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Nucleate boiling is a very effective heat transfer cooling process, used in numerous industrial applications. 

Despite intensive research over decades, a reliable model of nucleate pool boiling is still not available. This 

paper presents a numerical and experimental investigation of nucleate boiling from artificial nucleation sites.  

The numerical investigation described in the first section of the paper is carried out by a hybrid mechanistic 

numerical code first developed at the University of Ljubljana to simulate the temperature field in a heated 

stainless steel plate with a large number of nucleation sites during pool boiling of water at atmospheric pressure. 

It is now being redeveloped to interpret experiments on pool boiling at artificial sites on a silicon plate and as a 

design tool to investigate different arrangements of sites to achieve high heat fluxes. The code combines full 

simulation of the temperature field in the solid wall with simplified models or correlations for processes in the 

liquid-vapour region. The current capabilities and limitations of the code are reviewed and improvements are 

discussed. Examples are given of the removal of computational constraints on the activation of sites in close 

proximity and improvements to the bubble growth model. Preliminary simulations are presented to compare the 

wall conditions to be used in the experiments on silicon at Edinburgh University with the conditions in current 

experiments on thin metal foils at Ljubljana.  

An experimental rig for boiling experiments with artificial cavities on a 0.38 mm thick silicon wafer 

immersed in FC-72, developed at Edinburgh University, is described in the second part of the paper. 

 

NOMENCLATURE 
 

A surface area of the dome [m
2
] 

D diameter [m] 

f frequency [Hz] 

H artificial cavity depth [m] 

h heat transfer coefficient [W m
-2

 K
-1

] 

k thermal conductivity [W m
-1

 K
-1

] 

Q  heat transfer rate [W] 

q heat flux [W m
-2

] 

r radius [m] 

S spacing between two cavities [m] 

T temperature [ºC] 

ΔT fraction of activation superheat [ºC] 

t time [s] 

x, y, z coordinates [m] 

 

 

 

 

Greek symbols 

α thermal diffusivity [m
2
 s

-1
] 

δ plate thickness [m] 

 apparent contact angle [deg] 

π pi [-] 

ψ dome heat flux parameter [-] 

 

Subscripts 

0 initial condition 

b bubble 

c contact 

C coalescence  

cav cavity 

D dome 

d departure  

i generic site 

l liquid 

m mesh 

 

INTRODUCTION 
 

Most applications and studies of nucleate boiling heat transfer have been for metallic surfaces, on which the 

spatial and size distributions of nucleation sites can only be controlled in a general way during manufacture. 

Applications of boiling to the cooling of devices microfabricated on silicon open the way to the creation of large 

arrays of closely-spaced nucleation sites of specified microgeometry. Theoretical methods are required to 

optimise the design of the arrays in a rational way that takes account of the interactions between the sites. 
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Interactions occur by a number of thermo-hydrodynamic mechanisms in the liquid-vapour region that may be 

coupled to interactions by conduction in the heated wall. Three-dimensional numerical simulations of the 

combined fluid-solid regions are currently limited to interactions between a few sites, e.g. Mukherjee and Dhir 

(2004), Dhir (2006), and have a minimum spatial resolution that is usually larger than the radius of typical 

nucleation sites. Hybrid mechanistic simulations, reviewed by Kenning et al. (2006), replace the accurate 

simulation of events in the fluid region by simplified physical models, correlations and networking rules, e.g. for 

site activation, bubble growth and departure, seeding of unstable sites and local heat transfer. Nelson and 

colleagues at Los Alamos National Laboratory developed a hybrid model to investigate the influence of wall 

properties on interactions by conduction between hundreds of sites, Pasamehmetoglu and Nelson (1991). The 

transient conduction equation was solved numerically on a 3-D rectangular grid representing the wall, with 

nucleation sites having different activation superheats placed at selected grid nodes at the wall-fluid interface. 

Bubble-related events in the fluid were represented by very simple sub-models. These models were later 

modified to simulate boiling at high heat flux with vapour chimneys through a liquid macrolayer between the 

wall and a hovering bubble, Sadasivan et al. (1995). Golobič et al. (1996a,b) at Ljubljana University developed a 

version of the low-flux model, in which sites could be placed at any position and the computational grid was 

refined temporarily in a cylindrical region under every growing bubble. The bubble growth sub-model was a 

simplified version of the Stephan and Hammer (1994) model for evaporation at a triple contact line, now 

regularly employed in 3-D numerical simulations of bubble growth, as in Dhir (2006). Only interactions 

transmitted through the wall were included in the model. 

The validation of a multi-site model against experimental data for boiling on metal surfaces is difficult 

because there are few sufficiently detailed data sets to provide input information about site positions and 

characteristics in addition to data to test the model, and because the potentially chaotic nature of boiling (Nelson 

et al., 1996, Mosdorf and Shoji, 2004) requires statistical methods, Kenning et al. (2006). These issues were 

explored by comparing the Ljubljana model with liquid crystal measurements of the spatio-temporal temperature 

fields on the back of a thin stainless steel plate during the boiling of water, Golobič et al. (2004), during which 

bubbles were detected by computerised image analysis at 1505 locations, most of which were concentrated in 16 

dense clusters. The poor agreement between the data and the model may have been caused by a combination of 

shortcomings in the data and the very simple sub-models used in the simulation. Sub-models may be improved 

by comparisons with experimental data and fully-3D simulations for isolated sites. Golobič et al. (2007a,b) 

measured wall temperature fields with higher spatial and temporal resolution by IR thermography during isolated 

bubble growth and bubble coalescence on very thin metal foils. The observations suggested that the contact line 

evaporation model for bubble growth was not appropriate for these particular conditions. Well before the advent 

of the triple contact line model, different modes of bubble growth were noted by Chesters (1978), Fig. 1, 

illustrated here by the differences in bubble growth and detachment during boiling of water from natural sites on 

a thin metal foil (Golobič et al., 2007b), Fig. 2(a), and from micromachined sites on a thick silicon disk (Mosdorf 

and Shoji, 2004), Fig. 2(b). The internal geometry of nucleation sites influences bubble production, Shoji et al. 

(2005).  

              slow, confined to nucleation site           slow, spreading  (fast with contact line evaporation)     fast, microlayer 

 

Figure 1: Bubble growth modes, after Chesters (1978) 

(b) 

(a) 

Figure 2: Bubble growth in water on 

(a)  a titanium foil (Golobič et al., 2007b) 

(b) a silicon disk  (Mosdorf and Shoji, 2004) 



 3 

Microfabricated sites on silicon provide much greater control over site positions and characteristics than can 

be achieved with natural sites on metal surfaces. Shoji and co-workers at Tokyo University used this approach 

for an exhaustive investigation of the thermo-hydrodynamic interactions between sites, e.g. Zhang and Shoji 

(2003), Chatpun et al. (2004), Shoji et al. (2005). Experiments were conducted on a silicon wafer (thickness 0.2 

mm, diameter 15 mm) with cylindrical cavities (diameter 10 μm,  depth 80 μm) arranged as single or twin 

cavities with different spacing S (1, 2, 3, 4, 6 and 8 mm). The boiling liquid was saturated water and the silicon 

wafer was heated uniformly from below by laser irradiation. Temperature fluctuations on the rear of the wafer 

were measured along lines through the centres of cavities with an IR camera in line-scanning mode (spatial 

resolution 120 μm, temperature resolution 0.08 K and time resolution 3 ms). Three types of interaction were 

identified: thermal interaction between nucleation sites, hydrodynamic interaction between bubbles (long-range, 

transmitted through the fluid) and horizontal and declining bubble coalescence (lateral, short-range). Their 

ranges of influence on average bubble departure frequency are shown in Fig. 3 in terms of the ratio of the 

spacing parameter S to a characteristic bubble dimension Db. Recently Sato et al. (2007), used a similar 

experimental setup with a single site or triple in-line sites at 

S = 1, 2, 3, 4mm that produced bubbles with departure 

diameters in the range 2.5 - 3mm. They performed chaos 

analysis of the time series for bubble growth and wall 

temperature at the single and central sites by constructing 

return maps, using delay times much smaller than the 

bubble growth time. They concluded that bubble growth at a 

single site was nearly deterministic but that the frequent 

coalescence between bubbles at triple cavities with S ≤ 3mm 

made bubble diameter deterministically unpredictable over a 

long time period. The attractors of wall temperature for 

interacting sites had some structure indicative of chaotic 

complexity, rather than random variation. Interaction 

disappeared for S ≥ 4 mm. 

There were some differences between the findings of 

Shoji et al. (2005) and those of Gjerkěs and Golobič (2001, 

2003) for long-range interactions between natural sites on a 

metal foil and a site controlled by localized heating by a 

focussed laser, using different measures of intensity. 

Golobič et al. (2007a,b) later measured with a high-speed, high resolution IR camera the two-dimensional 

temperature fields under isolated and coalescing sites on metal foils.  

An alternative approach is to micro-fabricate on a transparent, electrically-insulating substrate a closely-

spaced array of electrical resistance heaters, each with its own control system so it can be run either at constant 

temperature or at constant heat flux. A design by Rule and Kim (1999) was improved, as described in Demiray 

and Kim (2004) and Myers et al. (2005) to give a boiling surface formed of 96 closely-spaced platinum 

resistance heater elements deposited a quartz wafer. Simultaneous high-speed images of bubbles in boiling FC-

72 were taken through the semi-transparent heaters. Cheng and Chung (2003) investigated coalescence with a 

similar array, initiating nucleation by pulse heating of individual elements. This is a way of avoiding the 

difficulties of hysteresis and irregular activation at natural and artificial cavity sites.  

It is clear that experimental studies of bubble growth, detachment and interaction ranging from detailed 

studies of  heat transfer patterns around individual nucleation sites to studies of the networked interactions of a 

large population of sites covering a large area lead to conflicting requirements for instrumentation and data 

analysis.  The translation of experimental measurements into simple rules for the physics sub-models in hybrid 

models for numerical simulation is not straightforward and the hybrid models must be sufficiently flexible to 

accommodate different modes of bubble growth. 

 

OBJECTIVES 
 

This paper reports progress on a project to develop the Ljubljana code into a design tool for arrays of micro-

machined nucleation sites to achieve high rates of cooling of silicon chips by pool boiling. The developments 

will include improvements to the physical sub-models and to numerical procedures to increase computational 

speed and remove some current restrictions on physical modelling, together with more formal Verification and 

Validation of the code than has been attempted previously. The first part of the paper describes the structure of 

the Ljubljana model and code, identifies aspects requiring development and gives some examples of work done 

so far. 

The development of the physical sub-models will depend on experiments at Edinburgh University on boiling 

of FC-72, and later water, on arrays of sites and micro-thermometers micro-fabricated on silicon. The 

 Figure 3: Site interactions, Shoji et al. (2005). 
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experiments will also provide data for validation of the design code. Further information will be drawn from a 

separate investigation at Ljubljana University of pool boiling on thin metal foils, employing high-speed IR 

thermography to measure 2-D wall temperature variations, Golobič et al. (2007a,b).  

The philosophy for design of the experiments is summarized in the second part of the paper.  

 

THE LJUBLJANA MODEL  
 

The code solves the 3-D transient conduction equation for the temperature distribution T (x,y,z;t) in a 

rectangular slab representing the heated wall of thickness δ, with 

 

1. specified edge boundary conditions, e.g. constant temperature, adiabatic or connection to unheated wall, 

2. specified volumetric heat source (ohmic heating of metal foil) and/or 

3. specified heat flux distribution (x,y;t) on rear surface z = 0 (thin-film heaters on silicon), 

4. specified positions and properties of potential nucleation sites on front surface z = δ,  

5. specified heat flux distribution (x,y;t) on z = δ (local thin-film heaters to trigger nucleation sites on 

 silicon), 

6. specified heat transfer coefficient distribution h(x,y;t) on z = δ, supplied by approximate physics modules 

 for bubble nucleation, growth, departure and coalescence, single phase convection and hydrodynamic 

 interactions that replace accurate numerical simulation of fluid region. 

 

The transient conduction equation is solved by a simple explicit method, with consequent limitations on 

numerical accuracy and stability. The basic computational mesh is temporarily refined in a cylindrical region 

round an active site during bubble growth from nucleation to detachment. The original version of the code, 

Golobič et al. (2004), employed an unstructured basic mesh, which was appropriate for very irregularly-spaced 

natural sites on a metal foil. This has been replaced by a rectangular mesh that is suitable for more regular arrays 

of artificial sites, saving some of the time required for mesh generation. 

Originally, the mesh was refined in a region of fixed radius corresponding to the maximum contact radius, 

which occurred at detachment and which was specified at each site. In order to avoid overlapping of refined 

regions, nucleation of a new bubble had to be prohibited at sites close to a growing bubble, thus artificially 

preventing coalescence and in some circumstances forcing bubbles to grow alternately at a pair of sites. This 

constraint has been partially removed by improvements to the meshing procedure and the bubble growth model, 

so that the radius of the refined region grows in a series of steps to follow the contact radius of the bubble as it 

expands and then contracts in the approach to detachment, Fig. 4, and the introduction of an approximate model 

for coalescence, described below. The minimum distance between two sites allowed to be active at the same time 

was equal to the sum of their maximum contact radii, increased by 20% to allow at least one row of Cartesian 

unrefined cells between the refined regions. With the new procedure, combined with the variation of the 

apparent contact angle described below, the 

minimum distance can be reduced by more than 

50% during the early stages of bubble growth. 

The procedure will be further improved to 

eliminate a loss of accuracy during mesh 

replacement due to the present impossibility of 

replacement of one circular mesh distribution by 

another without first merging cells into the 

original Cartesian grid. These improvements 

significantly increase the computing time and 

introduce small errors in calculations of bubble 

growth and temperature at the nucleation sites. 

The code has been restructured by Nelson at 

LANL for parallel computation: running time 

has been strongly reduced; formal verification 

will be performed.  

The primary outputs from the code are the bubble radius rbd,i, the contact radius rc,i, the temperature Ti and 

records of activity for each nucleation site and the instantaneous temperature T(x,y;t) and heat flux q(x,y;t) 

distributions on the front surface z = δ, which are used in the physics sub-models. 

The current criterion for nucleation is that bubble growth commences when the local wall superheat rises to 

an activation superheat (corresponding to an equivalent critical radius) that has to be inserted as input datum for 

each potential nucleation site. Immediate nucleation of one bubble following the detachment of a preceding 

bubble is permitted but the thermo-fluid consequences of vertical coalescence of bubbles from the same site are 

Figure 4: Mesh refinement scheme 

S 
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not modelled at present. This may require future consideration because the experimental data for boiling on 

silicon wafers generally exhibit very short waiting times, whereas waiting times are long on thin metal foils. 

This criterion is appropriate for nucleation at a critical radius within a cavity. It will be extended in due 

course to include the effect of the external temperature gradient in the liquid due to the local wall heat flux. 

Other influences that will be examined are hydrodynamic disturbances due to bubble growth at adjacent sites and 

seeding of unstable sites by vapour from a stable site in close proximity. 

Approximate models have to be defined for the shape of the bubble, the various heat flows into it and its 

detachment. The original version of the code employed very simple models. The bubble was assumed to grow as 

a truncated sphere with a constant apparent contact angle . Heat for evaporation was supplied only through the 

base of the bubble; heat transfer from the bulk liquid through the dome was neglected. Heat transfer through the 

base of the bubble was based on the Stephan and Hammer (1994) contact line concept. The contact area was 

divided into two concentric zones: 

(i) a central circle covered by an adsorbed liquid film with a very low heat transfer coefficient; 

(ii) an outer ring with a high heat transfer coefficient, representing the heat flow at the triple contact line. 

The width of the ring was much greater than the sub-micron length scale proposed in models of the contact zone 

and the heat transfer coefficient was reduced accordingly. The values of the heat transfer parameters were chosen 

to match growth rates with experimental observations. The effects of interfacial non-equilibrium at high heat 

fluxes were assumed to be included in the heat transfer coefficient, so that the vapour was at the saturation 

temperature. 

The model for (i) was modified in the Golobič et al. (2004) version of the code to allow for the possible 

presence of liquid drops trapped in surface roughness in the adsorbed film region, by having a somewhat higher 

heat transfer coefficient at the nucleation site, decreasing linearly towards the triple contact line. Detachment 

occurred at a specified volume expressed as the equivalent radius of a sphere, with values obtained from 

correlations or experimental observations for individual sites. 

Recent experiments with thin metal foils, Golobič et al. (2007a,b), have shown that heat transfer may be 

maintained over the entire contact area, with the highest heat transfer coefficient at its centre, decreasing radially 

without a maximum at the apparent contact line. The code has been modified so that any radial distribution of 

heat transfer coefficient may be specified; choice of the correct model depends on experiments. All the examples 

in this paper have been simulated using a zero heat flux in the inner area, a very high heat transfer coefficient for 

the ring containing the triple contact line and an enhanced natural convection heat transfer coefficient (not 

contributing to the bubble growth) for the ring outside the triple contact line region. The latter accounts the effect 

of movements of colder liquid from the region far from the bubble; example of this phenomenon can be 

observed in Golobič et al. (2007a,b) that also measured an enhancement of the heat flux in a narrow ring just 

outside the expanding contact area in the early stages of bubble growth. When the contact area contracted prior 

to detachment, the heat flux measured at its periphery was reduced, instead of enhanced. Since contraction of the 

contact area is now included in the code, further investigation is required to determine how this effect may be 

represented in the hybrid model.  

In its original form, the code applied a uniform and single phase heat transfer coefficient slightly dependent 

on temperature in the wall region outside the bubble contact area. Its value was taken from a standard correlation 

for natural convection on a horizontal plate. In addition, the code contained provision for enhanced single phase 

heat transfer in a circular area of influence immediately following bubble detachment at maximum contact 

radius, calculated by the “wall quenching” model of transient conduction to liquid at the bulk temperature. This 

feature of the code is not employed at present, because it greatly overestimated the heat transfer measured for 

conditions of rapid bubble growth followed by a long waiting time in experiments on thin metal foils, Golobič et 

al. (2007a,b). Further research is required to determine whether it may be appropriate in other conditions, e.g. 

when streams of bubbles are produced with small waiting times or in boiling at large subcooling.  

In the current project, these modelling assumptions are being developed to improve their physical realism, 

usually at the cost of higher simulation time and introduction of more parameters that have to be specified in the 

computer code. The following improvements have now been implemented: 

Heat transfer to the bubble dome has been added, estimated by 

 

  21
 tTkAQ lD         (1)  

                                            

where A is the surface area of the dome at time t after nucleation, T is a specified fraction (usually 0.5) of 

the activation superheat of the nucleation site, and ψ is a parameter to fix the relative importance of the heat flux 

at the dome. During the following simulation, ψ has been set equal to 1. 

The original assumption of constant apparent contact angle resulted in sudden detachment when the contact 

area was a maximum. The first method used to model detachment at zero contact area was to reduce the contact 

angle linearly with time after the bubble reached a defined fraction (e.g. 0.6) of the specified detachment radius. 

The sub-model required a manual determination of the correct rate of decrease to match original detachment 
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conditions when the bubble radius reaches its maximum 

value. The linear dependence on time has been replaced 

by a linear decrease with the inverse of the bubble 

volume, as shown in Fig. 5a, b. This matches 

approximately the bubble evolution during boiling on a 

thin metal foil, Fig. 2a. A comparison of the use of 

constant and variable contact angles for a bubble 

detachment radius of 1.75 mm in water on a thin (25 μm) 

titanium foil, with an equivalent heat flux of 50 kWm
-2

 is 

shown in Fig. 6. Detachment with a zero apparent contact 

angle leads to an increase in growth time of 

approximately 10%, and a decrease of waiting time. This 

is caused by the different temperature distribution around 

the nucleation site after detachment, as shown in Fig. 7. 

For the constant contact angle, a deep trough in the 

temperature profile, caused by previous cooling at the 

triple contact line, reduces the lateral heat flow towards the centre of the site, leading to a slower recovery. By 

contrast, for the variable contact angle simulation, the trough is at the centre, and the effect of lateral conduction, 

not relevant over a large scale for a thin foil as discussed later, becomes important for a short distance. The 

temperature profile and bubble period strongly depend on the contact angle rate of decrease and on the value of 

the fraction of the specified detachment radius at which the decrease is specified to start.  

A second detachment model, in which a conical extension of the truncated sphere is introduced, to match a 

detachment shape approximating to Fig. 2b is under development. 

At present, the only hydrodynamically transmitted interaction 

between bubbles introduced into the code is a rudimentary model 

for coalescence. If two bubbles grow in close proximity, their 

domes will come into contact while their contact areas are still 

separate. Two situations are considered, both of which were 

observed in Golobič et al. (2007b): 

(a) If the bubbles have similar size, Fig. 8a, they are assumed 

to continue growing as two independent isolated bubbles, but a 

dedicated heat transfer coefficient (hC) is defined for the region 

between them. In reality, immediately after coalescence, the 

bubble assumes the shape of a horizontally elongated bubble. 

(b) If the sizes are sensibly different, Fig. 8b, the smaller 

bubble is assumed to be rapidly absorbed by the larger bubble, 

which undergoes a sudden increase in volume. A larger departure 

radius must then be specified for the combined bubble. Examples 

of the application of this model are given in a conference paper, 

Sanna et al. (2008). 

 

PRELIMINARY RESULTS 
 

Two simulations have been run to evaluate the influence of the different wall characteristics for experiments 

in Ljubljana and Edinburgh Universities, using respectively a titanium foil 25 μm thick with natural cavities and 

a silicon wafer 0.38 mm thick with micromachined cavities. Table 1 summarizes the characteristic of the two 

plates. Saturated water at atmospheric pressure has been used for both simulations, although initial experiments 

Figure 5 a, b: Apparent contact angle models (a) 

constant, (b) variable 

 

a b 

Figure 6: Bubble growths and temperature for site n.1 

with constant and variable apparent contact angle 

 

Figure 7: Temperature distributions during waiting time 

 

Figure 8 a, b: Coalescence models 

(b) 

(a) 

2 

2 

hC 

1 

1 
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in Edinburgh employ FC-72. All other inputs to the code are the same (bubble departure radius, activation 

temperature, apparent contact angle, heat transfer coefficients). The disposition of the nucleation sites has been 

chosen to avoid coalescence but to allow the possibility of thermal interaction. In order to reduce computing 

time, the number of sites has been kept small and a low level of grid refinement has been used. Consequently, 

the grid values in plots of the radial distributions of temperature and heat flux are joined by straight lines.  

 

The geometry used for the simulations was a 24x24 mm 

solid plate with seven potential active sites located at the 

centre in triangular symmetry at a spacing of 4 mm. Fig. 9 

shows the mesh distribution when all the sites are active with 

each dot representing the centre of a cell mesh. The site 

activation temperature is 115.5 ºC.  The bubble departure 

diameter is 3.5 mm, with an initial apparent constant angle of 

32º. The contact angle reduction model has been used and the 

uniform volumetric heat source corresponds to an input heat 

flux of 50 kWm
-2

. The bottom of the plate is adiabatic and its 

edges are kept at a constant temperature of 125 ºC, 

approximately equal to the equilibrium temperature in the case 

of pure natural convection cooling.  

 

Comparison between simulations for Ti and Si plates 

 

Representative distributions of wall surface temperatures 

on a line passing through sites 5 - 1 - 2 are shown in Figs. 10 

and 11 for titanium and silicon respectively. The restricted edge effects and the large areas of uniform 

temperature outside the area influenced by the cluster of sites in Fig. 10 indicate that lateral conduction is very 

small because of the small thickness of the titanium foil. The temperature between the sites is nearly the same as 

the undisturbed temperature, so there is hardly any thermal interaction between the sites. Each site has to remove 

only the heat supplied in its immediate vicinity. Because of the slight differences in conditions, bubbles at the 

different sites grow out of phase but over a long period of simulation their growth characteristics are similar, 

Table 2. Because of the low thermal capacity of the titanium foil, there are large variations in the local 

temperature, falling to within 4 K of the saturation temperature under the bubbles. By contrast, everywhere on 

the thicker silicon wafer in Fig. 11 is influenced by lateral conduction. There are large flows of heat to the edges 

and towards the cluster of sites, which must therefore remove more heat than the sites on the titanium foil for the 

same uniform heat input. The total volumetric production of vapour is therefore increased and, because the 

bubble departure volume is fixed in the simulations, the computed bubble periods are reduced. There is a strong 

thermal interaction between the sites on silicon and the outer sites receive more heat by lateral conduction than 

the central site. The local fluctuations in temperature are reduced by the much larger thermal capacity of the 

Table 1: Characteristic of the plate 

Figure 9: Mesh distribution 

 

Figure 10: Heat flux and temperature distributions for 

titanium foil 

 

Figure 11: Heat flux and temperature distributions for 

silicon wafer 
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silicon wafer and the higher transient lateral conduction. The computed bubble periods, growth and waiting 

times for each site on the two materials are compared in Table 2. The absence of thermal interaction on the 

titanium foil results in similar times at all the sites. On silicon, all the sites have similar growth times that are 

sensibly shorter than on titanium, because the wall superheat is less depressed. The waiting times at the outer 

sites are negligible, which is consistent with experimental observations of boiling on silicon. The waiting time at 

the central site is marginally longer, because it receives less heat by lateral conduction than the outer sites. 

 

For both materials, there is a rapid initial reduction in the wall temperature at the nucleation site when the 

contact area is very small, because of the assumed very high heat transfer coefficient at the position of the triple 

contact line. As this region of high heat transfer coefficient moves outwards with the contact line, the reduction 

in temperature also moves outwards. There is a gradual recovery in the wall superheat at the nucleation site, as it 

is subjected to a much lower heat transfer coefficient. On the titanium foil, the wall superheat falls initially to 

less than 7 ºC, consequently limiting the heat flux, Fig. 12. The changes in superheat are smaller on the silicon 

wafer, with a reduction of 2-3 ºC, because of its much larger thermal capacity, combined with lateral conduction, 

Fig. 13. After the contact area reaches its maximum size and the contact line starts to move back towards the 

nucleation site, the region of high heat transfer coefficient moves back with it but the heat flux is strongly 

dependent on the pre-cooling of the wall during the previous expansion. There is a large effect for the titanium 

foil, Fig. 14. The inward–moving peak of high heat flux is followed by a narrow trough of reduced heat flux as 

liquid with a low heat transfer coefficient floods back into the pre-cooled contact area. This trough reproduces 

qualitatively the observations of Golobič et al. (2007a,b) for boiling on metal foils, noted earlier. The 

temperature and heat flux remain much higher on the silicon wafer, Fig. 15. 

Figure 12: Heat flux and temperature distributions for 

titanium foil – contact area increasing 

 

Figure 13: Heat flux and temperature distributions for 

silicon wafer – contact area increasing 

 

Figure 15: Heat flux and temperature distributions for 

silicon wafer – contact area decreasing 

 

Figure 14: Heat flux and temperature distributions for 

titanium foil – contact area decreasing 

 

Table 2. Bubble periods and growth times for titanium and silicon plates 
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As the peak in heat transfer coefficient and therefore in heat flux returns towards the nucleation site, just 

before detachment, the superheat there falls again, Figs. 16 and 17. The time taken for the superheat to recover to 

the activation superheat required to trigger the next bubble depends on the value of this second minimum in the 

superheat, the thermal capacity of the wall and the imbalance between heat input by generation and lateral 

conduction and heat removal by single-phase convection. 

The model assumes that growth is driven by the heat flux through the contact area and also by transient 

conduction from the superheated liquid to the dome of the bubble. This second contribution is not affected by the 

cooling of the wall so it becomes relatively more important for bubble growth on the titanium foil than on the 

silicon wafer, as shown in Figs. 18, 19. 

 

Comments  

 

These preliminary examples have employed an established model for bubble growth driven partly by intense 

evaporation at a moving triple-contact line. The radial distributions of heat flux calculated by the model are 

different in nature from those observed by Golobič et al. (2007a,b) for boiling on a 25 m thick titanium foil, 

despite the apparent success in modelling a local trough in the heat flux during contraction of the contact area but 

much more work is required to compare a variety of modelling assumptions with local measurements on thin 

metal foils and on thicker silicon wafers. The code has the necessary flexibility to do this and the examples have 

demonstrated its usefulness in exploring the influence of wall conditions on thermal interactions between bubble 

nucleation sites. Significant variations in local wall temperature may occur during boiling on a silicon wafer, 

even at the low heat flux of 50 kWm
-2

 used in the examples. The waiting time between bubbles, important in 

determining the cooling capability of a nucleation site, is large on the titanium foil but very small on the silicon 

wafer. In other circumstances, it may depend delicately on the interaction between the mechanism of heat 

transfer in the contact area of the bubble and the properties of the heated wall. 

 

 

 

 

Figure 16: Bubble growth and temperature time-trends 

for the titanium foil 

 

Figure 17: Bubble growth and temperature time-trends 

for the silicon wafer 

 

Figure 18: Cumulative heat for the titanium foil 

 
Figure 19: Cumulative heat for the silicon wafer 
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EXPERIMENTAL PROGRAMME 
 

The experimental setup at Edinburgh is shown schematically in Fig. 20. The boiling chamber has four 

borosilicate glass windows, which allow optical access from the top, the bottom and two sides. A silicone-

insulated resistance heater is attached to the walls to reduce heat losses. The stainless steel rig is designed to 

operate over a range of pressures from atmospheric to 5 bars and a temperature up to 160 °C. The pressure is 

controlled by the cooling liquid flow through the condenser coil regulated by a control valve.  The boiling liquid 

is initially heated up with a flow heater. Two filters in the pipe system remove any particles contained in the 

boiling liquid and all part materials and seals are chosen such to prevent any contamination. All electrical 

connections pass through vacuum-tight seals to the computer data acquisition system. The refrigerant FC-72 was 

chosen as the working fluid for the preliminary tests, because being a dielectric it eliminates electrical insulation 

issues associated with water. The boiling temperature of FC-72 is about 56 °C at atmospheric pressure (3M 

product information, 2000). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Preliminary boiling tests were performed with FC-72 boiling at atmospheric pressure on a 76.2 mm diameter 

silicon wafer with a thickness 0.38 mm.   On the surface there were forty five 2 μm diameter cylindrical cavities.  

These were approximately 22 μm deep having been etched using the deep reactive ion etch (DRIE) Bosch 

process, Fig. 21. Heating with a flux density up to 15.5 kWm
-2

 was provided over a diameter of 50.8 mm by a 

kapton-insulated resistance heater between the back of the wafer and a PTFE table. Back-lit images of boiling 

were recorded by a high speed digital camera operating at 1000 Hz. At fluxes of 14.4 kWm
-2

 nucleation was not 

confined to the cylindrical cavities and it was difficult to observe the activity on all cavities, Fig. 22. 

Bubble formation was recorded at a single stable site at 11.7 kWm
-2

 with similar bubbles being formed 

Figure 20: Schematic drawing of experimental rig including 

the main parts: boiling chamber and external condenser 

Figure 22: Boiling at 14.4 kWm
-2

 

Figure 21: First test section with 45 cavities 

76.2 mm

y

x

cavity dimensions:

diameter: D
cav

 = 2 μm

depth: H ≈ 22 μm

pitch between cavities
in both, x and y directions 
10mm

50.2 mm
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continuously, with no waiting time, as shown in Fig. 23. There was a small decrease in the rate of growth, which 

approximately coincided with the maximum apparent contact radius. This may have been a consequence of the 

contact line receding over the pre-cooled wall as the bubble started to lift off. The bubble shape during 

detachment was similar to that for bubbles in water on silicon (Fig. 2b) rather than the more rounded shape for 

water on a titanium foil (Fig. 2a). 

 

 

 
 

 

 

 
The next version of the silicon test section will have an integrated heater on the back and micro-sensors 

below the artificial nucleation sites, as shown schematically in Fig. 24. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CONCLUSION 
 

This paper has reported on the early stages of a project to develop a numerical simulation of pool boiling as 

a design tool for arrays of micro-fabricated bubble nucleation sites to achieve the removal of high heat fluxes 

from a silicon chip. The simulation is based on numerical codes developed first at Los Alamos National 

Laboratory and then at Ljubljana University, employing a hybrid model in which 3-D analysis of conduction in 

the wall is combined with simple models for physical processes in the liquid-vapour region. Improvements to the 

Figure 23: Bubble growth at 11.7 kWm
-2
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Figure 24: Schematic cross section view of the proposed 

silicon device with cavities, micro-sensors, background 

heater and insulation 
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bubble growth model with local refinement of the numerical mesh are described in the paper. These open the 

way to the inclusion of a model for the lateral coalescence of bubbles. The code has been restructured for parallel 

computing to meet the need for faster computation of more complicated models. 

The simplified treatment of events in the liquid–vapour region necessarily relies heavily on experimental 

input. This information relies on very localised measurements taken during boiling on thin metal foils with 

natural nucleation sites in current experiments with high-speed IR thermography and from a newly 

commissioned rig employing a silicon wafer with micromachined cavities and integrated microsensors.  

The numerical hybrid code has the flexibility to incorporate the experimental findings as they become 

available. Its capability to simulate the different wall conditions in the titanium foil and silicon wafer has been 

demonstrated by two examples. The simulations suggest that there are significant changes in the wall 

temperature during bubble growth and detachment, even on a material of high thermal conductivity like silicon.  
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