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In this paper, the vibration reduction problem is investigated
for a flexible spacecraft during attitude maneuvering. A new
control strategy is proposed, which integrates both the command
input shaping and the sliding mode output feedback control
(SMOFC) techniques. Specifically, the input shaper is designed
for the reference model and implemented outside of the feedback
loop in order to achieve the exact elimination of the residual
vibration by modifying the existing command. The feedback
controller, on the other hand, is designed based on the SMOFC
such that the closed-loop system behaves like the reference model
with input shaper, where the residual vibrations are eliminated
in the presence of parametric uncertainties and external
disturbances. An attractive feature of this SMOFC algorithm is
that the parametric uncertainties or external disturbances of the
system do not need to satisfy the so-called matching conditions or
invariance conditions provided that certain bounds are known. In
addition, a smoothed hyperbolic tangent function is introduced
to eliminate the chattering phenomenon. Compared with the
conventional methods, the proposed scheme guarantees not
only the stability of the closed-loop system, but also the good
performance as well as the robustness. Simulation results for
the spacecraft model show that the precise attitudes control and
vibration suppression are successfully achieved.
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I. INTRODUCTION

Modern spacecraft often employs large, complex
and lightweight structures such as solar arrays in
order to achieve increased functionality at a reduced
launch cost and also provide sustainable energy
during space flight. The combination of large and
lightweight design results in these space structures
being extremely flexible and having low-frequency
fundamental vibration modes. These modes might
be excited in a variety of tasks such as slewing and
pointing maneuvers. To effectively suppress the
induced vibrations poses a challenging task for the
spacecraft designers.
Active control techniques have been increasingly

used as the solutions for flexible spacecraft to
achieve the degree of vibration suppression for
required precision pointing. One special feed-forward
control strategy, known as input shaping, has been
studied widely since its first appearance in [1]
for possessing the advantages of simplicity and
effectiveness and requiring no additional sensors
and actuators. In [2], Singhose et al. studied an
input shaping controller for slewing a flexible
spacecraft. In [3], Banerjee and Padereiro used the
input shaping techniques to vibration reduction of
a flexible spacecraft following momentum damping
with/without slewing. The input shaping method
was applied by Hillsley and Yurkovich [4, 5] in
large angle movements of a two-link robot switched
to feedback control when approaching the desired
position. Using pulsewidth pulse FM technique,
Song et al. [6] further treated the application of
input shaping for vibration reduction of a flexible
spacecraft. A modified input shaping scheme was
presented by Shan et al. in [7] for multi-mode
vibration suppression of a rotating single-link flexible
manipulator. Nonlinear input shaping technique
was considered by Gorinevsky and Vukovich in [8]
for the flexible spacecraft reorientation maneuver.
Furthermore, an adaptive input shaper was explored in
[9] that provided robustness to parameter uncertainties
by tuning the shaper to the flexible mode frequencies.
Recently, the experimental testing of command
shaping techniques was reported in [10], [11] on a
flexible-link manipulator.
In addition, in the realistic environment, the

knowledge about system parameters such as inertia
matrix and modal frequencies is usually unknown,
and various disturbances, including gravitational
torque, aerodynamic torque, radiation torque,
and other environmental and nonenvironmental
torques, are also presented. Therefore, disturbance
rejection control strategies that are also robust to
parametric uncertainty and effectively suppress the
induced vibration are of great interest in spacecraft
applications. Sliding mode control (SMC), also known

IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS VOL. 44, NO. 2 APRIL 2008 503

Authorized licensed use limited to: Brunel University. Downloaded on March 24, 2009 at 11:41 from IEEE Xplore.  Restrictions apply.



as variable structure control (VSC), has proven to
be an effective approach to dealing with parametric
uncertainties and external disturbances for dynamic
systems due to its simplicity and effectiveness as
well as its robustness [12—14]. A tutorial and survey
on VSC can be found in [13], and a comprehensive
guide on SMC for control engineers was given in
[14]. SMC has also attracted great interests from
engineers in the area of spacecraft attitude control
research [15—18] because of its fast dynamic control,
global asymptotic stability, and invariability for
interference perturbation. Unfortunately, in most of
the previous studies concerning SMC, it is assumed
that the spacecraft is rigid and no flexible mode
actions are considered. As we discussed already, for
a highly flexible spacecraft model, the flexibility effect
should be directly accommodated into the control
law. There have been some research efforts on the
attitude control problems for flexible spacecraft, see
e.g. [19, 20], where the flexible spacecraft attitude
dynamics are usually represented by hybrid coordinate
systems, a combination of discrete attitude parameters
and infinite-dimensional flexible motion parameters.
However, these control strategies are limited to the
systems with full-state feedback.
The SMC problem with respect to output feedback

has recently drawn much attention. In Yallapragada
et al. [21], a design method was proposed in order to
obtain a controller satisfying the reaching conditions.
In [22] Wang and Fan developed an interesting
approach to designing a sliding mode output feedback
control (SMOFC), where the definition of the sliding
hyperplane includes an exponentially decaying term.
Effectively, the initial system state starts from the
sliding hyperplane. However, in [22], the issue of
robustness against external disturbances was not
addressed, and the uncertainties were assumed to
satisfy the matching condition. Therefore, the results
in [22] cannot be directly applied to the systems
with mismatched uncertainties. To deal with such a
limitation, in [23], [24], Kwan extended the results
of [22] by eliminating the exponentially decaying
term and formulating a time-varying upper bound of
states. The robustness issue concerning mismatched
disturbances was also examined where, unfortunately,
the disturbance vector has a special structure that
may limit its applicability to general systems. In [25],
Lewis and Sinha continued to tackle the mismatched
disturbance issue using output feedback and presented
techniques for stability analysis, but the parametric
uncertainties were not considered. In [26], a general
SMOFC methodology was developed to cope with
the uncertainties in the plant, control, and disturbance
matrices provided that certain bounds are known.
Up to now, to the best of the authors’ knowledge,
the study of SMC via output feedback for flexible
spacecraft systems with mismatched parametric

Fig. 1. Block diagram of sliding mode/input shaping algorithm
for flexible spacecraft vibration reduction.

uncertainty and external disturbances has not received
much attention and remains a challenging problem.
We aim here to deal with the active vibration

reduction problem in flexible systems with
mismatched uncertainties through sliding mode and
shaped input control. The developed control strategy
integrates the techniques of command input shaping
and SMOFC techniques. The configuration of the
proposed design scheme is shown in Fig. 1. The input
shaper is implemented outside of the feedback loop,
which is designed and achieves the exact elimination
of residual vibration. The amplitudes and instances
of the impulses application can be obtained for the
natural frequency and damping ratio of the reference
model, respectively. In the feedback loop, the SMOFC
technique is employed to make the closed-loop
system behave like the reference system with input
shaper. The vibration of the flexible structures is
suppressed in the presence of parametric uncertainty
and external disturbances, which do not need to
satisfy the traditional matching condition or invariance
conditions. The chattering behavior can be eliminated
using the smoothed hyperbolic tangent function.
In order to verify the effectiveness of the designed
controllers, a proportional derivative (PD) control is
first developed for control of rigid body motion, and
then an extended case is investigated for the control
of vibration of the flexible structure where the input
shaping is incorporated. The performances of the
proposed control strategy are assessed in terms of the
attitude pointing capability and vibration reduction as
compared with response with the PD control and the
extended case. Furthermore, a thorough comparison
with the traditional SMOFC presented in [21] is also
conducted. In addition, a near minimum-time control
method in [27] is also involved for the comparison.
Simulation results for the spacecraft model show that
the precise trajectory control and vibration suppression
are successfully achieved.
The rest of the paper is arranged as follows.

Section II presents the model of the spacecraft with
symmetric flexible appendages. The principle of
input shaping is briefly described in Section III.
Section IV describes the detailed control algorithm
for the flexible spacecraft, and the simulation results
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Fig. 2. Spacecraft model with single-axis rotation.

are given in Section V. Some concluding remarks are
given in Section VI.

II. MATHEMATICAL MODEL OF THE SPACECRAFT

The model of a flexible spacecraft under
consideration is shown in Fig. 2. The model consists
of a rigid central hub that represents the spacecraft
body, and two flexible appendages that represent
antennas, solar arrays, or any other flexible structures.
This model is representative of a relatively large class
of spacecrafts employed for communication, remote
sensing or numerous other applications [28, 29].
Define the OXYZ and oxyz as the inertial frame and
the frame fixed on the hub, respectively. Denote w(x, t)
as the flexible deformation at point x with respect to
the oxy frame, and l is the distance of a point chosen
on the appendage from the center of the hub.
In this study, control of rotational motion from

the fixed frame oxyz to the inertial frame OXYZ is
considered. Let μ denote the rotation angle that is
to be controlled using a torque Th generating device
located at the center of the structure. The flexible
appendages tend to vibrate due to the coupling
effect with the rigid body rotation. It is assumed that
the appendages undergo elastic transverse bending
only in the orbital plane x-y. They are simplified as
flexible beams with tip masses, and the frequencies of
oscillation are tuned by the tip masses. It is assumed
that two solar arrays are identical in geometric and
material properties. Under the torque control input
only to the center body, the deflection of each solar
array should be identical, that is, the deflection takes
place in an antisymmetric fashion.
The equations of motion are derived using the

Lagrangian approach. Although the vibration of
the appendages is described by partial differential
equations, spatial discretization method is used to
obtain a set of ordinary differential equations to
describe the motion of the spacecraft. For spatial
discretization using assumed modes method, the
transverse elastic deflection of the appendage along
y in the oxyz plane is expressed as

w(x, t) =
NX
i=1

Ái(x)qi(t) (1)

where Ái(x) (i= 1,2, : : :N) are the chosen admissible
functions satisfying the geometric and physical
boundary conditions, and qi(t) are the generalized
coordinates for the flexible deflection. We suppose
that the N modes are sufficient for the computation of
elastic deformation.
The nonlinear differential equations describing

the rotational and elastic dynamics are given by
(see [29])

J μ̈+Mμqq̈= Th+ d (2a)

MT
μqμ̈+Mqqq̈+Cqq _q+Kqqq= 0 (2b)

where q= [q1,q2, : : :qN]
T, the element mass,

stiffness matrices, and the nonlinear terms
are governed by J = Jh+2

R l
b ½x

2dx+2mtl
2,

[Mμq]i = 2
R l
b ½xÁi(x)dx+2mtlÁi(l), [Mqq]ij =

2
R l
b ½Ái(x)Áj(x)dx+2mtÁi(l)Áj(l), [Kqq]ij =

2
R l
b EIÁ

00
i (x)Á

00
j (x)dx, [Cqq]ij = 2

R l
bCIÁ

00
i (x)Á

00
j (x)dx.

Here, C and E are the damping coefficient and
modulus of elasticity, respectively, for the appendages,
and I are the damping coefficient and modulus of
elasticity, respectively, for the appendages, and I is
the sectional area moment of inertia with respect to
the appendage bending axis. d(t) 2 R is the external
disturbance belonging to L2[0,1) and kd(t)k · ±d
where ±d is a known positive constant.
Equation (2) can be written in a compact form as

M̄
¨̄
Z+ C̄

_̄
Z+ K̄Z̄ = B̄(Th+ d(t)) (3)

where

Z̄ = [μ,qT]T 2 RN+1, M̄ =

"
J Mμq

MT
μq Mqq

#

C̄ = diagf0,Cqqg, K̄ = diagf0,Kqqg, B̄ =
·
1

0

¸
and 0 denotes a null vector of appropriate dimension.
The system of Z̄ second-order differential

equations, (3), can be transformed into the state-space
form

_x= Ax+Bū(t) +Bd(t) (4)
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where

x=

"
Z̄
_̄
Z

#
, A=

·
0 I

¡M̄¡1K̄ ¡M̄¡1C̄

¸

B =
·

0

M̄¡1B̄

¸
, ū(t) = Th:

Considering the flexible space structure as shown
in Fig. 2, the objective of the slew maneuver of this
study is a rest-to-rest maneuver from a rest state to
another rest state in the shorts time possible. The
angle μ(t) is rotated from initial state to μd 2 [0,2¼],
for example, setting to 60 deg throughout this study.
The sensor output available for the output feedback
is hub angle μ and angular rate _μ. Based on the
customary requirements of flight task of actual
spacecraft, the control scheme should also satisfy the
following dominating demands: 1) short transient
time, no or less overshooting, high precision, and
less vibration stirred; 2) strong capability to resist
disturbance of vibrations in both transient process and
steady state.

III. INPUT SHAPING

For the input shaping method, an input command
is convolved with a sequence of impulses, an
input shaper, designed to produce a resulting input
command that causes less residual vibration than the
original unshaped command. That is, any vibration
induced by the first part of the command is canceled
by vibration induced by a later portion of the
command, and the result of the convolution is then
used to derive the system. The convolution can be
precomputed if the entire unshaped input is known,
or more likely, it can be computed in real time from
the input command generator. The impulses that
constitute the shaper must have appropriate amplitudes
and time locations, which are determined by solving
a set of constraint equations. Most constraints can
be categorized as residual vibrations constraints,
robustness constraints, constraints on the impulse
amplitudes, or time optimality requirements. This
method is briefly described in this section. Relevant
research on this subject can be found in, e.g., [6],
[10].
For an undamped second-order linear system with

a mode of natural frequency ! and damping ratio »,
its response to an impulse input at t0 can be obtained
as

Y(t) =
X!p
1¡ »2 e

»!(t¡t0) sin
h
!
p
1¡ »2(t¡ t0)

i
(5)

where X and t0 are the amplitude and time of the
impulse, respectively. Furthermore, the response
to a sequence of impulses can be obtained by

superposition of the impulse responses. With !d =
!(
p
1¡ »2), for N̄ impulses, the impulse response can

then be expressed as

Y(t) = ¡ sin(!dt+¯) (6)

where

¡ =

vuuut0@ N̄X
i=1

¦i cosÁi

1A2

+

0@ N̄X
i=1

¦i sinÁi

1A2

¦i =
Xi!p
1¡ »2 e

»!(t¡t0)

¯ = tan¡1

0@ N̄X
i=1

¦i cosÁi
¦i sinÁi

1A , Ái = !dti

and Xi and ti are the magnitudes and times at which
the impulses occur.
The residual single mode vibration amplitude of

the impulse response is obtained at time of the last
impulse, tN̄ as follows

V =
q
V21 +V

2
2 (7)

where

V1 =
N̄X
i=1

Xi!p
1¡ »2 e

»!(tN̄¡t0)cos(!dti)

V2 =
N̄X
i=1

Xi!p
1¡ »2 e

»!(tN̄¡t0) sin(!dti):

To achieve zero vibration after the last impulse, it
is required that both V1 and V2 in (7) are independently
zero. Furthermore, to ensure that the shaped command
input produces the same rigid body motion as the
unshaped command, it is required that the sum of
strengths of the impulses is unity. To avoid response
delay, the first impulse is selected as time t1 = 0.

Hence by setting V1 and V2 in (7) to zero,
PN̄
i=1Xi = 1,

we have a two-impulse sequence with parameters
as

t1 = 0, t2 =
¼

!d
(8a)

X1 =
1

1+K
, X2 =

K

1+K
(8b)

where K = e¡»¼=
p
1¡»2 .

In order to enhance the robustness, the shaper
needs to satisfy some additional constraints. One
such constraint is that the derivative of the residual
vibration (7) with respect to frequency is zero, i.e.,

dV=d! = 0: (9)
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Imposing the first derivatives of V1 and V2 with respect
to ! in (7) and simplifying them yield

dV1
d!

=
N̄X
i=1

Xitie
¡»!(tN̄¡t0) sin(!dti) (10a)

dV2
d!

=
N̄X
i=1

Xitie
¡»!(tN̄¡t0) cos(!dti): (10b)

Hence, by setting (10a) and (10b) to zero, we obtain a
three-impulse sequence with parameters given by

t1 = 0, t2 =
¼

!d
, t3 = 2t2 (11a)

X1 =
1

1+2K +K2

X2 =
2K

1+2K +K2
(11b)

X3 =
K2

1+2K +K2

where K is as in (8). Such a procedure of considering
robustness could be extended further. By including
the second derivative of the zero residual vibration
constraints, the parameters of a four impulses train
can be calculated as follows

t1 = 0, t2 =
¼

!d
(12a)

t3 = 2t2, t4 = 3t2

X1 =
1

1+3K +3K2 +K3

X2 =
3K

1+3K +3K2 +K3
(12b)

X3 =
3K2

1+3K +3K2 +K3

X4 =
K3

1+3K +3K2 +K3

where K is given in (8).
To simplify the notations, for the single mode case,

the corresponding amplitudes and the constants of
time in (8), (11), or (12) of the N̄ (N̄ = 2,3, or 4)
impulses can also be expressed in a general form as
follows:

Xi =

μ
N̄ ¡ 1
i¡ 1

¶
Ki¡1

PN̄¡1
j=0

Ã
N̄ ¡ 1
j

!
Kj

, ti = (i¡ 1)
¼

!d
,

i= 1, : : : ,N̄ (13)

where Xi is the amplitude of the ith impulse, ti is the
time of the ith impulse, and K is given in (8).
The input shaper impulse sequences can be

generalized to accommodate more than one vibration
mode, by convolving the impulse sequences for each

individual mode with one another. Let the input with
N̄j (j = 1, : : : ,n) (n > 1) impulses be used in the jth
mode. After necessary convolutions, the input impulse
sequences Xmult can be expressed by

Xmult = X1s ¤X2s ¢ ¢ ¢ ¤Xns (14)

where Xjs is the impulse sequences of the jth mode of

the system with N̄j impulses, and ¤ is the convolution
operator.
In this manner, for a vibratory system, the

described impulse sequence can be convolved
to an arbitrary input, so as to obtain the same
vibration-reducing properties of the impulsive input
case. In addition, the same expressions that guarantee
the vibration-reducing properties with constraints
on frequency also guarantee the vibration-reducing
properties with respective to damping ratio. Moreover,
high variations in damping ratio can be tolerated;
see [1]. However, the major drawback of the input
shaping via open-loop controllers is its limitation
in coping with parameter changes and disturbances,
because this technique requires relatively precise
knowledge of the dynamics of the system. If the
models have parametric uncertainties, system
performances would not result in zero residual
vibration. Although several design approaches
have been proposed in the literature to improve the
robustness of input shaping for the damping factors
and natural frequencies of the flexible structure
[6, 7, 9], it should be pointed out that a linear
plant is essential for the input shaping technique to
work. However, the model of the flexible spacecraft
considered in Section II includes nonlinear terms,
such as unstructured uncertainties and coupling
effect on the right-hand side of (4). Therefore, we
proposed to employ the input shaping technique in
conjunction with SMC method for maneuvers of
flexible spacecraft. In the remainder of this paper,
we show that such a new architecture provides very
good control performance. In the next section, we give
systematic design procedure for the desired sliding
mode controller.

IV. SLIDING MODE/INPUT SHAPING CONTROL

In order to improve the robustness and
performance of the input shaping method, a sliding
mode controller combined with input shaping is
presented, as shown in Fig. 1. The impulse shaper
is implemented outside of the feedback loop, which
is designed for the reference model and achieves
the exact elimination of residual vibration. The
amplitudes and instances of impulse application can
be obtained from (13) with the natural frequency !jm
and the damping ratio &jm of the reference model,
respectively. The feedback controller based on SMC
is designed to make the closed-loop system behave
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like the reference model with shaper so as to eliminate
the residual vibrations. This is an effective method
for implementing input shaping while achieving
satisfactory performance and robustness even when
parameter variations and external disturbance occur
simultaneously in the process.
From Fig. 1, the system (4) can be rewritten as

_x= Ax+Bu(t) +Bur+Bd(t) (15)

where ū(t) = u(t) +ur(t).
Here, the reference model is selected as the

nominal system. The combination of the input shaper
convolving with the reference model dynamics can be
described by

_xm = Amxm+Bmur (16)

where Am and Bm are the known matrices of the
nominal system.
According to the principle of the input shaping

technique, the shaped input ur can be expressed as

ur = r(t) ¤Xmult (17)

where ¤ is the convolution operator.
Applying the convolution operator, (17) can be

rewritten as

ur =

0@ nY
j=1

Xj,1

1Ar(t) +X1,2
0@ nY
j=2

Xj,1

1Ar(t¡ t1,2)
+ ¢ ¢ ¢+

0@ nY
j=1

Xj,N̄j

1Ar
0@t¡ nX

j=1

tj,N̄j

1A (18)

For the sake of simplification, (18) can be written as

ur =
2n¡1X
k=0

akr(t¡ tk) (19)

where

a0 =
nY
j=1

Xj,1, a1 = X1,2

nY
j=2

Xj,1, : : : ,a2n¡1 =
nY
j=1

Xj,N̄j

t0 = 0, t1 = t1,2, : : : , t2n¡1 =
nX
j=1

tj,N̄j :

Substituting (19) into (16) and (17) yields the
following equations:

_x= Ax+Bu(t) +B

"
2n¡1X
k=0

akr(t¡ tk)
#
+Bd(t) (20)

_xm = Amxm+Bm

"
2n¡1X
k=0

akr(t¡ tk)
#
: (21)

The parameter variations of the system considered
here are defined as follows. The parameter
uncertainties of the system ¢A can be expressed as

¢A= A¡Am: (22)

It is noted that in our paper the uncertainty matrix
¢A does not need to satisfy the so-called matching
conditions. However, the uncertainty in the input is
assumed to satisfy the matching condition and can be
expressed as

¢B = B¡Bm = BmDB: (23)

Letting the error be e(t) = x(t)¡ xm(t), it follows
from (20) and (21) that the error dynamics obey

_e= (Am+¢A)e+Bm(I+DB)u+¢Axm+BmDf

(24)
where Df =DB

P2n¡1
k=0 akr(t¡ tk)+ (I+DB)d.

Suppose that the attitude angle and angular
velocity are measurable and that the elastic modes
are unavailable. The measurement available for the
controller design can be expressed in the output form
as

y = Ce (25)

where y 2 Rp and C are matrices of appropriate
dimensions.
Throughout the rest of this paper, the following

assumptions are taken to be valid.

Assumption 1 The triplet (Am,Bm,C) is
controllable and observable.

Assumption 2 There exist known constants ±A
and ±B such that the uncertainties ¢A and ¢B in (22)
and (23) are known but bounded by k¢Ak · ±A and
kDBk · ±B .
REMARK 1 If it is possible to design a control law
that makes the error dynamics (24) have a stable zero
steady state solution, i.e., e(t)! 0) x(t)! xm(t),
then the closed-loop system will exactly eliminate
the residual vibration like the reference model. Note
that SMC provides good ability to reject disturbances
and remains robust to parameter perturbations while
tracking a desired trajectory, and SMC can be suitably
used to deal with the problem addressed in this paper.

In order to simplify the development of the control
design scheme, the following state transformation is
applied:

ē(t) = Te(t) (26)

with T¡1 = TT.
Then, the transformed equations with ēT =

[ēT1 ē
T
2 ]
T, ē1 2 Rn¡m and ē2 2 Rm are given as follows

_̄e1 = (Am11 +¢A11)ē1 + (Am12 +¢A12)ē2

+ [¢Ā11 ¢Ā12]xm(t) (27a)

_̄e2 = (Am21 +¢A21)ē1 + (Am22 +¢A22)ē2

+ [¢Ā21 ¢Ā22]xm(t) +B2(I+DB)u+B2Df

(27b)

y = CTTē= C1ē1 +C2ē2 (27c)
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where·
Am11 Am12

Am21 Am22

¸
= TAmT

T,

·
¢A11 ¢A12

¢A21 ¢A22

¸
= T¢ATT

·
¢Ā11 ¢Ā12

¢Ā21 ¢Ā22

¸
= T¢A, and TBm =

·
0

B2

¸
and B2 is invertible. Note that the variables ē1
and ē2 are introduced just to design the controller
conveniently and there is no practical meaning for this
definition.

A. Sliding Hyperplanes

In sequel, output feedback SMC law is designed
to drive the maneuver and guarantee the stability
of the compound system. It is well known that
there are two major steps involved in designing an
SMC system. The first step is the determination of
switching hyperplanes such that the system would
have the desired behavior once the state enters the
switching hyperplanes. The second is the design of
control law such that the sliding mode occurs on the
switching surface. The design procedure of sliding
mode controller is stated as follows.
The sliding hyperplanes are introduced as [12, 26]

S = (GC2)
¡1Gy = (GC2)

¡1GC1ē1 + ē2 (28)

where S 2 Rm and (GC2) is assumed to be invertible.
The matrix G 2 Rm£p is selected by the designer.
Equation (28) can be rewritten to express ē2 in terms
of ē1 and S as

ē2 = S¡ (GC2)¡1GC1ē1: (29)

Substituting (29) into (27) gives

_̄e1 = Arē1 + (A12m+¢A12)S+[¢Ā11 ¢Ā12]xm(t)

(30a)
Ar = A11m¡A12m(GC2)¡1GC1 +¢A11

¡¢A12(GC2)¡1GC1 (30b)

where G must be chosen to ensure that the real parts
of the eigenvalues of the reduced-order matrix Ar
are negative, i.e., Ar is stable. There are bounded
uncertainties associated with the nominal matrix
Ar. In the absence of uncertainties, conditions were
given in [12], [26] for how to choose G such that
(n¡m) prescribed non-zero and complex eigenvalues
f¡¸1,¡¸2, : : : ,¡¸n¡mg with Re(¸i)> 0 (i= 1,2, : : : ,
n¡m) can be assigned, namely, arbitrary pole
placement is possible if

rank[C2(GC2)
¡1G¡ I]· p¡m: (31)

It is easy to see that, if this condition (31) is not
satisfied, it may still be possible to achieve stable
poles even in the presence of uncertainty, but such
a pole assignment may not be arbitrary. Having

determined the stable Ar matrix, the eigenvalues of
Ar can be grouped as f¡¸1,¡¸2, : : : ,¡¸n¡mg. It can be
shown that

kexp(Art)k · ° exp(¡¸mint) (32)

where ¸min > 0 is the minimum real part of the ¸i and
° > 0. Thus, what remains to deal with is to determine
¸min given a stable set of eigenvalues.

LEMMA 1 Consider (30a). Let ¸min > 0 be the
minimum real part of f¡¸1,¸2, : : : ,¸n¡mg. Then we have
the following.
1) kexp(Art)k · ° exp(¡¸mint) for some ° > 0.
2) kē1k is bounded by w(t) after a finite period of

time with w(t) being the solution of

_w(t) =¡¸mw(t) + °[k(A12m+¢A12)kkSk+ d¤]
(33)

where w(0)> 0, ¸w < ¸min and k[¢Ā11 ¢Ā12]xm(t)k
< d¤.

PROOF The proof is straightforward and follows a
similar line of those in [23], [24].

REMARK 2 Since ¢Ā11 and ¢Ā12 are bounded, and
xm! 0 as t!1, the last term in (30a) will decay to
zero as t!1, and therefore the equilibrium point of
the system (30a) will not be affected. Subsequently,
the term k[¢Ā11 ¢Ā12]xm(t)k is bounded.

B. Sliding Mode Output Feedback Controller Design

Once a proper switch hyperplane has been chosen,
it is time to design a SMOFC such that the system
state is driven to the sliding hyperplanes described by
(28). To guarantee the sliding mode condition S ´ 0,
we define the following Lyapunov function

V =
1
2
STS: (34)

Differentiating the Lyapunov function V gives

_V = ST _S = ST[Pē1 +QS+R+B2(I+DB)u] (35)

where

P = (GC2)
¡1GC1[A11m+¢A11¡ (A12m+¢A12)(GC2)¡1GC1]

+A21m+¢A21¡ (A22m+¢A22)(GC2)¡1GC1
Q = (GC2)

¡1GC1(A12m+¢A12)+ (A22m+¢A22)

R = (GC2)
¡1GC1[¢Ā11 ¢Ā12]xm(t)

+ [¢Ā21 ¢Ā22]xm(t) +B2Df:

From the above analysis, it is observed that
the matrix B2(I+DB) in front of u in (35) poses a
challenge for sliding mode controller design for the
system given by (27). To solve the problem, here,
we suppose that B2 is invertible without loss of any
generality, and a swapping technique similar to that of
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Khan [24] is proposed here by rearranging B2(I+DB)
to the form of (I+ D̄B)B2 with D̄B = (B2DB)(B2)

¡1. To
this end, (35) becomes

_V = ST _S = ST[Pē1 +QS+R+(I+ D̄B)B2u]: (36)

In order to make sure that _V < 0 holds and account
for the uncertainties, in the following theorem, we
propose a control law that drives the uncertain system
onto the sliding mode S = 0.

THEOREM 1 Consider the uncertain system (27)
subject to Assumption 1 and 2. Let the elements of

D̄B in (27b) satisfy j(D̄B)ij j · (
¯̄
DB)ij i,j = 1,2, : : : ,m.

Assume that the magnitude of the largest eigenvalue

of
¯̄
DB is less than 1. If the sliding mode controller is

chosen to be

u=

(B2)
¡1(I¡ ¯̄

DB)
¡1[¡kPkē1(t)¡kQkkSk¡kRk¡ ´]sgn((S))

(37)
with ´i > 0, i= 1,2, : : : ,m, where sgn(S) =
sgn[s1 ¢ ¢ ¢sm]T

sgn(XX) =

8><>:
1 if (XX)> 0

0 if (XX) = 0

¡1 if (XX)< 0

(38)

then _V ·¡Pm
i=1 ´ijsij< 0 holds and the system reaches

sliding mode in finite time. Finally, the closed-loop
system is globally stable.

PROOF Defining matrices K
¢
=(I¡ D̄B)¡1[kPē1(t)k+

kQkkSk+ kRk+ ´], we can simplify the controller
(37) to

u=¡B¡12 K(t)sgn(S): (39)

Substituting control u in (39) into (36) yields

_V = ST[Pē1 +QS+R¡ (I+ D̄B)K(t)sgn(S)]: (40)
Form the definition of K, the reaching conditions of
si _si <¡´ijsij (i= 1,2, : : : ,m) are satisfied.
However, for the control law (37), the vector ē1 is

not available from measurement. To circumvent this
problem, an auxiliary variable is needed to avoid the
measurement of ē1 in the final sliding mode controller.
Hence, we propose the following SMOFC law

u=

(B2)
¡1(I¡ ¯̄

DB)
¡1[¡Hw(t)¡¦kSk¡ ±¡ ´]sgn((S))

(41)

where H ¸ kPk, ¦ ¸ kQk, ±i ¸ sup(R)i, ´i > 0, i=
1,2, : : : ,m, and

¯̄
DB satisfies the assumptions given in

Theorem 1. The following theorem shows that the
proposed control law in (41) drives the mismatched
uncertain system onto the sliding mode S(t) = 0.

THEOREM 2 Consider the uncertain system (27)
subjected to Assumption 1 and 2. If the input control
u(t) in (27) is given as that indicated by (41), then
_V ·¡Pm

i=1 ´ijsij< 0 holds and the system reaches
sliding mode in finite time. Finally, the closed-loop
system is globally stable.

PROOF It can be seen from S = (GC2)
¡1Gy that the

controller (41) does not require the state measurement.

Defining vectors f
¢
=Pē1 +QS+R and K̄

¢
=(I¡ ¯̄

DB)
¡1

¢ [Hw(t) +¦kSk+ ±+ ´], (41) can be written as

u=¡B¡12 K̄(t)sgn(S): (42)

Substituting the control u in (42) into (36) yields

_V = ST[f¡ (I+ D̄B)K̄(t)sgn(S)]

=
mX
i=1

si

"
fi¡

X
j 6=i
(D̄B)ij K̄j(t)sgn(sj)

¡ [1+ (D̄B)ii]K̄i(t)sgn(si)
#
: (43)

It follows that the sliding condition holds if

[1¡ ( ¯̄DB)ii]K̄i(t)¸ Li+ ´i+
X
j 6=i
(
¯̄
DB)ij K̄j(t),

i= 1,2, : : : ,m (44)

with
¯̄
DB defined in (37) and kfik ·Hw(t) +¦kSk+

±i
¢
=Li.

Note that the sliding condition is also true if the
vector K̄(t) is chosen such that

[1¡ ( ¯̄DB)ii]K̄i(t) = Li+ ´i+
X
j 6=i
(
¯̄
DB)ij K̄j(t),

i= 1,2, : : : ,m: (45)

Equation (45) contains a set of m equalities with m
switching gains K̄i. Using matrix notation, (45) is
equivalent to

[I¡ ¯̄
DB]K̄(t) = L+ ´: (46)

Under the assumption that the magnitude of the

largest eigenvalue of
¯̄
DB is less than 1, by using the

Frrobenius-Perron theorem [30], we can see that a
unique and positive solution for K̄(t) exists and is
given by

K̄(t) = [I¡ ¯̄
DB]

¡1(L+ ´): (47)

Hence, controller (42) follows from (47). Substituting
(47), or equivalently (45), into (43) and noticing
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w(t)¸ kē1(t)k from Lemma 1, it can be verified that

_V =
mX
i=1

si

8<:fi¡X
j 6=i
(D̄B)ijK̄j(t)sgn(sj)¡

[1+ (D̄B)ii]

[1¡ ( ¯̄DB)ii]

24Li+ ´i+X
j 6=i
(
¯̄
DB)ij K̄j(t)

35sgn(si)
9=;

=
mX
i=1

si

8<:fi¡ [1+ (D̄B)ii][1¡ ( ¯̄DB)ii]
[Li+ ´i]sgn(si)¡

X
j 6=i

8<:(D̄B)ij K̄j(t)sgn(sj) + [1+ (D̄B)ii][1¡ ( ¯̄DB)ii]
(
¯̄
DB)ij K̄j(t)sgn(si)

9=;
9=;

·¡
mX
i=1

´ijsij: (48)

Hence, the sliding mode can be reached in finite time.
The time to reach sliding mode is determined by ´i.
Obviously, the larger the ´i, the shorter the time will
be to reach the sliding mode.

In practice, a discontinuous control law such
as (41) usually leads to an undesirable chattering
of system variables because of the non-zero time
required for control switching. However, the
chattering can be eliminated, which is of great
practical importance, by the use of a continuous
approximation of the control law (19) instead. One
such approximation is given as follows (see [31])

tanh(¯¾) =
e¯¾ ¡ e¡¯¾
e¯¾ + e¡¯¾

: (49)

Using this approximation, the control law in (41) can
be modified as

u= (B2)
¡1(I¡ ¯̄

DB)
¡1[¡kHkw(t)¡¦kSk¡ ±¡ ´] tanh(¯S):

(50)
Note that the hyperbolic tangent function is
continuously differentiable (with respect to S) and,
as ¯!1, we have tanh(XX)! sgn(XX), so (50)
tends to (41) in the limit. It is being used here to
illustrate that a continuous approximation to the
discontinuous SMC law can alleviate undesirable
chattering, without incurring a significant loss of the
performance achieved by the original designed control
law. Other approaches to chattering attenuation, such
as those described by Edwards and Spurgeon [30],
can also be considered.

V. SIMULATION RESULTS

In order to demonstrate the effectiveness of the
proposed control schemes, numerical simulations
have been performed and presented in this section.
The key technical indexes of flexible spacecraft used
in the simulation are given in [33]. In this paper, the
reference model is the normal system with the first

two low-order modes of five, !1m = 3:161 and !2m =
16:954 rad/s, and the damping ratio &1m = &2m = 0:001,
respectively. The relations between the parametric
uncertainty, the actual natural frequencies !i, and the
normal natural frequencies !im can be expressed as
follows:

j!2i ¡!2imj · ±A!2im, i= 1,2: (51)

Assume that ¢B = Bm ¢ 0:5sin(4t), the uncertainty
input DB = 0:1 is less than the upper bound of input
variation ±B = 1, and the external disturbance d(t) is a
random disturbance torque given by

d(t) = dmaxN (XX) (52)

where the maximum absolute dmax is fixed to 0.1 Nm;
N (XX) denotes the normal distribution with mean
zero and standard deviation one.
In this simulation, the flexible spacecraft is

commanded to perform a 60 deg slew. The vibration
energy level is described by

E = _qT _q+ qTKqqq: (53)

In the numerical simulation, the input shaper is
the convolved four impulses zero-vibration-derivative-
derivative (ZVDD)-shaper for the first mode and two
impulses zero-vibration (ZV)-shaper for the second
mode. For the purpose of comparison, four cases are
considered as follows:

1) attitude maneuver control using only PD
controllers; and PD control+input shaping (IS);
2) attitude maneuver control using only proposed

variable structure output feedback controllers (41) or
(50), and the proposed SMOFC+IS;
3) attitude maneuver control using the traditional

sliding mode output feedback controller given in [21],
and also traditional SMOFC+IS;
4) attitude maneuver control using the near

minimum-time maneuvering control [27].

All computations and plots shown in the paper
are performed using MATLAB/Simulink software
package.
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Fig. 3. PD control structure.

A. PD Control and PD+IS

To demonstrate the performance of the vibration
control schemes, a PD feedback control of collocated
sensor signals is adopted for control of rigid body
motion of the spacecraft A block diagram of the PD
controller is shown in Fig. 3, where Kp and Kv are
the proportional and derivative gains, respectively,
μ is the hub angle, _μ is the hub velocity, and μd is
the reference hub angle. Essentially, the task of the
controller design is to maneuver the flexible spacecraft
to the specified angle of demand. The hub angle and
hub velocity signals are fed back and used to control
the hub angle for the spacecraft.
The control signal U(s) in Fig. 3 can be obtains as

U(s) = Kp[μd(s)¡ μ(s)]¡Kv _μ (54)

where s is the Laplace variable. The closed-loop
transfer function is obtained as

μ(s)
μd(s)

=
KpG(s)

1+Kv[s+(Kp=Kv)]G(s)
(55)

where G(s) is the open-loop transfer function from
the input torque to the hub angle of the system.
Thus, the closed-loop poles of the system satisfy the
characteristic equation

1+Kv(s+Z)G(s) = 0 (56)

where Z = Kp=Kv represents the compensator zero that
determines the control performance of the closed-loop
system. In this study, a root locus approach is utilized
to design the PD controller. The proportional gain and
the derivative gain of the PD controller for attitude
control are 15 and 50, respectively. The corresponding
hub angle and velocity of the spacecraft, modal
vibrations, and the required control torque of response
using the PD control are shown in Fig. 4. It is
noted that an acceptable hub angle response is
achieved. The spacecraft reached the demanded angle
with a settling time about 30 s without overshoot.
However, a significant amount of vibration occurred
during the maneuvering of the flexible spacecraft
as demonstrated in the vibration energy’s plot in
Fig. 4. It should be noted that the effect of disturbance
is not considered in this case (when involving the
disturbance, the system is not easy to be stabilized
or has big overshooting, the time response is not given
for space limitation).

Fig. 4. Time response for using PD control case.

Fig. 5. PD with input shaper structure.

In order to actively suppress the modal vibration,
a hybrid control structure for control of rigid body
motion and vibration suppression of the flexible
appendages using PD control with active vibration
reduction technique based on shaping is presented
here. A block diagram of the hybrid control scheme
is shown in Fig. 5. In this case, the PD controller
parameters for the attitude control remain the same for
a fair comparison, and four impulses ZVDD-shaper
for the first mode and two impulses ZV-shaper for
the second mode are implemented. Fig. 6 shows
the results of employing the PD controller with
input shaper. It is clear from the top plot of Fig. 6
that the imposed desired angular displacement is
accurately achieved by employing the hybrid law. The
relatively large amplitude vibrations excited by rapid
maneuvers can be actively suppressed, as shown in
the third plot from the top of Fig. 6. This reflects the
effectiveness of the input shaping for active vibrations
suppression. It should be noted in this case that the
disturbance is also not involved (when considering the
disturbance, the system can hardly be stabilized or has
big overshooting).
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Fig. 6. Time response of using PD+IS technique case.

B. Sliding Mode Output Feedback Control and
SMOFC+IS

Fig. 7 shows the results of implementing only the
proposed sliding mode output feedback controller
acting on the rigid hub in the presence of mismatched
uncertainty. It is clear from the plot of the top of
Fig. 7 that the imposed desired angular displacement
is accurately achieved by employing the SMOFC
law. From the comparison between Fig. 4 and
Fig. 7, it can be observed that the relatively large
amplitude vibrations excited by rapid maneuvers can
be passively suppressed. Nevertheless, from Fig. 7,
we can see that the inner torque of each flywheel
approaches zero at the time of 30 s, but with some
little chattering.
Even though the sliding mode controller

can suppress the relatively large amplitude
vibrations induced by rapid maneuvers, some
residual micro-vibrations may be present. It is
sometimes desirable to further suppress the residual
micro-vibrations for precision pointing/targeting of
advanced spacecraft. It also has been demonstrated
that input shaping technique can provide such a
control effort by modifying the input command
form. Therefore, it is suggested that the technique of
active vibration control using input shaping should
be used in conjunction with attitude controller in
order to further improve and finely tune the system
performance. The block diagram for this case is
shown in Fig. 1.
In this case, the SMOFC parameters for

the attitude control remain the same for a fair

Fig. 7. Time response of using proposed SMOFC case.

comparison, and four impulses ZVDD-shaper
for the first mode and two impulses ZV-shaper
for the second mode are also implemented.
Fig. 8 shows the results of employing this
combination. It is clear from the top plot
of Fig. 8 that the imposed desired angular
displacement is accurately achieved by employing
the hybrid law in the presence of the external
disturbances. The relatively large amplitude
vibrations excited by rapid maneuvers can
be actively suppressed, as shown in the third
plot from the top of Fig. 8. This further
demonstrates the validity of active vibration
reduction base on the input shaping technique.
Moreover, the chattering can also be reduced in
some sense.
For the smoothed control case in (50), the above

two tests are also repeated with the same control
parameters, and the simulation results are shown
in Figs. 9 and 10. Here ¯ = 0:5 is selected. From
the comparison of the case using the unsmoothed
control in (41) and the smoothed control in (50),
the vibration energy in the latter case is less than
the first and the control torque magnitude is also
reduced. The smoothed case also generates smoother
control action than the case of the nonsmoothed. This
reflects the advantages of smooth control over the
non-time-varying case. On the other hand, when the
input shaping technique is implemented, the vibration
energy can be further reduced, as shown in Fig. 10.
And also the control chattering can be significantly
eliminated.
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Fig. 8. Time response of using proposed SMOFC+IS case.

Fig. 9. Time response of using proposed SMOFC with smoothed
control case.

C. Traditional Sliding Mode Output Feedback Control
and TSMOFC+IS

For comparison, the system is also controlled
by using the SMOFC designed in [21]. The same

Fig. 10. Time response of using proposed SMOFC+IS with
smoothed control case.

simulation case is repeated with the traditional
SMOFC (TSMOFC), where the smoothed control
compensation replaces the proposed sliding mode
feedback control for a fair complexion, and the
results of simulation are shown in Fig. 11. For this
case, the imposed desired angular displacement can
be achieved, but excessive control chattering can
be observed in the time response plot of the inner
torque of each flywheel even using the smoothed
compensation. At the same time, in order to eliminate
the vibration corresponding to the flexible appendage,
the convolved firstm-mode ZVDD-shaper and
second-mode ZV-shaper is also used. The plots of this
case are shown in Fig. 12. In this case, the vibration
observed in Fig. 12 is more severe even though the
active vibration control approach which is adopted
than the proceeded cases, and also drastic chattering is
observed. This further shows the effectiveness of the
proposed SMOFC for the attitude maneuver and the
vibration reduction.

D. Near Minimum-Time Maneuvering Control [27]

For the purpose of further comparison, a
minimum-time controller design [27] based on a priori
reference trajectory is also employed for the system.
Note that here the flywheel is used as the actuator in
the simulation. The same simulation case is repeated
with the near minimum-time controller and the results
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Fig. 11. Time response of using TSMOFC with smoothed control
case.

Fig. 12. Time response of using TSMOFC+IS with smoothed
control case.

Fig. 13. Time response of using near minimum-time control case.

of simulation are shown in Fig. 13. As one can see in
Fig. 13, the maneuvering time is no less than 30 s, but
an overshoot in the angle is a result of the control law.
Despite the fact that there is not much improvement
in the angle response, there still exists some room for
improvement with different design parameter sets. It
should be noted in this case that the disturbance is
also not involved (when the disturbance is involved,
the system can hardly be stabilized or the results can
further deteriorate).
For the several different control cases, the overall

results on settling time, peak vibration energy,
peak control torque, and pointing accuracy are
approximately summarized in Table I. From the
comparison of the above cases, it is shown that
the proposed approach can not only accomplish
the attitude control during maneuvers, but also
simultaneously suppress the undesired vibrations of
the flexible appendages even though the uncertainties
and disturbances are explicitly considered. This
control approach also provides the theoretical basis
for the practical application of the advanced control
theory to flexible spacecraft attitude control system.

VI. CONCLUSION

In this paper, a new approach for vibration
reduction of flexible spacecraft during attitude
maneuver operations has been presented. This
approach integrates the method of command input
shaping and the theory of SMOFC that takes into
account parameters uncertainties and external
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TABLE I
Performance Comparison on Settling Time, Peak Vibration Energy,

Peak Control Torque and Pointing Accuracy

Peak Peak
Settling Vibration Control Pointing
Time Energy Torque Accuracy
(s) (Nm) (Nm) (deg)

PD 28 1.3 10 0.0015
PD+IS 30 0.05 4.8 0.001
SMOFC 24 0.01 1.2 0.0005

SMOFC+IS 32 0.0015 1.0 0.0001
Smoothed SMOFC 26 0.0015 0.52 0.0001

Smoothed
SMOFC+IS

32 0.0012 0.48 0.0001

TSMOFC 54 0.058 5 0.03
TSMOFC+IS 58 0.0058 2.8 0.02
NMTMC 28 0.06 0.52 0.06

Note: NMTMC is near minimum-time maneuvering control.

disturbances provided that the bounded are known.
The method of command input shaping has been
implemented outside of the feedback loop to modify
the existing command so that less vibration will
be caused by the command itself. The amplitudes
and instances of the impulses application have been
obtained, for the natural frequency and damping ratio
of the reference model (normal plant), respectively,
such that the exact elimination of the residual
vibration is achieved for the reference model. Since
measurement of elastic modes is not available in
the practical case, synthesis of attitude controller
using only the attitude and angular rate information
feedback has been conducted. The feedback controller
based on SMOFC has been designed to make the
closed-loop system behave like the reference system
with input shaper and also suppress the vibration of
the flexible structures in the presence of parametric
uncertainty and external disturbances. Simulation
results of slew operation of a spacecraft with
flexible appendage has demonstrated that, with the
command input shaper and the sliding mode output
feedback controller, the proposed new approach can
significantly reduce the vibration of the flexible beam
during slew operations.
Our future research directions include the

following: 1) extensions of the proposed algorithms
to the case of tracking; 2) combination of these
algorithms with some active vibration suppression
techniques, such as using piezoelectric materials for
further reducing the vibration during and after the
maneuver operations; 3) digital implementation of
the control scheme on hardware platforms for attitude
control experimentation.
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