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fessors William Layton and Béatrice Rivière (both in the Computational and Applied

Mathematics Group, University of Pittsburgh) in the very early stages of this work.

Bauermeister would like to acknowledge the financial support of Brunel University

and the EPSRC.

1 Introduction

In [23, 22] Thomas & Windle demonstrated by experiment that diffusion of a solvent

in a viscoelastic polymer substrate is highly non-Fickian with the solvent developing
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a steep travelling wave front. To model this behavior Cohen et al. in [10, 9] (see

also the references therein) noted that the solvent causes local stresses which, in

polymers, are viscoelastic and therefore described by either a hereditary constitutive

law (see [13]), or by an equivalent spatially-local stress-rate equation. As the solvent

moves into the substrate its concentration level can rise above a critical value, ua

say, which in turn causes a ‘phase change’ of the polymer from glass to rubber.

The viscoelastic relaxation time (γ−1 in the equations that follow) in the stress-law is

more or less constant in each of these phases, but changes abruptly and significantly

across the phase change boundary. This abrupt and significant step change is the

basic (nonlinear) mechanism for the development of the steep front. A description of

the molecular processes of non-Fickian polymer diffusion, and the requirements for

it to occur seems to have been first given in [17].

This article proposes five fully discrete schemes for the partial differential equations

that comprise Cohen et al.’s model. We employ the Galerkin finite element method

for the spatial discretisation, and a version of the Crank-Nicolson method for the

temporal discretisation. Special attention is paid to the nonlinear term in that of

the five discrete schemes given, three of this family are linear. This linearisation is

accomplished by extrapolating the value of the nonlinear term from previous time

levels, as in [7, 25], with a simpler treatment at the initial time step, as in [18] (see

also [28]). The other two schemes give nonlinear discrete equations and, curiously,

perform less well. Our a priori error estimates cover four of the five methods, although

we give a comprehensive set of numerical results that demonstrate all five have errors

of optimal order. Further details are given in [5].

The physical model proposed in, for example, [10] consists of the nonlinearly coupled

degenerate system,

∂c

∂t̃
= D∇̃2c+K∇̃2τ and

∂τ

∂t̃
+ β(c)τ = µc,

where c denotes the solvent’s concentration, τ is a viscoelastic ‘stress’, D, K, µ are

positive constants and ∇̃2 = (∂2/∂x̃2
1, ∂

2/∂x̃2
2, . . .).

To keep the presentation below cleaner we prefer to scale out the three constants D,

K and µ, and for this we define t = Mt̃, x = Ex̃, c = u and σ = Bτ where B = K/D,

E = (µK)1/2/D and M = µK/D. Lastly, setting γ(u) := Dβ(c)/µK, defining J = (0, T ],

and assuming the polymer occupies an open, bounded, connected domain Ω ⊂ R
d, we

consider the problem in the form: find u = u(x, t) and σ = σ(x, t) such that,

u̇−∇2u = f + ∇2σ in Ω × J , (1a)

σ̇ + γ(u)σ = u+ f̂ in Ω × J , (1b)

u = 0 on ΓD × J , (1c)

(∇u+ ∇σ) · n = g on ΓN × J , (1d)

u = ŭ at t = 0, (1e)

σ = σ̆ at t = 0. (1f)

Here: the overdots denote partial time differentiation; we assume the initial data are

compatible with the boundary data at t = 0; ∂Ω = ΓD ∪ ΓN ; ΓD is closed and has

positive (d − 1)-dimensional measure; and, ΓD ∩ ΓN = ∅. Furthermore f = f(x, t),

f̂ = f̂(x, t), g = g(x, t), ŭ = ŭ(x), and σ̆ = σ̆(x) are given functions. Note that we have

allowed each equation to be ‘forced’ by f and f̂ . These are not needed in the model and
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are used only to generate artificial exact solutions that we use later to demonstrate

the error estimates. The term f̂ is in fact purely artificial and so is not included in the

estimates that follow.

It is not yet necessary to give a specific form for the nonlinear coupling function γ

since all we need for the error analysis is contained in the following assumptions.

These are realistic in the context of the model we are working from.

Assumption 1.1 (Properties of γ). There are positive constants, γ̌, γ̂, C ′
γ and C ′′

γ such

that γ : R → R satisfies γ ∈ C2(R) and ∀u ∈ R:

0 < γ̌ 6 γ(u) 6 γ̂, 0 6 γ′(u) 6 C ′

γ and |γ′′(u)| 6 C ′′

γ .

The well-posedness of this problem appears to have been first established by Amann

in [1], who then generalised his results a couple of years later in [2]. Since then Hu

and Zhang gave an alternative proof of existence and uniqueness in [6] and, most re-

cently, Vorotnikov in [26] has examined the problem from the viewpoint of ‘dissipative’

solutions (an ‘ultra-weak’ concept of solution). Each of these results have dealt with

various generalisations of (1a) and (1b) with some or all coefficients allowed to depend

on u. Also, the right hand side of (1b) is sometimes taken in the form µ1u + µ2u̇, but

we will leave this for another time. Lastly here we note that by replacing −∇2σ with σ̇

in (1a) and γ(u)σ − u with kσ − kϕ(u) in (1b) we arrive at the porous medium system

considered in [4]. This similarity is at best only superficial though since their ϕ is less

well behaved than our γ, and the authors of [4] used deeper techniques of analysis to

consider well-posedness rather than just numerical analysis.

For more background on the underlying physics we refer to the original literature on

the experiments, [23, 22], and on the development of the mathematical model, [10, 9,

12]. Also, the article [15] gives a comprehensive study of the one-space dimensional

problem and illustrates the parameter regions governing the formation of steep wave

fronts, as well as whether or not these fronts are mobile.

Note also that solving (1b), assuming f̂ = σ̆ = 0, and substituting into (1a) yields an

example of a nonlinear parabolic Volterra equation,

u̇−∇2u = f + ∇2

∫ t

0
µe−

R t

s
γ(u(ξ)) dξ u(s) ds. (2)

Although heat equations with memory, such as the one above, have an extensive

numerical analysis literature, we are not aware of any results that can be applied here.

For example, linear problems have been studied in [24, 21, 14, 16, 29], with particular

attention often being paid to sparse quadrature, weakly singular kernels and non-

smooth initial data, and nonlinear problems have been studied in [11, 19, 28, 7].

These results are all for problems written in divergence form where ut = ∇ · F (t, u,∇u)

for some F , or for problems where the memory term contains only zero or first order

spatial derivatives of u.

Since (2) is not in divergence form we find it convenient to use the ‘inverse Laplacian’

(see later in (6) and (19)) and then the key technique in the error analysis is to examine

the errors in the quantities σ and u+ σ, rather than in u and σ directly.

The plan of this paper is as follows. Section 2 contains the weak formulation of

the problem, recalls some standard notation and sets the scene for the ‘u + σ’ error

estimates that follow later. The numerical schemes are described in Section 3 and

some stability estimates for the discrete solution are given.
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The error analysis begins in Section 4 and, in an effort to make it easier to digest, this

is broken down into several subsections.

Subsection 4.1 gives some basic observations on the nonlinear function, γ. Subsec-

tion 4.2 outlines familiar tools such as the elliptic projection and some estimates from

Taylor’s series. The error in the ‘linear’ part of the equations is dealt with in Subsec-

tion 4.3 and then Subsection 4.4 focusses specifically on the errors generated by the

nonlinearity. Eventually, Subsection 4.5 synthesises these lemmas into the a priori

error estimate contained in Theorem 4.12.

We conclude with some numerical experiments in Section 5 and some brief concluding

remarks in Section 6.

2 Weak formulation and preliminaries

Our notation is standard. We use Wm
p (X;Y ) to denote the Sobolev (Banach) space

of functions, v : X → Y , which together with their first m weak derivatives belong to

Lp(X;Y ) (1 6 p 6 ∞). The target space, Y , is omitted when Y = R. When p = 2 we

obtain the Hilbert space Hm(Ω) = Wm
2 (Ω) and write ‖·‖Hm(Ω) for the norm in Hm(Ω).

Also, because it is used so frequently below, we use the abbrevation ‖·‖0 := ‖·‖L2(Ω).

If X is a Banach space then notations such as Lp(0, t;X) denote the Banach space of

Lp-maps from (0, t) into X. The norm in Lp(0, t;X) is merely the Lp(0, t) norm of ‖·‖X .

This is standard, as also is our use of C to denote a generic positive constant that

may have different values in different places, and is often dependent on T through

Gronwall estimates. We also recall Young’s inequality: for a, b ∈ R and any ǫ > 0,

2ab 6 ǫ a2 +
1

ǫ
b2. (3)

Noting the essential boundary condition (1c) we define the test space V for the varia-

tional formulation of (1a) and (1b) as

V := {v ∈ H1(Ω) : v = 0 on ΓD}.

Furthermore, the norm ‖·‖V :=
√

(∇·,∇·) is equivalent (on V ) to ‖·‖H1(Ω), and we note

for use later that there is a constant CV > 0 such that,

‖v‖0 6 CV ‖v‖V ∀v ∈ V and ‖v‖V ′ 6 CV ‖v‖0 ∀v ∈ L2(Ω). (4)

Now, recall that in (1b) the term f̂ is purely artificial in terms of the non-Fickian

physics, and is introduced only to aid in the construction of test problems later on.

Therefore, if we assume throughout that f̂ |ΓD
= σ̆|ΓD

= 0 then, by (1c), it follows that

σ(t)|ΓD
= 0 a.e. in J .

In conclusion, we write the problem, (1a) and (1b) with boundary data, in weak form

as: find (u, σ) : J → V × V such that,

(u̇(t), v) + (∇u(t),∇v) + (∇σ(t),∇v) = 〈L(t), v〉 ∀v ∈ V, (5a)

(σ̇(t), w) + (γ(u)σ(t), w) = (u(t), w) ∀w ∈ V, (5b)

with (1e) and (1f), with σ̆|ΓD
= 0 and where L : J → V ′ is defined by,

〈L(t), v〉 := (f(t), v) + (g(t), v)ΓN
.
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One of the difficulties in dealing with these equations, either to prove stability, discrete

stability or an error estimate, lies in combining the terms (∇σ,∇v) in (5a) and (u,w)

in (5b) (and their discrete counterparts) in a way that yields useful estimates.

In [18] the simplification of replacing ∇(γ(u)σ) with a term like γ(u)∇σ was made,

and this led to a priori estimates. However this simplification does not represent the

non-Fickian problem which we deal with here.

Firstly, recall from [3] (for example) the ‘inverse Laplacian’ G : V ′ → V defined by,

(∇Gw,∇v) = 〈w, v〉 ∀v ∈ V (6)

and for any w ∈ V ′. (This is no more than the Riesz representation theorem and so we

can immediately note that ‖w‖V ′ = ‖Gw‖V ). Then, choosing v = Gu in (5a) and w = σ

in (5b), and adding the equations we see that (∇σ,∇Gu) − (u, σ) = 0, and so these

problematic terms vanish. This can be used to derive stability estimates (see below in

Prop. 2.1) but the norm on u is apparently too weak for deriving error estimates.

Secondly, by adding (5a) to (5b) and working with the sum u + σ instead of only u we

get,

(u̇+ σ̇, v) + (∇(u+ σ),∇v) + (γ(u)σ, v) = (u, v) + 〈L, v〉 ∀v ∈ V. (7)

It appears that for error estimation the pair u + σ and σ are easier to work with than

the pair u and σ. Moreover, by the triangle inequality it is equivalent to have bounds

for either ‖u‖ and ‖σ‖ or ‖u + σ‖ and ‖σ‖. This technique also provides a stability

estimate (Prop. 2.2) but in stronger norms.

Proposition 2.1 (Stability in weak norms).

‖u(t)‖2
V ′ + ‖σ(t)‖2

0 + ‖u‖2
L2(0,t;L2(Ω)) + 2γ̌‖σ‖2

L2(0,t;L2(Ω)) 6 ‖ŭ‖2
V ′ + ‖σ̆‖2

0 + C2
V ‖L‖

2
L2(0,t;V ′).

Proof. Choose v = 2Gu(t) in (5a) and w = 2σ(t) in (5b) and add. Estimate the duality

product; invoke CV from the right-hand part of (4); integrate over (0, t); kickback

‖u‖2
0 using Young’s inequality; use the initial data and the lower bound on γ(u); and,

finally, remove G by replacing ‖G · ‖V with ‖ · ‖V ′.

Proposition 2.2 (Stability in stronger norms).

‖u(t)‖2
0 + ‖σ(t)‖2

0 + ‖u‖2
L2(0,t;L2(Ω)) + ‖σ‖2

L2(0,t;L2(Ω)) + ‖u+ σ‖2
L2(0,t;V )

6 C
(

‖ŭ‖2
0 + ‖σ̆‖2

0 + ‖L‖2
L2(0,t;V ′)

)

.
(8)

Proof. Add (5a) and (5b) and choose v = w = 2u + 2σ. Then use (1e) and (1f), the

Cauchy-Schwarz inequality, several Young’s inequalities and (4), and we arrive at,

‖u+ σ‖2
0 +

∫ t

0
‖u+ σ‖2

V ds+ γ̌

∫ t

0
‖σ‖2

0 ds

6 ‖ŭ+ σ̆‖2
0 +

(

γ̂2

γ̌
+ 2C2

V

)
∫ t

0
‖u‖2

0 ds+ 2

∫ t

0
‖L‖2

V ′ ds.

(9)

To get a second inequality with which we can handle the term
∫ t
0‖u‖

2
0 ds on the right-

hand side, we choose v = 2σ in (5b) and follow the same pattern of estimation. This

yields,

‖σ‖2
0 + γ̌

∫ t

0
‖σ‖2

0 ds 6 ‖σ̆‖2
0 +

1

γ̌

∫ t

0
‖u(s)‖2

0 ds. (10)
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Now, by adding (9) and (10) and then using the triangle inequality, the proof is com-

pleted by tidying up the constants, adding ‖u‖2
L2(0,t;L2(Ω)) to both sides and using Gron-

wall’s lemma.

The main point to take from these results is that while the inverse Laplacian removes

the ‘cross terms’ involving u and σ, it is the use of u+ σ which provides norms which

are strong enough to make all the steps of the proof possible. This observation carries

over to the error estimates that follow, and allows us to remove a bound on the time

step size for the linearized methods.

3 The numerical scheme

The spatial discretisation is a standard Galerkin finite element method using piece-

wise polynomials of degree r > 1. We assume for simplicity that Ω is polygonal (in

2D) or polyhedral (in 3D) and that it can be discretised into a quasi-uniform family

of simplicial subdivisions Eh, depending on a mesh size parameter h ∈ (0, ĥ] for some

ĥ > 0. In the usual way the finite element space is then defined as,

V h := { v ∈ V ∩ C0(Ω̄) | v ∈ Pr(E) ∀E ∈ Eh }.

We denote the Lagrange basis functions by φj, j = 1, . . . , Nφ and the Lagrange nodes

by xj, j = 1, . . . , Nφ. We assume there is an interpolation operator Ih : C(Ω) → V h (i.e.

Ihv =
∑

v(xj)φj ) such that,

‖v − Ihv‖Hm(Ω) 6 Chr+1−m‖v‖Hr+1(Ω) for m = 0, . . . , r. (11)

For the time discretisation we divide the interval [0, T ] into N subintervals with equi-

distant endpoints tn such that 0 = t0 < t1 < · · · < tN = T . We define the constant time

step by k = T/N .

To simplify notation, we set vn := v(tn) and define,

∂tvn := (vn − vn−1)/k, ∂2
t vn := (vn − 2vn−1 + vn−2)/k

2, v̄n := (vn + vn−1)/2

and ∆nv := ¯̇vn − ∂tvn =
v̇(tn) + v̇(tn−1)

2
−
v(tn) − v(tn−1)

k
.

Observe that ∂tvn is an approximation for the derivative v̇ at t = (tn + tn−1)/2, and ∂2
t vn

is an approximation for the second time derivative v̈ at t = tn−1. Since we will need it

frequently later, we note that,

m
∑

n=1

‖v̄n‖
2 6

1

2
‖v0‖

2 +
m−1
∑

n=1

‖vn‖
2 +

1

2
‖vm‖2 6

m
∑

n=0

‖vn‖
2. (12)

Next we need a few easy consequences of Taylor’s theorem for use later in the error

analysis (see e.g. [18]).
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Lemma 3.1 (Taylor estimates). Let X be a Banach space. If v has the indicated regu-

larity, then

‖∂tvn‖X 6 ‖v̇‖L∞(tn−1,tn;X), (13)

‖∂tvn‖0 6 k−1/2‖v̇‖L2(tn−1,tn;L2(Ω)), (14)

‖∂2
t vn‖X 6 ‖v̈‖L∞(tn−2,tn;X), (15)

‖∂2
t vn‖0 6 k−1/2‖v̈‖L2(tn−2,tn;L2(Ω)), (16)

‖∆nv‖0 6 Ck3/2‖
...
v ‖L2(tn−1,tn;L2(Ω)). (17)

Denoting the discrete approximations to u and σ by uh and σh the fully discrete ap-

proximation to the weak form (5a) and (5b) is: for n = 0, . . . , N find (uh
n, σ

h
n) ∈ V h × V h

such that

(∂tu
h
n, v) + (∇ūh

n,∇v) + (∇σ̄h
n,∇v) = 〈L̄n, v〉 ∀ v ∈ V h, n = 1, . . . , N (18a)

(∂tσ
h
n, v) + (BQ

n (uh, σh), v) = (ūh
n, v) ∀ v ∈ V h, n = 1, . . . , N (18b)

(uh
0 , v) = (ŭ, v) ∀ v ∈ V h, (18c)

(σh
0 , v) = (σ̆, v) ∀ v ∈ V h. (18d)

Here B
Q
n (uh, σh) is the discrete approximation of the term γ(u)σ at time tn−1/2. To deal

with this term we consider five possibilities, indexed by Q ∈ {1, 2, 3, 4, 5}. The first

three are based on linearly extrapolating uh
n or ūh

n in order to approximate γ(uh
n) or

γ(ūh
n) from the previous two time levels, and these lead to linear numerical schemes.

The last two, on the other hand, are the nonlinear numerical schemes that result from

using γ(uh
n) and γ(ūh

n) directly.

We’ll discuss these methods a little more below, but first we give the details. Define

B
Q
n via

B
1
n(uh, σh) := 1

2γ(E
1
nu

h)σh
n + 1

2γ(u
h
n−1)σ

h
n−1

B
2
n(uh, σh) := γ(E 2

nu
h) σ̄h

n

B
3
n(uh, σh) := 1

2

Nφ
∑

j=1

γ(E 1
nu

h(xj))σ
h
n(xj)φj + 1

2

Nφ
∑

j=1

γ(uh
n−1(xj))σ

h
n−1(xj)φj

B
4
n(uh, σh) := 1

2γ(u
h
n)σh

n + 1
2γ(u

h
n−1)σ

h
n−1

B
5
n(uh, σh) := γ(ūh

n) σ̄h
n

where the φj ’s are Lagrange basis functions and xj their nodes, i.e. φi(xj) = δij. Here,

for methods Q = 2 and 5, we define

E
5
nu

h := ūh
n and E

2
nu

h :=

{

3
2u

h
n−1 −

1
2u

h
n−2 for n > 2,

uh
n−1 for n = 1,

and so for Q ∈ {2, 5} we have B
Q
n = γ(E Q

n uh)σ̄h
n. Similarly, for methods Q = 1 and 4 we

define,

E
4
nu

h := uh
n and E

1
nu

h :=

{

2uh
n−1 − uh

n−2 for n > 2,

uh
n−1 for n = 1,

giving, for Q ∈ {1, 4}, that B
Q
n = 1

2γ(E
Q
n uh)σh

n + 1
2γ(u

h
n−1)σ

h
n−1. We can see that Q = 1 is a

linearised version of Q = 4 and Q = 2 is a linearised version of Q = 5.
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We note that a linear extrapolation of uh
1 is not possible and so at the initial time

step we extrapolate as a constant from the initial condition. Optimal a priori error

estimates are given later for the schemes Q = 1, 2, 4, 5. For method Q = 3 we have no

results at the moment, but we note that it is similar to the so-called product approxi-

mation described in [8]1.

The discrete inverse Laplacian Gh is defined for any w ∈ V ′ via,

(∇Ghw,∇v) = 〈w, v〉 ∀v ∈ V h. (19)

It is clear that Gh is linear. The next two lemmas are equally clear.

Lemma 3.2. ‖Ghw‖V 6 ‖w‖V ′ ∀w ∈ V ′.

Lemma 3.3. 2k(∂tvn,G
hv̄n) = ‖Ghvn‖

2
V − ‖Ghvn−1‖

2
V ∀vn, vn−1 ∈ V h.

The discrete schemes corresponding to Q = 1 and Q = 2 possess unique solutions as

shown by the following lemma. The situation for Q = 3 is, as yet, unclear, while for

Q = 4 and Q = 5 we can show, see [5], that non-uniqueness is possible (at least for

some choices of time step).

Proposition 3.4. The schemes Q = 1 and Q = 2 have unique solutions.

Proof. At each timestep tn the discrete solution (uh
n, σ

h
n) is determined by a linear sys-

tem of equations in a finite-dimensional space. Assume that there are (at least) two

solutions (uh
n, σ

h
n) and (ũh

n, σ̃
h
n) at a certain timestep tn, for n > 0, with all previous so-

lutions being uniquely defined. Define z := uh
n − ũh

n and p := σh
n − σ̃h

n. Subtracting (18a)

for the tilde-solution from the same equation for the non-tilde solution and repeating

this for (18b) gives

1
k (z, v) + 1

2 (∇z,∇v) + 1
2(∇p,∇v) = 0 and 1

k (p,w) + (BQ
n − B̃

Q
n , w) = 1

2(z,w).

Choosing v = Ghz, w = p and adding the equations yields

1
k‖G

hz‖2
V + 1

k‖p‖
2
0 + 1

2‖z‖
2
0 + (BQ

n − B̃
Q
n , p) = 0.

Observe that B
Q
n − B̃

Q
n is 1

2γ(E
1
nu

h) p if Q = 1 and is 1
2γ(E

2
nu

h) p if Q = 2 and so, in both

cases, (BQ
n − B̃

Q
n , p) >

γ̌
2‖p‖

2
0. Hence z = 0 and p = 0 and thus the two solutions are

identical. In fact, by subtracting the system for two solutions, we have obtained the

homogeneous linear system and have shown that this homogeneous system has only

the trivial solution z = p = 0. The system matrix is therefore invertible and there is

exactly one solution.

The next step is to establish some stability estimates for the discrete solutions. First

we derive upper and lower bounds on the nonlinear term (method Q = 3 is not treated

here). First, the upper bound (the proof of which is straightforward).

Lemma 3.5 (Upper bound for B
Q
n ). For methods Q = 1, 2, 4, 5 we have

‖BQ
n (uh, σh)‖0 6

γ̂

2

(

‖σh
n‖0 + ‖σh

n−1‖0

)

.

And, secondly, the lower bound.

1The authors are grateful to Andrew Wathen (COMLAB, Oxford University, UK) for pointing this out.
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Lemma 3.6 (Lower bounds for B
Q
n ). For methods Q ∈ {2, 5}, we have

(BQ
n , σ̄

h
n) > γ̌‖σ̄h

n‖
2
0. (20)

For methods Q ∈ {1, 4}, and for any ǫ > 0, there is a constant Cǫ such that

(BQ
n , σ̄

h
n) > γ̌‖σ̄h

n‖
2
0 − ǫ‖σh

n‖
2
0 − Cǫ‖σ

h
n−1‖

2
0. (21)

In fact, Cǫ = γ̂
2 + γ̂2

16ǫ .

Proof. For Q ∈ {2, 5} the assertion follows immediately from the definition of B
Q
n . Thus,

for the remainder, let Q ∈ {1, 4}. For both these methods, B
Q
n has the following form:

B
Q
n =

1

2

⊣
γnσ

h
n +

1

2

⊢
γnσ

h
n−1.

with certain functions
⊣
γn and

⊢
γn, depending on uh, such that γ̌ 6

⊣
γn(x) 6 γ̂ and

γ̌ 6
⊢
γn(x) 6 γ̂. For later use, we define G :=

⊣
γn −

⊢
γn and observe that ‖G‖L∞(Ω) 6 2γ̂.

We can rearrange

B
Q
n =

1

2

⊣
γnσ

h
n +

1

2

⊢
γnσ

h
n−1 =

1

2

⊣
γn(σh

n + σh
n−1) −

1

2
(
⊣
γn −

⊢
γn)σh

n−1.

Thus (BQ
n , σ̄h

n) = (
⊣
γnσ̄

h
n, σ̄

h
n) − 1

2

(

(
⊣
γn −

⊢
γn)σh

n−1, σ̄
h
n

)

> γ̌‖σ̄h
n‖

2
0 − 1

2 |
(

(
⊣
γn −

⊢
γn)σh

n−1, σ̄
h
n

)

| and

using Young’s inequality we get for any ǫ1 > 0 that,

1

2
|
(

(
⊣
γn −

⊢
γn)σh

n−1, σ̄
h
n

)

| 6
γ̂

2
(‖σh

n−1‖0 ‖σ
h
n‖0 + ‖σh

n−1‖
2
0) 6

γ̂

2

(

ǫ1
2
‖σh

n‖
2
0 + (

1

2ǫ1
+ 1)‖σh

n−1‖
2
0

)

.

Choosing ǫ1 = 4
γ̂ ǫ finishes the proof.

Proposition 3.7 (Discrete stability: inverse Laplacian). For each of the methods given

by Q ∈ {1, 2, 4, 5} we have, for any m ∈ {1, . . . , N},

‖Ghuh
m‖2

V + ‖σh
m‖2

0 + k
m
∑

n=1

‖ūh
n‖

2
0 + k

m
∑

n=1

‖σ̄h
n‖

2
0 6 C

(

‖ŭ‖2
V ′ + ‖σ̆‖2

0 + ‖L‖2
L∞(0,T ;V ′)

)

.

Proof. Choosing v = Ghūh
n in (18a), v = σ̄h

n in (18b), adding the results and using

Lemma 3.3, multiplying by 2k and summing for n = 1, . . . ,m we have,

‖Ghuh
m‖2

V +‖σh
m‖2

0+2k
m
∑

n=1

‖ūh
n‖

2
0+2k

m
∑

n=1

(BQ
n , σ̄

h
n) = ‖Ghuh

0‖
2
V +‖σh

0‖
2
0+2k

m
∑

n=1

〈L̄n,G
hūh

n〉. (22)

Now, ‖σh
0 ‖0 6 ‖σ̆‖0, ‖G

huh
0‖V 6 ‖ŭ‖V ′ and 2〈L̄n,G

hūh
n〉 6 ǫ−1‖L‖2

L∞(tn−1,tn;V ′) + ǫC2
V ‖ūh

n‖
2
0.

Choosing ǫ := 1/C2
V to obtain,

2k
m
∑

n=1

〈L̄n,G
hūh

n〉 6 C2
V T ‖L‖2

L∞(0,tm;V ′) + k
m
∑

n=1

‖ūh
n‖

2
0,

we can then insert these three bounds in to (22) and arrive at,

‖Ghuh
m‖2

V + ‖σh
m‖2

0 + k
m
∑

n=1

‖ūh
n‖

2
0 + 2k

m
∑

n=1

(BQ
n , σ̄

h
n) 6 ‖ŭ‖2

V ′ + ‖σ̆‖2
0 +C2

V T ‖L‖2
L∞(0,tm;V ′). (23)
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For methods Q = 2 or 5 the proof is concluded by using (20).

Now, for methods Q = 1 or 4, we note that,

2k
m
∑

n=1

(ǫ‖σh
n‖

2
0 +Cǫ‖σ

h
n−1‖

2
0) 6 2Tǫ‖σh

m‖2
0 + 2(ǫ+ Cǫ) k

m−1
∑

n=1

‖σh
n‖

2
0 + 2TCǫ‖σ̆‖

2
0,

and then choosing ǫ = 1/(4T ) along with using (21) in (23) we obtain,

‖Ghuh
m‖2

V +
1

2
‖σh

m‖2
0 + k

m
∑

n=1

‖ūh
n‖

2
0 + 2γ̌k

m
∑

n=1

‖σ̄h
n‖

2
0

6 ‖ŭ‖2
V ′ + c1‖σ̆‖

2
0 + C2

V T ‖L‖2
L∞(0,tm;V ′) + c2 k

m−1
∑

n=1

‖σh
n‖

2
0,

where c1 = 1 + 2TCǫ = 1 + γ̂T + γ̂2T 2/2 and c2 = 2ǫ+ 2Cǫ = 1/(2T ) + γ̂ + γ̂2T/2. The proof

is then concluded for Q ∈ {1, 4} by using a discrete Gronwall lemma.

Proposition 3.8 (Boundedness of discrete solutions using u+ σ-terms). For methods

Q = 1, 2, 4, 5 we have for m ∈ {1, . . . , N},

‖uh
m‖2

0 + ‖σh
m‖2

0 + k
m
∑

n=1

‖ūh
n + σ̄h

n‖
2
V 6 C

(

‖ŭ‖2
0 + ‖σ̆‖2

0 + ‖L‖2
L∞(0,T ;V ′)

)

. (24)

Proof. Adding (18a) and (18b), choosing v = 2k(ūh
n + σ̄h

n) and then applying the Cauchy-

Schwarz inequality and Young’s inequality yields,

‖uh
n + σh

n‖
2
0 − ‖uh

n−1 + σh
n−1‖

2
0 + k‖ūh

n + σ̄h
n‖

2
V 6 3k

(

‖BQ
n ‖2

V ′ + ‖L̄n‖
2
V ′ + ‖ūh

n‖
2
V ′

)

. (25)

Also, choosing v = 2kσ̄h
n in (18b) and estimating similarly gives,

‖σh
n‖

2
0 − ‖σh

n−1‖
2
0 6 k‖BQ

n ‖2
0 + 2k‖σ̄h

n‖
2
0 + k‖ūh

n‖
2
0. (26)

Now add 2 of (25) to 3 of (26), use (4), sum for n = 1, . . . ,m, use the triangle inequality

first to see that 2‖uh
m + σh

m‖2
0 + 3‖σh

m‖2
0 > ‖uh

m‖2
0 + ‖σh

m‖2
0 and then again to split the term

‖uh
0 + σh

0‖
2
0, use the bound on B

Q
n from Lemma 3.5 and we obtain,

‖uh
m‖2

0 + ‖σh
m‖2

0 + 2k

m
∑

n=1

‖ūh
n + σ̄h

n‖
2
V

6 4‖uh
0‖

2
0 + 7‖σh

0 ‖
2
0 + 6T‖L‖2

L∞(0,T ;V ′) + (6C2
V + 3)γ̂2T/2‖σh

0 ‖
2
0

+ (6C2
V + 3)γ̂2k

m
∑

n=1

‖σh
n‖

2
0 + (6C2

V + 3)k

m
∑

n=1

‖ūh
n‖

2
0 + 6k

m
∑

n=1

‖σ̄h
n‖

2
0.

(27)

Also note that from (18c) and (18d), ‖uh
0‖0 6 ‖ŭ‖0 and ‖σh

0 ‖0 6 ‖σ̆‖0. Using these in (27)

along with Proposition 3.7 gives,

k
m
∑

n=1

‖σh
n‖

2
0 + k

m
∑

n=1

‖ūh
n‖

2
0 + k

m
∑

n=1

‖σ̄h
n‖

2
0 6 C

(

‖ŭ‖2
V ′ + ‖σ̆‖2

0 + ‖L‖2
L∞(0,T ;V ′)

)

,

and using (4) then completes the proof.

As a straightforward corollary we note that the sum of ‖uh
n‖

2
0 is also bounded.
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Corollary 3.9 (Boundedness of discrete solutions). For methods Q = 1, 2, 4, 5, and for

any m ∈ {1, . . . , N},

‖uh
m‖2

0 + ‖σh
m‖2

0 + k
m
∑

n=1

‖uh
n‖

2
0 + k

m
∑

n=1

‖σh
n‖

2
0 + k

m
∑

n=1

‖ūh
n + σ̄h

n‖
2
V

6 C
(

‖ŭ‖2
0 + ‖σ̆‖2

0 + ‖L‖2
L∞(0,T ;V ′)

)

.

(28)

These stability estimates show that while u + σ is controlled in V by the data each

of these is only controlled individually in L2(Ω). We now move on to give the error

analysis.

4 Error estimate

In this section we derive a priori error bounds for methods Q ∈ {1, 2, 4, 5}. The way the

error estimate is proved is based on the error analysis for the simplified model in [18].

Here, however, it seems necessary to combine the approaches of calculating with u+σ

and of using the inverse Laplacian to achieve similar estimates to those in [18].

This section contains many technical lemmas. In an effort to make the material easier

to digest we have broken it down into a sequence of subsections.

In Subsection 4.1 we outline some basic properties and inequalities relating to the

nonlinear function γ. This is followed, in Subsection 4.2, with bounds on some terms

involving an elliptic projection. These bounds will be needed throughout this section.

In Subsection 4.3 two inequalities are proven that deal just with the linear parts of the

system; these are general results that still apply to all five methods Q ∈ {1, 2, 3, 4, 5}.

Then, in Subsection 4.4, we restrict ourselves to the four methods Q ∈ {1, 2, 4, 5} and

give bounds for the nonlinearity error: the difference between the nonlinearity γ(u)σ

and its approximation B
Q
n .

Finally, in Subsection 4.5 the error estimate is stated and proved by combining the

error inequalities from Section 4.3 with the nonlinearity errors from Section 4.4.

4.1 Basic properties of γ

In this subsection two small lemmas involving differences of function values of γ are

given. These will be needed later for proving the error estimate. First, though, we get

from Assumption 1.1 the following.

Lemma 4.1. If 1 6 p 6 ∞ and v,w ∈ Lp(Ω) then ‖γ(v) − γ(w)‖Lp(Ω) 6 C ′
γ‖v − w‖Lp(Ω).

Before we state the second result of this subsection, Lemma 4.3, we need the following

lemma which is an easy consequence of Taylor’s theorem.

Lemma 4.2. If f : R → R is C2(R) with |f ′′(x)| 6 α ∀x ∈ R then for all a, b ∈ R,

|f(1
2a+ 1

2b) −
1
2f(a) − 1

2f(b)| 6
α

8
|b− a|2.

Lemma 4.3. Let v,w ∈ L4(Ω). Then

‖γ(1
2v + 1

2w) − 1
2γ(v) −

1
2γ(w)‖L2(Ω) 6

C ′′
γ

8
‖v − w‖2

L4(Ω).

Proof. Apply Lemma 4.2 to γ and use Assumptions 1.1.
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4.2 Preparations for the error estimate

For proving the error estimate we invoke the elliptic projections (see [27]), u∗, σ∗ ∈ V h,

of the exact solutions which are defined via (∇u∗,∇v) = (∇u,∇v) and (∇σ∗,∇v) =

(∇σ,∇v) each for all v ∈ V h. Define also χn := uh
n − u∗n, ηn := σh

n − σ∗n, ξ := u − u∗ and

θ := σ − σ∗. To render much of what follows a little more compact we introduce the

following notation as an expedient.

Definition 4.4 (‘Eq holds’). For q = 0 or q = 1 we will say that ‘Eq holds’ whenever,

‖ζ‖H1−q(Ω) 6 Chr+q‖ψ‖Hr+1(Ω) for the pair (ζ, ψ) = (ξ, u) or for the pair (ζ, ψ) = (θ, σ). The

case q = 0 is a standard energy estimate while the case q = 1 requires elliptic regularity

of a dual problem.

What we have in mind here is that, because the ‘natural norm’ for the heat equation

involves temporally pointwise L2(Ω) norms and L2(0, T ;V ) norms, an error estimate

can easily turn out to be non-optimal in L2(Ω). The ‘Eq ’ notation will allow us to exploit

the ‘hr+q superconvergence’ of the spatial error components, χ and η (see later in (68)),

and quote an a priori error estimate that is optimal in V and also, elliptic regularity

permitting, in L2(Ω).

Lemma 4.5 (Approximation error for elliptic projection). If Eq holds and v∗ ∈ V h is the

elliptic projection of v ∈ V then, for any integers m > 0 and 1 6 s 6 r,
∥

∥

∥

∥

∂m

∂tm
(v(t) − v∗(t))

∥

∥

∥

∥

V

6 Chs

∥

∥

∥

∥

∂m

∂tm
v(t)

∥

∥

∥

∥

Hs+1(Ω)

,

provided ∂m

∂tm v(t) ∈ Hs+1(Ω).

Lemma 4.6 (Bounds involving ξn and θn). If Eq holds then, whenever the exact solutions

u and σ have the indicated regularity, we have for (κ, ζ, ψ) = (χ, ξ, u) or (κ, ζ, ψ) = (η, θ, σ)

that,

‖ζn‖H1−q(Ω) 6 Chr+q‖ψn‖Hr+1(Ω), (29)

k
m
∑

n=1

‖ζ̄n‖
2
H1−q(Ω) 6 Ch2r+2q‖ψ‖2

L∞(0,T,Hr+1(Ω)), (30)

‖κ0‖0 6 ‖ζ0‖0 6 Chr+q‖ψ̆‖Hr+1(Ω), (31)

k

m
∑

n=1

‖∂tζn‖
2
0 6 Ch2r+2q‖ψ̇‖2

L∞(0,T,Hr+1(Ω)),

k

m
∑

n=1

‖∆nψ‖
2
0 6 Ck4‖

...
ψ ‖2

L2(0,T,L2(Ω)),

The proofs of these are straightforward applications of well known techniques. See,

for example, [18].

4.3 Error inequalities

In this section we establish two inequalities which will form the basis for the error

estimate. One inequality is derived by using the inverse Laplacian and the other by

using the u+σ approach. In both cases we do not yet examine the term that contains

the nonlinearity and leave it as it is until the next section.
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Lemma 4.7 (Error inequalities). If Eq holds, u, σ ∈ W 1
∞(0, T ;Hr+1(Ω)) ∩ H3(0, T ;L2(Ω))

and ŭ, σ̆ ∈ Hr+1(Ω) then, for any ǫ > 0 and for any m ∈ {1, . . . , N},

‖Ghχm‖2
V + ‖ηm‖2

0 + k
m
∑

n=1

‖χ̄n‖
2
0 + 2k

m
∑

n=1

(BQ
n − γ(u)σn, η̄n)

6 C
(

1 +
1

ǫ

)

(k4 + h2r+2q) + ǫk

m
∑

n=1

‖η̄n‖
2
0.

(32)

Furthermore, for all m ∈ {1, . . . , N},

‖χm + ηm‖2
0 + k

m
∑

n=1

‖χ̄n + η̄n‖
2
V + 2k

m
∑

n=1

(BQ
n − γ(u)σn, χ̄n + η̄n)

6 C(k4 + h2r+2q) + 6C2
V k

m
∑

n=1

‖χ̄n‖
2
0.

(33)

Proof. Subtract the average of (5a) between tn and tn−1 from (18a) and then subtract

the average of (5b) between tn and tn−1 from (18b). Observe that (∇ξn,∇v) = 0 and

(∇θn,∇v) = 0 for any v ∈ V h and each n. This gives us,

(∂tχn, v) = (∂tξn, v) + (∆nu, v) − (∇χ̄n,∇v) − (∇η̄n,∇v) ∀v ∈ V h, (34a)

(∂tηn, v) = (∂tθn, v) + (∆nσ, v) + (χ̄n, v) − (ξ̄n, v) − (BQ
n − γ(u)σn, v) ∀v ∈ V h. (34b)

In order to prove (32), choose v = 2kGhχ̄n in (34a) and v = 2kη̄n in (34b), add the re-

sulting equations, take the sum over n = 1, . . . ,m and then apply the Cauchy-Schwarz

and Young’s inequalities to get,

‖Ghχm‖2
V + ‖ηm‖2

0 + 2k

m
∑

n=1

‖χ̄n‖
2
0 + 2k

m
∑

n=1

(BQ
n − γ(u)σn, η̄n)

6 ‖Ghχ0‖
2
V + ‖η0‖

2
0 +

1

ǫ1
k

m
∑

n=1

‖∂tξn‖
2
0 +

1

ǫ2
k

m
∑

n=1

‖∂tθn‖
2
0

+
1

ǫ3
k

m
∑

n=1

‖∆nu‖
2
0 +

1

ǫ4
k

m
∑

n=1

‖∆nσ‖
2
0 +

1

ǫ5
k

m
∑

n=1

‖ξ̄n‖
2
0

+ (ǫ1 + ǫ3)k
m
∑

n=1

‖Ghχ̄n‖
2
0 + (ǫ2 + ǫ4 + ǫ5)k

m
∑

n=1

‖η̄n‖
2
0.

Since by (4), Lemma 3.2 and (4) again ‖Ghχ̄n‖0 6 CV ‖G
hχ̄n‖V 6 CV ‖χ̄n‖V ′ 6 C2

V ‖χ̄n‖0,

we can choose ǫ1 = ǫ3 = 1/(2C4
V ) and ǫ2 = ǫ4 = ǫ5 = ǫ/3, where ǫ > 0 is arbitrary. Then,

using Lemma 3.2 and (4), ‖Ghχ0‖V 6 CV ‖χ0‖0 and applying Eq and Lemma 4.6 yields

(32).

To prove the second inequality (33), add (34a) and (34b) and choose v = 2k(χ̄n + η̄n).

Using the Cauchy-Schwarz inequality, ‖v‖0 6 CV ‖v‖V , and then a Young’s inequality

with ǫ = 1/6 to eliminate the term ‖χ̄n + η̄n‖
2
V that arises on the right hand side, we

sum over n = 1, . . . ,m to obtain,

‖χm + ηm‖2
0 − ‖χ0 + η0‖

2
0 + k

m
∑

n=1

‖χ̄n + η̄n‖
2
V + 2k

m
∑

n=1

(BQ
n − γ(u)σn, χ̄n + η̄n)

6 6C2
V k

m
∑

n=1

(

‖∂tξn‖
2
0 + ‖∂tθn‖

2
0 + ‖∆nu‖

2
0 + ‖∆nσ‖

2
0 + ‖χ̄n‖

2
0 + ‖ξ̄n‖

2
0

)

.

(35)

To complete the proof of the second inequality we use the bounds for the terms in-

volving ξn, θn, ∆nu, ∆nσ, χ0 and η0 from Lemma 4.6 and Eq.
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4.4 Nonlinearity errrors

The error inequalities which were derived in Lemma 4.7 in the previous section con-

tain terms with the nonlinearity and its approximation. These terms have the follow-

ing form

2k

m
∑

n=1

(BQ
n − γ(u)σn, v̄n) (36)

where vn = ηn in the case of (32) or vn = χn + ηn in the case of (33). In this section we

give bounds for these terms and have to distinguish between the various methods.

Since the terms (36) appear on the left-hand side of (32) and (33) we bound them from

below instead of taking the absolute value and bounding them from above. Another

reason for bounding below is that for (63), later, (36) contains helpful terms.

This section contains several lemmas. Lemma 4.8 gives a bound for the term (36) for

methods Q ∈ {2, 5}, going as far as possible without distinguishing between Q = 2 and

Q = 5. Then Lemma 4.9 does the same but for methods Q ∈ {1, 4}. Next, Lemma 4.10

has bounds for the remaining terms from the previous lemmas. These terms contain

the extrapolation errors. As opposed to the previous lemmas, here, the linearized

methods Q ∈ {1, 2} can be dealt with simultaneously, as can the nonlinear methods

Q ∈ {4, 5} (which do not use extrapolation). Lastly, Lemma 4.11 combines the previous

three lemmas and presents a unified nonlinearity error. This result will be used in

Section 4.5.

For the next three lemmas, we make no specific choice for vn in (36) and just assume

that vn ∈ L2(Ω) for n = 0, . . . , N . We will make the choice of either vn = ηn or vn = χn+ηn

only in Lemma 4.11.

Lemma 4.8 (Intermediate nonlinearity error for methods Q ∈ {2, 5}). Suppose that Eq

holds and that we have u ∈W 1
∞(0, T ;L4(Ω)) and σ ∈ L∞(0, T ;Hr+1(Ω)) ∩W 1

∞(0, T ;L4(Ω)).

Let vn ∈ L2(Ω) for n = 0, . . . , N and Q ∈ {2, 5}, then for any ǫ > 0 and any m ∈ {1, . . . , N},

2k

m
∑

n=1

(BQ
n − γ(u)σn, v̄n) > 2k

m
∑

n=1

(γ(E Q
n u

h)η̄n, v̄n) − ǫk

m
∑

n=1

‖v̄n‖
2
0 −

C

ǫ
(k4 + h2r+2q)

− 2c1k

m
∑

n=1

‖E Q
n u

h − ūn‖0 · ‖v̄n‖0,

(37)

where c1 = C ′
γ‖σ‖L∞(0,T ;L∞(Ω)).

Proof. For Q ∈ {2, 5}, setting γ̃n = γ(E Q
n uh),

B
Q
n − γ(u)σn = γ̃nσ̄

h
n − γ(u)σn

= (γ̃nσ̄
h
n − γ̃nσ̄n) + (γ̃nσ̄n − γ(u)nσ̄n) +

(

γ(u)nσ̄n − γ(u)σn

)

= γ̃nη̄n − γ̃nθ̄n +
(

γ̃n − γ(u)n
)

σ̄n − 1
4

(

γ(un) − γ(un−1)
)

(σn − σn−1),

where we have used the fact that for any real numbers a, b, c, d,

1
2(a+ b) · 1

2(c+ d) − 1
2(ac+ bd) = −1

4(a− b)(c− d).

Thus, if for convenience of notation we put,

A := γ̃nθ̄n − (γ̃n − γ(u)n) σ̄n + 1
4 (γ(un) − γ(un−1))(σn − σn−1),
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then B
Q
n − γ(u)σn = γ̃nη̄n − A, and taking the scalar product with v̄n, summing over n

and multiplying by 2k gives us,

2k

m
∑

n=1

(BQ
n − γ(u)σn, v̄n) > 2k

m
∑

n=1

(γ̃nη̄n, v̄n) − 2k

m
∑

n=1

‖A‖0‖v̄n‖0, (38)

and for the norm of A we get

‖A‖0 6 γ̂‖θ̄n‖0 + ‖γ̃n − γ(u)n‖0 · ‖σ̄n‖L∞(Ω) + 1
4‖γ(un)− γ(un−1)‖L4(Ω) · ‖σn −σn−1‖L4(Ω). (39)

Next we bound each term on the right of (39). First, ‖σ̄n‖L∞(Ω) 6 ‖σ‖L∞(0,T ;L∞(Ω)). Next,

by (13), ‖σn − σn−1‖L4(Ω) 6 k‖σ̇‖L∞(tn−1,tn;L4(Ω)) and, similarly, using Lemma 4.1 and

(13), ‖γ(un) − γ(un−1)‖L4(Ω) 6 C ′
γ k‖u̇‖L∞(tn−1,tn;L4(Ω)). Also, using Lemmas 4.1 and 4.3,

‖γ(E Q
n u

h) − γ(u)n‖0 6 ‖γ(E Q
n u

h) − γ(ūn)‖0 + ‖γ(ūn) − γ(u)n‖0,

6 C ′

γ ‖E
Q
n u

h − ūn‖0 +
C ′′

γ

8
k2‖u̇‖2

L∞(tn−1,tn;L4(Ω)).

Combining all these and inserting them in (39), we get

‖A‖0 6 γ̂‖θ̄n‖0 + c1‖E
Q
n u

h − ūn‖0 + c2 k
2, (40)

where c2 =
C′′

γ

8 ‖u̇‖2
L∞(0,T ;L4(Ω))‖σ‖L∞(0,T ;L∞(Ω)) +

C′

γ

4 ‖u̇‖L∞(0,T ;L4(Ω))‖σ̇‖L∞(0,T ;L4(Ω)). Insert-

ing (40) in (38) gives

2k
m
∑

n=1

(BQ
n − γ(u)σn, v̄n) > 2k

m
∑

n=1

(γ̃nη̄n, v̄n) − 2k
m
∑

n=1

(

γ̂‖θ̄n‖0 + c1‖E
Q
n u

h − ūn‖0 + c2 k
2
)

‖v̄n‖0,

and using Young’s inequality and rearranging finally gives us

2k

m
∑

n=1

(BQ
n − γ(u)σn, v̄n) > 2k

m
∑

n=1

(γ̃nη̄n, v̄n) −
2γ̂2

ǫ
k

m
∑

n=1

‖θ̄n‖
2
0 −

2c22T

ǫ
k4

− ǫk
m
∑

n=1

‖v̄n‖
2
0 − 2c1k

m
∑

n=1

‖E Q
n u

h − ūn‖0 · ‖v̄n‖0,

and an application of (30) from Lemma 4.6 now yields inequality (37). To conclude

we read off the regularity requirements on u and σ from the norms appearing in

(30) and in the definitions of c1 and c2. Note that σ ∈ L∞(0, T ;Hr+1(Ω)) implies σ ∈

L∞(0, T ;L∞(Ω)), since r > 1 and d 6 3.

Lemma 4.9 (Intermediate nonlinearity error for methods Q ∈ {1, 4}). Suppose that

Eq holds and also that we have ŭ, σ̆ ∈ Hr+1(Ω) and u, σ ∈ L∞(0, T ;Hr+1(Ω)). Let also

vn ∈ L2(Ω) for n = 0, . . . , N and Q ∈ {1, 4}. Then for any ǫ > 0 and for any m ∈ {1, . . . , N},

2k
m
∑

n=1

(BQ
n − γ(u)σn, v̄n) > 2k

m
∑

n=1

(γ(E Q
n u

h)η̄n, v̄n) − ǫk
m
∑

n=1

‖v̄n‖
2
0 −

C

ǫ
h2r+2q

−
2c21
ǫ
k

m−1
∑

n=1

‖χn‖
2
0 −

4γ̂2

ǫ
k

m−1
∑

n=1

‖ηn‖
2
0 − c1k

m
∑

n=1

‖E Q
n u

h − un‖0 · ‖v̄n‖0, (41)

where c1 = C ′
γ‖σ‖L∞(0,T ;L∞(Ω)).
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Proof. For Q ∈ {1, 4} we have, setting γ̃n := γ(E Q
n uh),

B
Q
n − γ(u)σn = 1

2 γ̃nσ
h
n + 1

2γ(u
h
n−1)σ

h
n−1 −

1
2γ(un)σn − 1

2γ(un−1)σn−1

= 1
2 γ̃n(σh

n − σn) + 1
2γ(u

h
n−1)(σ

h
n−1 − σn−1)

+ 1
2

(

γ̃n − γ(un)
)

σn + 1
2

(

γ(uh
n−1) − γ(un−1)

)

σn−1. (42)

We can further rearrange,

1
2 γ̃n(σh

n − σn) + 1
2γ(u

h
n−1)(σ

h
n−1 − σn−1) = γ̃n(η̄n − θ̄n) − 1

2

(

γ̃n − γ(uh
n−1)

)

(ηn−1 − θn−1).

Inserting this in (42) gives

B
Q
n − γ(u)σn = γ̃n(η̄n − θ̄n) − 1

2

(

γ̃n − γ(uh
n−1)

)

(ηn−1 − θn−1)

+ 1
2

(

γ̃n − γ(un)
)

σn + 1
2

(

γ(uh
n−1) − γ(un−1)

)

σn−1.

Thus, taking the inner product with v̄n, multiplying by 2k, summing up this equation

for n = 1, . . . ,m and using the Cauchy-Schwarz inequality gives,

2k

m
∑

n=1

(BQ
n − γ(u)σn, v̄n) > 2k

m
∑

n=1

(γ̃nη̄n, v̄n) − 2k

m
∑

n=1

‖γ̃nθ̄n‖0 · ‖v̄n‖0

− k

m
∑

n=1

‖(γ̃n − γ(uh
n−1))(ηn−1 − θn−1)‖0 · ‖v̄n‖0

− k
m
∑

n=1

‖(γ̃n − γ(un))σn + (γ(uh
n−1) − γ(un−1))σn−1‖0 · ‖v̄n‖0.

(43)

We bound some of the terms in this inequality now. Firstly,

‖(γ̃n − γ(uh
n−1))(ηn−1 − θn−1)‖0 6 2γ̂(‖ηn−1‖0 + ‖θn−1‖0). (44)

Secondly,

‖(γ̃n − γ(un))σn + (γ(uh
n−1) − γ(un−1))σn−1‖0

6 ‖γ̃n − γ(un)‖0 · ‖σn‖L∞(Ω) + ‖γ(uh
n−1) − γ(un−1)‖0 · ‖σn−1‖L∞(Ω)

6 ‖σ‖L∞(0,T,L∞(Ω))

(

‖γ(E Q
n u

h) − γ(un)‖0 + ‖γ(uh
n−1) − γ(un−1)‖0

)

6 C ′

γ ‖σ‖L∞(0,T,L∞(Ω))

(

‖E Q
n u

h − un‖0 + ‖uh
n−1 − un−1‖0

)

,

where we have used Lemma 4.1. Defining c1 = C ′
γ ‖σ‖L∞(0,T,L∞(Ω)), we obtain

‖(γ̃n−γ(un))σn +(γ(uh
n−1)−γ(un−1))σn−1‖0 6 c1‖E

Q
n u

h−un‖0 +c1
(

‖χn−1‖0 +‖ξn−1‖0

)

. (45)

Using (44) and (45) in (43) and applying several Young’s inequalities yields

2k

m
∑

n=1

(BQ
n − γ(u)σn, v̄n) > 2k

m
∑

n=1

(γ̃nη̄n, v̄n) − (ǫ1 + ǫ2 + ǫ3)k

m
∑

n=1

‖v̄n‖
2
0

−
γ̂2

ǫ1
k

m
∑

n=1

‖θ̄n‖
2
0 −

γ̂2

ǫ2
k

m
∑

n=1

(‖ηn−1‖0 + ‖θn−1‖0)
2

−
c21
4ǫ3

k

m
∑

n=1

(‖χn−1‖0 + ‖ξn−1‖0)
2 − c1k

m
∑

n=1

‖E Q
n u

h − un‖0 · ‖v̄n‖0.

Let ǫ > 0 be arbitrary and choose ǫ1 = ǫ3 = ǫ/4 and ǫ2 = ǫ/2, and then an application

of (30) and (31) from Lemma 4.6 finishes the proof. This last step also requires the

regularity assumptions on u, σ, ŭ and σ̆.
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Lemma 4.10 (Extrapolation errors). Let Eq hold and assume that ŭ, σ̆ ∈ Hr+1(Ω) and

u ∈ L∞(0, T ;Hr+1(Ω)). For methods Q ∈ {1, 2} we also suppose that u ∈ H2(0, T ;L2(Ω)).

Let also vn ∈ L2(Ω) for n = 0, . . . , N such that for the first element ‖v0‖
2
0 6 Ch2r+2q. Then

there is a constant C > 0 such that for all ǫ, ǫ3, ǫ4 > 0 and for all m ∈ {1, . . . , N} these

inequalities hold:

for methods Q = 1 and Q = 2,

k

m
∑

n=1

‖E 1
nu

h − un‖0 · ‖v̄n‖0

2k
m
∑

n=1

‖E 2
nu

h − ūn‖0 · ‖v̄n‖0























6 C · (1 + 1
ǫ3

+ 1
ǫ4

) · (k4 + h2r+2q) + ǫ4‖v1‖
2
0

+ ǫ3k
m
∑

n=2

‖v̄n‖
2
0 +

10

ǫ3
k

m−1
∑

n=1

‖χn‖
2
0,

(46)

and for methods Q = 4 and Q = 5,

k
m
∑

n=1

‖E 4
nu

h − un‖0 · ‖v̄n‖0

2k

m
∑

n=1

‖E 5
nu

h − ūn‖0 · ‖v̄n‖0























6 ǫk

m
∑

n=1

‖v̄n‖
2
0 +

C

ǫ
h2r+2q +

2

ǫ
k

m−1
∑

n=1

‖χn‖
2
0 +

4

ǫ
k‖χ̄m‖2

0. (47)

Proof. To have a common notation for all methods, we define for this proof,

EQ
n :=

{

‖E Q
n uh − un‖0 if Q ∈ {1, 4},

2‖E Q
n uh − ūn‖0 if Q ∈ {2, 5}.

(48)

To start, we examine EQ
n for each method separately. Firstly, for Q = 1 and n > 2,

using the Taylor estimate (16):

‖E 1
nu

h − un‖0 = ‖2uh
n−1 − uh

n−2 − un‖0

= ‖2(uh
n−1 − un−1) − (uh

n−2 − un−2) − (un − 2un−1 + un−2)‖0

6 2‖uh
n−1 − un−1‖0 + ‖uh

n−2 − un−2‖0 + ‖un − 2un−1 + un−2‖0

6 2‖χn−1‖0 + 2‖ξn−1‖0 + ‖χn−2‖0 + ‖ξn−2‖0 + Ck3/2‖ü‖L2(tn−2,tn;L2(Ω)),

(49)

while for Q = 1 and n = 1, using the Taylor estimate (13) and (31),

‖E 1
1 u

h − u1‖0 = ‖uh
0 − u1‖0 = ‖(uh

0 − u0) − (u1 − u0)‖0 = ‖(χ0 − ξ0) − (u1 − u0)‖0

6 ‖χ0‖0 + ‖ξ0‖0 + k‖∂tu1‖ 6 2‖ξ0‖0 + k‖u̇‖L∞(0,t1;L2(Ω)).
(50)

Secondly, for Q = 2 and n > 2, using the Taylor estimate (16),

‖E 2
nu

h − ūn‖0 = ‖3
2u

h
n−1 −

1
2u

h
n−2 −

1
2un − 1

2un−1‖0

= ‖3
2 (uh

n−1 − un−1) −
1
2 (uh

n−2 − un−2) −
1
2(un − 2un−1 + un−2)‖0

6 ‖3
2 (χn−1 − ξn−1) −

1
2(χn−2 − ξn−2)‖0 + 1

2‖un − 2un−1 + un−2‖0

6 3
2‖χn−1‖0 + 1

2‖χn−2‖0 + 3
2‖ξn−1‖0

+ 1
2‖ξn−2‖0 + Ck3/2‖ü‖L2(tn−2,tn;L2(Ω)),

(51)

while for Q = 2 and n = 1, using the Taylor estimate (13) and (31),

‖E 2
1 u

h − ū1‖0 = ‖uh
0 − ū1‖0 = ‖uh

0 − u0 −
1
2(u1 − u0)‖0 = ‖χ0 − ξ0 −

1
2k∂tu1‖0

6 ‖χ0‖0 + ‖ξ0‖0 + 1
2k‖∂tu1‖0 6 2‖ξ0‖0 + 1

2k‖u̇‖L∞(0,t1;L2(Ω)).
(52)
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For Q = 4, we obtain

‖E 4
nu

h − un‖0 = ‖uh
n − un‖0 = ‖χn − ξn‖0 6 ‖χn‖0 + ‖ξn‖0. (53)

Finally, for Q = 5, we obtain

‖E 5
nu

h − ūn‖0 = ‖ūh
n − ūn‖0 = ‖χ̄n − ξ̄n‖0 6 ‖χ̄n‖0 + ‖ξ̄n‖0. (54)

In order to prove the first inequality, (46), we observe that for Q = 1 and Q = 2, from

(49), (50), (51) and (52),

EQ
n 6

{

3‖χn−1‖0 + ‖χn−2‖0 + Chr+q + Ck3/2‖ü‖L2(tn−2,tn;L2(Ω)) if n > 2,

Chr+q + k‖u̇‖L∞(0,t1;L2(Ω)) if n = 1,
(55)

where the bounds for ξn from (29) have also been used. Now we form the term on the

left-hand side of (46), split the sum, and use the fact that ‖v̄1‖
2
0 6 1

2(‖v1‖
2
0 + ‖v0‖

2
0),

k

m
∑

n=1

EQ
n ‖v̄n‖0 6 k

m
∑

n=2

EQ
n ‖v̄n‖0 +

k

2
EQ

1 (‖v1‖0 + ‖v0‖0).

Using Young’s inequality gives us

k

m
∑

n=1

EQ
n ‖v̄n‖0 6

1

4ǫ3
k

m
∑

n=2

(EQ
n )2 + ǫ3k

m
∑

n=2

‖v̄n‖
2
0 +

(1

4
+

1

4ǫ4

)

(k
2E

Q
1 )2 + ǫ4‖v1‖

2
0 + ‖v0‖

2
0.

Inserting the bounds for EQ
n from (55), we get, using norm equivalence in R

n,

k
m
∑

n=1

EQ
n · ‖v̄n‖0 6

1

4ǫ3
k

m
∑

n=2

(

36‖χn−1‖
2
0 + 4‖χn−2‖

2
0 + Ch2r+2q

+Ck3‖ü‖2
L2(tn−2,tn;L2(Ω))

)

+ ǫ3k

m
∑

n=2

‖v̄n‖
2
0

+ C(1 + 1
ǫ4

)k2
(

Ch2r+2q + 2k2‖u̇‖2
L∞(0,t1;L2(Ω))

)

+ ǫ4‖v1‖
2
0 + ‖v0‖

2
0.

Now since
∑m

n=2‖ü‖
2
L2(tn−2,tn;L2(Ω)) 6 2‖ü‖2

L2(0,T ;L2(Ω)),

k
m
∑

n=1

EQ
n · ‖v̄n‖0 6 C(1 + 1

ǫ3
+ 1

ǫ4
)h2r+2q + C

ǫ3
k4‖ü‖2

L2(0,T ;L2(Ω)) + C(1 + 1
ǫ4

)k4‖u̇‖2
L∞(0,t1;L2(Ω))

+
10

ǫ3
k

m−1
∑

n=0

‖χn‖
2
0 + ǫ3k

m
∑

n=2

‖v̄n‖
2
0 + ǫ4‖v1‖

2
0 + ‖v0‖

2
0.

To conclude the proof of (46) note that by assumption ‖v0‖
2
0 6 Ch2r+2q and that by (31)

the summation of ‖χn‖
2
0 can start at n = 1, thus we arrive at (46).

To prove the second inequality, (47) for Q = 4 and Q = 5, we also form the term on the

left-hand side of (47) and use Young’s inequality (3) to get

k

m
∑

n=1

EQ
n · ‖v̄n‖0 6

1

4ǫ
k

m
∑

n=1

(EQ
n )2 + ǫk

m
∑

n=1

‖v̄n‖
2
0. (56)

Now for Q = 4 from (53) we have E4
n 6 ‖χn‖0 + ‖ξn‖0 and since χm = 2χ̄m − χm−1 we

have,

m
∑

n=1

(E4
n)2 6 2

m
∑

n=1

‖χn‖
2
0 + 2

m
∑

n=1

‖ξn‖
2
0 6 16‖χ̄m‖2

0 + 6

m−1
∑

n=1

‖χn‖
2
0 + 2

m
∑

n=1

‖ξn‖
2
0.
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For Q = 5 we have from (54) that E5
n 6 2(‖χ̄n‖0 + ‖ξ̄n‖0), and so, using (12)

m
∑

n=1

(E5
n)2 6 8

m
∑

n=1

‖χ̄n‖
2
0 + 8

m
∑

n=1

‖ξ̄n‖
2
0 6 8‖χ̄m‖2

0 + 8

m−1
∑

n=1

‖χn‖
2
0 + 4‖χ0‖

2
0 + 8

m
∑

n=1

‖ξ̄n‖
2
0.

To combine methods Q = 4 and Q = 5 we observe that for both these methods, after

multiplying by k and using (31) and (29)

k
m
∑

n=1

(EQ
n )2 6 16k‖χ̄m‖2

0 + 8k
m−1
∑

n=1

‖χn‖
2
0 + Ch2r+2q,

and inserting this into (56) gives (47). The regularity assumptions arise because we

have used (31) and (29), as well as (13) and (16) for Q = 1 and Q = 2. We also recalled

the embedding H2(0, T ;L2(Ω)) →֒ W 1
∞(0, T ;L2(Ω)).

Now the results from the previous lemmas can be combined to get the lower bounds

on the term (36). Note that in the next lemma the nonlinear methods Q = 4 and Q = 5

require one extra term in the bound (57), as compared to the linearized methods. This

term will later give a maximum value for the timestep size k for Q = 4 and Q = 5.

Lemma 4.11 (Nonlinearity errors for methods Q ∈ {1, 2, 4, 5}). If ŭ, σ̆ ∈ Hr+1(Ω) and u ∈

L∞(0, T ;Hr+1(Ω)) ∩ W 1
∞(0, T ;L4(Ω)) ∩ H2(0, T ;L2(Ω)) along with σ ∈ L∞(0, T ;Hr+1(Ω)) ∩

W 1
∞(0, T ;L4(Ω)) then, if Eq holds, for any method Q ∈ {1, 2, 4, 5} there are constants

C, c3, c4, c
Q
5 , c6, c7, c8, c9 such that for any m ∈ {1, . . . , N} we have,

2k

m
∑

n=1

(BQ
n − γ(u)σn, η̄n) > γ̌k

m
∑

n=1

‖η̄n‖
2
0 − C(k4 + h2r+2q) − c3 k

m−1
∑

n=1

‖χn‖
2
0

− c4 k

m−1
∑

n=1

‖ηn‖
2
0 − cQ5 k‖χm‖2

0 −
1

2
‖η1‖

2
0,

(57)

and also

2k
m
∑

n=1

(BQ
n − γ(u)σn, χ̄n + η̄n) > −C(k4 + h2r+2q) −

1

2
‖χ1 + η1‖

2
0 − c6 k

m−1
∑

n=1

‖χn‖
2
0

− c7 k

m−1
∑

n=1

‖ηn‖
2
0 − c8 k‖χ̄m‖2

0 − c9 k‖η̄m‖2
0,

(58)

where the constants depend on u and σ, but are independent of h and k. In fact c1 =

C ′
γ‖σ‖L∞(0,T ;L∞(Ω)), c3 = 28c21/γ̌, c4 = 8γ̂2/γ̌, c6 = 4 + 24c21, c7 = 4 + 9γ̂2, c8 = 4 + 8c21,

c9 = 4 + γ̂2 and cQ5 = 0 if Q ∈ {1, 2} or cQ5 =
4(C′

γ )2

γ̌ ‖σ‖2
L∞(0,T ;L∞(Ω)) if Q ∈ {4, 5}.

Proof. To combine the bounds for all methods, we firstly compare (37) and (41) and

thus obtain for any Q ∈ {1, 2, 4, 5} and any ǫ1 > 0,

2k
m
∑

n=1

(BQ
n − γ(u)σn, v̄n) > 2k

m
∑

n=1

(γ(E Q
n u

h)η̄n, v̄n) − ǫ1k
m
∑

n=1

‖v̄n‖
2
0 −

C

ǫ1
(k4 + h2r+2q)

−
2c21
ǫ1
k

m−1
∑

n=1

‖χn‖
2
0 −

4γ̂2

ǫ1
k

m−1
∑

n=1

‖ηn‖
2
0 − c1k

m
∑

n=1

EQ
n ‖v̄n‖0,

(59)
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where EQ
n is defined as in (48). Secondly, by comparing (46) and (47) we get

k
m
∑

n=1

EQ
n · ‖v̄n‖0 6 C · (1 + 1

ǫ3
+ 1

ǫ4
) · (k4 + h2r+2q) + ǫ4‖v1‖

2
0

+ ǫ3k

m
∑

n=1

‖v̄n‖
2
0 +

10

ǫ3
k

m−1
∑

n=1

‖χn‖
2
0 +

4IQ

ǫ3
k‖χ̄m‖2

0,

where IQ is an indicator for the method, which we define as IQ = 1 for Q ∈ {4, 5} and

IQ = 0 for Q ∈ {1, 2}. Inserting this in (59) gives

2k
m
∑

n=1

(BQ
n − γ(u)σn, v̄n) > 2k

m
∑

n=1

(γ(E Q
n u

h)η̄n, v̄n) − (ǫ1 + c1ǫ3)k
m
∑

n=1

‖v̄n‖
2
0

−C(1 + 1
ǫ1

+ 1
ǫ3

+ 1
ǫ4

)(k4 + h2r+2q)

−
(2c21
ǫ1

+
10c1
ǫ3

)

k

m−1
∑

n=1

‖χn‖
2
0 −

4γ̂2

ǫ1
k

m−1
∑

n=1

‖ηn‖
2
0 −

4c1I
Q

ǫ3
k‖χ̄m‖2

0 − c1ǫ4‖v1‖
2
0.

Let ǫ > 0 be arbitrary and choose ǫ1 = ǫ/2, ǫ3 = ǫ/(2c1) and ǫ4 = 1/(2c1). This yields

2k
m
∑

n=1

(BQ
n − γ(u)σn, v̄n) > 2k

m
∑

n=1

(γ(E Q
n u

h)η̄n, v̄n) − ǫk
m
∑

n=1

‖v̄n‖
2
0 − C(1 + 1

ǫ )(k
4 + h2r+2q)

−
24c21
ǫ
k

m−1
∑

n=1

‖χn‖
2
0 −

8γ̂2

ǫ
k

m−1
∑

n=1

‖ηn‖
2
0 −

8c21I
Q

ǫ
k‖χ̄m‖2

0 −
1

2
‖v1‖

2
0. (60)

To prove (57) choose vn = ηn in (60) and use (γ(E Q
n uh)η̄n, η̄n) > γ̌‖η̄n‖

2
0. At the same

time, to get a term with ‖χm‖2
0 instead of ‖χ̄m‖2

0, we also notice that ‖χ̄m‖2
0 6 1

2(‖χm‖2
0 +

‖χm−1‖
2
0) and hide the new ‖χm−1‖

2
0 in the sum of ‖χn‖

2
0. Choosing ǫ = γ̌ gives (57).

Next, choose vn = χn + ηn and ǫ = 1 in (60) and obtain, since (γ(E Q
n uh)η̄n, χ̄n + η̄n) >

−γ̂‖η̄n‖0 · ‖χ̄n + η̄n‖0,

2k

m
∑

n=1

(BQ
n − γ(u)σn, χ̄n + η̄n) > −2γ̂k

m
∑

n=1

‖η̄n‖0 · ‖χ̄n + η̄n‖0 − k

m
∑

n=1

‖χ̄n + η̄n‖
2
0

−C(k4 + h2r+2q) − 24c21k
m−1
∑

n=1

‖χn‖
2
0 − 8γ̂2k

m−1
∑

n=1

‖ηn‖
2
0 − 8c21I

Qk‖χ̄m‖2
0 −

1

2
‖χ1 + η1‖

2
0. (61)

Now using Young’s inequality (3) gives 2γ̂‖η̄n‖0‖χ̄n + η̄n‖0 6 γ̂2‖η̄n‖
2
0 + ‖χ̄n + η̄n‖

2
0, so we

can write for the first two terms on the right-hand side of (61), using also (12),

2γ̂k

m
∑

n=1

‖η̄n‖0 · ‖χ̄n + η̄n‖0 + k

m
∑

n=1

‖χ̄n + η̄n‖
2
0 6 γ̂2k

m
∑

n=1

‖η̄n‖
2
0 + 2k

m
∑

n=1

‖χ̄n + η̄n‖
2
0

6 (γ̂2 + 4)k
(

‖η̄m‖2
0 +

m−1
∑

n=1

‖ηn‖
2
0 + 1

2‖η0‖
2
0

)

+ 4k
(

‖χ̄m‖2
0 +

m−1
∑

n=1

‖χn‖
2
0 + 1

2‖χ0‖
2
0

)

.

Inserting this into (61) and using (31) we finally obtain (58), the second inequality we

wanted to prove. The regularity requirements are obtained from those in Lemmas 4.8,

4.9 and 4.10, but from now on we do not distinguish between the methods anymore

and just take the maximum requirements.
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4.5 Error estimate

In this section we combine the error inequalities in Lemma 4.7 from Section 4.3 with

the nonlinearity errors in Lemma 4.11 from Section 4.4. As it turns out, a combined

approach that uses both the inverse Laplacian and the u + σ arguments will remove

the condition on the timestep size k for the linearized methods.

Theorem 4.12 (a priori error estimate). Suppose that Eq holds, that ŭ, σ̆ ∈ Hr+1(Ω), and

that the exact solution satisfies u, σ ∈W 1
∞(0, T ;Hr+1(Ω)) ∩ H3(0, T ;L2(Ω)) with σ̆|ΓD

= 0.

For the nonlinear methods Q = 4 and Q = 5, we also suppose that k is sufficiently small:

k < k̂ = γ̌ ·
(

128c21 max
{

2 + 4c21 + 3C2
V , (4 + γ̂2)/γ̌

}

)−1
,

where c1 = C ′
γ‖σ‖L∞(0,T ;L∞(Ω)). Then for methods Q ∈ {1, 2, 4, 5}, we have the following

error estimate,

max
16m6N

{

‖u(tm) − uh
m‖0 + ‖σ(tm) − σh

m‖0

}

+ hq

(

k
N
∑

n=1

‖ūn + σ̄n − ūh
n − σ̄h

n‖
2
V

)1/2

6 C(k2 + hr+q).
(62)

Proof. Firstly, use (57) in (32), omit the ‖Ghχm‖V -term and choose ǫ = γ̌/2 to get,

‖ηm‖2
0 + k

m
∑

n=1

‖χ̄n‖
2
0 +

γ̌

2
k

m
∑

n=1

‖η̄n‖
2
0

6 C(k4 + h2r+2q) + c3k
m−1
∑

n=1

‖χn‖
2
0 + c4k

m−1
∑

n=1

‖ηn‖
2
0 + cQ5 k‖χm‖2

0 +
1

2
‖η1‖

2
0.

(63)

For m = 1, the term 1
2‖η1‖

2
0 in (63) can be absorbed into the left-hand side, and,

omitting the other terms on the left-hand side, we obtain

1

2
‖η1‖

2
0 6 C(k4 + h2r+2q) + cQ5 k‖χ1‖

2
0.

Inserting this again into (63) yields

‖ηm‖2
0 + k

m
∑

n=1

‖χ̄n‖
2
0 +

γ̌

2
k

m
∑

n=1

‖η̄n‖
2
0

6 C(k4 + h2r+2q) + c3k

m−1
∑

n=1

‖χn‖
2
0 + c4k

m−1
∑

n=1

‖ηn‖
2
0 + cQ5 k‖χm‖2

0 + cQ5 k‖χ1‖
2
0.

Depending on whether m = 1 or m > 1, this last term can either be combined with the

‖χm‖2
0-term or with the sum of ‖χn‖

2
0. Hence for any m > 1 we can write:

‖ηm‖2
0 + k

m
∑

n=1

‖χ̄n‖
2
0 +

γ̌

2
k

m
∑

n=1

‖η̄n‖
2
0

6 C(k4 + h2r+2q) + (c3 + cQ5 )k

m−1
∑

n=1

‖χn‖
2
0 + c4k

m−1
∑

n=1

‖ηn‖
2
0 + 2cQ5 k‖χm‖2

0.

(64)
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To get a second inequality that can be combined with this one we use (58) and (31) in

(33) to get,

‖χm + ηm‖2
0 + k

m
∑

n=1

‖χ̄n + η̄n‖
2
V 6 C(k4 + h2r+2q) + c10k

m−1
∑

n=1

‖χn‖
2
0 + c7k

m−1
∑

n=1

‖ηn‖
2
0

+ c11k‖χ̄m‖2
0 + c9k‖η̄m‖2

0 +
1

2
‖χ1 + η1‖

2
0,

(65)

where the ‖χ̄n‖0-term from (33) has been split up and added to the other terms, giving

c10 = c6 + 6C2
V and c11 = c8 + 6C2

V .

For m = 1, the term 1
2‖χ1 + η1‖

2
0 in (65) cancels with the left-hand side, and, omitting

the other term on the left-hand side, we obtain

1

2
‖χ1 + η1‖

2
0 6 C(k4 + h2r+2q) + c11k‖χ̄1‖

2
0 + c9k‖η̄1‖

2
0.

Inserting this into (65) and adding extra terms (for convenience of writing) to the right

hand side gives,

‖χm + ηm‖2
0 + k

m
∑

n=1

‖χ̄n + η̄n‖
2
V 6 C(k4 + h2r+2q) + c10k

m−1
∑

n=1

‖χn‖
2
0 + c7k

m−1
∑

n=1

‖ηn‖
2
0

+ 2c11k

m
∑

n=1

‖χ̄n‖
2
0 + 2c9k

m
∑

n=1

‖η̄n‖
2
0.

(66)

Now we define c12 = max{2c11, 4c9/γ̌}. Multiplying (64) by c12 and adding it to (66) gives,

after noting that 2c11 6 c12 and 2c9 6 c12γ̌/2:

‖χm + ηm‖2
0 + c12‖ηm‖2

0 + k

m
∑

n=1

‖χ̄n + η̄n‖
2
V

6 C(k4 + h2r+2q) + Ck
m−1
∑

n=1

(‖χn‖
2
0 + ‖ηn‖

2
0) + 2c12c

Q
5 k‖χm‖2

0.

(67)

If we set c13 = max{4, 5/c12}, then

2‖χm‖2
0 + ‖ηm‖2

0 6 2(‖χm + ηm‖0 + ‖ηm‖0)
2 + ‖ηm‖2

0 6 4‖χm + ηm‖2
0 + 5‖ηm‖2

0

6 4‖χm + ηm‖2
0 +

5

c12
c12‖ηm‖2

0 6 c13(‖χm + ηm‖2
0 + c12‖ηm‖2

0),

and hence ‖χm + ηm‖2
0 + c12‖ηm‖2

0 > c−1
13 (2‖χm‖2

0 + ‖ηm‖2
0). Using this in (67) and multi-

plying by c13 gives

2‖χm‖2
0 + ‖ηm‖2

0 + c13k

m
∑

n=1

‖χ̄n + η̄n‖
2
V

6 C(k4 + h2r+2q) + Ck

m−1
∑

n=1

(‖χn‖
2
0 + ‖ηn‖

2
0) + 2c13c12c

Q
5 k‖χm‖2

0.

For the methods Q = 4 and Q = 5, where cQ5 > 0, we now need that k 6 k̂ = 1/(2c13c12c
Q
5 ),

so that the term ‖χm‖2
0 on the right-hand side can be absorbed into the left-hand side.

Hence, for all Q = 1, 2, 4, 5 we get

‖χm‖2
0 + ‖ηm‖2

0 + c13k

m
∑

n=1

‖χ̄n + η̄n‖
2
V 6 C(k4 + h2r+2q) + Ck

m−1
∑

n=1

(‖χn‖
2
0 + ‖ηn‖

2
0).
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Figure 1: Convergence curves showing the value of the error on the right in Theo-

rem 4.12 with the temporal (left) and spatial (right) discretisation parameters. Those

curves on the left are based on Tables 7.11, 7.13, 7.15, 7.17, 7.19 in [5] and those on

the right on Tables 7.55, 7.57, 7.59, 7.61, 7.63.

Using the discrete Gronwall lemma, and multiplying by a suitable constant, we get

‖χm‖2
0 + ‖ηm‖2

0 + k
m
∑

n=1

‖χ̄n + η̄n‖
2
V 6 C(k4 + h2r+2q). (68)

Finally since un − uh
n = ξn − χn and σn − σh

n = θn − ηn we use the triangle inequality,

(68), Eq and Lemma 4.6 and arrive at the error estimate. Tracking the constants in k̂

results in the expression given in the theorem and this completes the proof.

5 Numerical results

In this section we give some numerical evidence for the convergence rates claimed

in Theorem 4.12, and also some computed solutions indicating why u + σ is a well-

behaved quantity as compared with u and σ individually. All results have been ob-

tained with code based on the Alberta library, [20].

These numerical experiments are confined to two spatial dimensions and piecewise

linear finite element approximation. Our numerics are a sampling of the extensive set

of results given in [5], which contains results in one, two and three spatial dimensions,

for polynomial degrees up to and including four, for two forms of γ and for imposed

and non-imposed boundary conditions on σ. Following [9, 10] we take γ as

γ(u) =
1

2
(γ̂ + γ̌) +

1

2
(γ̂ − γ̌) tanh

(

u− ua

∆

)

, (69)

with γ̌ = 1, γ̂ = 100, ua = 0.5 and ∆ = 0.05. It is easy to see that Assumption 1.1 is

satisfied.

For the first set of results we take Ω = (0, 1)2 and T = 1 so that the time step is

given by k = N−1. The mesh on Ω was generated by subdividing each coordinate

direction into M equal intervals along each axis to form a mesh of M2 squares of side-

length h = M−1. The triangulation was produced by partitioning each square into four

triangles, as illustrated by ⊠.
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Figure 2: Sharp front in 2D: Numerical solution u at t = 1.8 (left) and t = 3.6 (right)

Figure 3: Sharp front in 2D: Numerical solution u at t = 15 (left) and t = 30 (right).

Figure 4: Sharp front in 2D: Numerical solution u+σ at t = 1.8 (left) and t = 3.6 (right).

Figure 5: Sharp front in 2D: Numerical solution u+ σ at t = 15 (left) and t = 30 (right).
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To demonstrate the convergence rates we add a term f̂ as in (1b) and then substitute

an exact solution into the differential equations to find f , f̂ and the values of the

boundary and initial data. In these convergence tests Dirichlet boundary data are

specified on {(x, y) ∈ ∂Ω: x = 0} with the remainder of the boundary having Neumann

data.

For the methods Q ∈ {1, 2, 4, 5} the approximation of the exact solution given by u =

(x + y) cos(t) and σ = (2x + y)t3 has no spatial discretisation error and is used to

illustrate the temporal convergence rate. For Q = 3 we use the simpler form for u

given by u = cos(t).

On the other hand, the exact solution u = sin(πx) sin(πy) and σ = (1 − t) exp(x + y) is

used to demonstrate the spatial convergence rate.

The error plots are shown in Figure 1, with the inscribed triangles showing the slope

corresponding to a convergence rate of k2 ∝ N−2 (left) and h2 ∝ M−2 (right). For the k

convergence we took M = 1 while for the h convergence k was taken as 1 for methods

Q ∈ {1, 2, 3} and k = 0.0001 for Q ∈ {4, 5}. This is because the nonlinear systems appear

to require a very small value of k/h in order to become meaningfully solvable. (The

nonlinear system was solved by a fixed point iteration until either 1000 iterations were

reached or the Euclidean norm of the residual fell below 10−13, see [5] for more on

this.) It is clear that in all cases there is good agreement with Theorem 4.12 and that,

as expected, the h-convergence is independent of the method chosen.

The second set of results is included only to illustrate the possibility of very sharp

fronts evolving in both u and σ while the sum, u + σ, apparently remains smooth.

Note that we have no exact solution in this case and so impose no Dirichlet boundary

conditions on σ (strictly, therefore, the foregoing error analysis does not apply). The

domain Ω remains as (0, 1)2 but now the Dirichlet boundary is {(x, y) ∈ ∂Ω: x = 0 or x =

1}. The function uD = (1 − e−t/2)y is prescribed on {x = 0} and uD = 0 on {x = 1}, the

remainder of the boundary has homogeneous Neumann data.

The numerical solution is computed up to T = 30 with method Q = 3. Snapshots of

the computed u are shown in Figures 2 and 3, and of the computed u+ σ in Figures 4

and 5. Although we do not show it, it is apparent that σ must also have a sharp front

that additively cancels the one in u.

6 Conclusion

For the non-Fickian polymer diffusion problem as described in [9, 10] we have pre-

sented five fully discrete approximations, derived a priori stability and error estimates

for four of them and given numerical results for all five.

Three of these schemes are particularly attractive in that the discrete problems are

linear. This is achieved through extrapolation. The numerical evidence suggests that

these extrapolation schemes are superior to the nonlinear discrete schemes that arise

from the intuitively ‘more accurate’ non-extrapolated schemes.
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