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by applying the first algorithm. The resulting trajectories from theRobust H,/H.-State Estimation for Systems with Error
vertices of Xy are shown in Fig. 1. The control sequences for the Variance Constraints: The Continuous-Time Case
initial statesv; andwv, are shown in Fig. 2.

Zidong Wang and H. Unbehauen

VI. CONCLUSION Abstract—This paper is concerned with the state estimator design prob-

In this paper, the CRP with aa priori given set of initial states 'ém for perturbed linear continuous-time systems with o, norm and
h b . tiqated. In the first t of th variance constraints. The perturbation is assumed to be time-invariant
as been Investigated. In the first part o € paper, an answer,lfy om-pounded and enters into both the state and measurement

the open problem of deriving necessary and sufficient conditions f@&trices. The problem we address is to design a linear state estimator
the existence of a solution to this problem has been given. Thsurh that, for all admissible measurable perturbations, the variance
three techniques for the derivation of such a solution have be@hthe estimation error of each state is not more than the individual
presented. The proposed techniques will always provide a solutiorf)ESSpec'f'ed value, and the transfer function from disturbances to error
. . . state outputs satisfies the prespecifie .. norm upper bound constraint,
this problem if one exists. It should be noted that the necessary afiffuitaneously. Existence conditions of the desired estimators are derived
sufficient conditions established in this paper extend a result reportegerms of Riccati-type matrix inequalities, and the analytical expression
in [10] where sufficient existence conditions were developed. Tieéthese estimators is also presented. A numerical example is provided to
design techniques established in this paper establish a solution eV the directness and effectiveness of the proposed design approach.

if there does not exist a control law making the set of initial statesindex Terms— Algebraic matrix inequality, H.. state estimation,

positively invariant. Kalman filtering, perturbed systems, robust state estimation.
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with prespecifiedH~. norm and error variance upper-bound conwhere F € R**7 is a perturbation matrix which satisfies
straints, and it was shown in [17] the construction of the state FFT <1 4)
estimator called for the solution of some complicated nonlinear ) -
matrix inequalities, and therefore the design of expected discrete-tifftdl M1, Mz (M2 is full row rank) and V' are known constant
estimators was numerically difficult. In the event of state estimatidRatrices of appropriate dimensiona4 and AC" are said to be
for an inherently time-continuous system in terms of a discrete-tindélmissible if both (3) and (4) hold.
“equivalent,” the question of sampling is not trivial [16], since the When the perturbationa\4 and AC" are measurable, the state
very small sampling period which is naturally required will result ifgStimation vectori(#) satisfies the following linear full-order filter:
computational difficulties. Moreover, the parameters in the discrete- 1) = (A+ AA) () + K[y(t) — (C + AC)E(1)] (5)
time model usually do_ not corr_espo_nd to_ the physical meanings se estimation error covariance in the steady state is defined as
Thus, the purpose of this paper is to investigate the robust variance- .
constrained H,/H.. state estimation problem for the uncertain P := lim P(t):= lim Ele(t)e ],  e(t) = z(t) - #(t). (6)
continuous-time syste_ms. It will be_ seen that the_existencc_e conditipfﬁen’ from system (1), (2), estimator (5), and definition (6), we have
as well as the analytical expression of the desired continuous-time . B
estimators are derived in terms of bilinear matrix inequalities (BMI's) €(t) = [4 + A4 = K(C + AC)e(t) + (D1 = KDy)w(t)  (7)
which are not difficult to deal with. and

It should be pointed out the problem addressed in this paper is 5., _ 4, A4 _ 7 / AL A
very different from that in [3], [4], [12], [20], and [21]. In these Pit) =4 + Ad A(g—i_ AC)]P(T) + P<f)[A—/|;AAT
papers, aroptimal robust filter is designed to minimize the upper — K(C+AO)] + (D1 = KDy)(Dy = KD2) . (8)
bound on the variance of the estimation error for all admissib®efine filtering matrixA; := A + AA — K(C + AC). If Ay is
parameter uncertainties, and therefore the resulting optimal filteurwitz stable (i.e., the poles of ; all have negative real parts) for
is usually unique and it seems that there is little freedom to sl admissibleA 4 and AC, then in the steady state, the estimation
used to achieve other performances. However, since the specifigtbr covariance? (P = P? > 0) satisfies
variance constraints may not be minimal put should meeF engineering AP+ PA? +(Di = KD3)(Dy — K—DQ)T -0 ©)
requirements, the addressed problem in this paper is actually a
multiobjective design task which often yields nonunique solution@ur objective in this paper is to deal with the robust filtering problem,
After assigning to the system a specified variance upper boumhg;. design a filter gairC such that, for all admissible measurable
there existamuchfreedom which can be used to attemptdicectly —PerturbationsAA and AC', the following three requirements are
achieve other desired performance requirements, such as robustrfédglltaneously satisfied.
H. requirement, transient property, etc., but the traditional optimal 1) The filtering matrixd; = A + A4 — K(C + AC) remains

(robust) Kalman filtering methods may lack such an advantage. Hurwitz stable.
This paper studies the state estimator design problem for perturbe@) The steady-state error covarianBemeets
linear continuous-time systems witH.. norm and variance con- [Pl < o2, i=1,2,---.n (10)

straints. The perturbation is assumed to be time-invariant and norm- ) )
bounded and enters into both the state and measurement matrices. The Where [P means theith diagonal element of’, i.e., the
problem we address is to design a linear state estimator such that, for Stéady-state variance ath state.o7 (i = 1.2,---,n) de-

all admissible measurable perturbations, the variance of the estimation Notes the prespecified steady-state error estimation variance
error of each state is not more than the individual prespecified ~constraint onith state and can be determined by the practical
value, and the transfer function from disturbances to error state  Performance requirements. _

outputs satisfies the prespecifiéth., norm upper bound constraint, 3) The H= norm of the transfer functior (s) = L(sln —
simultaneously. Existence conditions of the desired estimators are <) (D1 — K D2z) from disturbancesw(t) to error state
derived in terms of Riccati-type matrix inequalities, and the analytical ~ CUtPUtsLe(t) satisfies the constraint

expression of these estimators is also presented. A numerical example [|H(s)||oo < v (11)

is provided to show the directness and effectiveness of the proposed

. where L is the known error state output matrix and
design approach.

”H (9)”00 = Sufj; JmaX[H (7”)] (12)
we
Il. PROBLEM FORMULATION AND ASSUMPTIONS

and omax[ -] denotes the largest singular value[ef; ~ is a
Consider the following class of linear uncertain observable systems  given positive constant.

[2]:
2(t) = (A+ AA)x(t) + Diw(t) 1) lll. MAIN RESULTS AND PROOFS
Theorem 3.1:Define A, := A — KC,AA. = AA — K(AC).

and the measurement equation i o . - - .
Let 6 > 0 be arbitrarily small. If there exist a positive definite matrix

y(t) = (C+ AC)z(t) + D2w(t) (2 @ € B and a positive scalar > 0 satisfying the algebraic
where = is an n-dimensional state vectoy is an p-dimensional matrix equation
measured output vector, and, C, Dy, D, are known constant A:Q + QAL 4+ (M — KMy (M, — KM,)"

matrices.w(t) is a zero mean Gaussian white noise process with

1T A7 —27T -
covariancel > 0. The initial statex(0) has the mearx(0) and HQETN N+yTLILE

covarianceP(0) and is uncorrelated with(¢). A4 and AC' are + (D1 = KDy)(Dy = KD2)" +8I=0 (13)
perturbation matrices which represent parametric uncertainties aAeln for all admissible measurablaA and AC, we have the
assumed to be of the time-invariant form following conclusions:
A4 - Ml N (3) 1) the filtering matrixds = A + AA — K(C + AC) is robustly
AC Mo stable;
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2) the steady-state error covarianBeexists and meet® < Q; Remark 3.3: Theorem 3.1 shows that the robust stability diid

3) |H(s)]|sc < v whereH(s) = L(sI, — A;) ' (D1 — KD>). constraints on the filtering process are automatically enforced when
Proof: a positive definite solution to (13) is known to exist. Furthermore,

1) By the definitions o4, A. andAA., it is clear that all such solutions provide upper bounds for the actual steady-state

estimation error covariancé’. This behavior will be utilized to
Ay =A— KC+ (M, — KMy)FN = Ao + AA..  (14) achieve the prgscribed upper bounds on estin.wfation error variapce.
We now assign a desired value to the positive definite magrix
Note that such that
. T i < ,2 1=1,2,---.n 19
[El/z(ﬂ’[1 —Ix’f\/fg)F—e_l/2QNl] Qi <oy, ¢ ) &5 » 1 (19)
JeYH(My = KMy)F — = V2QN")Y and then find the set of Kalman filter gafid which satisfies (13)
= (M, — I{MQ)FFT(J\L _ KM?)T + = ONT N for the spgcified triple(Q,s,ﬁ): If. such a gain.exists. and can be
/ L ) ,, ; o parameterized, then for admissible perturbations, it follows from
= [(My = KMz)FN]Q = QU(M: = KM2)FN]" >0 Theorem 3.1 that: ()1, is robustly stable; (2) H (5)[|e < v; and 3)
[Pli; <[Qlii < 02,i=1,2,---,n. Hence, the variance-constrained
robust H./ H.. filtering gain design task will be accomplished, and
} o the problem addressed in Section Il can be interpretethasxiliary
[(My = KM2)FN]Q + QI(M: — K M) FN] - (Q, =, §)—triple achievement” problem
< e(My — KM)(My — KMz)' + e "QN'NQ. (15) Definition 1: Let= > 0 and$ > 0 be positive scalars whefe> 0
is arbitrarily small, and@ € R™*" be a positive definite matrix
Define meeting (19). The specified triplg?, =, §) is said to be achievable
S = o(M, — K M) (M, — KMQ)T +=TONTNQ itL_thetrg Iexists a set of filtering gaif” such that the (13) holds for
: - - VL a7 IS triple.
= [(My = KM:)FNIQ = QU(My — KMz)FN] Remark 3.4: 1t is clear from the above analysis that the achiev-
It follows from (15) that¥ > 0. Using the definitions of ability of a given triple (Q,=,6) will result in the finish of the
¥, Af, A. and the relation (14), (13) can be rewritten as  addressed variance-constrained roblisy H.. filtering gain design
ArQ+ QA? +Y 4+ qr’_gQL'TLQ task. He.n(.:e, in wha.t.follows, our purpose is to derive Fhe neces;ary
DT 4 ST — and sufficient conditions for the existence of an achievable triple
+(Dy - KDy)(Dy = KDy)" + oI = O (16) (Q,=,6) and then to characterize all filtering gains associated with
SinceX 4+~ 2QLYLQ+(D,—KD3)(D,—KD2)"+6I >0, the achievable triplé@, =, 6).
it follows from Lyapunov stability theory that the filtering Theorem 3.2:Let the desired steady-state error variance con-
matrix Ay = A+ AA — K(C + AC) remains asymptotically straintss?(i = 1,2,---,n) and the H., disturbance attenuation
stable for all admissible\ A and AC'. constrainty be given. Assume that the matrig > 0 meets (19),
2) Since A is asymptotically stable, the steady-state error c@and= > 0,6 > 0 are positive scalars where > 0 is arbitrarily
variance P exists and meets (9). Subtract (9) from (16) temall. Then a tripld @, =, ) is achievable if and only if this triple

and by the fact thaF F7 < I, the following inequality holds:

obtain satisfies the following algebraic Riccati-type inequality:
Af(Q=P)+(Q-P)AT + S+ 2QLTLQ+ 61 =0 [A— (MM + D2D{)" (eMM] + D2DJ) ' C)Q
(17) +Q[A — (MM + DD (MM + DyDJ) ' C)!

+ QNN 44 L L - " (eMoMS + D2DY) ' C)Q

or equivalenty @ — P = [* (S 4 4 2QLTLQ + . . . T
+ [eMyMI + DyD! 4 81 — (Mo MY + DDV

0

sI)e™7'dt > 0 which means thaP < (.

3) Now, we can also rearrange (13), or (16), as the following: - (eM2M; + D>yD3 ) ™' (eMoM] + D2D{ )] <0 (20)
ArQ+ QAfT- +~72QL"LQ and the left-hand side of (20) is of maximum rapk
N . Proof: For the purpose of simplicity, we first make the following
+ (Dl — K Dz)(Dl — K D_g) + =0 (18) definitions:
where® := ¥ + 61. Then, the proof of|H (s)||- < v can be X :=cMME + D, DT (21)
completed by a standard manipulation of (18); for details see Y:=COQ+eMML + D,DY 22)

Willems [18, Lemma 1]. This proves Theorem 3.1. 7.4 AL N
Remark 3.1: The parameteé > 0 which can be arbitrarily small =49 + Q . + Q(CT N N+47L 1)Q
is only to guarantee that conclusion 1) holds. In the case when + MMy + DDy + 61 (23)
D, — KD is full row rank or the matrixZ is nonsingulars can
be set to be zero. ) )
Remark 3.2: Theorem 3.1 implies that the satisfaction of (13)S|mple form:
leads to the upper bounds on both the error covariance Iand EXEKY-KYy -Y'KY4+z=0. (24)
performance which may be conservative primarily due to the intro-
duction of the additional matri¥ > 0. SinceX > 0 is the function SinceM- is full row rank, then the matriX' is positive definite, and
of parameter > 0, an approach to reducing the conservative uppét3), or (24), can be equivalently expressed as follows:
bounds is to appropriately choose> 0 [20], [21], and the detailed . . . o
analysis and algorithm about the minimizatior|&f|| over the scaling — (KX YIX (KXY X
parameter: > 0 can be found in [19]. =Z-Y'X'v. (25)

and notice thatd. = A— K C, (13) can be rewritten in the following
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Since the dimension of filter gaifk” is » x p andp < n, then IV. NUMERICAL EXAMPLE
from (25), there exists a solutioR” to (13) (i.e., the triple(Q.=,6)  Consider a perturbed linear continuous-time stochastic system
is achievable) if and only if the right-hand side of (25) is negativBescribed by (1)—(3), where the parameters are assumed to be the
semidefinite, i.e., following:

Z-Y'x"'v <o (26) A= {3 (1)} C= Ll) ﬂ L= {0(')" ?H
and is of maximum ranlp (in this case, both sides of (25) have D, = {0'0363 0 00792}7 D, = {0‘0311 0 1(1”2}
compatible ranks). Note that (26) can also be rearranged as the ) . o
Riccati-type matrix inequality (20), and thus the proof of Theorem 3.2\ 4 _ 3 piy = [0-0126 0.0457 | fsina 0
is completed. T 0.0068 0.4369|| 0 cosa

conditions of an achievable tripléQ,¢,6) in term of a Riccati- 0.0005 0.0121

type matrix inequality. Furthermore, the algebraic expression of all

filtering gains K related to the achievable triplg}, =, 8) will be AC = M>FN = {

stated in the following theorem. . )
Theorem 3.3: Suppose that the prespecified tripl€),<,6) is . [0'346‘ 0'0546}_

achievable, where the positive definite matix> 0 meets (19) and 0.0005 0.0121

the positive scalas > 0 is arbitrarily small. The desired filtering We aim at designing robust filtering gains such that 1) the filtering

gains which achieve the tripléQ,=,8) can be characterized asmatrix Ay = A — KC' + AA — K(AC) is robustly stable; 2) the

Theorem 3.2 gives the algebraic parameterization for the existence {0.3467 0.0546}

0.0012 0.0001 | |sin « 0
0.0034 0.0064 0 cos «

follows: steady-state covarianc® exists and[P]i; < o7 = 0.04,[Ply <
a3 = 0.2; and 3) the transfer functiofl (s) from disturbances:(t)
K=Y X '_-TyXx~'/? (27) to error state outputge(t) satisfies the constraifit (s)||« < v =
0.8259.
where T € R"*” is the square root o " X~'V — Z (i.e., Now, based on Remark 3.2, we first exploit the approach proposed

TT' = YI'X 'Y — 7), V € RP*® is an arbitrary orthogonal in [19] and [20] to reduce the conservativeness of present results,

matrix, and.X, Y, Z are defined in (21), (22), and (23), respectively2nd hence an appropriate scafar- 0 can be found as = 0.5017.
Proof: It follows from (25) and the definition of" that Then, based on Remark 3.1, since the error state output mafisx

nonsingular, the constait may be set ag = 0. Moreover, using

Tyv—1vy _ 77T _ (e x /2 yvT y—1/2 . . X . .
—Z+Y XY =TT =(-kX N +7¥ /“ ) the algorithm discussed in Remark 3.5, we can solve inequality (20)
(=KX 4yt xRyt (28) and obtain
or equivalently7'V = — K X*/2 4+ yT X ~1/2 and then (27) follows Q= 0.0271 00543 7 — |0-3468 0.0002
immediately. 10.0543  0.1406 |° 1.0673 0.0322
Finally, the following result which gives the solution to theand therefore
variance-constrained robudf./H .. filtering gain design problem Y= [0.0083  0.0000 ] y = 0.0322 0.0544
addressed in this paper is easily accessible. ~[0.0000  0.0247 | T 10.0544  0.1545
_Corollary 3.1: Let the stea_dy-state error variance constraints 0.1249 0.1811]
o7(i = 1,2,---,n), the H, disturbance attenuation upper bound Z= 0.1811 0.1802 |"

constrainty, and the perturbation structure (3) be prespecified. If a . ) , ) .

triple (0, =,5) is achievable where matri® > 0 meets (19) and OPvViously, [Qli1 < o7 = 0.04,[Ql:2 < 03 = 0.2, ie., the
scalars > 0 is arbitrarily small, i.e., the conditions of Theorem 3.0ndition (19) is satisfied. Then, 5”*’?“““'”9 the thY@,ra, 8)
are satisfied, then the desired variance-constrained rdbysfl,, and the orthogonal matricek = L. V> = diag(1,—1).Vs =
filtering gains can be obtained by (27). diag(—1,1),Vy4 = —1I, into the expression (27), respectively, lead

Remark 3.5: We can see that the necessary and sufficient condf the following desired filtering gains:

tions for the achievability of a given tripléQ, =, ) are very easy K = 0.0752  2.2018 Ko — 0.0752  2.2043
to test. On the other hand, in practical applications the designers —5.1690 6.0403 |’ B —5.1674 6.4488
often wish to construct the achievable tridl@, , §) directly from . [7.6885 2.2013 K — 76885  2.2039
the achievability conditions and then get the desired filtering gains ** = |18.2630 6.0379 |’ 47 118.2630 6.4474

from (27) rapidly. Noting that the condition (20) on achievable tripI%nd it is not difficult to test that the prespecified robust stability and

(Q.=,6) is actually a BMI of parameter), we can first choose g 0 constraints on filtering process and the variance constraint
appropriates > 0 which reduce (minimize) the possible conservativg " «timation error are all met

upper bounds on both the error covariance dhg performance

in Theorem 3.1 by applying the method proposed in [19] and [20]

and choose sufficiently small positive scakar- 0 in certain cases, V. CONCLUSION

and then solve BMI (20) for parameté} by using the algorithms  In this paper we have considered a robust variance-constrained

guaranteeing global convergence [6], [22], as well as local numeriddh / H.. state estimation problem for linear continuous-time systems

searching algorithms that converge (without a guarantee) much fastéth parameter perturbations in both the state and measurement

[5], [7]- Also, some properties of BMI's can be found in [13]. matrices. It has been shown that this robust estimation problem can
Remark 3.6: It is clear that if the set of desired estimators is ndbe converted to an auxiliary “triplé@, =, §) achievement” problem

empty, it must be very large. We may utilize the freedom in estimatarhich is related to solutions of a Riccati-type BMI. Based on this

design to improve other system properties. An interesting problem BMI, the existence conditions and the analytical expression of desired

future research is how to exploit the freedom to achieve the specifiestimators have been characterized. These results are analogous to

transient constraint and reliable constraint on filtering process. results obtained previously for the perturbed discrete-time systems.
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We finally remark that the extension of the results developed in tlf@4] E. Yaz and W. NaNacara, “Nonlinear estimation by covariance assign-
present paper to the variance-constrained multiobjective (e.g., robust- ment,” inPrep. 12th IFAC World Congr Sydney, Australia, vol. 6, pp.
ness, transient behavioH ., requirement, fault-tolerant property) 87-90, 1993.

state estimation for various systems such as continuous-time, discrete-

time, sampled-data, and stochastic parameter systems still remains to

be investigated within the framework of this approach.
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