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by applying the first algorithm. The resulting trajectories from the
vertices ofX0 are shown in Fig. 1. The control sequences for the
initial statesv1 and v2 are shown in Fig. 2.

VI. CONCLUSION

In this paper, the CRP with ana priori given set of initial states
has been investigated. In the first part of the paper, an answer to
the open problem of deriving necessary and sufficient conditions for
the existence of a solution to this problem has been given. Then
three techniques for the derivation of such a solution have been
presented. The proposed techniques will always provide a solution to
this problem if one exists. It should be noted that the necessary and
sufficient conditions established in this paper extend a result reported
in [10] where sufficient existence conditions were developed. The
design techniques established in this paper establish a solution even
if there does not exist a control law making the set of initial states
positively invariant.
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Robust -State Estimation for Systems with Error
Variance Constraints: The Continuous-Time Case

Zidong Wang and H. Unbehauen

Abstract—This paper is concerned with the state estimator design prob-
lem for perturbed linear continuous-time systems withH1 norm and
variance constraints. The perturbation is assumed to be time-invariant
and norm-bounded and enters into both the state and measurement
matrices. The problem we address is to design a linear state estimator
such that, for all admissible measurable perturbations, the variance
of the estimation error of each state is not more than the individual
prespecified value, and the transfer function from disturbances to error
state outputs satisfies the prespecifiedH1 norm upper bound constraint,
simultaneously. Existence conditions of the desired estimators are derived
in terms of Riccati-type matrix inequalities, and the analytical expression
of these estimators is also presented. A numerical example is provided to
show the directness and effectiveness of the proposed design approach.

Index Terms— Algebraic matrix inequality, H1 state estimation,
Kalman filtering, perturbed systems, robust state estimation.

I. INTRODUCTION

The last three decades have witnessed significant advances in the
celebrated Kalman filtering which seems to be the most effective
estimation approach; see [1]. This filtering approach assumes that
the system model under consideration is exactly known and its
disturbances are Gaussian noises with known statistics. However,
it is a well-known fact that the design of an optimal Kalman filter
based on nominal values of plant dynamics may not be robust against
modeling uncertainty and disturbances, and sometimes leads to poor
performance. Therefore, the research subject of robust estimation
andH1 estimation has drawn much attention in the past decade,
and numerous results have been reported in the literature; see, e.g.,
[2]–[4], [8], [11], [12], [14], [20], and [21]. However, it is quite
common in state estimation problems to have performance objectives
that aredirectly expressed as upper bounds on the variances of the
estimation error. Severalindirect approaches attempt to achieve these
constraints, for instance the theory of weighted least-squares estima-
tion [15] minimizes a weighted scalar sum of the error variances of
the state estimation, but minimizing a scalar sum does not ensure that
the multiple variance requirements will be satisfied.

In recent years, the error covariance assignment (ECA) theory
[10], [23], [24] was developed to provide an alternative and more
straightforward methodology for designing filter gains which satisfy
the above performance objectives. This methodology could provide a
closed form solution fordirectly assigning the specified steady-state
estimation error covariance. Unfortunately, when there is parameter
perturbation in plant modelings, no robust behavior on variance-
constrained performance along with stability of filtering process can
be guaranteed by the ECA theory. Very recently, [17] studied the
robust state estimation problem for perturbed discrete-time systems
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with prespecifiedH1 norm and error variance upper-bound con-
straints, and it was shown in [17] the construction of the state
estimator called for the solution of some complicated nonlinear
matrix inequalities, and therefore the design of expected discrete-time
estimators was numerically difficult. In the event of state estimation
for an inherently time-continuous system in terms of a discrete-time
“equivalent,” the question of sampling is not trivial [16], since the
very small sampling period which is naturally required will result in
computational difficulties. Moreover, the parameters in the discrete-
time model usually do not correspond to the physical meanings.
Thus, the purpose of this paper is to investigate the robust variance-
constrainedH2=H1 state estimation problem for the uncertain
continuous-time systems. It will be seen that the existence conditions
as well as the analytical expression of the desired continuous-time
estimators are derived in terms of bilinear matrix inequalities (BMI’s)
which are not difficult to deal with.

It should be pointed out the problem addressed in this paper is
very different from that in [3], [4], [12], [20], and [21]. In these
papers, anoptimal robust filter is designed to minimize the upper
bound on the variance of the estimation error for all admissible
parameter uncertainties, and therefore the resulting optimal filter
is usually unique and it seems that there is little freedom to be
used to achieve other performances. However, since the specified
variance constraints may not be minimal but should meet engineering
requirements, the addressed problem in this paper is actually a
multiobjective design task which often yields nonunique solutions.
After assigning to the system a specified variance upper bound,
there existsmuch freedom which can be used to attempt todirectly
achieve other desired performance requirements, such as robustness,
H1 requirement, transient property, etc., but the traditional optimal
(robust) Kalman filtering methods may lack such an advantage.

This paper studies the state estimator design problem for perturbed
linear continuous-time systems withH1 norm and variance con-
straints. The perturbation is assumed to be time-invariant and norm-
bounded and enters into both the state and measurement matrices. The
problem we address is to design a linear state estimator such that, for
all admissible measurable perturbations, the variance of the estimation
error of each state is not more than the individual prespecified
value, and the transfer function from disturbances to error state
outputs satisfies the prespecifiedH1 norm upper bound constraint,
simultaneously. Existence conditions of the desired estimators are
derived in terms of Riccati-type matrix inequalities, and the analytical
expression of these estimators is also presented. A numerical example
is provided to show the directness and effectiveness of the proposed
design approach.

II. PROBLEM FORMULATION AND ASSUMPTIONS

Consider the following class of linear uncertain observable systems
[2]:

_x(t) = (A+�A)x(t) +D1w(t) (1)

and the measurement equation

y(t) = (C +�C)x(t) +D2w(t) (2)

where x is an n-dimensional state vector,y is an p-dimensional
measured output vector, andA; C; D1; D2 are known constant
matrices.w(t) is a zero mean Gaussian white noise process with
covarianceI > 0. The initial statex(0) has the mean�x(0) and
covarianceP (0) and is uncorrelated withw(t). �A and �C are
perturbation matrices which represent parametric uncertainties and
assumed to be of the time-invariant form

�A
�C

=
M1

M2

FN (3)

whereF 2 Ri�j is a perturbation matrix which satisfies

FF T � I (4)

and M1;M2 (M2 is full row rank) andN are known constant
matrices of appropriate dimensions.�A and �C are said to be
admissible if both (3) and (4) hold.

When the perturbations�A and �C are measurable, the state
estimation vector̂x(t) satisfies the following linear full-order filter:

_̂x(t) = (A+�A)x̂(t) +K[y(t)� (C +�C)x̂(t)] (5)

whose estimation error covariance in the steady state is defined as

P := lim
t!1

P (t) := lim
t!1

E[e(t)eT t]; e(t) = x(t)� x̂(t): (6)

Then, from system (1), (2), estimator (5), and definition (6), we have

_e(t) = [A +�A �K(C +�C)]e(t) + (D1 �KD2)w(t) (7)

and

_P (t) = [A +�A�K(C +�C)]P (t) + P (t)[A+�A

�K(C +�C)]T + (D1 �KD2)(D1 �KD2)
T : (8)

Define filtering matrixAf := A + �A � K(C + �C). If Af is
Hurwitz stable (i.e., the poles ofAf all have negative real parts) for
all admissible�A and�C, then in the steady state, the estimation
error covarianceP (P = P T > 0) satisfies

AfP + PAT
f + (D1 �KD2)(D1 �KD2)

T = 0: (9)

Our objective in this paper is to deal with the robust filtering problem,
i.e., design a filter gainK such that, for all admissible measurable
perturbations�A and �C, the following three requirements are
simultaneously satisfied.

1) The filtering matrixAf = A + �A � K(C + �C) remains
Hurwitz stable.

2) The steady-state error covarianceP meets

[P ]ii � �2i ; i = 1; 2; � � � ; n (10)

where [P ]ii means theith diagonal element ofP , i.e., the
steady-state variance ofith state.�2i (i = 1; 2; � � � ; n) de-
notes the prespecified steady-state error estimation variance
constraint onith state and can be determined by the practical
performance requirements.

3) The H1 norm of the transfer functionH(s) = L(sIn �
Af )

�1(D1 � KD2) from disturbancesw(t) to error state
outputsLe(t) satisfies the constraint

kH(s)k1 � 
 (11)

whereL is the known error state output matrix and

kH(s)k1 = sup
!2R

�max[H(j!)] (12)

and�max[ � ] denotes the largest singular value of[ � ]; 
 is a
given positive constant.

III. M AIN RESULTS AND PROOFS

Theorem 3.1: DefineAc := A � KC;�Ac = �A � K(�C).
Let � > 0 be arbitrarily small. If there exist a positive definite matrix
Q 2 Rn�n and a positive scalar" > 0 satisfying the algebraic
matrix equation

AcQ+QAT
c + "(M1 �KM2)(M1 �KM2)

T

+Q("�1NTN + 
�2LTL)Q

+ (D1 �KD2)(D1 �KD2)
T + �I = 0 (13)

then for all admissible measurable�A and �C, we have the
following conclusions:

1) the filtering matrixAf = A+�A�K(C +�C) is robustly
stable;
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2) the steady-state error covarianceP exists and meetsP � Q;
3) kH(s)k1 � 
 whereH(s) = L(sIn � Af )

�1(D1 �KD2).

Proof:

1) By the definitions ofAf ; Ac and�Ac, it is clear that

Af = A�KC + (M1 �KM2)FN = Ac +�Ac: (14)

Note that

["1=2(M1 �KM2)F � "�1=2QNT ]

� ["1=2(M1 �KM2)F � "�1=2QNT ]T

= "(M1 �KM2)FF
T (M1 �KM2)

T + "�1QNTNQ

� [(M1 �KM2)FN ]Q�Q[(M1 �KM2)FN ]T � 0

and by the fact thatFFT � I, the following inequality holds:

[(M1 �KM2)FN ]Q+Q[(M1 �KM2)FN ]T

� "(M1 �KM2)(M1 �KM2)
T + "�1QNTNQ: (15)

Define

� : = "(M1 �KM2)(M1 �KM2)
T + "�1QNTNQ

� [(M1 �KM2)FN ]Q�Q[(M1 �KM2)FN ]T :

It follows from (15) that� � 0. Using the definitions of
�; Af ; Ac and the relation (14), (13) can be rewritten as

AfQ+QAT
f +�+ 
�2QLTLQ

+ (D1 �KD2)(D1 �KD2)
T + �I = 0: (16)

Since�+
�2QLTLQ+(D1�KD2)(D1�KD2)
T+�I > 0,

it follows from Lyapunov stability theory that the filtering
matrixAf = A+�A�K(C +�C) remains asymptotically
stable for all admissible�A and�C.

2) SinceAf is asymptotically stable, the steady-state error co-
varianceP exists and meets (9). Subtract (9) from (16) to
obtain

Af (Q� P ) + (Q� P )AT
f +�+ 
�2QLTLQ+ �I = 0

(17)

or equivalentlyQ � P =
1

0
eA t(� + 
�2QLTLQ +

�I)eA tdt � 0 which means thatP � Q.
3) Now, we can also rearrange (13), or (16), as the following:

AfQ+QAT
f + 
�2QLTLQ

+ (D1 �KD2)(D1 �KD2)
T +� = 0 (18)

where� := �+ �I. Then, the proof ofkH(s)k1 � 
 can be
completed by a standard manipulation of (18); for details see
Willems [18, Lemma 1]. This proves Theorem 3.1.

Remark 3.1: The parameter� > 0 which can be arbitrarily small
is only to guarantee that conclusion 1) holds. In the case when
D1 � KD2 is full row rank or the matrixL is nonsingular� can
be set to be zero.

Remark 3.2: Theorem 3.1 implies that the satisfaction of (13)
leads to the upper bounds on both the error covariance andH1
performance which may be conservative primarily due to the intro-
duction of the additional matrix� > 0. Since� > 0 is the function
of parameter" > 0, an approach to reducing the conservative upper
bounds is to appropriately choose" > 0 [20], [21], and the detailed
analysis and algorithm about the minimization ofk�k over the scaling
parameter" > 0 can be found in [19].

Remark 3.3: Theorem 3.1 shows that the robust stability andH1
constraints on the filtering process are automatically enforced when
a positive definite solution to (13) is known to exist. Furthermore,
all such solutions provide upper bounds for the actual steady-state
estimation error covarianceP . This behavior will be utilized to
achieve the prescribed upper bounds on estimation error variance.

We now assign a desired value to the positive definite matrixQ
such that

[Q]ii � �2i ; i = 1; 2; � � � ; n (19)

and then find the set of Kalman filter gainK which satisfies (13)
for the specified triple(Q; "; �). If such a gain exists and can be
parameterized, then for admissible perturbations, it follows from
Theorem 3.1 that: (1)Af is robustly stable; (2)kH(s)k1 � 
; and 3)
[P ]ii � [Q]ii � �2i ; i = 1; 2; � � � ; n: Hence, the variance-constrained
robustH2=H1 filtering gain design task will be accomplished, and
the problem addressed in Section II can be interpreted asan auxiliary
(Q; "; �)—triple achievement” problem.

Definition 1: Let " > 0 and� > 0 be positive scalars where� > 0
is arbitrarily small, andQ 2 Rn�n be a positive definite matrix
meeting (19). The specified triple(Q; "; �) is said to be achievable
if there exists a set of filtering gainK such that the (13) holds for
this triple.

Remark 3.4: It is clear from the above analysis that the achiev-
ability of a given triple (Q; "; �) will result in the finish of the
addressed variance-constrained robustH2=H1 filtering gain design
task. Hence, in what follows, our purpose is to derive the necessary
and sufficient conditions for the existence of an achievable triple
(Q; "; �) and then to characterize all filtering gains associated with
the achievable triple(Q; "; �).

Theorem 3.2: Let the desired steady-state error variance con-
straints�2i (i = 1; 2; � � � ; n) and theH1 disturbance attenuation
constraint
 be given. Assume that the matrixQ > 0 meets (19),
and " > 0; � > 0 are positive scalars where� > 0 is arbitrarily
small. Then a triple(Q; "; �) is achievable if and only if this triple
satisfies the following algebraic Riccati-type inequality:

A� "M2M
T
1 +D2D

T
1

T
"M2M

T
2 +D2D

T
2

�1

C Q

+Q A � "M2M
T
1 +D2D

T
1

T
"M2M

T
2 +D2D

T
2

�1

C
T

+Q "�1NTN + 
�2LTL� CT "M2M
T
2 +D2D

T
2

�1

C Q

+ "M1M
T
1 +D1D

T
1 + �I � "M2M

T
1 +D2D

T
1

T

� "M2M
T
2 +D2D

T
2

�1

"M2M
T
1 +D2D

T
1 � 0 (20)

and the left-hand side of (20) is of maximum rankp.
Proof: For the purpose of simplicity, we first make the following

definitions:

X : = "M2M
T
2 +D2D

T
2 (21)

Y : = CQ+ "M2M
T
1 +D2D

T
1 (22)

Z : = AQ+QAT +Q("�1NTN + 
�2LTL)Q

+ "M1M
T
1 +D1D

T
1 + �I (23)

and notice thatAc = A�KC, (13) can be rewritten in the following
simple form:

KXKT �KY � Y TKT + Z = 0: (24)

SinceM2 is full row rank, then the matrixX is positive definite, and
(13), or (24), can be equivalently expressed as follows:

� (�KX1=2 + Y TX�1=2)(�KX1=2+ Y TX�1=2)T

= Z � Y TX�1Y: (25)
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Since the dimension of filter gainK is n � p and p � n, then
from (25), there exists a solutionK to (13) (i.e., the triple(Q; "; �)
is achievable) if and only if the right-hand side of (25) is negative
semidefinite, i.e.,

Z � Y TX�1Y � 0 (26)

and is of maximum rankp (in this case, both sides of (25) have
compatible ranks). Note that (26) can also be rearranged as the
Riccati-type matrix inequality (20), and thus the proof of Theorem 3.2
is completed.

Theorem 3.2 gives the algebraic parameterization for the existence
conditions of an achievable triple(Q; "; �) in term of a Riccati-
type matrix inequality. Furthermore, the algebraic expression of all
filtering gainsK related to the achievable triple(Q; "; �) will be
stated in the following theorem.

Theorem 3.3:Suppose that the prespecified triple(Q; "; �) is
achievable, where the positive definite matrixQ > 0 meets (19) and
the positive scalar� > 0 is arbitrarily small. The desired filtering
gains which achieve the triple(Q; "; �) can be characterized as
follows:

K = Y TX�1 � TV X�1=2 (27)

where T 2 Rn�p is the square root ofY TX�1Y � Z (i.e.,
TT T = Y TX�1Y � Z), V 2 Rp�p is an arbitrary orthogonal
matrix, andX; Y; Z are defined in (21), (22), and (23), respectively.

Proof: It follows from (25) and the definition ofT that

�Z + Y TX�1Y = TT T = (�KX1=2 + Y TX�1=2)

� (�KX1=2 + Y TX�1=2)T (28)

or equivalentlyTV = �KX1=2+Y TX�1=2, and then (27) follows
immediately.

Finally, the following result which gives the solution to the
variance-constrained robustH2=H1 filtering gain design problem
addressed in this paper is easily accessible.

Corollary 3.1: Let the steady-state error variance constraints
�2i (i = 1; 2; � � � ; n), the H1 disturbance attenuation upper bound
constraint
; and the perturbation structure (3) be prespecified. If a
triple (Q; "; �) is achievable where matrixQ > 0 meets (19) and
scalar� > 0 is arbitrarily small, i.e., the conditions of Theorem 3.2
are satisfied, then the desired variance-constrained robustH2=H1
filtering gains can be obtained by (27).

Remark 3.5: We can see that the necessary and sufficient condi-
tions for the achievability of a given triple(Q; "; �) are very easy
to test. On the other hand, in practical applications the designers
often wish to construct the achievable triple(Q; "; �) directly from
the achievability conditions and then get the desired filtering gains
from (27) rapidly. Noting that the condition (20) on achievable triple
(Q; "; �) is actually a BMI of parameterQ, we can first choose
appropriate" > 0 which reduce (minimize) the possible conservative
upper bounds on both the error covariance andH1 performance
in Theorem 3.1 by applying the method proposed in [19] and [20]
and choose sufficiently small positive scalar� > 0 in certain cases,
and then solve BMI (20) for parameterQ by using the algorithms
guaranteeing global convergence [6], [22], as well as local numerical
searching algorithms that converge (without a guarantee) much faster
[5], [7]. Also, some properties of BMI’s can be found in [13].

Remark 3.6: It is clear that if the set of desired estimators is not
empty, it must be very large. We may utilize the freedom in estimator
design to improve other system properties. An interesting problem for
future research is how to exploit the freedom to achieve the specified
transient constraint and reliable constraint on filtering process.

IV. NUMERICAL EXAMPLE

Consider a perturbed linear continuous-time stochastic system
described by (1)–(3), where the parameters are assumed to be the
following:

A =
0 1
0 0

; C =
1 0
0 1

; L =
0:5 0:1
0 1:6

D1 =
0:0563 0

0 0:0792
; D2 =

0:0911 0
0 0:1572

�A = M1FN =
0:0126 0:0457
0:0068 0:4369

sin� 0
0 cos�

�
0:3467 0:0546
0:0005 0:0121

�C = M2FN =
0:0012 0:0001
0:0034 0:0064

sin� 0
0 cos�

�
0:3467 0:0546
0:0005 0:0121

:

We aim at designing robust filtering gains such that 1) the filtering
matrix Af = A � KC + �A � K(�C) is robustly stable; 2) the
steady-state covarianceP exists and[P ]11 � �21 = 0:04; [P ]22 �
�22 = 0:2; and 3) the transfer functionH(s) from disturbancesw(t)
to error state outputsLe(t) satisfies the constraintkH(s)k1 � 
 =
0:8259.

Now, based on Remark 3.2, we first exploit the approach proposed
in [19] and [20] to reduce the conservativeness of present results,
and hence an appropriate scalar" > 0 can be found as" = 0:5017.
Then, based on Remark 3.1, since the error state output matrixL is
nonsingular, the constant� may be set as� = 0. Moreover, using
the algorithm discussed in Remark 3.5, we can solve inequality (20)
and obtain

Q =
0:0271 0:0543
0:0543 0:1406

; T =
0:3468 0:0002
1:0673 0:0322

and therefore

X =
0:0083 0:0000
0:0000 0:0247

; Y =
0:0322 0:0544
0:0544 0:1545

Z =
0:1249 0:1811
0:1811 0:1802

:

Obviously, [Q]11 � �21 = 0:04; [Q]22 � �22 = 0:2, i.e., the
condition (19) is satisfied. Then, substituting the triple(Q; "; �)
and the orthogonal matricesV1 = I2; V2 = diag(1;�1); V3 =
diag(�1;1); V4 = �I2 into the expression (27), respectively, lead
to the following desired filtering gains:

K1 =
0:0752 2:2018
�5:1690 6:0403

; K2 =
0:0752 2:2043
�5:1674 6:4488

K3 =
7:6885 2:2013
18:2630 6:0379

; K4 =
7:6885 2:2039
18:2630 6:4474

and it is not difficult to test that the prespecified robust stability and
H1 norm constraints on filtering process and the variance constraint
on estimation error are all met.

V. CONCLUSION

In this paper we have considered a robust variance-constrained
H2=H1 state estimation problem for linear continuous-time systems
with parameter perturbations in both the state and measurement
matrices. It has been shown that this robust estimation problem can
be converted to an auxiliary “triple(Q; "; �) achievement” problem
which is related to solutions of a Riccati-type BMI. Based on this
BMI, the existence conditions and the analytical expression of desired
estimators have been characterized. These results are analogous to
results obtained previously for the perturbed discrete-time systems.
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We finally remark that the extension of the results developed in the
present paper to the variance-constrained multiobjective (e.g., robust-
ness, transient behavior,H1 requirement, fault-tolerant property)
state estimation for various systems such as continuous-time, discrete-
time, sampled-data, and stochastic parameter systems still remains to
be investigated within the framework of this approach.
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The Relationship Between Minimum Entropy Control
and Risk-Sensitive Control for Time-Varying Systems

Marc A. Peters and Pablo A. Iglesias

Abstract—In this paper, the connection between minimum entropy
control and risk-sensitive control for linear time-varying systems is
investigated. For time-invariant systems, the entropy functional and the
linear exponential quadratic Gaussian cost are the same. In this paper,
it is shown that this is not true for general time-varying systems. It does
hold, however, when the system admits a state-space representation.

Index Terms—Discrete-time systems, entropy, risk-sensitive control,
time-varying systems.

I. INTRODUCTION

Controllers which minimize the entropy of the closed-loop transfer
function have been studied extensively for linear time-invariant (LTI)
systems, both in the continuous and discrete-time cases [1]–[3]. It has
been shown that these controllers have considerable advantages over
the standard optimalH1 controllers. Among these advantages, the
minimum entropy requirement imposes uniqueness in the controllers
which achieve an induced norm bound. Second, there is considerable
interest in finding a controller which minimizes the closed-loopH2

norm, while ensuring anH1 bound on the system. To date, this
remains an open problem. Nevertheless, it can be shown that the
entropy is an upper bound for theH2 norm of the system, and
thus minimum entropy controllers provide a degree ofH2 norm
performance that is sacrificed in otherH1 controllers.

In a series of recent papers, a theory of minimum entropy control
for time-varying systems has been formulated [4], [5]. A straightfor-
ward extension is nontrivial due to the fact that the entropy is defined
in terms of the closed-loop system’s transfer function, which other
types of systems do not admit. However, for discrete-time systems,
an operator theoretic formulation of the problem, together with some
fundamental factorizations theorems on nest algebras, have allowed
us to expand the definition of entropy.

Unlike the time-invariant case, where the entropy is defined as a
scalar number, the entropy for a time-varying system is defined as a
memoryless operator. This is intuitively appealing due to the time-
varying nature of the system. Nevertheless, this notion of entropy has
the unsatisfying property that the entropy of a causal system does not
equal the entropy of its anticausal adjoint. This has the effect of
requiring a considerably different approach from that used for LTI
systems in the solution of the minimum entropy control problem [5].

In this paper, we address the relationship between the minimum
entropy control problem for time-varying systems and the stochastic
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