness in the next generation; 

 Crossover: Crossover is the main genetic operator and combines two 

selected parents by swapping chromosome parts between their strings, 

starting from a randomly selected crossover point. This leads to new 

strings inheriting desirable qualities from both chosen parents; 
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 Mutation: Mutation works as a kind of „life insurance‟ and flips single 

bits in a string, which prevents GA from premature convergence by 

exploiting new regions in the search space; 

 Termination: The new strings replace the existing ones and optimisation 

process continues until the predetermined termination criterion is 

satisfied. 

Generate initial population,

Gen = 0

Start

Compute and evaluate the fitness of each 

individual

Converged?

End

Form new population

Yes

Crossover Mutation

Gen = Gen + 1

Reproduction

Selection

No

 

 

Figure 3.1 The main flowchart of the typical GA optimisation process 

 

3.3 Differential Evolution Algorithm 

 

3.3.1 Background and Literature Review 

A differential evolution algorithm (DEA) is an evolutionary computation method that 

was originally introduced by Storn and Price in 1995 [46]. Furthermore, they 
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developed DEA to be a reliable and versatile function optimiser that is also readily 

applicable to a wide range of optimisation problems [47]. DEA uses rather greedy 

selection and less stochastic approach to solve optimisation problems than other 

classical EAs. There are also a number of significant advantages when using DEA, 

which were summarised by Price in [48].  

 Ability to find the true global minimum regardless of the initial parameter 

values; 

 Fast and simple with regard to application and modification; 

 Requires few control parameters; 

 Parallel processing nature and fast convergence; 

 Capable of providing multiple solutions in a single run; 

 Effective on integer, discrete and mixed parameter optimisation; 

 Ability to find the optimal solution for a nonlinear constrained optimisation 

problem with penalty functions. 

 Most of the initial researches were conducted by the differential evolution 

algorithm inventors (Storn and Price) with several papers [46, 49 50, 51], which 

explained the basis of differential evolution algorithm and how the optimisation 

process is carried out. A constraint handling approach for the differential evolution 

algorithm was proposed by Lampinen [52].  An extension of the differential 

evolution algorithm for handling multiple constraint functions was performed and 

demonstrated with a set of ten well-known test functions. Only the replacement 

operation of the original DEA was modified by applying a new replacement criterion 

for handling the constraint function.  

 A parameter study for differential evolution was presented by Gamperle et al. 

[53]. In this work, differential evolution was applied to several uni-modal and multi-

modal test functions to find appropriate strategy parameters. The original differential 

evolution algorithm was analysed with respect to its performance depending on the 

choice of strategy parameters. The appropriate control parameters were guided and 

provided in this article. According to [54], Vesterstrom and Thomsen presented a 

comparative study of differential evolution, particle swarm optimisation and 

evolutionary algorithms on numerical benchmark problems. The performances of 

differential evolution, particle swarm optimisation and evolutionary algorithms were 

evaluated regarding their general applicability as numerical optimisation techniques. 
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A modified differential evolution for constrained optimisation was proposed by 

Mezura-Montes et al. [55]. 

 Over last decade, differential evolution algorithm has been attracting 

increasing attention for a wide variety of engineering applications including 

electrical power system engineering. There have been many researches that applied 

DEA for solving electrical power system problems such as power system transfer 

capability assessment [56], power system planning [57], economic power dispatch 

[58, 59, 71], distribution network reconfiguration problem [60], short-term 

hydrothermal scheduling problem [61], design of a gas circuit breaker [62], optimal 

reactive power flow [63, 72] and optimal power flow [64]. 

 According to [56], Wong and Dong proposed differential evolution (DE) as 

an alternative approach to evolutionary algorithms with two application examples in 

power systems that were power system transfer capability assessment problem and 

other power engineering problems. In [56], differential evolution was used to 

calculate the value of available transfer capability (ATC) comparing with the 

traditional continuation power flow (CPF) based approach. The final solution 

achieved by DE and CPF were verified with PowerWorld to compare the accuracy. 

Regarding obtained results, DE based approach was able to generate very accuracy 

results however without the need to perform complex CPF repeatedly. In addition, 

DE could reach the close vicinity of the final solution within the first 500 iterations 

and the calculation process was illustrated to be robustness over different trials on 

two test systems in both solution accuracy and computational efficiency.  

 A differential evolution based method for power system planning problem 

was presented by Dong et al. [57]. The planning aimed at locating the minimum cost 

of additional transmission lines that must be added to satisfy the forecasted load in a 

power system. The planning in [57] considered several objectives including 

expansion investment cost, the reliability objective-expected energy not supplied, the 

social welfare objective-expected economical losses and the system expansion 

flexibility objective. Differential evolution could show its capability on handling 

integer variables and non-linear constrained multi-objective optimisation problem. 

 Perez-Guerrero and Cedeno-Maldonado applied DEA to solve economic 

power dispatch problem that features non-smooth cost functions [58]. The non-

smooth cost functions arose in economic power dispatch studies due to valve point 
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loading effects, quadratic cost functions and prohibited operating zone, which were 

solved using DEA in [58]. The achieved results demonstrated the ability of the 

proposed DE-based methodology to solve efficiently economic dispatch problems 

with non-smooth cost functions.  

 Coelho and Mariani performed and proposed the combination of chaotic 

differential evolution and quadratic programming for solving economic load dispatch 

problem with valve-point effect [59]. A new approach method combined DEA with 

the generator of chaos sequences and sequential quadratic programming (SQP) 

technique to optimise the performance of economic dispatch problem. In [59], 

differential evolution with chaos sequences was the global optimiser to obtain a 

nearly global solution and the SQP was used to determine the optimal solution. The 

combined methods could be shown very effective in solving economic dispatch 

problems with valve-point effect in [59]. 

 Chiou et al. [60] proposed an effective method which was variable scaling 

hybrid differential evolution (VSHDE) to solve the network reconfiguration for 

power loss reduction and voltage profit enhancement of distribution systems. The 

VSHDE technique utilised the 1/5 success rule of evolution strategies to adjust the 

variable scaling factor to accelerate searching the global solution. The variable 

scaling factor was applied to overcome the drawback of fixed and random scaling 

factor used in hybrid differential evolution (HDE). 

 According to [61], a novel approach based on modified differential evolution 

(MDE) algorithm to solve short-term hydrothermal scheduling problem was 

presented by Lakshminarasimman and Subramanian. The DEA was modified in 

order to handle the reservoir end volume constraints in the hydrothermal scheduling. 

The algorithm modifications were carried out at the initialisation and mutation steps 

in the main DEA to efficiently deal with the final reservoir storage volume 

constraints. In addition, the transmission losses were also accounted through the use 

of loss coefficients in [61]. 

 Kim et al. presented an improved differential evolution strategy (DES) for 

constrained global optimisation and application to practical engineering problems 

[62]. The modified method was used to solve the engineering design problems and 

the robust design of a gas circuit breaker to reduce the variation of the performance 

and improve the small current interruption capability. The main DES modifications 
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were the choice of scaling factor, which was varied randomly within some range and 

an auxiliary set was employed to enhance the diversity of the population. 

 A differential evolution was studied and presented in detail for solving 

optimal reactive power flow (ORPF) problem by Liang et al. [63]. The objective of 

ORPF was to find out the optimal settings of the voltage/reactive power control 

variables, mainly considering the generator voltages, the transformer tap ratios and 

the susceptances of shunt reactive power compensators therefore the real power loss 

could be minimised by the proposed method. 

 Cai et al. proposed differential evolution algorithm application for transient 

stability constrained optimal power flow (TSCOPF) [64]. A robust and efficient 

technique was developed for solving TSCOPF problem based on differential 

evolution. According to the flexible properties of differential evolution mechanism, 

the hybrid method for transient stability assessment, which combined time-domain 

simulation and transient energy function method, could be employed in differential 

evolution.   Several strategies were used to reduce the computation burden so that 

these strategies were proposed for the initialisation, assessment and selection of 

solution individuals in evolution process of differential evolution.  

 

3.3.2 Basis of Differential Evolution Algorithm 

A DEA is a novel evolution algorithm as it employs real-coded variables and 

typically relies on mutation as the search operator. More recently DEA has evolved 

to share many features with conventional genetic algorithm (CGA) [45]. The major 

similarity between these two types of algorithm is that they both maintain 

populations of potential solutions and use a selection mechanism for choosing the 

best individuals from the population. The main differences are as follows [50]: 

 DEA operates directly on floating point vectors while CGA relies mainly on 

binary strings; 

 CGA relies mainly on recombination to explore the search space, while DEA 

uses a special form of mutation as the dominant operator; 

 DEA is an abstraction of evolution at individual behavioural level, stressing 

the behavioural link between an individual and its offspring, while CGA 

maintains the genetic link. 
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 DEA is a parallel direct search method that employs a population P of size NP, 

consisted of floating point encoded individuals or candidate solutions as shown in 

equation (3.1). At every generation G during the optimisation process, DEA 

maintains a population P
(G)

 of NP vectors of candidate solutions to the problem at 

hand. 

 

( ) ( )( ) ( )
1[ ,..., ,..., ]

P

G GG G
i N

P X X X                     (3.1) 

 Each candidate solution Xi is a D-dimensional vector, containing as many 

integer-valued parameters (3.2) as the problem decision parameters D. 

 ( ) ( )( ) ( )
, ,1,[ ,..., ,..., ], 1,..., , 1,...,

G GG G
i j i PD iiX x x x i N j D                (3.2) 

 

3.3.3 Differential Evolution Algorithm Optimisation Process  

3.3.3.1 Initialisation 

In the first step of the DEA optimisation process, the population of candidate 

solutions must be initialised. Typically, each decision parameter in every vector of 

the initial population is assigned a randomly chosen value from within its 

corresponding feasible bounds.  

 ( 0) min max min
, rand [0,1].( )G

j i j j j jx x x x                                                            (3.3) 

 where i = 1,…,NP and j = 1,…,D. xj,i
(G=0)

 is the initial value (G=0) of the j
th

 

parameter of the i
th

 individual vector. xj
min

 and xj
max

 are the lower and upper bounds 

of the j
th

 decision parameter, respectively. Once every vector of the population has 

been initialised, its corresponding fitness value is calculated and stored for future 

reference. 

 

3.3.3.2 Mutation 

The DEA optimisation process is carried out by applying the following three basic 

genetic operations; mutation, recombination (also known as crossover) and selection. 

After the population is initialised, the operators of mutation, crossover and selection 

create the population of the next generation P
(G+1)

 by using the current population 

P
(G)

. At every generation G, each vector in the population has to serve once as a 

target vector Xi
(G)

, the parameter vector has index i, and is compared with a mutant 

vector. The mutation operator generates mutant vectors (Vi
(G)

) by perturbing a 
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randomly selected vector (Xr1) with the difference of two other randomly selected 

vectors (Xr2 and Xr3). 

 ( ) ( ) ( ) ( )

1 2 3 , 1,...,G G G G

i r r r PV X F X X i N
                                                    

(3.4) 

 Vector indices r1, r2 and r3 are randomly chosen, which r1, r2 and r3  

{1,…,NP} and r1 ≠ r2≠ r3 ≠ i. Xr1, Xr2 and Xr3 are selected anew for each parent 

vector. F is a user-defined constant known as the “scaling mutation factor”, which is 

typically chosen from within the range [0,1
+
] . 

 

3.3.3.3 Crossover 

In this step, crossover operation is applied in DEA because it helps to increase the 

diversity among the mutant parameter vectors. At the generation G, the crossover 

operation creates trial vectors (Ui) by mixing the parameters of the mutant vectors (Vi) 

with the target vectors (Xi) according to a selected probability distribution. 

 

( )

,( ) ( )

,

( )

,

if rand (0,1)

otherwise
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i j i

G
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v CR or j s
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x

               (3.5) 

 The crossover constant CR is a user-defined value (known as the “crossover 

probability”), which is usually selected from within the range [0,1].  The crossover 

constant controls the diversity of the population and aids the algorithm to escape 

from local optima. randj is a uniformly distributed random number within the range 

(0,1) generated anew for each value of j. s is the trial parameter with randomly 

chosen index  {1,…,D}, which ensures that the trial vector gets at least one 

parameter from the mutant vector.  

 

3.3.3.4 Selection 

Finally, the selection operator is applied in the last stage of the DEA procedure. The 

selection operator chooses the vectors that are going to compose the population in the 

next generation. This operator compares the fitness of the trial vector and the 

corresponding target vector and selects the one that provides the best solution. The 

fitter of the two vectors is then allowed to advance into the next generation according 

to equation (3.6). 
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                  (3.6) 

 The DEA optimisation process is repeated across generations to improve the 

fitness of individuals. The overall optimisation process is stopped whenever 

maximum number of generations is reached or other predetermined convergence 

criterion is satisfied. The main concept of DEA optimisation process is illustrated in 

figure 3.2. 

 

Generate initial population P 

of individuals, Gen = 0

Start

Compute and evaluate the fitness of 

each individual

Apply mutation, crossover and selection 

operators to generate new individuals

Converged?

End

Generation

G+1

No

Yes

Form new population P 

of individuals

 

 

 

Figure 3.2 The main flowchart of the typical DEA optimisation process 
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3.3.3.5 DEA Strategies 

There are several variations of DEA strategies to be employed for optimisation. Five 

variations, originally proposed by Storn in [51], are used to solve the TEP problem. 

In this thesis, these five DEA strategies are defined as DEA1-DEA5. In addition, the 

author of this thesis proposes further five DEA variations, which are defined as 

DEA6-DEA10. 

 

DEA1 

In the first DEA strategy, the mutant vector can be generated according to the 

following equation: 

 ( ) ( ) ( ) ( )

2 3 , 1,...,G G G G

i best r r PV X F X X i N
                                                   

(3.7) 

 where X best
 (G)

 is the best performing vector of the current generation. 

 

DEA2 

Basically, this scheme works in a similar way as DEA1 except that it generates the 

mutant vector from the randomly chosen base vector X r1
 (G)

.   

 ( ) ( ) ( ) ( )
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i r r r PV X F X X i N                                               (3.8) 

 

DEA3 

In this scheme, the perturbation is applied at a location between the best performing 

vector and a randomly selected population vector.  

 ( ) ( ) ( ) ( ) ( ) ( )

1 2( ) , 1,...,G G G G G G

i i best i r r PV X X X F X X i N
                         

(3.9) 

  is applied to control the greediness of the scheme, which usually it is set 

equally to F to reduce the number of control variables.  

 

DEA4 

Two different vectors are used as a perturbation in this strategy. 

 

( ) ( ) ( ) ( ) ( ) ( )
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DEA5 

This scheme works in a similar way as DEA4 but it replaces the best performing 

vector Xbest
(G)

 by a randomly selected vector Xr5
(G)

. 

 ( ) ( ) ( ) ( ) ( ) ( )

5 1 2 3 4 , 1,...,G G G G G G

i r r r r r PV X F X X X X i N                               (3.11) 

 

DEA6 

This strategy works in a similar way as DEA1 to create the mutant vector but the 

randomly selected vectors Xr2
(G)

 and Xr3
(G)

 are substituted by Xbest
(G)

 and Xi
(G)

 

respectively. 

 ( ) ( ) ( ) ( ) , 1,...,G G G G

i best best i PV X F X X i N                                                (3.12) 

 

DEA7 

This scheme follows the similar idea of DEA4 but it uses three different vectors for 

perturbation.  

 
( ) ( ) ( ) ( ) ( ) ( )
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DEA8 

This scheme follows the similar idea of DEA3 except that Xi
(G)

 is replaced by Xbest
(G)

 

to generate the mutant vector. 

 
( ) ( ) ( ) ( ) ( ) ( )
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DEA9 

This strategy follows the similar idea of DEA5 but it uses Xr1
(G)

 and Xr2
(G)

 for 

perturbation.    

 
( ) ( ) ( ) ( ) ( ) ( )

1 2 , 1,...,G G G G G G

i best best i r r PV X F X X X X i N                             (3.15) 

 

DEA10 

This strategy is performed as similar to DEA6 but Xi
(G)

 is replaced by Xbest
(G-1)

 from 

the previous generation G-1 in order to create the mutant vector. 
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( ) ( ) ( ) ( 1) , 1,...,G G G G

i best best best PV X F X X i N
                                            

(3.16) 

 

3.3.3.6 The Example of DEA Optimisation Process 

The DEA optimisation process is described in the following example.   

 1 2 3 4 5 6 7 8Objective function f ( )X x x x x x x x x  

 where X represents an encoded individual or a candidate solution.  x1, x2, x3, 

x4, x5, x6, x7 and x8 are the parameters of the individual. 

 

Step 1: Select control parameters of the DEA optimisation process; 

 

Decision parameters (D) 8 

Population size (NP) 5 

Scaling mutation factor (F) 0.7 

Crossover constant (CR) 0.6 

 

Step 2: Initialise population P of individuals according to equation (3.3); 

 

Parameters/Individuals Individual 1 Individual 2 Individual 3 Individual 4 Individual 5 

Parameter 1 (x1) 0.95 0.57 0.18 0.92 0.6 

Parameter 2 (x2) 0.43 0.88 0.29 0.87 0.79 

Parameter 3 (x3) 0.38 0.93 0.99 0.65 0.28 

Parameter 4 (x4) 0.78 0.74 0.86 0.47 0.34 

Parameter 5 (x5) 0.64 0.81 0.39 0.38 0.56 

Parameter 6 (x6) 0.55 0.66 0.42 0.82 0.93 

Parameter 7 (x7) 0.71 0.59 0.56 0.21 0.86 

Parameter 8 (x8) 0.82 0.28 0.8 0.33 0.33 

Fitness f(X) 5.26 5.46 4.49 4.65 4.69 

 

Step 3: Select a target vector index (i) and random vector indices (r1, r2 and r3) from 

the current population, which i, r1, r2 and r3  {1,…,NP} and r1 ≠ r2≠ r3 ≠ i; 
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i 1 

r1 5 

r2 3 

r3 4 

 

Step 4: Generate mutant vectors (Vi) by perturbing a randomly selected vector (Xr1) 

with the difference of two other randomly selected vectors (Xr2 and Xr3) according to 

equation (3.4); 

 

 Xr1 Xr2 Xr3 Xr2 - Xr3 F(Xr2-Xr3) Xr1+F(Xr2 - Xr3) 

Parameter 1 (x1) 0.6 0.18 0.92 -0.74 -0.518 0.082 

Parameter 2 (x2) 0.79 0.29 0.87 -0.58 -0.406 0.384 

Parameter 3 (x3) 0.28 0.99 0.65 0.34 0.238 0.518 

Parameter 4 (x4) 0.34 0.86 0.47 0.39 0.273 0.613 

Parameter 5 (x5) 0.56 0.39 0.38 0.01 0.007 0.567 

Parameter 6 (x6) 0.93 0.42 0.82 -0.4 -0.28 0.65 

Parameter 7 (x7) 0.86 0.56 0.21 0.35 0.245 1.105 

Parameter 8 (x8) 0.33 0.8 0.33 0.47 0.329 0.659 

Fitness f(X) 4.69 4.49 4.65 - - 4.578 

 

Step 5: Create trial vectors (Ui) by mixing the parameters of the mutant vectors (Vi) 

with the target vectors (Xi) according to equation (3.5); 

 

 
Target 

vector 

Mutant 

vector 

Trial 

vector 
Random (0,1) 

Parameter 1 (x1) 0.95 0.082 0.082 0.43 

Parameter 2 (x2) 0.43 0.384 0.384 0.15 

Parameter 3 (x3) 0.38 0.518 0.38 0.78 

Parameter 4 (x4) 0.78 0.613 0.613 0.44 

Parameter 5 (x5) 0.64 0.567 0.64 0.91 

Parameter 6 (x6) 0.55 0.65 0.65 0.27 

Parameter 7 (x7) 0.71 1.105 0.71 0.66 

Parameter 8 (x8) 0.82 0.659 0.659 0.35 

Fitness f(X) 5.26 4.578 4.118 - 
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Step 6: Select the vector that is going to compose the population in the next 

generation; 

 

Parameters/Individuals Individual 1 Individual 2 Individual 3 Individual 4 Individual 5 

Parameter 1 (x1) 0.082     

Parameter 2 (x2) 0.384     

Parameter 3 (x3) 0.38     

Parameter 4 (x4) 0.613     

Parameter 5 (x5) 0.64     

Parameter 6 (x6) 0.65     

Parameter 7 (x7) 0.71     

Parameter 8 (x8) 0.659     

Fitness f(X) 4.118     

 

 At the same time, the individual 2-5 in this table are fully filled in step 6.  

 

Step 7: Return to step 3, which the DEA optimisation process is repeated across 

generations to improve the fitness of individuals. Repeat until the maximum number 

of generations is reached or other predetermined convergence criterion is satisfied. 

 

3.3.4 Constraint Handling Techniques  

Evolutionary algorithms, for example evolutionary programming, genetic algorithms 

and differential evolution algorithm were originally proposed to solve unconstrained 

optimisation problem. However, most optimisation problems in the real world 

involve finding a solution that not only is optimal but also satisfies one or more 

constraints.  Over the last few decades, various techniques have therefore been 

applied to handle constraints in EAs. A literature review in EAs for constrained 

parameter optimisation problems with a classification of the methods to handle 

constraints was surveyed by Michalewicz and Schoenauer in [65]. These methods 

could be categorised into four groups that are: methods based on preserving 

feasibility of solutions, methods based on penalty functions, methods which clearly 

distinguish between feasible and infeasible solutions and other hybrid methods.  

 Two main groups of constrained optimisation methods in EAs, which are 

methods based on preserving feasibility of solutions and methods based on penalty 
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function, are selected to solve the transmission expansion planning problem in this 

research. Feasible solution can be obtained through the use of specialised operators 

or feasible region boundary search. The first strategy used to explore only the 

feasible solution space is to create and retain candidate solutions within the feasible 

region as presented in [52]. This technique can be implemented as follows: 

 

min ( ) min

, , ,

( ) max ( ) max

, , , ,

( )

,

if

if , 1,..., , 1,...,

otherwise

G

j i j i j i

G G

j i j i j i j i P

G

j i

x x x

x x x x i N j D

x

                        (3.17)

 

 

 According to equation (3.17), the candidate solutions that fall outside 

boundary limit are essentially adjusted to reconcile their values within the feasible 

bound. This is to ensure that only feasible solutions will be tested in next process. 

These solutions can be achieved by fixing the values to the nearest bound violated or 

creating new values within the feasible bound. 

 The second method is based on penalty functions that are used whenever any 

equality and/or inequality constraints have been violated. This method modifies the 

objective function providing information terms of the feasible and infeasible bounds 

aiding the algorithms to search the required optimal solution. In the simple form, the 

fitness function value F (X) to be minimised by EAs can be computed by penalising 

the objective function value F(X) with penalty function value whenever the 

parameters at candidate solution violate the problem constraints (3.18). Penalty 

functions can be classified as exterior or interior penalty functions depending upon 

whether they penalise infeasible or feasible solutions respectively. 

 
/ ( ) ( ) Penalty( )F X F X X                                                                    (3.18) 

 Michalewicz and Schoenauer [65] presented constrained optimisation and 

constraint handling technique in evolutionary algorithms. A DEA for handling 

nonlinear constraint functions was proposed by Lampinen [52].   

 

3.4 Conclusions 

 

This chapter presents two artificial intelligence (AI) techniques, which are genetic 

algorithms and differential evolution algorithm, employed to solve transmission 
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expansion planning problem in this thesis. These methods have much more potential 

and efficient for applying a wide variety of practical engineering problems, 

especially electrical power system problems. DEA is also latest entry into the AI 

fields, which has been increasing in current attention. According to the DEA‟s 

characteristics as explained in this chapter, the DEA is particularly fast and simple 

with regard to application and modification. In addition, it requires few control 

variables and is robust, parallel processing nature and fast convergence. DEA has 

ability to handle nonlinear and multimodal cost function including the TEP problem. 

Therefore, DEA is reasonably selected to apply with TEP problem regard to above its 

advantages. This technique needs to be understood in relation to the computation 

requirement and convergence property before its application. The fundamentals of 

the DEA method mentioned in this chapter such as DEA optimisation process, DEA 

strategies and DEA constraint handing techniques will be applied to TEP in this 

research.  



CHAPTER 4 

DESIGN AND TESTING OF DIFFERENTIAL 

EVOLUTION ALGORITHM PROGRAM 

 

4.1 Introduction 

 

Based on background information as discussed in chapter 3, a basic design of DEA 

optimisation program has been performed in this chapter whereas a computer 

program, MATLAB, is deployed. Meanwhile, a number of strategies in mutation 

operation of DEA have also been considered into this analysis as they have 

significant impact to the accuracy of the optimisation result. To examine this impact 

as well as to evaluate performance of the proposed method, the computer program 

formulated in this chapter has also been tested with seven numerical benchmark test 

functions, which are classified into both unimodal and multimodal schemes. A 

comparison of the results between DEA method and conventional genetic algorithm 

(CGA) has also been stated in this chapter. 

 The organisation of this chapter is as follows: section 4.2 presents the design 

of DEA optimisation program while in section 4.3 some selected numerical 

benchmark test functions are introduced. Section 4.4 provides the details of 

experimental setup and control parameters setting. Section 4.5 presents the 

experimental results and discussion for each test function. Section 4.6 provides 

overall analysis and discussion on all test results. Finally, a summary of this 

experiment is made in section 4.7.  

 

4.2 Design of the Differential Evolution Algorithm Optimisation 

Program 

 

Given the basic optimisation process of DEA and several variations of mutation 

operator strategies, DEA optimisation program has been designed in this chapter 

using MATLAB. The proposed optimisation program is expected to be able to solve 
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a number of mathematical and engineering problems, such as economic power 

dispatch, unit commitment, optimal power flow, power system planning, 

transmission expansion planning, etc. The overall procedure of the DEA optimisation 

program has been described as follows: 

 

Step 1: Set up all required parameters of the DEA optimisation process by the user;  

 Set up control parameters of the DEA optimisation process that are 

population size (NP), scaling mutaion factor (F), crossover probability (CR), 

convergence criterion ( ), number of problem variables (D), lower and upper 

bounds of initial population (xj
min

 and xj
max

) and maximum number of 

iterations or generations (G
max

); 

 Select a DEA mutation operator strategy; 

Step 2: Set generation G = 0 for initialisation step of DEA optimisation process; 

Step 3: Initialisation step; 

 Initialise population P of individuals according to equation (3.3) where each 

decision parameter in every vector of the initial population is assigned a 

randomly selected value from within its corresponding feasible bounds;  

Step 4: Calculate and evaluate the fitness values of the initial individuals according   

            to the problem‟s fitness function; 

Step 5: Rank the initial individuals according to their fitness; 

Step 6: Set iteration G = 1 for optimisation step of DEA optimisation process; 

Step 7: Apply mutation, crossover and selection operators to generate new  

            individuals; 

 Apply mutation operator to generate mutant vectors (Vi
(G)

) according to 

equation (3.4) with a selected DEA mutation operator strategy in step 1; 

 Apply crossover operator to generate trial vectors (Ui
(G)

) according to 

equation (3.5); 

 Apply selection operator according to equation (3.6) by comparing the fitness 

of the trial vector (Ui
(G)

)  and the corresponding target vector (Xi
(G)

)  and then 

select one that provides the best solution;  
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Step 8: Calculate and evaluate the fitness values of new individuals according to the   

             problem‟s fitness function; 

Step 9: Rank new individuals by their fitness; 

Step 10: Update the best fitness value of the current iteration (gbest) and the best   

              fitness value of the previous iteration (pbest)    

Step 11: Check the termination criteria; 

 If Xi
best

 - Xi  > or pbest - gbest > but the number of current generation 

remains not over the maximum number of generations G < G
max

, set G = G + 

1 and return to step 7 for repeating to search the solution. Otherwise, stop to 

calculate and go to step 12; 

Step 12: Output gbest of the last iteration as the best solution of the problem. 

 

 4.3 Numerical Benchmark Test Functions 

 

To evaluate DEA optimisation program, ten variant DEA schemes have been studied 

and tested whereas their performances are compared with CGA procedure. A test 

suite of benchmark functions, previously introduced in [47, 50, 54], with a varying 

number of dimensions have been employed to test the performance of the proposed 

algorithm. The suite of benchmark functions contains a diverse set of mathematical 

problems, including unimodal as well as multimodal functions that are with 

correlated and uncorrelated variables. In this experiment, seven test functions are 

selected from the benchmark function class, which appears to be very difficult class 

of problems for many optimisation methods.  

 The details of the used benchmark functions with a varying number of 

dimensions from 2 to 100, the ranges of their search spaces and their global 

minimum fitness are tabulated in the table 4.1. As previously mentioned, the selected 

seven test functions are Sphere function (f1), Rosenbrock1 function (f2), Rosenbrock2 

function (f3), Absolute function (f4), Salomon function (f5), Schwefel function (f6) and 

Rastrigin function (f7). These test functions range from simple to difficult challenge 

depending on dimension of the problem because the number of local minima for each 

test function increases exponentially. Therefore, the increasing local minima affect 

the difficulty for approaching the optimal solution of the problem. 
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Table 4.1 Numerical benchmark test functions 

 

Function name Expression and condition 

1. Sphere function 
   

1
2

1

0

; 5.12 5.12
n

j j

j

f x x x

                       

    

n = 3 dimensions

 

   
1 0 0f


 

2. Rosenbrock1 

function 

   

2 22

2 0 1 0100 1 ; 2.048 2.048jf x x x x x
 

   n  = 2 dimensions 

   
2 1 0f


 

3. Rosenbrock2 

function 

   

1
2 2

2

3 1

0

100 1 ; 30 30
n

j j j j

j

f x x x x x

 

   n = 30 dimensions 

   
3 1 0f


 

4. Absolute function 

   

2
1

4

0

1
; 100 100

2

n

j j

j

f x x x

               

    

    n = 30 dimensions 

   
4

1 1
0,

2 2
if p p


 

5. Salomon function 

   5 cos(2 ) 0.1 1f x x x  

   

1
2

0

; 100 100
n

j j

j

x x x  

   n = 30 dimensions       

   
5 0 0f
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Table 4.1 Numerical benchmark test functions (Contd.) 

 

Function name Expression and condition 

6. Schwefel function 
   

1

6

0

sin( ; 500 500
n

j j j

j

f x x x x

 

    

    n = 100 dimensions 

  4

6 420.97 4.18983 10f


 

7. Rastrigin function 
   

1
2

7

0

10cos 2 10 ; 5.12 5.12
n

j j j

j

f x x x x

 

   n = 100 dimensions 

   7 0 0f


 

 

4.4 Experimental Setup and Control Parameters Setting 

 

In this experiment, DEA as well as CGA are implemented in MATLAB and 

evaluated the performance regarding their general applicability as numerical 

optimisation techniques. As the suitable parameters of DEA and CGA are crucial to 

the accurate result, therefore these parameters should be selected carefully by the 

user. The details of these parameters setting have been discussed and included in this 

section. 

 

4.4.1 DEA Control Parameters and Their Effect    

The convergence of DEA is normally affected by a number of control parameters, 

which include the population size (NP), mutaion factor (F) and crossover probability 

(CR). Proper selection of these parameters is required to obtain the reliable result 

with fewer function evaluations. The DEA parameters setting is not the difficult task 

for a simple objective function problem, whereas it is the difficult task for parameters 

adjustment in a complex problem. 
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4.4.1.1 Population Size (NP) 

The population size of DEA should be moderate. As DEA may converge to local 

optimum if population size is very small due to its less diversity of discovery. On the 

other hand, if the population size is very large, DEA would require huge numbers of 

function evaluations for convergence, which needs tremendously high computation 

time. The population size should relate to the number of  a problem decision 

papameter or variable D. Storn and Price [49] remarked how to choose the proper 

control variables NP, F and CR for real-world optimisation problems. According to 

their experience, a reasonable choice for NP setting is between 5*D and 10*D but NP 

must not be less than 4*D to guarantee that DEA will have enough mutually different 

vectors with which to work. 

 

4.4.1.2 Mutation Factor (F) 

Mutation factor is a real and constant factor that controls the amplification of the 

differential variation (Xr2
(G) 

- Xr3
(G)

) in equation (3.4) and it affects the DEA 

convergence. Mutation factor shoud not be less than a certain value to prevent 

premature convergence. The suitable mutation factor value depends upon the 

problem function. A larger mutation factor value increases the probability for 

escaping a local minimum. However, if the mutation factor value is more than 1 [53], 

the convergence speed decreases. The selection of proper mutation factor value is a 

dfficult task for the user, and therefore it should be chosen carefully with the user‟s 

experience. For DEA optimistation, the mutation factor is much more sensitive than 

crossover probability, which is more similar to a fine tuning element. This will be 

discussed in the next section. 

 

4.4.1.3 Crossover Probability (CR) 

Crossover probability affects the number of variables to be changed in the trial 

vectors (Ui
(G)

) compare to the target vectors (Xi
(G)

). If the value of crossover 

probability is large, more variables are taken from the mutant vectors (Vi
(G)

) than the 

target vectors (Xi
(G)

). A large crossover probability often speeds up convergence but 

the population may converge prematurely. On the other hand, more variables are 

taken from the target vectors (Xi
(G)

) than the mutant vectors (Vi
(G)

) if the value of 
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crossover probability is small. If the crossover probability equal to 0 then all 

variables in the trial vectors (Ui
(G)

) remain as same as the member in target vectors 

(Xi
(G)

) and there is no improvement in the result. If the crossover probability equal to 

1 then all variables in the trial vectors (Ui
(G)

) are taken from the mutant vectors (Vi
(G)

). 

This case means there is no shuffle of components between mutant vectors (Vi
(G)

) and 

target vectors (Xi
(G)

) and it decreases the diversity of population. Therefore the user 

should select the proper value of crossover probability carefully between 0 and 1. 

 

4.4.1.4 Number of Problem Variables (D) 

The number of variables in the objective function depends on the problem size and 

affects the convergence speed of DEA. If the problem comprises many variables, 

they will increase the region of solution and take longer time to converge. The 

increasing number of problem variables affects the difficulty for approaching the 

optimal solution of the problem. 

 

4.4.1.5 Convergence Criterion ( ) 

Convergence criterion compares two differences of the candidate solution population 

that are the difference between fitness function values of other members and the best 

member in the same iteration or the difference between fitness values of the best 

solution in present iteration and previous iteration. Convergence criterion affects an 

accuracy of the problem result. If convergence criterion value is very small then DEA 

gives more accurate result but DEA requires more computational time for 

convergence. However, small convergence criterion value may not give the accurate 

solution if other control parameters of DEA are not chosen appropriately.  

 

4.4.2 Control Parameters Setting 

For DEA testing of this chapter, the control parameter settings are manually tuned 

based on a few preliminary experiments. In these experiments, the DEA parameter 

settings are as following ranges: F = [0.5,0.9], CR = [0.55,0.95] and NP = 

[5*D,10*D]. The predetermined convergence criterion ( ) is set to 1x10
-50

 and the 

maximum number of iterations or generations (G
max

) is set to 1500 for each run. The 

defined control parameters of DEA and CGA, which are implemented in this 
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experiment, are listed in table 4.2.  

 

Table 4.2 Parameters used in the implementation 

 

Methods F CR Np D  G
max

 

All DEA 

strategies 
0.6 0.8 

10*D 

2, 3, 30 and 100 for 

each problem‟s 

dimensions 

1 10
-50

 1500 

CGA 0.05 0.8 

 

4.5 Experimental Results and Discussion 

 

Each algorithm has been tested with all of the numerical benchmark functions f1-f7 as 

stated in table 4.1. In order to reduce the random effect of results, therefore each of 

the numerical benchmark experiment is run at least 50 times with different random 

seeds and the average fitness value of the best solutions throughout the optimisation 

run is recorded. A Pentium IV 3 GHz personal computer with 496 MB RAM is used 

in this experiment. 

 The experimental fitness value results, which consist of the best results, the 

worst results, the standard deviation and average values of the obtained results of all 

algorithms on benchmark problems f1-f7, are tabulated in table 4.3-4.9 respectively. 

In addition, the computational times are also included in table 4.3-4.9. The 

convergence graphs of two DEA strategies, which show the best and the worst 

performance DEA schemes in each benchmark problem, are selected to present their 

convergences. Meanwhile, the convergence graphs of CGA procedure for all 

benchmark problems f1-f7 are also illustrated in figures 4.1-4.7. 

 

4.5.1 Sphere Function Test Results 

In this experiment, the first mathematical benchmark test function is Sphere (f1) that 

is a unimodal function and the simplest function compared to other test functions. 

The achieved results are illustrated in table 4.3 and figure 4.1. From these results, the 

discussion can be made as follows: 

 For Sphere function, all methods except DEA10 and CGA perform well to 
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find problem solution. They found the best function values less than 1 10
-50

.  

 Although CGA performs not as well as DEA1-DEA9 to approach the 

problem solution, CGA is not the worst method for this test function. As an 

achieved best function value of CGA is equal to 3 10
-13

 that is an acceptable 

value for the solution of this test case. 

 DEA10 shows the poorest performance for approaching the problem solution 

compared to other DEA strategies and CGA procedure because the best 

function value of DEA10, which is equal to 6.47 10
-2

, is a huge value for this 

case. In addition, DEA10 has some large values of an average result, the 

worst result and a standard deviation that are greater than “1”. Therefore, 

these obtained results of DEA10 are unacceptable values for the solution of 

this test case. 

 DEA6 performs well in searching the problem solution and is more robust 

than other methods. This is shown by the smallest values of the best result, an 

average result and the worst result respectively.   

 For the calculation time comparison, DEA1 takes the lowest an average CPU 

time. In contrast, CGA takes the highest CPU time in this case. Among DEA 

schemes, DEA10 requires more an average CPU time for calculation than 

other schemes while generating a poor convergence rate for all range of 

search process in this test function study.   

 

Table 4.3 Comparison of simulation results for Sphere function (f1) 

 

Results 

Methods 

DEA6 DEA4 DEA3 DEA7 DEA1 DEA8 DEA9 DEA2 DEA5 CGA DEA10 

Best 1.95E-52 2.53E-52 3.05E-52 3.18E-52 3.51E-52 4.20E-52 6.58E-52 1.39E-51 2.05E-51 3.00E-13 6.47E-02 

Average 4.00E-51 5.43E-51 5.17E-51 5.33E-51 4.72E-51 4.69E-51 5.61E-51 6.38E-51 6.45E-51 4.46E-11 2.23E+00 

Worst 9.37E-51 9.83E-51 9.95E-51 9.88E-51 9.94E-51 9.40E-51 9.83E-51 9.72E-51 9.82E-51 2.06E-10 8.77E+00 

Std Dev 2.63E-51 2.81E-51 2.35E-51 2.51E-51 2.78E-51 2.77E-51 2.50E-51 2.46E-51 2.37E-51 5.75E-11 1.78E+00 

Average  

CPU time 
0.16 0.17 0.16 0.27 0.12 0.27 0.26 0.28 0.33 2.78 0.35 
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Figure 4.1 Convergence curves of DEA strategies and CGA procedure on 

mathematical benchmark function 1 

 

4.5.2 Rosenbrock1 Function Test Results 

The second mathematical benchmark test function is Rosenbrock1 (f2), which is a 

unimodal function and has the lowest dimensions in this experiment. This test 

function is more complex than Sphere function but having fewer dimensions. The 

achieved results are illustrated in table 4.4 and figure 4.2. Based on these results, the 

discussion is as follows: 

 For Rosenbrock1 function, all DEA schemes except DEA7 and DEA10 

perform successfully to find the problem solution. They found the function 

solution that is equal to “0” in this test case. 

 According to the previous successful DEA schemes, only DEA4, DEA5, 

DEA8 and DEA9 perform the best performance for approaching the optimal 

solution because they yield the outstanding values of the best result, an 

average result and the worst result. These values are equal to “0” for this test 
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function.    

 DEA7, DEA10 and CGA are not successful to approach the optimal solution 

because they could not find the fitness optimum for this test function. 

 Similar to Sphere function, DEA10 remains the poorest performance for 

finding the problem solution and least robust compared with other methods 

because it has the greatest values of the best result, an average result, the 

worst result and a standard deviation.  

 In this case, DEA1 and DEA4 require less average CPU time for calculation 

than other DEA strategies and the CGA procedure. 

 Regarding convergence curves presented in figure 4.2, DEA4 gives the best 

convergence rate comparing with DEA10 and CGA procedure, which has the 

poorest convergence rate in this test function. DEA10 converges quicker than 

CGA in the early stage of searching process but it gets into the stagnation 

state at around 100 iterations and is trapped into the local optimal solution.  

 

Table 4.4 Comparison of simulation results for Rosenbrock1 function (f2)  

 

Results 

Methods 

DEA4 DEA9 DEA5 DEA8 DEA2 DEA3 DEA1 DEA6 CGA DEA7 DEA10 

Best 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 8.60E-08 7.00E-04 2.48E-02 

Average 0.00E+00 0.00E+00 0.00E+00 0.00E+00 1.28E-03 2.15E-03 1.09E-02 3.86E-02 1.05E-02 6.14E-02 3.27E+00 

Worst 0.00E+00 0.00E+00 0.00E+00 0.00E+00 3.57E-02 6.48E-02 5.24E-01 6.20E-01 6.63E-02 3.29E-01 1.90E+01 

Std Dev 0.00E+00 0.00E+00 0.00E+00 0.00E+00 5.72E-03 9.61E-03 7.41E-02 1.07E-01 1.58E-02 8.02E-02 4.35E+00 

Average  

CPU time 
0.09 0.11 0.13 0.14 0.14 0.15 0.09 0.62 4.67 0.72 0.74 
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Figure 4.2 Convergence curves of DEA strategies and CGA procedure on 

mathematical benchmark function 2 

 

4.5.3 Rosenbrock2 Function Test Results 

The third mathematical benchmark test function is Rosenbrock2 (f3), which is a 

unimodal function. This test function is almost similar to Rosenbrock1 function 

except that it has more dimensions. The achieved results are illustrated in table 4.5 

and figure 4.3 and the result discussion is as follows: 

 DEA1 and DEA3 perform better than other DEA schemes and CGA as their 

best function values are very smaller than that of other methods. 

 For Rosenbrock2 function, DEA3 is superior to other DEA schemes and CGA 

procedure. It shows better performance for seeking the function solution as 

shown by the smallest values of the best result, an average result and the 

worst result respectively. 

 DEA2, DEA4, DEA5, DEA7, DEA8, DEA10 are not successful for finding 

the problem solution in this test case because they found the best function 
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values that are greater than the problem solution. 

 DEA5 performs poorest compared with other DEA strategies and CGA 

procedure because it has the highest values of the best result, an average 

result and the worst result.   

 Similar to Sphere and Rosenbrock1 functions, DEA1 is faster than other 

methods for calculation, whereas CGA is the slowest method in this case.  

 In figure 4.3, DEA3 gives the best convergence rate comparing with DEA5 

and CGA procedure, whereas DEA5 gives the poorest convergence rate in 

this test function. Moreover, DEA5 gets into the stagnation state at around 

700 iterations and is finally trapped into the local optimal solution. 

 

Table 4.5 Comparison of simulation results for Rosenbrock2 function (f3) 

 

Results 

Methods 

DEA3 DEA1 DEA9 CGA DEA6 DEA8 DEA2 DEA4 DEA7 DEA10 DEA5 

Best 7.47E-11 8.06E-11 1.36E-02 3.80E-02 5.48E-01 1.11E+01 2.84E+01 2.84E+01 1.43E+02 2.29E+02 2.74E+02 

Average 9.15E-11 9.36E-11 9.44E-02 4.68E-02 1.72E+00 5.79E+01 3.01E+01 4.45E+01 2.70E+02 3.03E+02 3.20E+02 

Worst 9.98E-11 9.98E-11 2.40E-01 7.83E-02 4.28E+00 1.14E+02 3.17E+01 1.20E+02 3.61E+02 3.56E+02 3.75E+02 

Std Dev 7.43E-12 6.61E-12 7.96E-02 7.98E-03 1.15E+00 3.61E+01 8.65E-01 2.64E+01 7.11E+01 4.25E+01 2.96E+01 

Average  

CPU time 
1.63 1.51 7.18 11.25 7.47 7.08 4.60 4.55 7.16 7.34 4.85 
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Figure 4.3 Convergence curves of DEA strategies and CGA procedure on 

mathematical benchmark function 3 

 

4.5.4 Absolute Function Test Results 

Absolute function (f4) is a unimodal function and consists of the summation of 

absolute terms. The variables of this function range from -100 to +100, which have 

wider than those previous three test functions. The achieved results are illustrated in 

table 4.6 and figure 4.4 and the result discussion is as follows: 

 Similar to Rosenbrock2 function, DEA1 and DEA3 perform better than other 

methods because the best function values of DEA1 and DEA3 are very 

smaller than those of other methods. 

 Although DEA9 does not perform as well as DEA1 and DEA3 for searching 

the problem solution, it found an acceptable value of the best result that is 

equal to 1.62 10
-7

. 

 DEA3 is superior to other algorithms for finding the solution. It gives the 

lowest values of the best result, an average result and the worst result. In 
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addition, it converges faster than other DEA strategies and CGA procedure in 

this test case. 

 On the other hand, DEA5 is inferior to other methods for its performance of 

finding the fitness optimal solution because it has the highest values of the 

best result, an average value and the worst result. 

 Similar to all previous test functions, DEA1 is the fastest method compared to 

other strategies, whereas CGA takes more an average computational time 

than all DEA strategies in this test case.  

 In figure 4.4, DEA3 gives the best convergence rate comparing with DEA5 

and CGA procedure. 

 

Table 4.6 Comparison of simulation results for Absolute function (f4) 

 

Results 

Methods 

DEA3 DEA1 DEA9 DEA6 DEA8 DEA2 DEA4 CGA DEA10 DEA7 DEA5 

Best 5.21E-11 5.88E-11 1.62E-07 5.78E-05 4.12E-03 5.06E-03 5.10E-03 2.24E+00 2.79E+00 3.27E+00 4.15E+00 

Average 8.76E-11 8.82E-11 1.29E-05 1.96E-02 5.59E-02 7.98E-03 1.03E-02 4.36E+00 4.41E+00 4.80E+00 5.38E+00 

Worst 9.92E-11 9.96E-11 8.60E-05 2.22E-01 1.58E-01 1.16E-02 1.92E-02 5.42E+00 5.45E+00 6.44E+00 6.57E+00 

Std Dev 1.04E-11 9.36E-12 1.75E-05 3.54E-02 3.75E-02 1.48E-03 3.63E-03 1.03E+00 7.40E-01 7.49E-01 5.34E-01 

Average  

CPU time 
1.23 1.12 8.70 8.47 7.88 4.74 4.76 10.92 9.06 8.15 4.77 
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Figure 4.4 Convergence curves of DEA strategies and CGA procedure on 

mathematical benchmark function 4 

 

4.5.5 Salomon Function Test Results 

Salomon function (f5) is a highly multimodal function that comprises terms of cosine 

function and square root function. This benchmark test function is more difficult for 

solving than the previous four test functions. The achieved results are illustrated in 

table 4.7 and figure 4.5. The discussion of these results can be presented as follows: 

 For Salomon function, DEA1 and DEA3 still perform better than other 

methods. In contrast, DEA2, DEA4, DEA5, DEA7, DEA8 and DEA10 could 

not successfully discover any solution of this function.    

 DEA1 and DEA3 perform outstandingly to find the problem solution 

compared with other methods. They reach the similar value of the best 

function result that is 9.99 10
-2

. Between these two methods, DEA3 has less 

value of an average function result but more for standard deviation than 

DEA1.  
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 DEA6, DEA9 and CGA are almost as good methods for finding the optimal 

solution of this test case. These methods perform moderately better than 

DEA2, DEA4, DEA5, DEA7, DEA8 and DEA10 because their results are 

better in terms of both the best and average function values. 

 Similar to Absolute function, DEA5 is poorer than other methods for its 

performance of finding the fitness optimal solution because it has the highest 

values of the best, an average, and worst function results. Moreover, DEA5 is 

least robust for finding the solution because it has the smallest value of a 

standard deviation. 

 In term of computational time, DEA1 is the fastest while the slowest belongs 

to CGA procedure.  

 In figure 4.5, DEA3 gives the fastest convergence rate compared to DEA5 

and CGA, which are very slow. Moreover, DEA5 gets into the stagnation 

state after around 650 iterations and ultimately trapped in the local optimal 

solution. 

 Comparing convergence rates between DEA5 and CGA procedure, CGA is 

faster than DEA5 in the early stage of search process but its convergence rate 

deteriorates dramatically after around 200 iterations, which finally leads to 

the stagnation state.  

 

Table 4.7 Comparison of simulation results for Salomon function (f5) 

 

Results 

Methods 

DEA3 DEA1 DEA6 CGA DEA9 DEA7 DEA4 DEA2 DEA8 DEA10 DEA5 

Best 9.99E-02 9.99E-02 2.00E-01 3.00E-01 8.01E-01 1.00E+00 2.61E+00 3.74E+00 4.06E+00 1.35E+01 1.68E+01 

Average 1.20E-01 1.90E-01 4.90E-01 4.93E-01 1.23E+00 1.60E+00 3.13E+00 4.13E+00 5.08E+00 1.52E+01 1.90E+01 

Worst 2.00E-01 2.00E-01 1.50E+00 6.00E-01 1.60E+00 2.20E+00 3.72E+00 4.61E+00 5.75E+00 1.74E+01 2.08E+01 

Std Dev 4.04E-02 3.03E-02 3.51E-01 8.47E-02 2.45E-01 3.91E-01 3.13E-01 2.32E-01 6.56E-01 1.07E+00 1.21E+00 

Average  

CPU time 
55.18 53.88 85.29 94.27 83.86 84.71 54.53 54.56 84.2 87.86 54.18 
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Figure 4.5 Convergence curves of DEA strategies and CGA procedure on 

mathematical benchmark function 5 

 

4.5.6 Schwefel Function Test Results 

Schwefel function (f6) is a highly multimodal function, which comprises term of sine 

function of square root. The solution of this test function is a negative value that is 

distinguished from other test function solutions. The achieved results are illustrated 

in table 4.8 and figure 4.6. These results can be discussed as follows: 

 For Schwefel function, all methods perform consistently well for approaching 

the fitness optimum of the problem. All techniques found their best solutions that 

are nearly to the fitness optimal solution of the problem. 

 However both DEA1 and DEA3 perform better than other methods for finding 

the fitness optimum of this test function because they found the lowest value of 

the best function result that is equal to -3.15 10
4
.  

 DEA1 is superior to other methods for finding the problem solution. It gives the 

lowest values of the best, an average, and worst function results.  
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 DEA10 is inferior to other methods for its performance of searching the fitness 

optimum in this test case because it has the highest values of the best and 

average function results. However DEA10 is not poor for finding the optimal 

solution in this case as its best function result is close to the problem solution.   

 DEA4 requires the least average computational time whereas CGA still requires 

the longest average calculation time in this test case. 

 In figure 4.6, DEA1 gives the fastest convergence rate comparing with DEA10 

and CGA procedure whereas CGA gives the slowest convergence rate in this test 

function.  

 

Table 4.8 Comparison of simulation results for Schwefel function (f6) 

 

Results 

Methods 

DEA1 DEA3 DEA9 CGA DEA6 DEA7 DEA4 DEA8 DEA2 DEA5 DEA10 

Best -3.15E+04 -3.15E+04 -3.14E+04 -3.13E+04 -3.13E+04 -3.12E+04 -3.11E+04 -3.08E+04 -3.06E+04 -3.06E+04 -3.04E+04 

Average -2.98E+04 -2.96E+04 -2.96E+04 -2.97E+04 -2.95E+04 -2.96E+04 -2.95E+04 -2.95E+04 -2.94E+04 -2.94E+04 -2.94E+04 

Worst -2.87E+04 -2.86E+04 -2.86E+04 -2.81E+04 -2.85E+04 -2.86E+04 -2.86E+04 -2.82E+04 -2.85E+04 -2.83E+04 -2.84E+04 

Std Dev 7.80E+02 7.35E+02 5.37E+02 8.45E+02 6.00E+02 6.04E+02 5.13E+02 5.89E+02 4.68E+02 5.65E+02 4.15E+02 

Average  

CPU time 
0.69 1.52 0.56 4.70 0.86 0.85 0.51 0.56 1.36 0.66 1.75 
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Figure 4.6 Convergence curves of DEA strategies and CGA procedure on 

mathematical benchmark function 6  

 

4.5.7 Rastrigin Function Test Results 

The last mathematical benchmark test function is Rastrigin (f7), which is a highly 

multimodal function. This test function is a highly complex problem. It is also 

difficult to approach the optimal solution. There are many local optima arrayed on 

the side of a larger bowl-shaped depression in Rastrigin function that is symmetric 

about its solution [47]. The achieved results are illustrated in table 4.9 and figure 4.7. 

The discussion of these results is as follows: 

 For Rastrigin function, DEA3 performs better than other methods to find the 

problem solution. It found the smallest values of the best, an average, and 

worst function results compared to other techniques. In addition, DEA3 is 

also more robust than others as it has the smallest values of an average 

function result and a standard deviation.  

 However, all methods have no good performance for approaching the fitness 
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optimal solution because the achieved best function values of all algorithms 

are not near the problem solution. As mentioned earlier, this test function has 

many local optima where the population of all algorithms may not escape. 

 DEA5 performs poorer than other methods because it found the greatest value 

of the best function result in this case. 

 CGA is less robust to find the problem solution as shown by the largest 

values of an average function result and a standard deviation. 

 Similar to all previous test functions, DEA1 takes least average 

computational time whereas CGA still has the largest one in this test case. 

 In figure 4.7, DEA3 gives the fastest convergence rate comparing with DEA5 

and CGA procedure. DEA3 converges quickly in the early stage of the search 

process. Then its convergence rate decreases significantly after 200 iterations 

and approaches to the stagnation stage. Similar to other DEA schemes and 

CGA procedure, DEA3 is trapped in the local minimum solution and obtains 

the best solution that is equal to 9.95 10
-1

.   

 Finally, all methods get into the stagnation state and are trapped in the local 

optimal solution.  

 

Table 4.9 Comparison of simulation results for Rastrigin function (f7) 

 

Results 

Methods 

DEA3 DEA1 DEA6 CGA DEA4 DEA2 DEA7 DEA9 DEA10 DEA8 DEA5 

Best 9.95E-01 1.31E+00 1.02E+01 3.76E+02 4.71E+02 5.23E+02 5.52E+02 5.55E+02 5.62E+02 6.06E+02 6.61E+02 

Average 1.89E+00 7.46E+00 4.12E+01 7.79E+02 5.54E+02 5.66E+02 6.34E+02 6.28E+02 6.17E+02 6.46E+02 6.72E+02 

Worst 4.97E+00 1.19E+01 1.13E+02 1.20E+03 6.13E+02 5.85E+02 6.79E+02 7.27E+02 6.47E+02 6.83E+02 6.84E+02 

Std Dev 1.18E+00 2.65E+00 2.08E+01 3.64E+02 4.50E+01 1.68E+01 3.61E+01 5.33E+01 2.82E+01 2.04E+01 8.20E+00 

Average  

CPU time 
80.47 77.81 109.37 167.82 83.88 83.14 125.78 131.62 121.61 124.51 84.78 
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Figure 4.7 Convergence curves of DEA strategies and CGA procedure on 

mathematical benchmark function 7  

 

4.6 Overall Analysis and Discussion on Test Results 

 

Initially, the numerical benchmark test functions f1 – f4, which are unconstrained 

unimodal test functions, have been implemented for testing the algorithms 

performance. There is a consistent performance pattern across DEA1, DEA3 DEA6 

and DEA9 that perform well to find the optimum solution of these four test functions. 

In contrast, DEA10 is not successful in approaching the fitness optimum of functions 

f1 – f4 and CGA procedure is not good for finding the optimal solution of functions f2 

and f4. Under test function f2, the optimal solution has been easily found by all 

methods except DEA7, DEA10 and CGA.  

 Last three test functions, f5 - f7, are highly multimodal functions and also 

more difficult than the previous functions f1 – f4. Three DEA schemes, DEA1, DEA3, 

DEA6, still perform well on solving these test functions f5 - f7 and CGA performs 
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better than previous function f1 – f4. On the other hand, DEA5 and DEA 10 are not 

successful to find the optimal solution on functions f5 and f7.  

 Regarding the achieved results, DEA1, DEA3 and DEA6 show the 

outstanding performance to optimise all test functions f1-f7 because they found the 

best function value nearly the problem solution of each case. In contrast, DEA10 is 

the poorest technique because it obtained larger values of the best and an average 

function results than other methods on almost test functions. In terms of calculation 

time comparison, DEA1 requires the smallest an average computational time on all 

test function except for f6, whereas CGA requires the largest computational time on 

all test case.  

 

4.7 Conclusions 

 

In this chapter, a novel DEA method and CGA procedure have been tested on seven 

numerical benchmark functions and a detailed comparative study is presented. The 

achieved results on all test functions illustrate that some DEA strategies, DEA1, 

DEA3, DE6, perform effectively to solve these selected benchmark problems. The 

advantages of DEA method are as follows: simple, robust, fast convergence and 

capable of finding the optimum in almost every run. In addition, it requires few 

control parameters to set and the same parameter settings can be applied to many 

different problems. In this study, DEA1 and DEA3 outperform CGA procedure on 

the majority of the numerical benchmark test functions. As indicated by the 

numerical test results, these proposed DEA strategies can obtain the best solution 

with lower computational fitness value than CGA procedure on all test functions. The 

most attractive feature of the proposed method is the good computational 

performance that is faster than CGA for all test functions investigated in this 

experiment. As a consequence of these successful results, the DEA method will be 

implemented to solve the transmission expansion planning problem as the next 

chapter of this thesis. 



CHAPTER 5 

APPLICATION OF DIFFERENTIAL 

EVOLUTION ALGORITHM TO STATIC 

TRANSMISSION EXPANSION PLANNING 

 

5.1 Introduction 

 

In chapter 4, DEA method has been applied to some selected numerical benchmark 

test functions whereas the results show clearly that this algorithm can successfully 

solve mathematical optimisation problem. However, in the real world, optimisation 

for engineering problems is significantly different from those mathematical functions. 

Most real world optimisation problems are considered not only optimal solution but 

also satisfying the problem constraints. Therefore, this chapter aims at applying DEA 

method to transmission expansion planning (TEP) problem, which is one of the 

complex optimisation problems in engineering. 

 As previously discussed in chapter 2, TEP can generally be classified into the 

static or dynamic planning depending upon how period of study is considered. 

However, the analysis of this chapter covers only the static TEP problem that is 

investigated in two different scenarios, with and without generation resizing. Then 

the dynamic TEP problem is studied and reported in next chapter. To solve the static 

TEP problem, ten variant DEA schemes and a conventional genetic algorithm (CGA) 

procedure have been adopted for searching optimal solution. The main differences 

between DEA and CGA procedures are discussed in chapter 3. 

 The organisation of this chapter is as follows: Section 5.2 presents the 

formulation of the static TEP problem. Section 5.3 states the implementation of DEA 

method for solving the static TEP problem that consists of cases, with and without 

generation resizing consideration. Section 5.4 shows significant data of three selected 

electrical transmission systems to be tested as static TEP problem. Meanwhile, the 

experimental results of these test systems are also presented in the same section. 

Subsequently, these results are discussed and further analysed in section 5.5. Finally, 
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section 5.6 provides summary of this chapter. 

 

5.2 Primal Static Transmission Expansion Planning – Problem 

Formulation 

 

Generally, the objective of fitness function is to find optimal solution, measure 

performance of candidate solutions and check for violation of the planning problem 

constraints. Fitness function of the static TEP problem is basically a combination 

between objective function and penalty functions. In this chapter, the objective 

function of the static TEP problem is referred to as formulated in equation (2.4). The 

purpose of applying penalty functions to the fitness function is to represent violations 

of equality and inequality constraints. In this static TEP problem, there is only one 

equality constraint, which is node balance of DC power flow. In contrast, there are 

several inequality constraints to be considered, namely power flow limit on 

transmission lines constraint, power generation limit, right of way constraint and bus 

voltage phase angle limit. The general fitness function of the static TEP problem can 

be formulated as follows: 

  

  
1 1 2 2
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                          (5.1) 

  

 Fs(X) and Os(X) are fitness and objective functions of the static TEP problem, 

respectively. P1(X) and P2(X) are equality and inequality constraint penalty functions 

respectively. X denotes individual vector of decision variables. 1and 2 are penalty 

weighting factors, which are set to “0.5” in this research. 

  For the static TEP problem, the objective and penalty functions are as follows:
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where 
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l is the penalty coefficient of the l

th
 inequality constraint. c is an inequality 

constraint constant that is used if an individual violates that inequality constraint. In 

this research, c is set to “0.5” for applying in equations (5.5-5.8). nb and nc represent 

the number of buses in transmission system and the number of considered inequality 

constraints, respectively. The variables as used in the research presented in this 

chapter and defined in equations (5.5 and 5.7-5.8) are valid for all ij and the variables 

in equation (5.6) are valid for all i. Full details of these variables as used for solving 

static TEP problem are described in section 2.4. 

 

5.3 Implementation of DEA for Static Transmission Expansion 

Planning Problem 

 

Given the advantages of DEA performance and basic optimisation process as 

discussed in chapter 3, the DEA method can be adapted and applied to optimise static 

TEP problem. The objective of DEA is to find an individual Xi that optimises the 

fitness function. The DEA optimisation process comprises 4 main steps that are 

initialisation, mutation, crossover and selection. These optimisation operations are 

presented as follows: 
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5.3.1 Initialisation Step 

The first step of DEA optimisation process is that an initial population is created 

based on equation (3.3). In the static TEP problem formulation, each individual 

vector Xi in (5.9) contains many integer-valued parameters n (5.10), where nj,i 

represents the number of candidate lines in the possible branch j of the individual i. 

The problem decision parameter D in (5.10) is the number of possible branches for 

expansion.     

 ( ) ( )( ) ( )
1[ ,..., ,..., ]

P

G GG G
i N

P X X X                                       (5.9) 

 ( ) ( )( ) ( )
, ,1,[ ,..., ,..., ], 1,...,

G GG G
i j i pD iiX n n n i N                                               (5.10) 

 

5.3.2 Optimisation Step 

New individuals are then created by applying mutation (3.4), crossover (3.5) and 

selection (3.6) operators. Ten variations of the DEA schemes in (3.7)-(3.16) are 

applied directly to mutation process. To search for final solution, optimisation step is 

repeated until the maximum number of generations (G
max

) is reached or 

predetermined convergence criterion ( ) is satisfied. In this optimisation process, the 

convergence criterion compares two differences of the candidate solution population. 

The first one is the difference between fitness function values of the best member and 

other members in the same iteration. The second one is the difference between fitness 

function values of the best solution in present iteration and previous iteration. 

 

 5.3.3 Control Parameter Settings  

For DEA, a suitable selection of control parameters is very significant for algorithm 

performance and success to reach optimal solution. As the optimal control 

parameters of DEA are problem-specific [53], the control parameters should be 

carefully selected for each optimisation problem. Storn and Price [49] remarked how 

to choose the proper control variables NP, F and CR for real-world optimisation 

problems that a reasonable choice for NP setting is between 5*D and 10*D but NP 

must not be less than 4*D to guarantee that DEA will substantially have mutual 

different vectors to work. In addition, they recommended that a good initial setting of 

control variable F is “0.5” and if the population converges prematurely, then F and/or 
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NP should be increased by the user‟s discretion. A good initial setting of CR is “1” or 

“0.9”, whereas a large CR returns faster convergence if it occurs. However, if 

convergence has not been reached, then the user should decrease value of CR to 

make DEA robust enough for a particular problem. In this research, control 

parameters are adjusted through extensive tests until the best settings have been 

found. The suitable DEA parameter settings for the static TEP problem are as follows: 

F = [0.5,0.9], CR = [0.55,0.95] and NP = [4*D,10*D]. The maximum predetermined 

convergence criterion ( ) is set to “1 10
-3

” and the maximum number of generations 

(G
max

) is set to “1 10
3
” or “1 10

4
” depending on test system size. 

 

5.3.4 DEA Optimisation Program for Static TEP problem - Overall 

Procedure 

The major steps of DEA optimisation program for solving static TEP problem can be 

summarised as follows: 

Step 1: Read all required transmission system data from database for the static TEP     

            calculation, including;  

 The data of actual power generation, load demand and transmission line 

system (for the case without power generation resizing consideration) ;  

 The data of minimum and maximum sizes of power generation, load demand 

and transmission line system (for the case with power generation resizing 

consideration); 

Step 2: Set up all required parameters of DEA optimisation process by the user;  

 These control parameters are population size (NP), scaling mutaion factor (F), 

crossover probability (CR), convergence criterion ( ), number of problem 

variables (D), lower and upper bounds of initial population (xj
min

 and xj
max

) 

and maximum number of iterations or generations (G
max

); 

 Select a DEA mutation operator strategy; 

Step 3: The user selects a type of static TEP problem, which is either the case with or   

             without power generation resizing consideration; 

 If the user selects a case of without power generation resizing consideration, 

DEA programme will use the given actual power generation values from step 

1 for DC power flow calculation; 
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 If the user selects a case of with power generation resizing consideration, 

DEA programme will random and attempt to search the proper power 

generation value, which must be within the given bound from step1, for each 

generation unit in the network; 

Step 4: Set iteration G = 0 for initialisation step of DEA optimisation process; 

Step 5: Initialise population P of individuals according to equation (3.3); 

Step 6: Calculate and evaluate fitness values of initial individuals according to the   

            problem fitness function (5.1) and check constraints for each initial individual    

            by using DC model static TEP method; 

Step 7: Rank the initial individuals according to their fitness;  

Step 8: Set iteration G = 1 for optimisation step of DEA optimisation process; 

Step 9: Apply mutation, crossover and selection operators to generate new   

            individuals; 

 Apply mutation operator to generate mutant vectors (Vi
(G)

) according to 

equation (3.4) with a selected DEA mutation operator strategy in step 2; 

 Apply crossover operator to generate trial vectors (Ui
(G)

) according to 

equation (3.5); 

 Apply selection operator according to equation (3.6) by comparing the fitness 

of trial vector (Ui
(G)

) and the corresponding target vector (Xi
(G)

) and then 

select one that provides the best solution;  

Step 10: Calculate and evaluate the fitness values of new individuals according to the   

              problem fitness function (5.1) and check constraints for each new individual   

              by using DC model of static TEP method; 

Step 11: Rank new individuals according to their fitness; 

Step 12: Update the best fitness value of the current iteration (gbest) and the best   

              fitness value of the previous iteration (pbest)    

Step 13: Check the termination criteria; 

 If Xi
best

 - Xi  > or pbest - gbest > when the number of current generation 

is not over the maximum number of generations G < G
max

, set G = G + 1 and 

return to step 9 for repeating to search the solution. Otherwise, stop to 

calculate and go to step 14; 

Step 14: Calculate and print out the final solution that is the best investment cost of  
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            static TEP problem and the number of new transmission lines added to each   

            candidate right-of-way; 

Step 15: Run and display the DC load flow of the obtained final result. 

 

5.4 Test Systems and Numerical Test Results 

 

The proposed DEA method has been implemented in Matlab7 and tested on three 

electrical transmission networks, which are as reported in [11, 14, 66]. In addition, 

the results of these methods are also compared with those of CGA procedure. In 

these analyses, static TEP procedure is tested on the following three test systems; 6-

bus system originally proposed by Garver [10], IEEE 25-bus system and Brazilian 

46-bus system. The static TEP problem has been investigated in two cases that are 

with and without power generation resizing consideration. In case of with generation 

resizing consideration, the generated MW power at each generator varies between 

gi
min

 and gi
max

, of which the details have been explained in section 2.4. In this 

experiment, the values of gi
min

 are set to “0” MW for all generating units in three test 

systems. Meanwhile, setting data of gi
max

 are referred to as in [8] for 6-bus system, 

[11] for IEEE 25-bus system and [14] for Brazilian 46-bus system. Ten different 

DEA strategies, as described in chapter 3, have been employed to test the static TEP 

procedure. In this research, the initial control parameters of DEA procedure are set 

for approaching the static TEP problem for each test system as following details in 

section 5.3.3. The proper DEA control parameters of the best solution are then found 

through a great number of tests for each system.  

 

5.4.1 Garver 6-Bus System 

The first test system adopted in this research is the well-known Garver‟s system as 

shown in figure A1. Generally, it comprises of 6 buses, 9 possible branches and 760 

MW of demand. The data of this electrical system, which includes transmission line, 

load and generation data with resizing range in MW, are available in [8, 66]. In this 

test system, bus 6 is a new generation bus that needs to be connected to the existing 

network. The dotted lines represent new possible line additions and solid lines are the 

existing lines. In this research, static TEP problem is analysed in both cases, with and 
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without power generation resizing. The maximum number of permitted parallel lines 

is four for each branch. The simulation results of Garver‟s case are presented in 

tables 5.1 and 5.2, whereas the proposed method was run 100 times in order to 

determine appropriate values for DEA parameters. In order to obtain the best 

investment costs using DEA in tables 5.1 and 5.2, the DEA parameter settings had 

been initiated as described in section 5.3.3. The proper DEA parameter settings were 

then achieved as following values: F = 0.7, CR = 0.6, D = 9 and Np = 5*D = 45 

respectively. 

 

5.4.1.1 Without Generation Resizing - Garver’s System 

The achieved results of Graver‟s system in case of without power generation resizing 

consideration are presented in table 5.1 and figure 5.1. These results are then 

discussed as follows: 

 In this case, the optimal solution of the static TEP problem was found by all 

of DEA strategies and CGA procedure. The investment cost of this optimal 

solution equals to v = US$ 200,000 with the following topology: n2-6 = 4, n3-5 

= 1 and n4-6 = 2.  

 The convergence curves of DEA1 and CGA to obtain the optimal solution are 

illustrated in figure 5.1, whereas the optimal solution was found by DEA1 at 

the 6
th

 iteration and was found by CGA at the 14
th

 iteration.  

 The optimal solution of this planning case was previously found in [44, 67]. 

The configuration of this optimal expansion plan was illustrated in [44], 

whereas a specialised genetic algorithm was applied to solve the static TEP 

problem.  

 Given the results presented in table 5.1, even though all DEA strategies and 

CGA found the optimal solution, the performance of DEA1 is more robust 

than other strategies as shown by the smallest values of an average 

investment cost and a standard deviation.  

 DEA1 requires less an average CPU time for calculation than other strategies 

in this test case.  

 Overall, the best algorithmic procedure for this case is DEA1 based on all 

above mentioned reasons.  
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Table 5.1 Summary results of Garver 6-bus system without generation resizing case 

 

Results of static TEP Methods 

(without power gen resizing) DEA1 DEA6 DEA8 DEA9 DEA3 CGA DEA4 DEA7 DEA10 DEA2 DEA5 

Best, 103 US$ 200 200 200 200 200 200 200 200 200 200 200 

Average, 103 US$ 210.58 218.04 219.11 220.62 222.52 224.76 226.82 256.82 257.44 262.79 271.06 

Worst, 103 US$ 271 292 302 292 292 300 302 360 352 322 341 

Diff. between best and worst, % 35.5 46 51 46 46 50 51 80 76 61 70.5 

Standard deviation, 103 US$ 19.10 25.82 26.99 25.80 27.70 26.74 26.58 37.99 36.28 27.81 35.69 

Average CPU time, second 2.54 2.56 2.56 2.57 2.56 6.29 2.56 2.58 2.58 2.57 2.57 

Line additions for the best result n2-6 = 4, n3-5 = 1 and n4-6 = 2  

 

 

 

 

Figure 5.1 Convergence curves of DEA1and CGA for Garver 6-bus system without 

generation resizing case 

 

5.4.1.2 With Generation Resizing - Garver’s System 

In case that power generation resizing is considered, the test results of Graver‟s 

system can be shown in table 5.2 and figure 5.2. The discussion on these results is as 

follows: 
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 The optimal solution of static TEP problem with generation resizing was 

found by all DEA strategies and CGA procedure whereas an investment cost 

equals to v = US$ 110,000 at the following topology: n3-5 = 1 and n4-6 = 3.  

 The convergence curves of DEA3 and CGA to obtain the optimal solution are 

illustrated in figure 5.2. In this case, the optimal solution was found by DEA3 

at the 10
th

 iteration and by CGA at the 21
th

 iteration.  

 The optimal solution was previously found in [44, 67], whereas the 

configuration of this optimal expansion plan was illustrated in [44].  

 According to results in table 5.2, the performance of DEA3 is very robust to 

find the solution, as suggested by the least values of a standard deviation and 

an average investment cost.  

 In addition, DEA3 requires less an average computational time than any other 

strategies.  

 Overall, the best algorithmic procedure for this case is DEA3 based on all 

above mentioned reasons. 

 

Table 5.2 Summary results of Garver 6-bus system with generation resizing case 

 

Results of static TEP Methods 

(with power gen resizing) DEA3 DEA1 DEA6 DEA8 CGA DEA9 DEA4 DEA7 DEA2 DEA10 DEA5 

Best, 103 US$ 110 110 110 110 110 110 110 110 110 110 110 

Average, 103 US$ 112.60 113.40 118.50 120.40 122.20 123.50 124 127.60 140 149.53 151.60 

Worst, 103 US$ 150 160 180 180 190 190 190 190 190 202 210 

Diff. between best and worst, % 36.36 45.45 63.64 63.64 72.73 72.73 72.73 72.73 72.73 83.64 90.91 

Standard deviation, 103 US$ 8.95 10.56 15.20 19.22 21.06 20.07 24.33 24.33 21.56 28.35 24.97 

Average CPU time, second 4.92 4.93 4.93 4.95 8.94 4.96 4.96 4.96 4.98 4.97 4.98 

Line additions for best result n3-5 = 1 and n4-6 = 3 
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Figure 5.2 Convergence curves of DEA3and CGA for Garver 6-bus system with 

generation resizing case 

 

5.4.2 IEEE 25-Bus System 

The second test system is the IEEE 25-bus system as illustrated in figure A2. It has 

25 buses, 36 possible branches and 2750 MW of total demand. These electrical 

system data consist of transmission line data, load data and generation data that 

includes generation resizing range in MW. These data are available in [11]. The new 

bus is bus 25, connected between buses 5 and 24. Two cases of the static TEP 

problem have been analysed for this system, with and without generation resizing. 

The maximum number of permitted parallel lines is four for each branch. The 

simulation results of this case are presented in tables 5.3 and 5.4 whereas the 

proposed method was again run 100 times in order to determine appropriate values 

for the DEA parameters. To obtain the best investment costs using the DEA method 

in tables 5.3 and 5.4, the DEA parameter settings had been initiated as described in 

section 5.3.3, and then the proper DEA parameter settings were achieved as follows: 
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F = 0.7, CR = 0.6, D = 36 and Np = 5*D = 180 respectively. 

 

5.4.2.1 Without Generation Resizing - IEEE 25-Bus System 

 Without generation resizing consideration, the results of testing all proposed 

algorithms to IEEE 25-bus system can be shown in table 5.3 and figure 5.3. These 

results can be discussed as follows: 

 In this case, the best solution of the static TEP problem without generation 

resizing consideration, as shown in table 5.3, was found by DEA1, DEA3 and 

DEA6 whereas an investment cost is v = US$ 114.383 million, with the 

addition of the following lines to the base topology: n1-2 = 3, n5-25 = 1, n7-13 = 

1, n8-22 = 3, n12-14 = 2, n12-23 = 3, n13-18 = 3, n13-20 = 3, n17-19 = 1 and n24-25 = 1.  

 The convergence curve of DEA3 to obtain the best solution is illustrated in 

figure 5.3, whereas the best solution was found at the 23
rd

 iteration. On the 

other hand, the investment cost v = US$ 114.526 million was found by CGA 

at 38
th

 iteration as shown in figure 5.3.  

 In [25], the best result of the static TEP problem was found by hybrid 

methods of ANN, GA and TS, of which an investment cost was v = 

US$ 143.56 million. However, in this case the best optimal result achieved by 

DEA1, DEA 3 and DEA6 is less than that of those hybrid methods.  

 As results indicated in table 5.3, although DEA1, DEA3 and DEA6 found the 

best solution in this case, DEA3 showed its best performance in robustness to 

search the solution, as indicated by the least value of an average investment 

cost and much less value of a standard deviation comparing with other DEA 

strategies.  

 DEA3 is the fastest strategy to approach the solution because it provides the 

best convergence rate compared with all other strategies. Moreover, on 

average it requires less computational time than other techniques.  

 Overall, the best algorithmic procedure for this case is DEA3 based on all 

above mentioned reasons. 

 DEA7 shows the poorest performance for finding the problem solution and 

the least robust performance compared with other methods because it has the 

greatest values of the best, average, and worst results and a standard deviation.  
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Table 5.3 Summary results of IEEE 25-bus system without generation resizing case 

 

Results of static TEP Methods 

(without power gen resizing) DEA3 DEA1 DEA6 DEA8 CGA DEA2 DEA4 DEA9 DEA5 DEA10 DEA7 

Best, 103 US$ 114383 114383 114383 114526 114526 114526 114526 114526 114526 115201 116551 

Average, 103 US$ 114426 115356 115438 115480 115554 118770 120122 120246 121233 124178 126587 

Worst, 103 US$ 114526 118562 119237 120688 131503 131954 133304 135965 138640 143040 157930 

Diff. between best and worst, % 0.13 3.65 4.24 5.38 14.82 15.22 16.40 18.72 21.06 24.17 35.50 

Standard deviation, 103 US$ 69.08 1379.43 1548.61 1940.41 3406.35 5153.05 6603.58 7273.02 7730.18 9348.26 13286 

Average CPU time, second 26.57 26.59 26.58 26.59 52.37 26.61 26.65 26.66 26.66 26.68 26.68 

Line additions for best result n1-2 = 3, n5-25 = 1, n7-13 = 1, n8-22 = 3, n12-14 = 2, n12-23 = 3, n13-18 = 3, n13-20 = 3, n17-19 = 1 and n24-25 = 1  

 

 

 

 

Figure 5.3 Convergence curves of DEA3 and CGA for IEEE 25-bus system without 

generation resizing case 

 

5.4.2.2 With Generation Resizing - IEEE 25-Bus System 

The obtained results of IEEE 25-bus system in case of with power generation 

resizing consideration can be shown in table 5.4 and figure 5.4 including the result 

discussion as follows: 

 The necessary investment to solve the static TEP problem with generation 

resizing consideration for this test system is v = US$ 41.803 million and the 
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following lines are added: n1-2 = 2, n2-3 = 1, n5-20 = 1, n5-25 = 3, n8-22 = 1, n12-23 

= 1, n13-18 = 3 and n16-20 = 2.  

 The convergence curve of DEA3 to obtain the best solution is illustrated in 

figure 5.4, where the best solution was found at the 34
th

 iteration. On the 

other hand, the investment cost v = US$ 42.478 million was found by CGA at 

47
th

 iteration as shown in figure 5.4.  

 In this case, no data of the optimal solution has been found in previous 

researches, especially in [25] where static TEP problem was investigated in 

case of without generation resizing consideration only.  

 As the results presented in table 5.4, DEA1, DEA3 and DEA6 found the best 

solution for this case but only DEA3 showed more robust performance than 

other strategies for searching the solution, given its least value of average 

investment cost and standard deviation.  

 However, DEA1 and DEA6 are proved that they are good enough to find the 

best solution as same as DEA3 in this case, as shown by the least values of 

the best investment cost, the worst investment cost and different between the 

best and the worst cost.  

 Overall, DEA3 is the best algorithmic procedure for this case based on all 

previous mentioned reasons. 

 Similar to a case of IEEE 25-bus system without power generation resizing, 

DEA7 still shows the poorest performance for finding the problem solution 

and the least robust performance compared with other methods because it 

gives the greatest values of the best result, an average result, the worst result 

and a standard deviation. 

 In this case, DEA3 is faster than other methods for calculation while CGA is 

the slowest one. 
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Table 5.4 Summary results of IEEE 25-bus system with generation resizing case 

 

Results of static TEP Methods 

(with power gen resizing) DEA3 DEA1 DEA6 DEA8 CGA DEA2 DEA4 DEA9 DEA5 DEA10 DEA7 

Best, 103 US$ 41803 41803 41803 42478 42478 42478 44477 44477 44477 44477 45827 

Average, 103 US$ 42675 43545 43748 44771 45542 46441 51204 51321 52178 53605 55350 

Worst, 103 US$ 45827 45827 45827 52716 53538 53127 54858 54858 56499 56499 59199 

Diff. between best and worst, % 9.63 9.63 9.63 24.10 26.04 25.07 23.34 23.34 27.03 27.03 29.18 

Standard deviation, 103 US$ 1378.43 1646.60 1713.81 3102.76 4169.18 3670.17 4383.19 4196.05 4734.52 4580.62 4023.80 

Average CPU time, second 50.01 50.08 50.03 50.09 80.33 50.11 50.13 50.15 50.11 50.15 50.17 

Line additions for best result n1-2 = 2, n2-3 = 1, n5-20 = 1, n5-25 = 3, n8-22 = 1, n12-23 = 1, n13-18 = 3 and n16-20 = 2  

 

 

 

 

Figure 5.4 Convergence curves of DEA3 and CGA for IEEE 25-bus system with 

generation resizing case 

 

5.4.3 Brazilian 46-Bus System 

The third test system is the Brazilian 46-bus system as depicted in figure A3. The 

system comprises 46 buses, 79 circuits, 6880 MW of total demand. The electrical 

system data, which consist of transmission line, load and generation data including 
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generation resizing range in MW, are available in [14]. This system represents a good 

test to the proposed approach because it is a real-world transmission system. In 

figure A3, the solid lines represent existing circuits in the base case topology and the 

dotted lines represent the possible addition of new transmission lines. The addition of 

parallel transmission lines to existing lines is again allowed in this case with a limit 

of 4 lines for each branch. The simulation results of this case are shown in tables 5.5 

and 5.6, whereas the proposed method was run 100 times in order to determine 

appropriate values for the DEA parameters. The DEA parameter settings are as 

follows: F = 0.7, CR = 0.55, D = 79 and Np = 5*D = 395 respectively. 

 

5.4.3.1 Without Generation Resizing - Brazilian 46 Bus System  

The obtained results of Brazilian 46-bus system without power generation resizing 

consideration can be shown in table 5.5 and figure 5.5. The discussion on this 

simulation result is as follows: 

 In this case, the optimal solution was found by branch and bound algorithm in 

[67] where an investment cost of this expansion equals to v = US$ 154.42 

million. In this experiment, the optimum was also found by only DEA3 at the 

following topology: n5-6 = 2, n6-46 = 1, n19-25 = 1, n20-21 = 1, n24-25 = 2, n26-29 = 3, 

n28-30 = 1, n29-30 = 2, n31-32 = 1 and n42-43 = 2.  

 The convergence curve of DEA3 to reach the optimal solution is illustrated in 

figure 5.5, whereas the optimum solution was found at the 110
th

 iteration. On 

the other hand, the investment cost v = US$ 162.598 million was found by 

CGA procedure at 155
th

 iteration as shown in figure 5.5.  

 In this case, DEA3 shows the best performance in ability and robustness for 

searching the solution, as shown by the least figures of the best and average 

investment costs and a standard deviation value. The robust feature is a 

significant performance for algorithm to show that it can find a reliable result 

in a single run.  

 DEA3 requires less average computational time than any other strategies. In 

contrast, CGA requires the largest computational CPU time in this test case.  
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Table 5.5 Summary results of Brazilian 46-bus system without generation resizing 

case 

 

Results of static TEP Methods 

(without power gen resizing) DEA3 DEA1 DEA6 DEA8 CGA DEA2 DEA4 DEA9 DEA5 DEA10 DEA7 

Best, 103 US$ 154420 158314 158314 162598 162598 162598 166492 170532 170532 173674 173674 

Average, 103 US$ 156017 160458 163970 173220 173434 177905 184265 185080 188518 189291 192359 

Worst, 103 US$ 162598 166492 173674 185915 196183 196319 199535 200213 209229 212613 227123 

Diff. between best and worst, % 5.30 5.17 9.70 14.34 20.66 20.74 19.85 17.40 22.69 22.42 30.78 

Standard deviation, 103 US$ 2822.82 2972.65 6418.39 9949.75 13339.41 14588.77 13433.63 14741.47 16482.30 17956.46 21583.62 

Average CPU time, second 489 492 491 493 897 494 495 497 498 497 502 

Line additions for best result n5-6 = 2, n6-46 = 1, n19-25 = 1, n20-21 = 1, n24-25 = 2, n26-29 = 3, n28-30 = 1, n29-30 = 2, n31-32 = 1 and n42-43 = 2  

 

 

 

 

Figure 5.5 Convergence curves of DEA3 and CGA for Brazilian 46-bus system 

without generation resizing case 

 

5.4.3.2 With Generation Resizing - Brazilian 46-Bus System  

The achieved results of Brazilian 46-bus system with power generation resizing 

consideration can be shown in table 5.6 and figure 5.6. The discussion on these 
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results is as follows: 

 In this case, branch and bound algorithm found the optimum solution in [67] 

and an expansion investment cost is v = US$ 72.87 million, with the topology: 

n2-5 = 1, n5-6 = 2, n13-20 = 1, n20-21 = 2, n20-23 = 1, n42-43 = 1 and n6-46 = 1.  

 In this experiment, all DEA strategies and CGA cannot successfully find the 

optimal solution, previously obtained by branch and bound algorithm.  

 DEA3 could find only the best solution compared with other DEA strategies 

and CGA procedure, which an investment cost is v = US$ 74.733 million, 

with the added lines topology: n5-6 = 2, n6-46 = 1, n13-18 = 1, n20-21 = 2, n20-23 = 1 

and n42-43 = 1. 

 The convergence curve of DEA3 to obtain the best solution is illustrated in 

figure 5.6, whereas the best solution was found at the 145
th

 iteration. On the 

other hand, the investment cost v = US$ 89.179 million was found by CGA at 

230
th

 iteration as shown in figure 5.6. 

 All DEA strategies and CGA procedure are not good enough to find the 

optimal solution in this case. The premature convergence may be a cause for 

the failure of finding the global optimum because there are many local 

optimums in this problem case.   

 However, DEA3 remains superior to other algorithms for finding the solution 

in this case as it generates the least values of the best, average, and the worst 

results. In addition, it converges faster than all other strategies in this test case. 

 In contrast, DEA7 is inferior to other methods for its performance of finding 

the fitness optimal solution in this test case because it has the highest values 

of the best, average, the worst and a standard deviation results. 

 DEA3 requires less average computational time than all other strategies while 

CGA procedure still requires the longest computational time in this test case.  
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Table 5.6 Summary results of Brazilian 46-bus system with generation resizing case 

 

Results of static TEP Methods 

(with power gen resizing) DEA3 DEA1 DEA6 DEA8 CGA DEA2 DEA4 DEA9 DEA5 DEA10 DEA7 

Best, 103 US$ 74733 82911 82911 89179 89179 89179 97357 97357 97357 98745 98745 

Average, 103 US$ 75551 84695 86576 93268 94363 94502 100632 101770 102631 104747 105587 

Worst, 103 US$ 82911 94487 94487 97357 98745 98745 107349 107349 107349 115747 115747 

Diff. between best and worst, % 10.94 13.96 13.96 9.17 10.73 10.73 10.26 10.26 10.26 17.22 17.22 

Standard deviation, 103 US$ 2586.11 3964.44 4174.63 4310.18 4493.89 4616.39 4667.90 4834.79 4999.39 5763.37 6717.49 

Average CPU time, second 868 870 872 873 1422 876 875 878 880 879 883 

Line additions for best result n5-6 = 2, n6-46 = 1, n13-18 = 1, n20-21 = 2, n20-23 = 1 and n42-43 = 1  

 

 

 

 

Figure 5.6 Convergence curves of DEA3 and CGA for Brazilian 46-bus system with 

generation resizing case 

 

 The results of static TEP problem in both cases of with and without 

generation resizing consideration have been summarised in table 5.7 whereas the best 

investment costs of expansion corresponding to the proposed method are compared 

to those of other algorithms. As indicated by the results in table 5.7, all methods 
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found the optimal solution in both cases of the static TEP problem on Gaver 6-bus 

system except the hybrid of ANN, GA and TS algorithms in [25] where the static 

TEP problem with generation resizing consideration case was not investigated. For 

IEEE 25-bus system, DEA3 performed the best method to find the best solution in 

both cases of the static TEP problem, compared to CGA procedure and the hybrid of 

ANN, GA and TS algorithms. For Brazilian 46-bus system, DEA3 and branch & 

bound [67] performed the best performance to find the optimal solution in a case 

without generation resizing consideration of the static TEP problem, as shown by the 

cheapest investment cost. On the other hand, branch & bound [67] and Chu-Beasley 

genetic algorithm (CBGA) [68] showed the best performance for finding the optimal 

solution in case that power generation resizing is considered. 

 

Table 5.7 Results of static transmission expansion planning problem 

 

Methods 

Best cost (103 US$) 

Garver 6-bus system IEEE 25-bus system Brazilian 46-bus system 

without power 

gen resizing 

with power 

gen resizing 

without power 

gen resizing 

with power 

gen resizing 

without power 

gen resizing 

with power 

gen resizing 

DEA3 200 110 114383 41803 154420 74733 

CGA 200 110 114526 42478 162598 89179 

Hybrid of ANN, GA and TS [25] 200 - 143560 - - - 

Branch & Bound [67] 200 110 - - 154420 72870 

Chu-Beasley GA (CBGA) [68] 200 110 - - - 72870 

 

 

Table 5.8 Computational effort of static transmission expansion planning problem 

 

Methods Case of results 

Garver 6-bus system IEEE 25-bus system Brazilian 46-bus system 

without power 

gen resizing 

with power 

gen resizing 

without power 

gen resizing 

with power 

gen resizing 

without power 

gen resizing 

with power 

gen resizing 

DEA3 
No. of iteration 5-15 8-25 15-40 20-55 80-150 120-250 

Cal. Time (sec) 1.29-3.8 2.74-8.54 18.32-48.76 29.3-79.53 393.65-740.5 720.6-1495.7 

CGA 
No. of iteration 9-25 15-35 20-50 30-70 120-220 200-400 

Cal. Time (sec) 3.51-9.55 6.46-14.94 32.37-77.93 52.8-121.8 780.4-1378.3 1392.3-2724 

 

  

 The comparisons of computational effort between the proposed method and 

CGA procedure have been shown in table 5.8. As the obtained results indicated, 

DEA3 is better performance than CGA procedure to converge the best solution in all 

cases of the static TEP problem, as shown by its smaller number of iterations for 
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seeking the solution in each case. Furthermore, the proposed method requires less 

computational time than CGA in each case of the static TEP problem. 

 

5.5 Overall Analysis and Discussion on the Results 

 

The obtained results clearly indicate that DEA method can be efficiently applied to 

static TEP problem. Several DEA strategies, which are DEA1, DEA3, DEA6 and 

DEA8, show better overall performance especially in robustness than CGA 

procedure in the optimisation of the static TEP problem both with and without 

generation resizing. In addition, all DEA schemes require less computational time 

than the CGA for all cases. In table 5.8, the computational efficiency of the best 

performing DEA method, DEA3, is compared directly with the CGA with regard to 

number of iterations and calculation time. From the test results in table 5.8, DEA3 

can find the best solution faster than CGA in all cases. The proposed algorithm and 

CGA were tested 100 times to find the best results in each case the parameters were 

set as follows: F = 0.7, CR = 0.55 and Np = 5*D respectively.  

 The performance of DEA depends upon the selection of suitable control 

parameters. In this research, the parameter settings of DEA procedures were 

manually tuned based upon preliminary experiments. The specific settings for each 

case are described in section 5.3.3. According to the experiments, the scaling 

mutation factor F is much more sensitive than crossover probability CR. Therefore, 

CR is more useful as a fine tuning parameter. In this work, the researcher proposed 

five novel DEA schemes that are DEA6, DEA7, DEA8, DEA9 and DEA10. Only 

DEA6 has shown comparable performance with DEA3 when finding the optimal 

solutions for the two cases of static TEP planning on the Garver 6-bus system and the 

IEEE 25-bus system. Only DEA3 could find an optimal solution on the Brazilian 46-

bus system for the static TEP problem without generation resizing consideration case. 

 

5.6 Conclusions 

 

In this chapter, a novel DEA has been applied to solve static TEP problem in two 

cases, with and without generation resizing consideration whereas these algorithms 
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have been tested on three selected electrical systems. The results indicate that a few 

DEA schemes, especially DEA1, DEA3 and DEA6 are efficient to solve the static 

TEP problem. As the numerical test results indicated, the proposed method can 

obtain the best investment with lower computational cost than CGA procedure for 

the static TEP on IEEE 25-bus system and the Brazilian 46-bus system in cases of 

both with and without generation resizing. The most attractive feature of the 

proposed algorithm is its good computational performance that is faster than CGA 

procedure for all the static TEP problems investigated in this chapter. The accuracy 

of these results is in very good agreement with those obtained by other researchers. 

As a consequence of these successful results, the dynamic TEP problem will be 

investigated in the next chapter.  



CHAPTER 6 

APPLICATION OF DIFFERENTIAL 

EVOLUTION ALGORITHM TO DYNAMIC 

TRANSMISSION EXPANSION PLANNING 

 

6.1 Introduction 

 

In chapter 5, a novel differential evolution algorithm (DEA) has been directly applied 

to DC based power flow model in order to solve the static transmission expansion 

planning (TEP) problem. The DEA performed well with regard to both low and 

medium complex transmission systems as demonstrated by Garver six-bus system, 

IEEE 25-bus system and Brazilian 46-bus system, respectively. As a consequence of 

the successful results obtained from solving static TEP problem, DEA is then re-

implemented to solve dynamic TEP problem with DC power flow model, which is 

classed as a mixed integer nonlinear optimisation problem. Dynamic TEP problem is 

more complex and difficult to be solved than the static one as not only the optimal 

number of new transmission lines and their locations but also the most appropriate 

times to carry out the investment must be considered (as stated in chapter 2). In this 

research, the effectiveness of the proposed enhancement is initially demonstrated by 

the analysis of a highly complex transmission test system, as described in figures A.4. 

The analysis is performed within the mathematical programming environment of 

MATLAB using both DEA and CGA procedures and a detailed comparison of 

accuracy and performance is also presented in this chapter. An outline of this chapter 

is as follows: Section 6.2 states the problem formulation that describes how to 

perform the fitness function of the dynamic TEP problem. Section 6.3 describes the 

implementation of DEA procedure for solving the dynamic TEP problem. In addition, 

all details of DEA optimisation programme for approaching this planning problem 

are also included in this section. The data required for this test system is illustrated in 

section 6.4 and the achieved experimental results are also reported in the similar 

section. Finally, the discussion and conclusion of test results are given in section 6.5 
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and 6.6, respectively.  

 

6.2 Primal Dynamic Transmission Expansion Planning - Problem 

Formulation 

 

Similar to static TEP problem, the fitness function of dynamic TEP problem is a 

combination of objective and penalty functions but there are few different details of 

these functions between the static and dynamic TEP problem. The objective function 

of the dynamic TEP problem as formulated in equation (2.12) is employed to find the 

minimum investment cost for this planning problem. The fitness function is 

implemented to find optimal solution, measure performance of candidate solutions 

and check for violation of the planning problem constraints. In this dynamic TEP 

problem, there is only one equality constraint, which is node balance of DC power 

flow. In contrast, there are several inequality constraints to be considered, namely 

power flow limit on transmission lines constraint, power generation limit, right of 

way constraint and bus voltage phase angle limit. The general fitness function of the 

dynamic TEP problem can be formulated as follows:  
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                                     (6.1) 

  

 FD(X) and OD(X) are fitness and objective functions of the dynamic TEP 

problem, respectively. P1(X) and P2(X) are equality and inequality constraint penalty 

functions respectively. X denotes individual vector of decision variables. 1and 2 

are penalty weighting factors, which are set to “0.5” in this research. 

  For the dynamic TEP problem, the objective function and penalty functions 

are as follows:  
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 In the dynamic TEP problem formulation, an index t indicates specific stage 

of planning involved with a horizon of T stages planning. l is the penalty coefficient 

of the l
th

 inequality constraint. c is an inequality constraint constant that is used when 

an individual violates the inequality constraint. In this research, c is set to “0.5” for 

applying in eqs. (6.5-6.9). nb and nc represent the number of buses in the 

transmission system and the number of considered inequality constraints, 

respectively. Full details of these variables as used for solving dynamic TEP 

problems are described in section 2.5. 

 

6.3 Implementation of DEA for Dynamic Transmission Expansion 

Planning Problem 

 

Given the advantages of DEA performance and basic optimisation process as 

discussed in chapter 3, the DEA method can be applied to optimise dynamic TEP 

problem. The objective of DEA procedure is to find an individual Xi that optimises 
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the fitness function. The DEA optimisation process comprises 4 main steps that are 

initialisation, mutation, crossover and selection. These optimisation operations are 

presented as follows: 

 

6.3.1 Initialisation Step 

Normally, an initial population of candidate solution must be generated according to 

equation (3.3) in the first step of DEA optimisation process. In the dynamic TEP 

problem formulation, each individual vector (Xi) comprises many integer-valued 

parameters n, where n
t
j,i represents the number of candidate lines in the possible 

branch j of the individual i at time stage planning t. The problem decision parameter 

D is number of possible branches for expansion.  
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6.3.2 Optimisation Step 

After the initial population is generated as stated in the previous section then new 

individuals are created by applying mutation (3.4), crossover (3.5) and selection (3.6) 

operators. Ten variant schemes of DEA procedure that are implemented directly to 

mutation process for generating the mutant parameter vectors. Three basic 

optimisation steps of the DEA method are repeated to enhance the fitness value of 

the candidate solution until the maximum number of generations (G
max

) is reached or 

other predetermined convergence criterion ( ) is satisfied.  

 

6.3.3 Control Parameter Settings  

Similar to static TEP problem, a proper selection of DEA control parameters is a key 

to approach the optimal solution. The control parameters should be selected carefully 

by the user for each optimisation problem. A guideline paper [49] is employed to 

initially set the DEA control parameters in this research. In this study, parameter 

tuning adjusts the control parameters through extensive testing until the best settings 

are found. The suitable DEA parameters settings for the dynamic TEP problem are as 
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follows: F = [0.5,0.9], CR = [0.55,0.95] and NP = [4*D*T,8*D*T]. The maximum 

predetermined convergence criterion ( ) is set to “1 10
-3

” and the maximum number 

of generations (G
max

) is set to “1 10
3
”. 

 

6.3.4 DEA Optimisation Program for Dynamic TEP problem - 

Overall Procedure 

The major steps of the DEA optimisation program for solving the dynamic TEP 

problem can be summarised as follows: 

Step 1: Read all required transmission system data from database for the dynamic 

TEP calculation;  

 The data of power generation, load demand and transmission line system at 

each time stage planning 

 A  horizon of time stage planning (T) and an annual interest rate value (I);  

Step 2: Set up all required parameters of the DEA optimisation process by the user;  

 Set up control parameters of the DEA optimisation process that are 

population size (NP), scaling mutaion factor (F), crossover probability (CR), 

convergence criterion ( ), number of problem variables (D*T), lower and 

upper bounds of initial population (xj
min

 and xj
max

) and maximum number of 

iterations or generations (G
max

); 

 Select a DEA mutation operator strategy; 

Step 3: Set iteration G = 0 for initialisation step of DEA optimisation process; 

Step 4: Initialise population P of individuals according to equation (3.3); 

Step 5: Calculate and evaluate fitness values of initial individuals according to the   

            problem fitness function (6.1) and check constraints for each initial individual   

            by using DC model dynamic TEP method; 

Step 6: Rank the initial individuals according to their fitness;  

Step 7: Set iteration G = 1 for optimisation step of DEA optimisation process; 

Step 8: Apply mutation, crossover and selection operators to generate new  

            individuals; 

 Apply mutation operator to generate mutant vectors (Vi
(G)

) according to 

equation (3.4) with a selected DEA mutation operator strategy in step 2; 
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 Apply crossover operator to generate trial vectors (Ui
(G)

) according to 

equation (3.5); 

 Apply selection operator according to equation (3.6) by comparing the fitness 

of the trial vector (Ui
(G)

)  and the corresponding target vector (Xi
(G)

)  and then 

select one that provides the best solution;  

Step 9: Calculate and evaluate the fitness values of new individuals according to the   

             problem fitness function (6.1) and check constraints for each new individual   

             by using DC model dynamic TEP method; 

Step 10: Rank new individuals according to their fitness; 

Step 11: Update the best fitness value of the current iteration (gbest) and the best   

              fitness value of the previous iteration (pbest)    

Step 12: Check the termination criterion; 

 If Xi
best

 - Xi  > or pbest - gbest > when the number of current generation 

is not over the maximum number of generations G < G
max

, set G = G + 1 and 

return to step 8 for repeating to search the solution. Otherwise, stop to 

calculate and go to step 13; 

Step 13: Calculate and output the final solution that are the best investment cost of   

              the dynamic TEP problem and the number of added transmission lines in   

              each  candidate right-of-way at each stage; 

Step 14: Run and display the DC load flow of the obtained final result. 

 

6.4 Test Systems and Numerical Test Results 

 

The proposed DEA method has been implemented in Matlab 7 and tested on an 

electrical transmission network as reported in [6] comparing the results with CGA 

procedure. In this study, the Colombian 93-bus system has been selected to test 

dynamic TEP procedure. Ten DEA strategies have been implemented to solve the 

dynamic TEP problem. In the experiment, initial control parameters of the DEA 

method had been set to solve the dynamic TEP problem as following details in 

section 6.3.3 then the appropriate DEA control parameters of the best solution were 

found through a great number of testing for each test system.  
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Colombian 93-Bus System 

The transmission network is selected to test the dynamic TEP procedure that is the 

Colombian system as shown in figure A.4. The solid lines represent existing circuits 

in the base case topology and the dotted lines represent the possible addition of new 

transmission lines. The system consists of 93 buses, 155 possible right-of-ways and 

14559 MW of total demand for the entire planning horizon. The required electrical 

system data, which consist of transmission line, generation and load data including 

the load growth along the study horizon, are available in [6, 69]. The addition of 

parallel transmission lines to existing lines is allowed in this case with a limit of 4 

lines in each branch. Three planning stages P1, P2 and P3 are considered in this case. 

The P1 stage is the first stage that is the period from 2002 until 2005 and 2002 is the 

base year for this stage. The P2 stage is the period from 2005 until 2009 and 2005 is 

the base year for the second stage. The P3 stage is the period from 2009 until 2012 

and 2009 is the base year for the third stage. Furthermore, the total transmission 

expansion investment plan is obtained with reference to the base year 2002 and an 

annual interest rate value I = 10 %. Hence, the total investment cost can again be 

calculated by using equation (2.11). 

 The achieved results of DEA and CGA procedures on the Colombian 93-bus 

system can be tabulated in table 6.1 including the discussion of these results as 

follows:  

 In this case, the best solution of dynamic TEP problem was found by DEA3 

whereas the present value of investment cost projected to the base year 2002 

is v = US$ 505.8 million. 

 DEA3 shows the best performance approach in ability and robustness for 

searching the problem solution, as shown by the smallest of the best 

investment cost, an average investment cost and a standard deviation value. 

 In contrast, DEA10 shows the poorest performance for finding the problem 

solution compared to other DEA strategies and CGA procedure because it 

gives the largest of the best investment cost and an average investment cost in 

this test case. 

 In this test case, DEA3 requires less an average computational time than other 

DEA strategies and CGA procedure. On the other hand, CGA takes larger an 

average calculation time than all DEA strategies.  
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 Overall, the best algorithmic procedure for this case is DEA3 based on all 

above mentioned reasons. 

 

Table 6.1 Summary results of Colombian 93-bus system 

 

 

Results of dynamic TEP 
Methods 

 DEA3 DEA1 DEA6 DEA8 CGA DEA2 DEA4 DEA9 DEA5 DEA7 DEA10 

Best, 106 US$ 505.8 520.62 530.81 530.81 590.38 618.3 646.41 681.88 734.61 734.61 739.21 

Average, 106 US$ 515 532 539 570 627 654 677 729 786 810 830 

Worst, 106 US$ 524.63 547.07 551.77 618.3 661.87 681.88 734.61 823.2 860.71 913.23 930.23 

Diff. between best and worst, % 3.72 5.08 3.95 16.48 12.11 10.28 13.64 20.73 17.17 24.31 25.83 

Standard deviation, 106 US$ 6.85 9.94 7.34 23.38 31.82 28.1 32.44 42.09 63.96 78.48 78.17 

Average CPU time, minute 156 159 165 168 229 170 173 177 179 185 188 

  

 In order to obtain the results in table 6.1, the DEA control parameters setting 

is as follows: F = 0.8, CR = 0.6, D*T = 155*3 stages = 465 and Np = 5*D*T = 2325 

respectively. In the dynamic TEP, only the best performing of DEA strategies is 

selected to present full details of the achieved result, which is DEA3. The proposed 

DEA3 scheme could find the best solution of the dynamic TEP problem for this test 

system. The number of additional transmission lines determined by the proposed 

DEA scheme is as follows: 

 

 Stage P1 : n45-81 = 1, n55-57 = 1, n55-62 = 1, n57-81 = 2 and n82-85 = 1 

 Stage P2 : n19-82 = 1, n27-29 = 1, n62-73 = 1 and n72-73 = 1 

 Stage P3 : n15-18 = 1, n29-31 = 1, n29-64 = 2, n52-88 = 1, n55-62 = 1, n55-84 = 1 and 

n68-86 = 1 

 The best solution with the present value of the expansion investment cost 

projected to the base year 2002 is v = US$ 505.8 million, which can be calculated as 

follows: 
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Table 6.2 The expansion investment cost calculation of Colombian 93-bus system 

 

Planning stage Added lines 
Investment cost of  

an additional line, x103
 US$ 

Investment Cost, 

x103 US$ 

Stage P1 

n45-81 = 1 13270 13270 

n55-57 = 1 46808 46808 

n55-62 = 1 70988 70988 

n57-81 = 2 58890 117780 

n82-85 = 1 89898 89898 

Total investment cost in stage P1 338744 

Stage P2 

n19-82 = 1 13270 13270 

n27-29 = 1 5052 5052 

n62-73 = 1 73158 73158 

n72-73 = 1 13270 13270 

Total investment cost in stage P2 104750 

Stage P3 

n15-18 = 1 7927 7927 

n29-31 = 1 32981 32981 

n29-64 = 2 4362 8724 

n52-88 = 1 34190 34190 

n55-62 = 1 70988 70988 

n55-84 = 1 26658 26658 

n68-86 = 1 8272 8272 

Total investment cost in stage P3 189740 

 

 

 Investment cost of stage P1 with reference to base year 2002: 

  

1 2002 2002

1 1 1

0 6

6 6

( ) (1 )

(1 0.1) 338.74 10

1 338.74 10 338.74 10

invv c x I c

 

 Investment cost of stage P2 with reference to base year 2005:  

  

2 2005 2002

2 2 2

3 6

6 6

( ) (1 )

(1 0.1) 104.75 10

0.729 104.75 10 76.36 10

invv c x I c

 

 Investment cost of stage P3 with reference to base year 2009:  

  

3 2009 2002

3 3 3

7 6

6 6

( ) (1 )

(1 0.1) 189.74 10

0.478 189.74 10 90.7 10

invv c x I c

 

 Summation of the investment costs v1, v2 and v3, gives the total investment 

cost of the Colombian 93-bus system and is v = v1 + v2 + v3 = US$ 505.8 million.  
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Table 6.3 The best results comparison of Colombian 93-bus system 

 

Methods 
Best cost 

million US$ 

Average 

CPU Times 

DEA3 505.8 156 min 

CGA 590.38 229 min 

Efficient GA [6] 514.4 - 

GA of Chu and Beasley [68] 503.8 - 

Specialised GA [76] 505.8 - 

  

6.5 Discussion on the Results 

 

The results of the dynamic TEP problem for the Colombian 93-bus system are 

summarised in table 6.3 where the best expansion investment cost of the proposed 

methodology is compared directly to other algorithms. In addition, the computational 

time for the DEA method is also presented and compared to CGA procedure in this 

table. The results in table 6.3 clearly indicate that the best expansion investment cost 

found by the proposed DEA3 is 505.8 million US$ and the same value as the 

investment cost found by specialised GA [76] whereas the best expansion investment 

cost found by GA of Chu and Beasley (GACB) is 503.8 million US$. The number of 

additional transmission lines determined by GACB in [68] is as follows: stage P1: 

n57-81 = 2, n55-57 = 1, n55-62 = 1, n45-81 = 1 and n82-85 = 1; stage P2: n27-29 = 1,  n62-73 = 1, 

n72-73 = 1 and n19-82 = 1; stage P3: n52-88 = 1, n15-18 = 1, n55-84 = 1, n55-62 = 1, n29-31 = 1, 

n29-64 = 2 and n68-86 = 1. According to the obtained results in [68], the expansion plan 

as found by GACB is the same topology as the expansion plan found by the DEA 

method presented in this chapter. Although the expansion plan found by GACB and 

DEA are the same topology, the investment cost calculated in this chapter is not same 

value due to the investment cost provided by GABC in [68] where the full details of 

investment cost calculation are not presented. It is important to note that the 

transmission system data of the Colombian 93-bus system, especially the additional 

line cost data, used in this chapter is also in agreement with the data available in 

reference [69].    

 For dynamic planning, the proposed method shows a good performance to 
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find the optimal solution but it has a drawback in slow computation. Even though all 

DEA strategies require less computational times than CGA procedure as shown in 

table 6.1, they still require a great number of minutes to calculate. Regarding the 

disadvantage of slow computation, DEA optimisation program for the dynamic TEP 

problem should be improved its searching performance. 

 

6.6 Conclusions 

 

In this research, a novel DEA method is proposed to solve dynamic TEP problem 

without generation resizing consideration. The obtained results of the Colombian 93-

bus system illustrate that the DEA3 is good efficient and effectively minimises the 

total investment cost of the dynamic TEP problem on a realistically complex 

transmission system. As the empirical solution of this test case indicates, the total 

investment cost of the DEA method is less expensive than the CGA procedure on the 

Colombian 93-bus system. In addition, the all DEA strategies require less 

computational CPU time than CGA procedure in test case. The interpretations of 

obtained results from chapter 5 and 6 with regard to sensitivity and convergence 

analysis of the DEA on static and TEP problems are presented in next chapter. 



CHAPTER 7 

INTERPRETATION OF TEST RESULTS IN 

TRANSMISSION EXPANSION PLANNING 

PROBLEM 

 

7.1 Introduction 

 

This chapter aims at studying and testing the influence of the variant control 

parameters setting of DEA method in transmission expansion planning (TEP) 

problem. Over past few years, a number of researches have investigated the 

sensitivity analysis of DEA control parameters as shown in [46, 49, 53, 54, 70, 71, 

72]. These research papers can be classified into two main categorises: (1) sensitivity 

analysis in mathematical optimisation problems [46, 49, 53, 54] and (2) sensitivity 

analysis in real-world optimisation problems [70, 71, 72]. According to these two 

categories, the reports in testing values that are the best solutions are achieved for the 

particular problem and an applied method. In this chapter, the study focuses directly 

to the sensitivity analysis that investigates the influence of DEA control parameters 

variation in both static and dynamic TEP problems.  

 The organisation of this chapter is as follows: The sensitivity analysis of DEA 

control parameters on static TEP problem is presented in section 7.2 while both with 

and without generation resizing consideration cases have been investigated in this 

section. Section 7.3 presents the sensitivity analysis of DEA control parameters on 

dynamic TEP problem. Subsequently, these results are discussed and further analysed 

in section 7.4. Finally, section 7.5 provides summary of this chapter.  

 

7.2 Sensitivity Analysis of DEA Control Parameters on Static 

Transmission Expansion Planning 

 

To study the effect of varying DEA control parameters on static TEP problem, a 

Graver 6-bus test system with and without generation resizing consideration cases 
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has been investigated by applying several DEA mutation strategies that are DEA1-

DEA10, respectively. The system data used in this experiment are available in [8, 66] 

and full details of this test system are illustrated in appendix A1. 

 The investigation in the sensitivity of DEA control parameters on the static 

TEP problem is categorised into three scenarios regard to the control parameter 

settings. The first group focuses on the sensitivity of the population size (NP) while 

the second group focuses on sensitivity of scaling mutation factor (F) and the last 

group focuses on sensitivity of crossover probability (CR). In addition, each previous 

study group is analysed and compared in three aspects that are (1) an average 

expansion investment cost, (2) a standard deviation of results and (3) an average 

computational time, respectively. Due to the randomness of the simulation results, 

each point on the graphs is achieved through an average value of final results 50 

different runs. 

 

7.2.1 Sensitivity of Population Size (NP) 

In this section, the sensitivity of population size of DEA method is considered as 

with and without generation resizing cases for static TEP problem. The population 

size varying of DEA method is analysed and discussed in this section where the 

population size is varied from 4*D to 8*D. The problem decision parameters D of 

Garver 6-bus system are equal to 9 and 12 for without and with generation resizing 

consideration cases, respectively.  The other DEA parameters setting used in this 

simulation are as follows: F = 0.7 and CR = 0.6. 

 

7.2.1.1 Static TEP Problem - without Generation Resizing  

According to the achieved results on graphs as shown in figure 7.1(a) indicate, DEA1 

provides the smallest average expansion investment cost whereas DEA5 provides the 

largest average expansion investment cost compared to other DEA strategies for all 

various population sizes in this case. All DEA strategies yield lower average 

investment cost while their population sizes increase. The simulation results can be 

clearly separated into two groups regard to performance of the DEA method to 

provide average investment cost. 
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(a) Average investment costs versus population sizes 

 

 

 

 

(b) Standard deviations of the investment costs versus population sizes 
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(c) Average computational times versus population sizes 

 

Figure 7.1 Comparison of various population sizes obtained from DEA1-DEA10 for 

static TEP problem without generation resizing on Garver 6-bus system 

 

 From obtained results in figure 7.1(b), DEA1 provides smaller standard 

deviation value of investment cost than other DEA strategies in this case when 

population size is more than 36. In addition, DEA1 gives the least value of standard 

deviation at population size NP = 63 for this case.  

 For the calculation time comparison as shown in figure 7.1(c), DEA3 takes 

the smallest average computational time, whereas DEA10 takes the highest average 

calculation time for this case. Although, all DEA strategies require more calculation 

time while their population sizes increase, they perform well in calculation time 

consideration for this test case. 
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7.2.1.2 Static TEP Problem - with Generation Resizing  

 

 

 

(a) Average investment costs versus population sizes 

 

 

 

 

(b) Standard deviations of the investment costs versus population sizes 
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(c) Average computational times versus population sizes 

 

Figure 7.2 Comparison of various population sizes obtained from DEA1-DEA10 for 

static TEP problem with generation resizing on Garver 6-bus system 

 

According to the obtained results on graphs as shown in figure 7.2(a) indicate, DEA3 

yields the smallest average expansion investment cost compared to other DEA 

strategies for all various population sizes except its population size NP = 48, which 

DEA1 gives lower average cost than DEA3. On the other hand, DEA5 provides the 

largest average expansion investment cost compared to other DEA strategies for all 

various population sizes except its population size NP = 48, which DEA2 and DEA10 

give higher average cost than DEA5. The simulation results can be clearly separated 

into two groups regard to the performance of DEA method to provide average 

investment cost in this case. The lowest average investment cost for this case is 

provided by DEA at population size NP = 96.  

 As results in figure 7.2(b), DEA3 yields less standard deviation values of 

investment cost than other DEA strategies except at population sizes NP = 48, which 

DEA7 gives smaller value than DEA3. On the other hand, DEA5 and DEA10 are not 

robust to find the solution compared to other DEA strategies, as shown the largest 

values of standard deviation and average investment cost.   

 For the calculation time comparison as shown in figure 7.2(c), DEA3 and 
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DEA4 require smaller computational time than other DEA strategies but it is tiny 

difference among these computational times. Similar to the previous case of Graver 

6-bus system, All DEA strategies take larger computation time while their population 

sizes rise up. 

 

7.2.2 Sensitivity of Scaling Mutation Factor (F) 

In this section, the sensitivity of scaling mutation factor of DEA method is 

considered as with and without generation resizing cases for static TEP problem. The 

scaling mutation factor of DEA method is analysed and discussed in this section 

where this factor is varied from 0.5 to 0.9. The other DEA parameters setting used in 

this simulation are as follows: Np = 5*D and CR = 0.6, respectively. 

 

7.2.2.1 Static TEP Problem – without Generation Resizing  

 

According to obtained results in figure 7.3(a) indicate, DEA1 clearly shows the best 

performance to provide the smallest average investment cost for all various scaling 

mutation factor values, whereas DEA5 gives the largest value of investment cost. 

The lowest average investment cost is provided by DEA1 at mutation factor F = 0.7 

for this case. The simulation results can be classified into two groups regard to the 

average investment cost except DEA4 performs worse when its mutation factor value 

is more than 0.7. 

 From figure 7.3(b), DEA1 yields the smallest standard deviation value than 

other DEA strategies for all mutation factor values except F = 0.8 where DEA9 gives 

smaller standard deviation value than DEA1. In addition, DEA1 provides the 

smallest standard deviation value of this case at the mutation factor F = 0.7 whereas 

DEA7 gives the highest standard deviation value at mutation factor F = 0.8. 
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(a) Average investment costs versus scaling mutation factors (F) 

 

 

 

 

(b) Standard deviation of the investment costs versus scaling mutation factors (F) 
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(c) Average computational times versus scaling mutation factors (F) 

 

Figure 7.3 Comparison of various scaling mutation factors (F) obtained from DEA1-

DEA10 for static TEP problem without generation resizing on Garver 6-bus system 

  

 For calculation time comparison as shown in figure 7.3(c), DEA5 requires the 

lowest calculation time compared to other DEA strategies at three mutation factor 

values F = 0.5, 0.6 and 0.8, respectively. In contrast, DEA10 is the slowest strategy 

in computation for this case. 

 

7.2.2.2 Static TEP Problem - with Generation Resizing  

According to figure 7.4(a), the simulation results can be clearly separated into two 

groups. The first group comprises DEA2, DEA5 and DEA10 that perform poor to 

provide average investment cost whereas the second group consists of DEA1, DEA3, 

DEA4, DEA6, DEA7, DEA8, and DEA9 that give smaller values of average 

investment cost than the first group. The smallest average investment cost is 

provided by DEA3 at mutation factor F = 0.7, whereas DEA10 gives the highest 

average investment cost at the mutation factor F = 0.6 for this case.  
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(a) Average investment costs versus scaling mutation factors (F) 

 

 

 

 

(b) Standard deviation of the investment costs versus scaling mutation factors (F) 
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(c) Average computational times versus scaling mutation factors (F) 

 

Figure 7.4 Comparison of various scaling mutation factors (F) obtained from DEA1-

DEA10 for static TEP problem with generation resizing on Garver 6-bus system 

 

 From figure 7.4(b), DEA1 and DEA3 perform well in robustness to find the 

problem solution. They yield smaller standard deviation value than other DEA 

strategies for all mutation factor values except F = 0.5 where DEA4 gives smaller 

standard deviation value than DEA1 and DEA3. On the other hand, DEA10 performs 

poorer in robustness to find the solution than other DEA strategies as shown the 

largest standard deviation value for all mutation factor values. The smallest standard 

deviation value of this case is yielded by DEA3 at mutation factor F = 0.7, whereas 

DEA10 gives the largest standard deviation value at mutation factor F = 0.9.  

 For calculation time comparison shown in figure 7.3(c), all DEA strategies 

perform well in computational time when the mutation factor is 0.7. In this case, 

DEA3 requires computational time smaller than other DEA strategies at F = 0.5 and 

0.7, whereas DEA5 requires computational time smaller than other DEA strategies at 

F = 0.6 and 0.8.  
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7.2.3 Sensitivity of Crossover Probability (CR) 

In this section, the sensitivity of crossover probability of DEA method is considered 

as with and without generation resizing cases for static TEP problem. The crossover 

probability of the DEA method is analysed and discussed in this section where the 

crossover constant is varied from 0.5 to 0.9. The other DEA parameters setting used 

in this simulation are as follows: Np = 5*D and F = 0.7, respectively. 

 

7.2.3.1 Static TEP Problem - without Generation Resizing  

According to the obtained results on graphs as shown in figure 7.5(a) indicate, DEA1 

provides the cheapest average expansion investment cost compared to other DEA 

strategies for all values of crossover probability. On the other hand, DEA5 provides 

the most expensive average expansion investment cost at CR = 0.5, 0.6 and 0.7 and 

DEA10 provides the most expensive average investment cost at CR = 0.8 and 0.9 in 

this case. The simulation results can be clearly separated into two groups regard to 

the performance of DEA method to provide the average investment cost. 

 

 

 

(a) Average investment costs versus crossover probabilities (CR) 
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(b) Standard deviation of the investment costs versus crossover probabilities (CR) 

 

 

 

 

(c) Average computational times versus crossover probabilities (CR) 

 

Figure 7.5 Comparison of various crossover probabilities (CR) obtained from 

DEA1-DEA10 for static TEP problem without generation resizing on Garver 6-bus 

system 
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From figure 7.5(b), DEA1 performs well in robustness to find the problem solution 

because it yields smaller standard deviation values than other DEA strategies at CR = 

0.6, 0.7 and 0.8, respectively. In addition, the smallest standard deviation value of 

this case is yielded by DEA1 at CR = 0.6, whereas DEA7 gives the largest standard 

deviation value at CR = 0.9.  

 For calculation time comparison as shown in figure 7.5(c), DEA1 requires 

smaller calculation time compared to other DEA strategies at CR = 0.6 and 0.7, 

whereas DEA4 provides the smallest computational time at CR = 0.9 for this case.  

 

7.2.3.2 Static TEP Problem - with Generation Resizing  

As the obtained results on graphs as illustrated in figure 7.6(a) indicate, DEA3 yields 

average expansion investment cost cheaper than other DEA strategies for all values 

of crossover probability except CR = 0.7 where DEA1 and DEA7 provide the 

average investment cost cheaper than DEA3. On the other hand, DEA10 performs 

poor to find the problem solution because it gives the average expansion cost more 

expensive than other DEA strategies for all values of the crossover probability except 

CR = 0.6 where DEA5 provides the average investment cost more expensive than 

DEA10. 

 

 

 

(a) Average investment costs versus crossover probabilities (CR) 
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(b) Standard deviation of the investment costs versus crossover probabilities (CR) 

 

 

 

 

(c) Average computational times versus crossover probabilities (CR) 

 

Figure 7.6 Comparison of various crossover probabilities (CR) obtained from 

DEA1-DEA10 for static TEP problem with generation resizing on Garver 6-bus 

system 
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From figure 7.6(b), DEA3 performs well in robustness to find the problem solution 

because it yields smaller standard deviation values than other DEA strategies for all 

values of crossover probability except CR = 0.7 where DEA1 and DEA7 yield the 

standard deviation values smaller than DEA3. On the other hand, DEA10 performs 

poor in robustness to find the solution because it gives larger standard deviation 

value than other DEA schemes for all values of crossover probability except CR = 

0.9. The smallest standard deviation value of this case is yielded by DEA3 at 

crossover probability CR = 0.6, whereas DEA6 gives the largest standard deviation 

value at CR = 0.9.  

 For calculation time comparison as shown in figure 7.6(c), DEA1 requires 

smaller calculation time compared to other DEA strategies at crossover probability 

CR = 0.5, 0.7 and 0.8 whereas DEA3 provides the computational time smaller than 

other DEA strategies at crossover probability CR = 0.6 and 0.9 for this case.  

 

7.3 Sensitivity Analysis of DEA Control Parameters on Dynamic 

Transmission Expansion Planning  

 

To study the influence of varying DEA control parameters on dynamic TEP problem, 

the Colombian 93-bus test system without generation resizing consideration case has 

been investigated by applying several DEA mutation strategies that are DEA1-

DEA10, respectively. The system data used in this experiment are available in [6, 69] 

and the system details are illustrated in appendix A4. 

 Similar to the sensitivity analysis of DEA control parameters on static TEP, 

the investigation in sensitivity of DEA control parameters on the dynamic TEP 

problem are classified into three main groups regard to control parameter settings 

that are the sensitivity of population size (NP), the sensitivity of mutation factor (F) 

and the sensitivity of crossover probability (CR). In addition, each previous study 

group is analysed and compared in three aspects that are (1) an average expansion 

investment cost, (2) a standard deviation of results and (3) an average computational 

time, respectively. Due to the randomness of the simulation results, each point on the 

graphs is achieved through an average value of final results 25 different runs. 
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7.3.1 Sensitivity of Population Size (NP) 

In this section, the sensitivity of population size of DEA method is considered only 

without generation resizing case for dynamic TEP problem. The population size 

variation of DEA method is analysed and discussed in this section, which the 

population size is varied from 4*D*T to 8*D*T. The problem decision parameter D 

of the Colombian 93-bus test system is equal to 155 for without generation resizing 

consideration case and the whole planning period study is 3 stages, so the population 

size is varied from 1860 to 3720 for this experiment. The settings of other DEA 

parameters used in this simulation are as follows: F = 0.8 and CR = 0.6, respectively. 

 According to the obtained results on graphs as shown in figure 7.7(a) indicate, 

DEA3 performs well to find the problem solution as shown the smallest average 

expansion investment cost compared to other DEA strategies for all population sizes. 

On the other hand, DEA10 performs poor to find the problem solution as shown the 

largest average expansion investment cost for all population sizes in this case. The 

graphs of average investment cost as shown in figure 7.7(a) go down very slightly 

while the population sizes increase. 

 

 

 

 

(a) Average investment costs versus population sizes 
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(b) Standard deviations of the investment costs versus population sizes 

 

 

 

 

(c) Average computational times versus population sizes 

 

Figure 7.7 Comparison of various population sizes obtained from DEA1-DEA10 for 

dynamic TEP problem without generation resizing on Colombian 93-bus system 

  

 As results in figure 7.7(b), DEA3 performs well in robustness to find the 
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solution as shown smaller standard deviation value of investment cost than other 

DEA strategies for all population sizes. On the other hand, DEA7 and DEA10 are not 

robustness to find the problem solution as shown the values of standard deviation 

larger than others.  

 For calculation time comparison as shown in figure 7.7(c), DEA3 requires 

lower calculation time than other DEA strategies. All DEA strategies require larger 

computation time while their population sizes rise up. 

 

7.3.2 Sensitivity of Scaling Mutation Factor (F) 

In this section, the sensitivity of scaling mutation factor of DEA method is 

considered as without generation resizing case for dynamic TEP problem. The 

scaling mutation factor of DEA method is analysed and discussed in this section. 

This factor is varied from 0.5 to 0.9. The settings of other DEA parameters used in 

this simulation are as follows: Np = 5*D = 2325 and CR = 0.6, respectively. 

 

 

 

 

(a) Average investment costs versus scaling mutation factors (F) 
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(b) Standard deviation of the investment costs versus scaling mutation factors (F) 

 

 

 

 

(c) Average computational times versus scaling mutation factors (F) 

 

Figure 7.8 Comparison of various scaling mutation factors (F) obtained from DEA1-

DEA10 for dynamic TEP problem without generation resizing on Colombian 93-bus 

system 
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According to the obtained results in figure 7.8(a) indicate, DEA3 clearly shows the 

best performance to find the problem solution as shown the cheapest average 

investment cost for all scaling mutation factor values. On the other hand, DEA10 

performs poor to find the problem solution as shown its average investment cost 

more expensive than other DEA strategies for all mutation factor values. The 

cheapest average investment cost of this case is provided by DEA3 at mutation factor 

F = 0.8, whereas the most expensive average investment cost is provided by DEA10 

at mutation factor F = 0.9.  

 From figure 7.8(b), DEA1, DEA3 and DEA6 perform well in robustness to 

find the problem solution as shown small values of standard deviation for all 

mutation factor values. On the other hand, DA7 and DEA10 are not robust to find the 

problem solution as shown larger standard deviation values than other DEA 

strategies for all mutation factor values. In addition, the lowest standard deviation 

value of this case is yielded by DEA3 at mutation factor F = 0.8, whereas DEA7 

gives the highest standard deviation value at mutation factor F = 0.9.  

 For calculation time comparison as shown in figure 7.8(c), DEA3 is faster 

than other DEA strategies for all mutation factor values except F = 0.5 where DEA1 

is faster than DEA3. On the other hand, DEA10 requires computational time longer 

than other DEA strategies in this case. 

 

7.3.3 Sensitivity of Crossover Probability (CR) 

In this section, the sensitivity of crossover probability of DEA method is considered 

only without generation resizing cases for dynamic TEP problem. The crossover 

probability of DEA method is analysed and discussed in this section where it is 

varied from 0.5 to 0.9. The settings of other DEA parameters used in this simulation 

are as follows: Np = 5*D = 2325 and F = 0.8, respectively. 

 As the obtained results on graphs as illustrated in figure 7.9(a) indicate, 

DEA3 perform well to find the problem solution as shown its average expansion 

investment cost cheaper than other DEA strategies for all values of crossover 

probability. On the other hand, DEA10 performs poor to find the problem solution as 

shown its average expansion cost more expensive than other DEA strategies for all 

crossover probability values. In addition, the cheapest average investment cost of this 

case is provided by DEA3 at crossover probability CR = 0.6, whereas the most 
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expensive average investment cost is provided by DEA10 at crossover probability 

CR = 0.5.  

 

 

 

(a) Average investment costs versus crossover probabilities (CR) 

 

 

 

 

(b) Standard deviation of the investment costs versus crossover probabilities (CR) 
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(c) Average computational times versus crossover probabilities (CR) 

 

Figure 7.9 Comparison of various crossover probabilities (CR) obtained from 

DEA1-DEA10 for dynamic TEP problem without generation resizing on  

Colombian 93-bus system 

 

 From figure 7.9(b), DEA1, DEA3 and DEA6 perform well in robustness to 

find the problem solution because they yield smaller standard deviation values than 

other DEA strategies for all values of the crossover probability. In addition, DEA3 

has the highest robust performance to find the solution in this case as shown the 

smallest standard deviation values for all crossover probability values.   

 For the calculation time comparison as shown in figure 7.9(c), DEA3 requires 

the least calculation time compared to other DEA strategies for all crossover 

probability values, whereas DEA10 takes the largest computational time for this case.  

 

7.4 Overall Discussions 

 

The overall discussions of the achieved results on the influence of DEA control 

parameters variation for TEP problem are presented in this section. Initially, the 

sensitivity of DEA control parameters variation is investigated as with and without 

generation resizing consideration cases for static TEP problem. The average 
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investment costs of the static TEP problem decline while the population sizes 

increase for all DEA strategies in both cases of with and without generation resizing 

consideration. In contrast, there are marked rise in the computational times of all 

DEA strategies while the population sizes increase for both cases of the static TEP 

problem. DEA1 shows the best performance to find the problem solution in case of 

without generation resizing consideration as shown smaller the average and standard 

deviation of expansion investment cost than other DEA strategies for all analyses in 

the sensitivity of DEA control parameter variation. In case of with generation 

resizing consideration, DEA3 is the best strategy to find the solution as shown the 

smallest the average and standard deviation of the expansion investment cost. For the 

static TEP problem in both cases of with and without generation resizing 

consideration, the suitable values of scaling mutation factor and crossover probability 

for DEA1 and DEA3 are 0.7 and 0.6, which provide the smallest values of the 

average and standard deviation of investment cost. 

 Finally, the sensitivity of DEA control parameters variation is investigated 

only without generation resizing consideration case for dynamic TEP problem. As 

the obtained results, average investments costs of the dynamic TEP problem reduce 

very slightly while the population sizes of all DEA strategies increase. Similar to the 

static TEP problem, there are marked rise in the calculation times of all DEA 

strategies while the population sizes increase for the static TEP problem. DEA3 is 

superior to other strategies to find the problem solution for the dynamic TEP problem 

because it yields the smallest values of average and standard deviation of expansion 

investment cost for all sensitivity analyses in the DEA control parameters variation. 

For the dynamic TEP problem, the suitable values of scaling mutation factor and 

crossover probability for DEA3 are 0.8 and 0.6, which provide the smallest values of 

the average and standard deviation of investment cost. 

 

7.5 Conclusions 

 

In this chapter, the sensitivity analysis of DEA control parameters is carried out so as 

to study the effect of parameters variation on both the static and dynamic TEP 

problems. In addition, the sensitivity with respect to the population size, scaling 

mutation factor and crossover probability has been extensively investigated. The 
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investigation of each control parameter is classified into three main aspects that are 

(1) average investment cost, (2) standard deviation, and (3) average computation 

time. For the static TEP problem analysis, DEA1 and DEA3 perform outstandingly 

to find the problem solution in both cases of without and with generation resizing 

consideration, respectively. They provide the smallest values of average expansion 

investment cost and standard deviation. For the dynamic TEP problem, DEA3 is 

efficient and robust to find the problem solution under consideration since it is less 

sensitivity to the DEA control parameters. In addition, it yields the smallest values of 

average expansion investment cost and standard deviation for the dynamic TEP 

problem. For the selection of control parameters of the DEA method, the suitable 

settings F = 0.7 and CR = 0.6 are recommended for the static TEP problem and the 

suitable settings F = 0.8 and CR = 0.6 are recommended for the dynamic TEP 

problem.   

 



CHAPTER 8 

CONCLUSIONS AND FUTURE WORK 

 

8.1 Conclusions 

 

Cost-effective transmission expansion planning (TEP) is a major challenge for 

electrical power system optimisation as its main objective is to obtain the optimal 

expansion plan that meets technical requirements while offering economical 

investment. Over past few decades, a number of conventional methods for 

optimisation have been applied to solve the TEP problem; for instance, linear 

programming, branch and bound, dynamic programming, interactive method, 

nonlinear programming, mixed integer programming and interior point method. 

More recently, other optimisation methods based on artificial intelligence (AI) 

techniques have been also proposed to solve the TEP problem. These AI techniques 

include genetic algorithms, simulated annealing, tabu search, particle swarm 

optimisation, evolutionary programming and artificial neural networks. The detail of 

each method has been as also provided in chapter 2 of this thesis. 

 A novel differential evolution algorithm (DEA) is an artificial intelligence 

technique that was firstly introduced by Storn and Price in year 1995. The DEA 

becomes a reliable and versatile function optimiser that is also readily applicable to a 

wide range of optimisation problems. Several variations of DEA mutation strategies 

were proposed and implemented successfully to a real-world problem that is the 

design of a howling removal unit for audio communications by Storn in [51]. In 

addition, the DEA method has been applied to optimise a wide variety of problems in 

electrical power system, such as economic dispatch, short-term scheduling of 

hydrothermal power system, power system planning and optimal reactive power flow, 

as stated in chapter 3. In a number of cases, DEA has proved to be more accurate, 

reliable as it can provide optimum solutions within acceptable computational times. 

Given its success, DEA has never been employed to solve any TEP problems, it has 

been therefore studied and applied to solve TEP problem in this research, whereas 

the implementation consists of five variations of DEA mutation schemes as proposed 



 

 

125 

by Storn in [51]. Moreover, five additional DEA variations have also been proposed 

in this research. 

 The main contribution of the thesis is the development of a novel DEA 

procedure and the application of proposed DEA method to TEP problem. First of all, 

chapter 4 presents the methodology where a novel DEA procedure is developed by 

applying several DEA mutation strategies. In order to validate its searching 

capability and reliability, the proposed methodology has been tested with some 

selected mathematical benchmark functions, namely Sphere, Rosenbrock1, 

Rosenbrock2, Absolute, Salomon, Schwefel and Rastrigin functions. Given the 

achieved results of chapter 4, some DEA strategies that are DEA1, DEA3 and DEA6 

perform effectively to solve these selected benchmark test functions f1-f7 because 

they found the best function value nearly the problem solution of each case. In 

addition, DEA1 and DEA3 provide better results in all cases when compared to a 

conventional genetic algorithm (CGA) procedure, whereas all DEA strategies require 

smaller computational times than CGA for all cases.  

 Based on the results of DEA application to selected mathematical functions, 

as indicated in chapter 4, the proposed DEA methodology is subsequently 

implemented in chapter 5 to solve static TEP, which is a real-world optimisation 

problem. In this chapter, the simulation comprises two different scenarios of static 

TEP problem, with and without generation resizing. In addition, a heuristic search 

method has been adopted in order to deal with static TEP considering DC based 

power flow model constraints. The proposed method has been implemented in 

Matlab7 and tested on three electrical transmission networks as shown in appendix 

A1-A3. The obtained results indicate that a few DEA schemes, DEA1, DEA3 and 

DEA6 perform effectively to solve the static TEP problem for Graver 6-bus system 

and IEEE 25-bus system. In addition, DEA3 performs outstandingly to find the 

optimal solution compared to other DEA strategies and CGA procedure as shown by 

the least values of the best investment cost and an average result. On the other hand, 

all DEA strategies and CGA are not successful for finding the optimal solution in 

case of with generation resizing for the Brazilian 46-bus system. The most attractive 

feature of the proposed algorithm is its good computational performance that is faster 

than the CGA procedure for all cases of the static TEP problems, as presented in 

chapter 5. 
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 Given its effectiveness to solve static TEP, the proposed methodology is then 

applied to deal with dynamic TEP problem, which is more complex and difficult. In 

this thesis, dynamic TEP problem based on DC power flow model has been analysed. 

However, the key difficulty of dynamic TEP in large-scale real-world power system 

is that the planning horizon has to be separated into multiple stages. The proposed 

method as applied to solve the dynamic TEP problem is tested on a realistically 

complex transmission system, the Colombian 93-bus system, as shown in appendix 

A4. The obtained results of the Colombian 93-bus system illustrate that DEA3 is the 

best algorithmic procedure to minimise the total investment cost of dynamic TEP 

problem on the selected real-world transmission system. In addition, DEA3 is a 

robust procedure for approaching problem solution as shown by the least standard 

deviation value and average investment cost. For the dynamic TEP study, all DEA 

strategies require less calculation time than CGA procedure in this test case. 

 Overall, a novel DEA method performs superior to other classical EAs in 

terms of simple implementation with high quality of solution. Meanwhile, it requires 

less control parameters while being independent from initialisation. In addition, its 

convergence is stable and robust as DEA procedure uses rather greedy selection and 

less stochastic approach to solve optimisation problems than other classical EAs. 

Unfortunately, there remains a drawback of DEA procedure that is a tedious task of 

the DEA control parameters tuning due to complex relationship among problem‟s 

parameters. The optimal parameter settings of the DEA method may not be found 

and the final result may be trapped in a local minimum.  

 The accuracy of the results obtained in these TEP studies is in a very good 

agreement with those obtained by other researchers. According to the empirical 

results, it can be concluded that DEA3 is the best algorithmic procedure to find 

optimal solution in both cases of TEP problems because it provides global 

convergence property, accurate solution, and efficient and robust computation 

compared to other DEA strategies and CGA procedure under investigation. Despite 

some DEA strategies show good performance to solve these selected optimisation 

problems in this thesis, the further research directions are also proposed in order to 

enhance the quality of this algorithm. 
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8.2 Future Work 

 

The proposed method of this research can be further extended and performed in two 

major categorises, which are as follows. 

 

8.2.1 Further Work Concerning in the Modified DEA Procedure 

It is important to note that at present few algorithms have been practically applied to 

solve the TEP problem [1]. Although the method proposed in this thesis has been 

successfully solved many cases of TEP problem, it is not yet sufficiently robust for 

practical use for industry. The novel DEA method proposed in this thesis has the 

notable limitation of DEA control parameter tuning due to a complex interaction of 

parameters as mentioned in section 8.1. Therefore, a further improvement of the 

novel DEA method is essentially required before it can be generally adopted for 

practical use in industry.  

 Therefore, a self-adaptive DEA should be proposed to enhance the 

performance of DEA method. Meanwhile the modified version should integrate 

mutation factor (F) and crossover probability (CR) as additional decision variables of 

the problem. These two DEA control parameters are embedded as additional control 

variables in the first and second positions of the D-dimensional parent vector Xi as 

illustrated in figure 8.1.  

 

 

 
1 2 3    D+2 

Xi Fi CRi x1 ......... xj ……… xD 

 

Figure 8.1 Chromosome structure of self-adaptive DEA method 

 

8.2.2 Further Work Concerning in Power System Problems 

The transmission expansion planning as studied in this thesis is called basic planning, 

in which the security constraints are not considered. In other words, the optimal 

expansion plan is determined without considering the n-1 contingencies caused by a 

transmission line or generator outage. The n-1 security criterion is an important index 
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in power system reliability study as it states that the system should be expanded in 

such a way that, if a single line or generator is withdrawn, the expanded system 

should still operate adequately. Moreover, the TEP with system loss consideration is 

a significant issue that should be included in the planning problem for enhancing the 

result accuracy.  

 Given these important issues, DEA method for TEP problem should be 

improved to consider real power losses and n-1 contingencies, such as single line or 

generator outage. This should be a future work of this research. It is also important to 

note that alternative solution methods such as Branch and Bound have some valuable 

attributes and a detailed comparison between DEA and such traditional methods can 

also be investigated in the future.  

 Finally, the economic solution of the TEP problem under the current 

deregulatory environment remains an important issue in electrical power system 

analysis, therefore this topic can be further investigated. Some issues for market-

based transmission expansion planning, i.e. the losses of social welfare and the 

expansion flexibility in the system should be considered and included in the TEP 

problem.   
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APPENDIX A  

TEST SYSTEMS DATA 

 

A1 Garver 6-Bus System 

 

Table A1.1 Generation and load data for Garver 6-bus system 

 

Bus No. 
Generation, MW 

Load, MW Bus No. 
Generation, MW 

Load, MW 

Maximum Level Maximum Level 

1 150 50 80 4 0 0 160 

2 0 0 240 5 0 0 240 

3 360 165 40 6 600 545 0 

 

Table A1.2 Branch data for Garver 6-bus system 

 

From-To nij
0
 Reactance xij, p.u. fij

max
, MW Cost, 10

3
 US$ 

1-2 1 0.4 100 40 

1-4 1 0.6 80 60 

1-5 1 0.2 100 20 

2-3 1 0.2 100 20 

2-4 1 0.4 100 40 

2-6 0 0.3 100 30 

3-5 1 0.2 100 20 

4-6 0 0.3 100 30 

5-6 0 0.61 78 61 
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Figure A1 Garver 6-Bus System 
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A2 IEEE 25-Bus System 

 

Table A2.1 Generation and load data for IEEE 25-bus system 

 

Bus No. 
Generation, MW 

Load, MW Bus No. 
Generation, MW 

Load, MW 
Maximum Level Maximum Level 

1 660 530 0 14 215 43 317 

2 0 0 128 15 0 0 0 

3 0 0 181 16 0 0 0 

4 0 0 74 17 192 40 108 

5 0 0 71 18 0 0 175 

6 0 0 71 19 192 40 97 

7 595 594 265 20 0 0 195 

8 0 0 194 21 0 0 136 

9 400 400 333 22 155 155 100 

10 300 300 0 23 0 0 180 

11 400 400 0 24 300 60 125 

12 0 0 0 25 660 330 0 

13 0 0 0     
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Table A2.2 Branch data for IEEE 25-bus system 

 

 

 

 

 

From-To nij
0
 Reactance xij, p.u. fij

max
, MW Cost, 10

3
 US$ 

1-2 1 0.0108 800 3760 

1-7 1 0.0865 65 27808 

1-13 1 0.0966 100 30968 

2-3 1 0.0198 500 7109 

3-22 1 0.0231 200 8187 

4-18 1 0.1037 1000 4907 

4-19 1 0.1267 250 5973 

5-17 1 0.0854 800 3987 

5-20 1 0.0883 940 4171 

5-25 0 0.0902 220 1731 

6-18 1 0.1651 440 7776 

6-20 1 0.1651 280 7776 

6-24 1 0.0614 1080 2944 

7-13 1 0.0476 250 16627 

7-16 1 0.0476 90 16627 

8-16 1 0.0418 490 14792 

8-22 1 0.0389 65 13760 

9-11 1 0.0129 260 4587 

9-15 1 0.0144 250 5112 

10-11 1 0.0678 800 21909 

10-15 1 0.1053 250 33920 

11-14 1 0.0245 700 8507 

12-14 1 0.0519 100 16915 

12-23 1 0.0839 70 675 

13-18 1 0.0839 100 675 

13-20 1 0.0839 250 675 

14-22 1 0.0173 200 5963 

15-22 1 0.0259 360 9243 

16-18 1 0.0839 250 675 

16-20 1 0.0839 564 675 

17-19 1 0.0139 400 493 

17-23 1 0.2112 350 8880 

18-23 1 0.1190 150 5605 

19-21 1 0.1920 110 9045 

20-21 1 0.0605 180 2245 

24-25 0 0.1805 220 3067 
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Figure A2 IEEE 25-Bus System 
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A3 Brazilian 46-Bus System 

 

Table A3.1 Generation and load data for Brazilian 46-bus system 

 

Bus No. 
Generation, MW 

Load, MW Bus No. 
Generation, MW 

Load, MW 
Maximum Level Maximum Level 

1 0 0 0 24 0 0 478.2 

2 0 0 443.1 25 0 0 0 

3 0 0 0 26 0 0 231.9 

4 0 0 300.7 27 220 54 0 

5 0 0 238 28 800 730 0 

6 0 0 0 29 0 0 0 

7 0 0 0 30 0 0 0 

8 0 0 72.2 31 700 310 0 

9 0 0 0 32 500 450 0 

10 0 0 0 33 0 0 229.1 

11 0 0 0 34 748 221 0 

12 0 0 511.9 35 0 0 216 

13 0 0 185.8 36 0 0 90.1 

14 1257 944 0 37 300 212 0 

15 0 0 0 38 0 0 216 

16 2000 1366 0 39 600 221 0 

17 1050 1000 0 40 0 0 262.1 

18 0 0 0 41 0 0 0 

19 1670 773 0 42 0 0 1607.9 

20 0 0 1091.2 43 0 0 0 

21 0 0 0 44 0 0 79.1 

22 0 0 81.9 45 0 0 86.7 

23 0 0 458.1 46 700 599 0 
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Table A3.2 Branch data for Brazilian 46-bus system 

 

 

From-To nij
0 

Reactance 

xij, p.u. 
fij

max
, 

MW 
Cost, 10

3
 

US$ 
From-To nij

0 
Reactanc

e xij, p.u. 
fij

max
, 

MW 
Cost, 10

3
 

US$ 

1-2 2 0.1065 270 7076 20-21 1 0.0125 600 8178 

1-7 1 0.0616 270 4349 20-23 2 0.0932 270 6268 

2-3 0 0.0125 600 8178 21-25 0 0.0174 2000 21121 

2-4 0 0.0882 270 5965 22-26 1 0.0790 270 5409 

2-5 2 0.0324 270 2581 23-24 2 0.0774 270 5308 

3-46 0 0.0203 1800 24319 24-25 0 0.0125 600 8178 

4-5 2 0.0566 270 4046 24-33 1 0.1448 240 9399 

4-9 1 0.0924 270 6217 24-34 1 0.1647 220 10611 

4-11 0 0.2246 240 14247 25-32 0 0.0319 1400 37109 

5-6 0 0.0125 600 8178 26-27 2 0.0832 270 5662 

5-8 1 0.1132 270 7480 26-29 0 0.0541 270 3894 

5-9 1 0.1173 270 7732 27-29 0 0.0998 270 6672 

5-11 0 0.0915 270 6167 27-36 1 0.0915 270 6167 

6-46 0 0.0128 2000 16005 27-38 2 0.2080 200 13237 

7-8 1 0.1023 270 6823 28-30 0 0.0058 2000 8331 

8-13 1 0.1348 240 8793 28-31 0 0.0053 2000 7819 

9-10 0 0.0125 600 8178 28-41 0 0.0339 1300 39283 

9-14 2 0.1756 220 11267 28-43 0 0.0406 1200 46701 

10-46 0 0.0081 2000 10889 29-30 0 0.0125 600 8178 

11-46 0 0.0125 600 8178 31-32 0 0.0046 2000 7052 

12-14 2 0.0740 270 5106 31-41 0 0.0278 1500 32632 

13-18 1 0.1805 220 11570 32-41 0 0.0309 1400 35957 

13-20 1 0.1073 270 7126 32-43 1 0.0309 1400 35957 
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Table A3.2 Branch data for Brazilian 46-bus system (Contd.) 

 

 

 

 

 

 

 

 

From-To nij
0 

Reactance 

xij, p.u. 

fij
max

, 

MW 

Cost, 10
3
 

US$ 
From-To nij

0 
Reactance 

xij, p.u. 

fij
max

, 

MW 

Cost, 

10
3
 US$ 

14-15 0 0.0374 270 2884 33-34 1 0.1265 270 8288 

14-18 2 0.1514 240 9803 34-35 2 0.0491 270 3591 

14-22 1 0.0840 270 5712 35-38 1 0.1980 200 12631 

14-26 1 0.1614 220 10409 36-37 1 0.1057 270 7025 

15-16 0 0.0125 600 8178 37-39 1 0.0283 270 2329 

16-17 1 0.0078 2000 10505 37-40 1 0.1281 270 8389 

16-28 0 0.0222 1800 26365 37-42 1 0.2105 200 13388 

16-32 0 0.0311 1400 36213 38-42 3 0.0907 270 6116 

16-46 1 0.0203 1800 24319 39-42 3 0.2030 200 12934 

17-19 1 0.0061 2000 8715 40-41 0 0.0125 600 8178 

17-32 0 0.0232 1700 27516 40-42 1 0.0932 270 6268 

18-19 1 0.0125 600 8178 40-45 0 0.2205 180 13994 

18-20 1 0.1997 200 12732 41-43 0 0.0139 2000 17284 

19-21 1 0.0278 1500 32632 42-43 1 0.0125 600 8178 

19-25 0 0.0325 1400 37748 42-44 1 0.1206 270 7934 

19-32 1 0.0195 1800 23423 44-45 1 0.1864 200 11924 

19-46 1 0.0222 1800 26365      
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Figure A3 Brazilian 46-Bus System 
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A4 Colombian 93-Bus System 

 

Table A4.1 Generation and load data for Colombian 93-bus system 

 

Bus No. 
Year 2005 Year 2009 Year 2012 

Gen, MW Load, MW Gen, MW Load, MW Gen, MW Load, MW 

1 240 0 240 0 240 0 

2 0 352.9 165 406.53 165 486.66 

3 0 393 0 490.5 0 587.08 

4 0 0 0 0 0 0 

5 40 235 40 293.56 40 351.42 

6 34 0 34 0 34 0 

7 0 300 0 374.26 136 448.03 

8 100 339 230 423 230 505.87 

9 0 348 0 434.12 0 519.69 

10 0 60 0 74.21 0 88.84 

11 80 147 108 183.9 108 220.15 

12 47 0 47 0 47 0 

13 0 174 0 217.26 0 260.08 

14 0 0 0 0 0 0 

15 0 377 0 470.17 0 562.84 

16 0 236 0 294 0 351.9 

17 35 136 35 169.57 35 203 

18 480 36.2 540 45.2 540 54.1 

19 900 19.6 1340 24.46 1340 29.28 

20 0 202.4 0 252.5 45 302.27 

21 0 186 0 231.7 0 277.44 

22 200 53 200 66.13 200 79.17 

23 0 203 0 252.5 0 302.27 

24 120 0 150 0 150 0 

25 86 0 86 0 86 0 

26 70 0 70 0 70 0 

27 0 266 0 331.4 0 396.71 

28 0 326 0 406.3 14 486.39 

29 618 339 618 422.6 618 505.96 

30 0 137 0 166.7 0 199.55 

31 189 234 189 327.3 189 391.88 

32 0 126 0 157.3 0 188.33 

33 0 165 0 206.53 0 247.24 

34 0 77.5 0 96.7 0 115.81 

35 200 172 200 214.6 200 256.86 

36 0 112 0 140 44 167.29 

37 138 118 138 147.3 138 176.3 

38 0 86 15 108.4 15 129.72 

39 0 180 0 224 15 268.19 

40 305 0 305 0 305 0 
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Table A4.1 Generation and load data for Colombian 93-bus system (Contd.) 

 

Bus No. 
Year 2005 Year 2009 Year 2012 

Gen, MW Load, MW Gen, MW Load, MW Gen, MW Load, MW 

41 70 54.8 100 68.4 100 81.85 

42 0 102 0 127.3 0 152.39 

43 0 35.4 0 44.2 0 52.9 

44 23 257 23 321.3 23 384.64 

45 950 0 1208 0 1208 0 

46 150 121 150 151.7 150 181.62 

47 0 41.15 0 51.5 0 61.6 

48 775 600 885 750 885 896.26 

49 0 130 0 162 0 193.27 

50 240 424 240 528 240 632.75 

51 0 128 0 159 0 190.45 

52 0 38 0 46.5 0 55.6 

53 280 0 320 0 320 0 

54 0 76 0 95.3 0 114.19 

55 40 223 40 279 40 333.59 

56 0 0 0 0 0 0 

57 0 226 130 281 130 336.94 

58 190 0 190 0 190 0 

59 160 0 160 0 160 0 

60 1191 0 1216 0 1216 0 

61 155 0 155 0 155 0 

62 0 0 0 0 0 0 

63 900 35 1090 44 1090 52.77 

64 0 88 0 110.55 280 132.35 

65 0 132 0 165 0 197.58 

66 200 0 300 0 300 0 

67 474 266 474 332.45 474 397.98 

68 0 0 0 0 0 0 

69 0 71.4 0 89 0 106.61 

70 30 0 180 0 180 0 

71 0 315 211 393 424 471.21 

72 0 0 0 0 0 0 

73 0 0 0 0 0 0 

74 0 0 0 0 0 0 

75 0 0 0 0 0 0 

76 40 0 40 0 40 0 

77 0 55 0 70 0 82.85 

78 0 36.65 0 45.1 0 54.07 

79 0 98 0 123 300 146.87 

80 0 60 0 72 0 88.34 
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Table A4.1 Generation and load data for Colombian 93-bus system (Contd.) 

 

Bus No. 
Year 2005 Year 2009 Year 2012 

Gen, MW Load, MW Gen, MW  Gen, MW Load, MW 

81 0 0 0 0 0 0 

82 0 0 0 0 0 0 

83 0 0 0 0 0 0 

84 0 0 0 0 500 0 

85 0 0 0 0 0 0 

86 0 0 300 0 850 0 

87 0 0 0 0 0 0 

88 0 0 0 0 300 0 

89 0 0 0 0 0 0 

90 0 0 0 0 0 0 

91 0 0 0 0 0 0 

92 0 0 0 0 0 0 

93 0 0 0 0 0 0 
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Table A4.2 Branch data for Colombian 93-bus system 

 

 

From-To 

 

nij
0
 

Reactance 

xij, p.u. 

fij
max

, 

MW 

Cost, 10
6
 

US$ 
From-To nij

0
 

Reactance 

xij, p.u. 

fij
max

, 

MW 

Cost, 10
6
 

US$ 
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1-93 

2-4 

2-9 

2-83 

3-6 

3-71 

3-90 

4-5 

4-34 

4-36 

5-6 

6-10 

7-78 

7-90 

8-9 

8-59 

8-67 

8-71 

8-87 

9-69 

9-77 

9-83 

10-78 

11-92 

12-17 

12-75 

12-76 

13-14 

13-20 

13-23 
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14-60 

1 

1 

1 

2 

2 

1 

2 

1 

1 

1 

1 

1 

3 

2 

2 

2 

1 

1 

2 

1 

2 

0 

1 

1 

2 

1 

1 

1 

1 

1 

1 

1 

2 

1 

1 

2 

2 

2 

0.1040 

0.0810 

0.0799 

0.0232 

0.0841 

0.0267 

0.0271 

0.0122 

0.0200 

0.0497 

0.0136 

0.0074 

0.0049 

0.1016 

0.0850 

0.0074 

0.0337 

0.0043 

0.0050 

0.0168 

0.1056 

0.2240 

0.0075 

0.0132 

0.1098 

0.0190 

0.0200 

0.0102 

0.0267 

0.0086 

0.0641 

0.0081 

0.0009 

0.0178 

0.0277 

0.1494 

0.1307 

0.1067 

250 

250 

250 

350 

250 

450 

350 

350 

570 

350 

450 

350 

350 

270 

250 

350 

350 

350 

350 

350 

250 

250 

400 

350 

350 

350 

400 

350 

450 

350 

320 

350 

350 

350 

350 

250 

250 

300 

15.862 

13.217 

12.527 

6.202 

14.367 

13.270 

6.662 

5.282 

5.972 

9.422 

5.167 

4.592 

4.247 

14.942 

13.562 

4.477 

7.582 

4.132 

4.247 

5.972 

15.402 

29.200 

4.477 

5.167 

15.747 

5.857 

5.972 

4.937 

13.270 

4.707 

11.492 

4.707 

3.902 

5.742 

7.007 

20.232 

18.622 

15.977 

30-72 

31-32 

31-33 

31-34 

31-60 

31-72 

32-34 

33-34 

33-72 

34-70 

35-36 

35-44 

37-61 

37-68 

38-39 

38-68 

39-40 

39-43 

39-68 

39-86 

40-41 

40-42 

40-68 

41-42 

41-43 

43-88 

44-80 

45-50 

45-54 

45-81 

46-51 

46-53 

47-49 

47-52 

47-54 

48-54 

48-63 

49-53 

2 

1 

2 

1 

2 

2 

1 

1 

1 

2 

1 

2 

1 

1 

1 

1 

2 

1 

1 

0 

1 

1 

1 

1 

1 

0 

1 

2 

1 

1 

1 

2 

2 

1 

2 

3 

1 

2 

0.0173 

0.0259 

0.0248 

0.0792 

0.1944 

0.0244 

0.0540 

0.1139 

0.0228 

0.0415 

0.2074 

0.1358 

0.0139 

0.0544 

0.0300 

0.0389 

0.1020 

0.1163 

0.0145 

0.0545 

0.0186 

0.0153 

0.1320 

0.0094 

0.1142 

0.1816 

0.1014 

0.0070 

0.0946 

0.0267 

0.1141 

0.1041 

0.0942 

0.0644 

0.1003 

0.0396 

0.0238 

0.1008 

350 

350 

350 

250 

250 

350 

350 

320 

350 

350 

250 

250 

350 

320 

350 

350 

250 

250 

350 

350 

350 

350 

320 

350 

250 

250 

250 

350 

320 

450 

250 

250 

250 

350 

250 

350 

350 

250 

5.512 

6.547 

6.432 

12.412 

25.982 

6.317 

9.767 

16.322 

6.202 

8.272 

27.362 

20.347 

4.937 

9.652 

6.317 

7.927 

16.207 

16.552 

5.282 

9.880 

5.742 

5.167 

18.162 

4.707 

16.322 

39.560 

17.587 

4.362 

13.562 

13.270 

16.322 

14.597 

13.562 

10.572 

14.252 

8.042 

6.317 

14.252 
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Table A4.2 Branch data for Colombian 93-bus system (Contd.) 

 

 

From-To 

 

nij
0
 

Reactance 

xij, p.u. 

fij
max

, 

MW 

Cost,  

10
6
 US$ 

From-To 
nij
0
 

Reactance 

xij, p.u. 

fij
max

, 

MW 

Cost,  

10
6
 US$ 

15-17 

15-18 

15-20 

15-24 

15-76 

16-18 

16-21 

16-23 

17-23 

17-76 

18-20 

18-21 

18-22 

18-58 

18-66 

19-22 

19-58 

19-61 

19-66 

19-82 

19-86 

21-22 

23-24 

24-75 

25-28 

25-29 

26-27 

26-28 

27-28 

27-29 

27-35 

27-44 

27-64 

27-80 

27-89 

28-29 

29-31 

29-64 

30-64 

30-65 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

2 

2 

1 

1 

2 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

0 

1 

2 

1 

1 

1 

0.0483 

0.0365 

0.0513 

0.0145 

0.0414 

0.0625 

0.0282 

0.0238 

0.0913 

0.0020 

0.0504 

0.0348 

0.0209 

0.0212 

0.0664 

0.0691 

0.0826 

0.1105 

0.0516 

0.0267 

0.1513 

0.0549 

0.0255 

0.0161 

0.0565 

0.0570 

0.0657 

0.0512 

0.0238 

0.0166 

0.1498 

0.0893 

0.0280 

0.0242 

0.0267 

0.0281 

0.1042 

0.0063 

0.1533 

0.0910 

320 

450 

320 

350 

320 

350 

350 

350 

250 

350 

350 

350 

350 

350 

350 

350 

320 

250 

350 

450 

300 

350 

350 

350 

320 

320 

350 

350 

350 

350 

250 

250 

350 

350 

450 

350 

250 

350 

250 

250 

9.422 

7.927 

9.652 

5.282 

9.882 

10.917 

6.892 

6.892 

12.987 

3.902 

9.537 

7.467 

6.432 

5.742 

11.377 

11.722 

11.722 

16.092 

9.307 

13.270 

20.922 

9.882 

6.317 

5.512 

9.767 

9.882 

10.917 

9.307 

6.202 

5.052 

22.072 

16.322 

6.777 

7.007 

13.270 

6.777 

32.981 

4.362 

20.577 

13.677 

50-54 

51-52 

52-88 

54-56 

54-63 

55-57 

55-62 

55-82 

55-84 

56-57 

56-81 

57-81 

57-84 

59-67 

60-62 

60-69 

61-68 

62-73 

62-82 

64-65 

64-74 

66-69 

67-68 

68-86 

69-70 

72-73 

73-74 

73-82 

73-89 

74-89 

77-79 

79-83 

79-87 

82-85 

83-85 

85-91 

90-91 

91-92 

92-93 

2 

1 

0 

3 

3 

1 

1 

1 

1 

2 

1 

0 

1 

2 

3 

2 

1 

1 

1 

1 

1 

2 

2 

1 

2 

2 

1 

0 

0 

0 

1 

0 

1 

1 

2 

1 

1 

1 

1 

 

0.0876 

0.0859 

0.0980 

0.0267 

0.0495 

0.0174 

0.0281 

0.0290 

0.0087 

0.0240 

0.0114 

0.0219 

0.0087 

0.1180 

0.0257 

0.0906 

0.0789 

0.0272 

0.0101 

0.0741 

0.0267 

0.1217 

0.1660 

0.0404 

0.0228 

0.0267 

0.0214 

0.0374 

0.0246 

0.0034 

0.0097 

0.0457 

0.0071 

0.0341 

0.0267 

0.0139 

0.0267 

0.0088 

0.0097 

250 

250 

300 

450 

320 

600 

550 

550 

600 

600 

550 

550 

600 

250 

450 

350 

250 

750 

600 

350 

500 

250 

250 

350 

350 

500 

600 

550 

550 

550 

350 

350 

350 

700 

450 

600 

550 

600 

600 

12.872 

12.872 

34.190 

13.270 

9.077 

46.808 

70.988 

77.498 

26.658 

62.618 

32.858 

58.890 

26.658 

16.667 

13.270 

13.677 

12.412 

73.158 

30.998 

11.837 

13.270 

17.127 

22.072 

8.272 

6.202 

13.270 

58.278 

97.960 

66.650 

14.570 

5.167 

15.400 

4.477 

89.898 

13.270 

40.298 

13.270 

27.588 

30.068 

 

 



 

 

153 

 

 

36 2
83

85

35

5

4
8

877977

9 59

1
93

32 7034 69

33

31

65

30

72

73

29

64

14

13

74

27

89

28

25

44

8026

78106 7

71

3

91

90

11

92

62

60

22

5818 61

19

82

66

21

16

23

20

75

24

15

67

38

39

688637
40

41

42

43

88

53 46

515247

49

12

55

76
17

57

54

56
84

50

45

81
6348

 

 

Figure A.4 Colombian 93-Bus System 

 

 

 


