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Abstract. We rigorously prove results on spiky patterns for the Gierer-Meinhardt system [5] with
a large number of jump discontinuities in the diffusion coefficient of the inhibitor. Using numerical
computations in combination with a Turing-type instability analysis, this system has been investigated
by Benson, Maini and Sherratt [1], [3], [9].

We first review results on the case of two segments given in [25], concerning one-spike steady states:
the existence of interior spikes located away from the jump discontinuity was established, along with a
necessary condition for the position of the spike, namely, the spike can be located in one-and-only-one of
the two subintervals separated by the jump discontinuity of the inhibitor diffusivity. This localization
principle for a spike does not hold for constant inhibitor diffusivities.

Secondly, there also exist spikes whose distance from the jump discontinuity is of the same order as
its spatial extent. It turns out that, generically, there either exist two different one-spike steady states
near the jump discontinuity or there is none.

In this paper, we prove a conjecture raised in [25]: We show that one of the spikes is stable while the
other is unstable, using an eigenfunction constructed by outer and inner expansions. Moreover, since our
argument involves only the two immediate segments around the jump discontinuity, the result holds for
any number of segments.

Next, we extend the interior spike results on the case of two segments (one jump) to an arbitrary
number of segments. By analyzing the derivatives of the regular part of a Green’s function, we give a
simple classification of interior segments according to the signs at both ends of the segment: There exists
a stable spike, an unstable spike or there does not exist any spike in the segment which is away from the
jump discontinuities.

We also give explicit formulas of the solutions and conditions for existence for the case of three
segments, which has one interior segment.

Finally, we confirm our results by illustrating the long-term dynamical behavior of the system using
numerical computations. We observe a moving spike which converges to a stationary interior spike, a
spike near a jump discontinuity or a boundary spike.

Dedicated to Professor Masayasu Mimura on the occasion of his 65th birthday

1. Introduction

For systems with piecewise constant diffusion coefficients, Turing instabilities have been computed

numerically and investigated analytically by Benson, Maini and Sherratt [1], [3], [9], and results on

dispersion relations and typical solution profiles have been obtained. In particular, the authors showed

that the spatial variation of diffusion coefficients may produce isolated patterns and asymmetric spatially

oscillating patterns which are not seen in standard homogeneous Turing systems.

Biological applications of these effects include the anterior-posterior asymmetry of skeletal elements

in the limb and experimental results on double anterior limbs [27], [9]. The fact that for asymmet-

ric solutions different peaks may have different amplitudes is a possible explanation for the common

observation that digits vary in length.
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We give a rigorous mathematical proof of the influence of discontinuous diffusion coefficients on the

qualitative and quantitative properties of spiky patterns in a reaction-diffusion system.

In particular, we study the Gierer-Meinhardt system [5], which is given by




at = ε2axx − a + a2

h
,

τht = (D(x)hx)x − h + a2.
(1.1)

Note that h acts as an inhibitor to a, whereas a acts as an activator to both a and h. This motivates the

name activator-inhibitor system. In this paper, we assume x ∈ (−1, 1), 0 < ε << 1 is a small diffusion

constant, τ ≥ 0 is a time relaxation constant, and

D(x) =





D1, −1 < x < x1,

Di, xi−1 < x < xi,

DN , xN−1 < x < 1,

(1.2)

where 0 < Di and Di 6= Di+1. Note that the inhibitor diffusivity D(x) has a jump discontinuity at xi.

We study the equation (1.1) on the interval (−1, 1) with Neumann boundary conditions:

ax(−1) = ax(1) = 0, hx(−1) = hx(1) = 0. (1.3)

The matching conditions at xi are that D(x)hx is a continuous function at x = xi.

We begin by reviewing results in [25], which corresponds to the case N = 2. It was established that

there exists two types of spiky solutions to this system: interior spikes, which has O(1) distance from

the jump discontinuity of the inhibitor diffusivity (there is only one jump), and spike near the jump,

which has O(ε) distance from the jump discontinuity.

For the interior-spike type solution, a precise condition for its existence was found (Theorem 3.1). The

condition also implies that the interior spike can be located in one-and-only-one of the two subintervals.

This establishes a localization principle for the 1-D Gierer-Meinhardt system with a jump in the

inhibitor diffusivity. In contrast, with constant diffusivity, the interior spike is always located in the

center of the interval. So the presence of the jump, in effect, “moves” the (unique) position away from

the center into one of the subintervals. Precise information about the (limit) location (as ε → 0) is also

given in Theorem 3.1.

For the second type of one-spike solutions, the spike having same order in spatial extent as its distance

from the jump discontinuity, it turns out that either there exist two different one-spike solutions or there

is none (Theorem 7). One question left open in [25] is the stability of these spikes. We are now going

to prove the stability behavior of these spikes. The result is that one of the spikes is stable, the other

unstable. The proof uses a construction of the eigenfunction involving inner and outer expansions. One

will see that both the existence and stability results depend on a parameter involving only the two

diffusivities and lengths of the immediate segments around the jump in consideration. Therefore, our

results for two segments extend easily to the general case with an arbitrary number of segments.

After completing the arguments for the spike at the jump, we will return to interior spikes and show

that the localization principle for interior spikes also extends elegantly for general N (i.e 1-D bounded

domain with N segments, N − 1 jumps in the inhibitor diffusivity). We will derive a classification of

the interior segments which depends on the sign of the derivatives of the diagonal of the regular part
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of Green’s function at both ends of the segments. By the signs, we shall conclude that there exists a

stable spike, an unstable spike or there exists no spike in the segment.

We also study the case of three segments, the smallest N such that there is an interior segment, in

more detail. We derive explicit formulas for these derivatives of the regular part of Green’s function

and the closed form conditions necessary for classification.

Finally, we mention some previous works on spiky steady states for the Gierer-Meinhardt system with

constant coefficients. Existence and stability of spiky steady-states, for example, have been studied for

1-D in [8] and their instabilities have been investigated in [19]. For 2-D the existence and stability of

multiple spikes has been investigated in [21], [22], [23].

The structure of the paper is as follows: In Section 2, we provide some preliminaries. In Section

3, we review previous results in the two-segment case from [25] of the paper. In Section 4, we briefly

recall how construct and analyze a spiky steady-state. In Section 5, we recall the main stability results

for interior spikes. In Section 6, we recall an outer and inner expansion which is needed to analyze a

spike near a jump and will be used in Section 7. In Section 7, we present a new result: We study the

small eigenvalues of a spike near a jump. In Section 8, we prove results on the existence of interior

spikes for N segments. We give a classification of interior intervals into three cases: Existence of stable

interior spike, existence of an unstable interior spike, non-existence of an interior spike. In Section 9,

we investigate spikes near a jump in the N segments case. We give a condition on existence which only

uses O(1) quantities and does not use quantities of the inner expansion which are of O(ε). In Section

10, we confirm our analytical results by numerical computations. We also consider situations which are

not analyzed in this paper, such as multi-spike solutions.

2. Preliminaries

Before we state our main results in Section 3, we introduce some notations that is used throughout

the paper and perform some preliminary analysis.

We will always assume that Ω = (−1, 1). With L2(Ω) and H2(Ω) we denote the usual Sobolev spaces.

For classical solutions, D(x)hx(x) is continuous at x = xi and therefore hx(x) has a jump discontinuity

at x = xi. To account for these jump discontinuities of h, the function spaces have to be chosen very

carefully.

We assume that

(a, h) ∈ H2
N(−1, 1)×H2,∗

N (−1, 1),

where

H2
N(−1, 1) :=

{
a ∈ H2(−1, 1) : ax(−1) = ax(1) = 0

}
,

H2,∗(−1, 1) :=
{
h ∈ H1(−1, 1) : (D(x)hx)x ∈ L2(−1, 1)

}
,

H2,∗
N (−1, 1) :=

{
h ∈ H2,∗(−1, 1) : hx(−1) = hx(1) = 0

}
,

endowed with the norm

‖(a, h)‖2
2,∗ := ‖a‖2

H2(−1,1) + ‖h‖2
2,∗, where ‖h‖2

2,∗ := ‖h‖2
H1(−1,1) + ‖(D(x)hx)x‖L2(−1,1).
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The variable w will always denote the so-called canonical spike solution, i.e. the unique homo-clinic

solution of the following problem:




w
′′ − w + w2 = 0 in R1,

w > 0, w(0) = maxy∈R w(y), w(y) → 0 as |y| → ∞.
(2.1)

Note that w is an even function and w
′
(y) < 0 if y > 0. An explicit representation is

w(y) =
3

2
cosh−2 y

2
.

We set

ρ(y) :=
∫ y

0
w2(z) dz. (2.2)

Elementary calculations give

α :=
∫ ∞

0
w2(y) dy =

∫ ∞

0
w(y) dy = 3,

∫ ∞

0
w3(y) dy = 3.6,

ρ(y) =
9

2
tanh

y

2
− 3

2
tanh3 y

2
,

∫ ∞

0
w3(y)ρ(y) dy =

297

64
= 4.640625,

∫ ∞

0
(w′)2 dy =

∫ ∞

0
w3 dy −

∫ ∞

0
w2 dy = 0.6. (2.3)

To conclude this section, we study a nonlocal linear operator. We first recall the following result.

Theorem 2.1. [20]: Consider the following nonlocal eigenvalue problem

Lφ := ∆φ− φ + 2wφ− γ

∫
R wφ dy∫
R w2 dy

w2 = λφ, φ ∈ H1(R). (2.4)

(i) If γ < 1, then there is a positive eigenvalue to (2.4).

(ii) If γ > 1, then for any nonzero eigenvalue λ of (2.4), we have

Re(λ) ≤ −c0 < 0 for some c0 > 0.

(iii) If γ 6= 1 and λ = 0, then

φ = c0
dw

dy

for some constant c0.

The conjugate operator of L under the scalar product in L2(R) ris

L∗ψ = ∆ψ − ψ + 2wψ − γ

∫
R w2ψ dy∫
R w2 dy

w, H2(R) → L2(R). (2.5)

Then we have the following result:

Lemma 2.2. (Lemma 3.2 of [24].) If γ 6= 1, then

X0 := Ker(L∗) = span

{
dw

dy

}
(2.6)

As a consequence, we have
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Lemma 2.3. The operator

L : H2(R) → L2(R),

restricted to the spaces

L : X⊥
0 ∩H2(R) → X⊥

0 ∩ L2(R),

where the X⊥
0 denotes the orthogonal projection with respect to the scalar product of L2(R), is invertible.

Moreover, L−1 : X⊥
0 ∩ L2(R) → X⊥

0 ∩H2(R) is bounded.

Proof: This follows from the Fredholm Alternative Theorem and Lemma 2.2.

¤

3. Review of previous results in the two segment case: interior spike and spike near

the jump discontinuity of the diffusion coefficient

In [25], we derived the following two types of one-spike solutions:

1. An interior spike located far away from the jump discontinuity of the inhibitor diffusivity (see

Theorem 3.1). For this interior spike a new localization principle was shown which states that the

spike can exist in one-and-only-one of the two sub-intervals divided by the jump discontinuity. Further,

we showed that this solution is stable.

2. A spike near the jump discontinuity whose center has a distance of order ε from the jump

discontinuity; this means that its distance from the jump discontinuity is of the same order as the

spatial extent of the spike.

We re-scale Ωε = Ω/ε and define u(x) ∈ H2
ε (Ω) if and only u

(
x
ε

)
∈ H2(Ωε) with the norm of the

former space defined by the norm of the latter, i.e.

‖u‖H2
ε (Ω) := ‖u(·/ε)‖H2(Ωε).

In the same way we introduce this re-scaling to the other function spaces introduced at the beginning

of the previous section. We also denote the only jump discontinuity as xb for the results of two segment

case.

Now we review our first main theorem:

Theorem 3.1. (Existence of an interior-spike solution.) Suppose that the condition

1

θ1

tanh θ1(1 + xb) >
1

θ2

tanh θ2(1− xb) (3.1)

holds, where θi = D
−1/2
i . Then there exists a steady state of (1.1) – (1.3) with an interior spike for the

activator which is located in the subinterval (−1, xb). More precisely, we have

aε(x) ∼ ξεw
(

x− tε

ε

)
+ o(1) in H2

ε (Ω), (3.2)

where tε → t0 ∈ (−1, xb) and ξε/h(tε) → 1 as ε → 0. The limit position t0 is given by

1

θ1

tanh (θ1(2t0 + 1− xb)) =
1

θ2

tanh (θ2(1− xb)) . (3.3)

If (3.1) holds then there do not exist any steady states of (1.1) – (1.3) with an interior spike for the

activator in the subinterval (xb, 1).
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Remark 3.2. (Implications of the condition (3.1))

(i) If xb = 0, i.e. if the jump discontinuity is located in the center of the interval, (3.1) implies that

there exists a spike on the subinterval with the larger diffusion constant D1 (and the smaller

θ1) but not on the other subinterval. This follows from the fact that the function tanh α/α is

strictly monotone decreasing for α > 0.

(ii) Condition (3.1) combines the effects of sub-domain size and diffusion constant. Hence the

localization effect is due jointly, and favorably, to relatively large subinterval and large diffusion

constant.

(iii) The reverse sign of (3.1) does not have to be studied separately. It follows by reflection about

the center x = 0 of the interval. By this transformation θ1 and θ2 are exchanged and the sign of

xb is reversed. An easy calculation shows that the inequality resulting from this transformation

is equivalent to (3.1) with reversed sign.

We now review a stability result for the linear stability of the interior spike.

Theorem 3.3. (Stability of an interior-spike solution.) The interior spike established in Theorem 3.1

is linearly stable.

Our second main theorem from [25] establishes the existence of spikes near the jump discontinuity of

the inhibitor diffusivity, more precisely at a distance of order ε from this discontinuity. (Note that the

definition of β is different from that in [25])

Theorem 3.4. (Existence of spikes near the jump discontinuity xb of the inhibitor diffusivity.)

Set

β =
θ2 tanh θ1(1 + xb)− θ1 tanh θ2(1− xb)

θ2 tanh θ1(1 + xb) + θ1 tanh θ2(1− xb)
. (3.4)

(i) If




θ1 < θ2 and

0 < β <
θ2
2 − θ2

1

2θ2
1

I(L0)

3.6

(3.5)

then there exist exactly two spikes near the jump discontinuity xb. They are given by (3.2) with

tε = xb − εL for two possible values of L.

Here we have used

I(L) :=
∫ ∞

L
w3(y)(ρ(y)/α− β) dy, (3.6)

where ρ(y) and α(= 3) are defined in (2.2) and (2.3) respectively, while L0 is uniquely deter-

mined by ρ(L0)/α = β.

(ii) If




θ1 < θ2 and

0 < β =
θ2
2 − θ2

1

2θ2
1

I(L0)

3.6

(3.7)
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then there exists exactly one spike near the jump discontinuity xb. It is given by (3.2) with

tε = xb − εL0.

(iii) If condition (3.1) holds and θ1 > θ2 or if




θ1 < θ2 and

β >
θ2
2 − θ2

1

2θ2
1

I(L0)

3.6
> 0

(3.8)

there is no spike near the jump discontinuity xb. More precisely, there is no spike given by

(3.2) with |tε − xb| = O(ε).

Finally, in [25] we proved the following simple nonexistence result for spikes near the jump disconti-

nuity.

Corollary 3.5. Suppose that θ1 < θ2 and

|β| > 0.4296875
θ2
2 − θ2

1

2θ2
1

then there is no spike near the jump discontinuity, i.e. a spike which satisfies |tε − xb| = O(ε).

4. The construction and analysis of spiky steady-state solutions

We briefly review the method of how to construct a spiky steady-state solution to (1.1) – (1.3). We

first take a rescaled and translated spike

w0(x) = w
(

x− t

ε

)
, (4.1)

and let r0 be such that

r0 =
1

10
(min (t0 + 1, 1− t0)) . (4.2)

Using this smooth cut-off function χ : R → [0, 1] such that

χ(x) = 1 for |x| < 1 and χ(x) = 0 for |x| > 2, (4.3)

we get

w̃0(x) = w0(x)χ
(

x− t

r0

)
, (4.4)

where w̃0(x) satisfies

ε2∆w̃0 − w̃0 + w̃2
0 + e.s.t. = 0 in (−1, 1), w̃′

0(−1) = w̃′
0(1) = 0 (4.5)

and“e.s.t.” means exponentially small terms.

We proceed to carefully choose the amplitude: for t ∈ (−1, 1) let

ξ̂0(t) =
1

G(t, t)
, (4.6)

where G(x, y) is the Green’s function, defined in (8.3), which can be used to represent the solution of

the second equation of (1.1). It plays a major role throughout the paper. We will mostly drop the

argument of ξ̂0(t) and write ξ̂0 instead. Set

ξ0 := ξ̂0ξε, (4.7)
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where

ξε :=
(
ε

∫

R
w2(z) dz

)−1

=
1

6ε
. (4.8)

Then, finally, we choose the first component of our approximate steady state for (1.1) to be

wε,t(x) = ξ0w̃0(x). (4.9)

For a function A ∈ L2(−1, 1), we define T [A] to be the solution in H2,∗
N (−1, 1) of

(D(x)(T [A])x)x − T [A] + A2 = 0, −1 < x < 1. (4.10)

By standard elliptic theory, the solution T [A] is positive and unique.

For A = wε,t, where t ∈ Bε3/4(t0), we choose the function T [A](x) to be the second component of our

approximate steady state for (1.1).

Using Liapunov-Schmidt reduction, it has been shown in [25] that there exists an exact steady-state

which is close to this approximate solution. The same argument works for the N -segment case with

minor modifications. The main changes are replacing the Green’s function specific to N = 2 by the one

for general N for the interior spike, and making a similar replacement suitable for multi-segments for

the spikes near the jump discontinuity. We omit the details and refer the reader to [25].

The result can be summarized as follows:

Proposition 4.1. Suppose that

∇t0H(t0, t0) = 0 and ∇2
t0
H (t0) 6= 0, (4.11)

where H is the regular part of the Green’s function. Then, for ε sufficiently small, there exists a point

tε ∈ Bε3/4(t0) with tε → t0 such that there are spiky steady-states given, up to leading order, by (4.9),

(4.10).

To prove existence of an interior spike in one of the segments we have to check condition (4.11)

explicitly by computing the Green’s function and its derivatives. For the details in the two-segment

case we refer to [25].

We will check in Section 8 (Theorem 8.1) when in the case of N segments with N = 3, 4, ... condition

(4.11) can be satisfied. We will derive explicit criteria for existence or non-existence of interior spikes.

5. Stability Analysis

The large (O(1)) eigenvalues as ε → 0 are studied by reduction to a nonlocal eigenvalue problem

(NLEP) and using the results given in Theorem 2.1 (2) with γ = 2. This approach works for all spikes

considered in this paper (both interior spikes and spikes near the jump, with an arbitrary number of

jumps in the domain interval) and they are all stable with respect to large eigenvalues.

The small (o(1)) eigenvalues are considered by using a projection similar to Liapunov-Schmidt reduc-

tion, but now at an exact instead of an approximate solution. For an interior spike the following result,

by asymptotics, is derived in [25]:

− 2ε2ξ̂3
0a

ε
0

(
∇2

tεH(tε, tε)
)

+ o(ε2) = λεξ̂
2
0a

ε
0 (1 + o(1)), (5.1)
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using (2.3). Equation (5.1) shows that the small eigenvalue λε of (7.1) satisfies

λε = −2ε2ξ̂0

(
∇2

tεH(tε, tε)
)

+ o(ε2)

by (2.3). It can then be checked explicitly that for interior spikes in the two-segment case we always

have ∇2
tεH(tε, tε) is positive. This implies the small eigenvalue λε satisfies Re(λε) ≤ −cε2 for some c > 0

which is independent of ε and therefore is stable. We will show in Section 8 (Theorem 8.1) that for N

segments with N = 3, 4, ... it is possible to have either sign for ∇2
tεH(tε, tε) and so an interior spike can

be stable or unstable. We will also derive easily verifiable criteria for stability or instability.

6. Spikes near the jump discontinuity xb of the inhibitor diffusivity

The existence of spikes near the jump discontinuity is furnished by Theorem 7, derived in [25].

Stability of these solutions were not treated and we complete the picture for two segments now. As

a preparation for the stability proof, we review the proof of existence. It is based on outer and inner

expansion of the inhibitor h. We will see later that an outer and inner expansion for the inhibitor part

of the eigenfunction is necessary for the stability proofs.

We first compute an approximation to the inhibitor function hε(x). Let

aε(x) = ξεw
(

x− tε

ε

)
χ

(
x− tε

ε

)
+ O(ε) in H2(Ωε),

where tε is the center of the spike, xb − tε = εL and ξε

ξ0
→ 1 as ε → 0.

We decompose the second component, hε, into two parts:

hε(x) = ξε

(
εh1

(
x− tε

ε

)
+ h2(x)

)
+ O(ε) in H2,∗(Ω), (6.1)

where the inner expansion h1(y) for y = (x− tε)/ε satisfies




(D(tε + εy)h1,y(y))y + w2(y) = 0,

h1(0) = 0, h1,y(0) = 0
(6.2)

and the outer expansion h2(x) is given by




(D(x)h2,x(x))x − h2(x)− εh1(x) = 0,

h2,x(±1) = −h1,y(±∞).
(6.3)

Integrating (6.2), we get

h1,y(y) =





−θ2
1ρ(y), −∞ < y < L,

−θ2
2ρ(y), L < y < ∞,

(6.4)

where θi = D
−1/2
i and ρ(y) has been defined in (2.2).

Recalling from (2.3) that

α =
∫ ∞

0
w2(z) dz = 3

we have

h1,y(−∞) = αθ2
1, h1,y(∞) = −αθ2

2.
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Integrating (6.4) once more, we have (up to order O(ε) which is included into the error term in (6.1))

εh1

(
x− tε

ε

)
=





θ2
1α(x− xb), −1 < x < xb,

−θ2
2α(x− xb), xb < x < 1.

(6.5)

Hence by (6.4) h2 satisfies (up to order O(ε) which is included into the error term in (6.1))





(D(x)h2,x(x))x − h2(x)− εh1(x) = 0,

h2,x(−1) = −θ2
1α, h2,x(1) = θ2

2α.
(6.6)

Solving (6.6), using (6.5), we get

h2(x) =





−θ2
1α(x− xb) + Aθ1

cosh θ1(x + 1)

cosh θ1(xb + 1)
, −1 < x < xb,

θ2
2α(x− xb) + Bθ1

cosh θ2(x− 1)

cosh θ2(xb − 1)
, xb < x < 1.

Continuity of the function h2(x) at x = xb gives A = B and continuity of D(x)h2,x(x) at x = xb implies

0 = D1h2,x(x
−
b )−D2h2,x(x

+
b ) = A

(
tanh θ1(xb + 1) +

θ1

θ2

tanh θ2(1− xb)

)
− 2α

and so we have

A =
2αθ2

θ2 tanh θ1(xb + 1) + θ1 tanh θ2(1− xb)
.

Hence

D1h2,x(x
−
b ) = D2h2,x(x

+
b ) = A tanh θ1(xb + 1)− α = α

θ2 tanh θ1(xb + 1)− θ1 tanh θ2(1− xb)

θ2 tanh θ1(xb + 1) + θ1 tanh θ2(1− xb)

which implies

h2,x(x
−
b ) = θ2

1αβ, h2,x(x
+
b ) = θ2

2αβ,

where

β :=
θ2 tanh θ1(xb + 1)− θ1 tanh θ2(1− xb)

θ2 tanh θ1(xb + 1) + θ1 tanh θ2(1− xb)
.

(It is noteworthy that the parameter β satisfy 0 < β < 1 and is a constant combining the most important

information around a jump. One will see later that the equilibrium behaviors of the system is essentially

determined by this value.)
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Finally, we consider the solvability condition for Liapunov-Schmidt reduction which is given by

0 = ξ−1
ε

∫ ∞

−∞
w3(y)hx(t

ε + εy) dy + O(ε)

=
∫ ∞

−∞
w3(y)(h1,y(y) + h2,x(t

ε + εy)) dy + O(ε)

=
∫ L

−∞
w3(y)(−θ2

1ρ(y) + h2,x(x
−
b )) dy +

∫ ∞

L
w3(y)(−θ2

2ρ(y) + h2,x(x
+
b )) dy + O(ε)

= θ2
1

(∫ L

−∞
w3(y)(−ρ(y) + αβ) dy

)
+ θ2

2

(∫ ∞

L
w3(y)(−ρ(y) + αβ) dy

)
+ O(ε)

= θ2
1

(∫ ∞

−∞
w3(y)(−ρ(y) + αβ) dy −

∫ ∞

L
w3(y)(−ρ(y) + αβ) dy

)

+θ2
2

(∫ ∞

L
w3(y)(−ρ(y) + αβ) dy

)
+ O(ε)

= αβθ2
1

∫ ∞

−∞
w3(y) dy + (θ2

2 − θ2
1)

∫ ∞

L
w3(y)(−ρ(y) + αβ) dy + O(ε)

since ρ(y) is an odd function.

Hence, for given θ1, θ2, β, we need to find L such that

βθ2
1

∫ ∞

−∞
w3(y) dy + (θ2

2 − θ2
1)

∫ ∞

L
w3(y)(−ρ(y)/α + β) dy = 0. (6.7)

Remark 6.1. We remark here that, in general, the form of the condition (6.7), used for the existence

argument of a spike near a jump, is independent of the number of segments. That is, although here we

show the analysis specifically for N = 2, the existence argument for an arbitrary number of segments

requires exactly the same condition (6.7). The only difference among different cases is implicitly distin-

guished through the parameter β. For general domains with multiple segments, one only needs to replace

the constants θ1 and θ2 by θk and θk+1 in the immediate segments around the jump in consideration.

We now discuss when condition (6.7) can be satisfied. Firstly, note that β = 0 (6.7) is not possible

since we assumed θ1 6= θ2. Secondly, the case β < 0 can be reduced to the case β > 0 by reflection

at the center x = 0 of the domain: observe that by this reflection θ1 and θ2 are exchanged, xb, t
ε, β

all change signs, then note that the order of the locations of the jump discontinuity and the spike are

reversed so that the equation xb = tε + εy with y = L changes to −xb = −tε + εy with y = −L. As a

result, (6.7) is transformed to

−βθ2
2

∫ ∞

−∞
w3(y) dy + (θ2

1 − θ2
2)

∫ ∞

−L
w3(y)(−ρ(y)/α + β) dy = 0

which is equivalent to (6.7). Therefore, we shall always assume β > 0 which is equivalent to (3.1) A

necessary condition for (6.7) is

θ2
1 < θ2

2,

as otherwise (6.7) implies by separating θ2
1 and θ2

2 on different sides of the equality

βθ2
1

∫ ∞

0
w3(y) dy + θ2

1

∫ ∞

L
w3(y)(−ρ(y)/α + β) dy = θ2

2

∫ ∞

L
w3(y)(−ρ(y)/α + β) dy

for which l.h.s. is obviously bigger than r.h.s. if θ1 ≥ θ2 which gives a contradiction.
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We now study (6.7) in detail. An important observation is that the integrand of
∫ ∞

L
w3(y)(−ρ(y)/α + β) dy

changes sign around ρ(y) = αβ. The function ρ has the following properties:

ρ(0) = 0, ρ
′
(y) = w2(y) > 0, ρ(−y) = −ρ(y),

ρ(y) →
∫ ∞

0
w2 dy = α(= 3) as y →∞ (6.8)

and β satisfies the inequality

0 < β < 1.

Thus for all 0 < β < 1 there is exactly one positive y =: L0 > 0 such that ρ(L0) − αβ = 0. Further,

ρ(y)− αβ < 0 if 0 < y < L0 and ρ(y)− αβ > 0 if y > L0.

To give an explicit formula for L0, using (2.3) we compute

ρ(L0) =
9

2
tanh

L0

2
− 3

2
tanh3 L0

2
= αβ.

From this equation L0 can be uniquely calculated.

Recall from (3.6) that for any real number L we have defined

I(L) :=
∫ ∞

L
w3(y)(ρ(y)/α− β) dy.

Then

I(L) → 0 as L →∞, I(L) → −7.2β < 0 as L → −∞
I(L) achieves its unique maximum among all real L at L = L0 > 0, where I(L0) > 0.

I(L) is monotone increasing on (−∞, L0).

I(L) is monotone decreasing on (L0,∞).

I(L) = 0 for a unique L = L1 < 0.

We give an elementary interpretation of I(L) using the following two graphs.

−4 −3 −2 −1 0 1 2 3 4
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

−4 −3 −2 −1 0 1 2 3 4
0

1

2

3

4

5

6

7

8

Figure A. The left and right figures corresponds to the following two integrals depending on L respectively:∫ ∞

L
w3(y)ρ(y) dy and

∫ ∞

L
w3(y) dy.
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I(L) is simply the linear combination of the two graphs with the weighting −β on the latter (note

that 0 < β, ρ(y)/α < 1).

−4 −3 −2 −1 0 1 2 3 4
−1.5

−1

−0.5

0

0.5

1

L

I(
L)

−4 −3 −2 −1 0 1 2 3 4
−4.5

−4

−3.5

−3

−2.5

−2

−1.5

−1

−0.5

0

0.5

L

I(
L)

Figure B. The left and right figures corresponds to I(L) for β = 0.2 and β = 0.6, with maximum values

about 0.92 and 0.17, located at about 0.26 and 0.90 respectively. As will be shown in the next section, the dotted

lines and solid lines corresponds to unstable and stable steady states respectively.

Therefore, the equation I(L) = c has




two solutions if 0 < c < I(L0),

one solution if c = I(L0) or − 7.2β < c ≤ 0,

no solution if c > I(L0) or c ≤ −7.2β.

(6.9)

Because of θ1 < θ2 for (6.7) only the case c > 0 is relevant. Combining (6.9) with (6.7), we have

(i) two solutions for (6.7) if

0 < β <
θ2
2 − θ2

1

2θ2
1

I(L0)

3.6
.

(ii) one solution for (6.7) if

β =
θ2
2 − θ2

1

2θ2
1

I(L0)

3.6
.

(iii) no solution for (6.7) if

β >
θ2
2 − θ2

1

2θ2
1

I(L0)

3.6
.

This shows Theorem 7. ¤

7. Stability Analysis II: Small Eigenvalues of the Spike near the Jump

In this section, we investigate the eigenvalue problem which after re-scaling becomes

ε2∆φε − φε + 2
w̄ε

h̄ε

φε − w̄2
ε

h̄2
ε

ψε = λεφε, (7.1)

(D(x)ψε,x)x − ψε + 2ξεw̄εφε = λετψε,
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where

w̄ε = ξ−1
ε [wε,tε + φε,tε ] , h̄ε = T [wε,tε + φε,tε ], (7.2)

tε = xb− εL is the center of the spike which has been determined in Theorem , and ξε is given by (4.8).

In particular, we investigate the small eigenvalue, i.e. we assume that λε → 0 as ε → 0.

Let us define

w̃ε,0(x) = χ
(

x− tε

r0

)
w̄ε(x), (7.3)

where r0 and χ(x) are given in (4.2) and (4.3), respectively. We define

Knew
ε,tε := span {w̃′

ε,0} ⊂ H2(Ωε),

Cnew
ε,tε := span {w̃′

ε,0} ⊂ L2(Ωε).

Then it is easy to see that

w̄ε(x) = w̃ε,0(x) + e.s.t. (7.4)

Further

h̄ε,x(t
ε + εy) = h1,y(y) + h2,x(x

−
b ) + O(ε)

= θ2
1(−ρ(y) + 3β) + O(ε) for −∞ < y < L (7.5)

and

h̄ε,x(t
ε + εy) = h1,y(y) + h2,x(x

+
b ) + O(ε)

= θ2
2(−ρ(y) + 3β) + O(ε) for L < y < ∞. (7.6)

Note that w̃ε,0(x) = ξ̂0w̃0(x) + O(ε) in H2
ε (−1, 1) and w̃ε,0 satisfies

ε2∆w̃ε,0 − w̃ε,0 +
(w̃ε,0)

2

h̄ε

+ e.s.t. = 0.

Thus w̃
′
ε,0 := dw̃ε,0

dx
satisfies

ε2∆w̃
′
ε,0 − w̃

′
ε,0 +

2w̃ε,0

h̄ε

w̃
′
ε,0 −

w̃2
ε,0

(h̄ε)2
h̄
′
ε + e.s.t. = 0. (7.7)

Let us now decompose

φε = εaε
0w̃

′
ε,0 + φ⊥ε (7.8)

with complex numbers aε
0, (the scaling factor ε is introduced to ensure φε = O(1) in H2

loc(Ωε)), where

φ⊥ε ⊥ Knew
ε,tε .

Suppose that ‖φε‖H2
N (Ωε) = 1. Then |aε

j| ≤ C.

The decomposition of φε implies the following decomposition of ψε:

ψε = εaε
0ψε,0 + ψ⊥ε = εaε

0[ψ1(y) + ψ2(x)] + ψ⊥ε ,

where the inner expansion ψ1(y) is given by




(D(tε + εy)ψ1,y(y))y + 2w(y)wy(y) = 0,

ψ1(0) = 0, ψ1,y(0) = −θ2
1w

2(0)
(7.9)
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and the outer expansion ψ2(x) satisfies




(D(x)ψ2,x(x))x − ψ2(x)− ψ1(x) = 0,

ψ2,x(±1) = −ψ1,y(±∞).
(7.10)

Integrating (7.9), we get

ψ1,y(y) =





−θ2
1w

2(y), −∞ < y < L,

−θ2
2w

2(y), L < y < ∞,
(7.11)

=





−9
4
θ2
1(cosh−4(y/2)− 1), −∞ < y < L,

−9
4
θ2
2(cosh−4(y/2)− 1), L < y < ∞.

This implies

ψ1,y(−∞) = O(ε), ψ1,y(∞) = O(ε).

Integrating ψ1 once more, we have

ψ1(y) =





−θ2
1ρ(y), −∞ < y < L,

−θ2
2ρ(y) + (θ2

2 − θ2
1)ρ(L), L < y < ∞.

(7.12)

in the case L ≥ 0 and a similar result holds for L < 0. The important observation now is that ψ1(y) is

continuous at y = L. (Note that ψ1,y(y) has a jump at y = L.)

Hence ψ2 satisfies (up to order O(ε) which is included into the error term in (7.10))




(D(x)ψ2,x(x))x − ψ2(x)− ψ1(x) = 0,

ψ2,x(−1) = 0, ψ2,x(1) = 0,
(7.13)

which implies ψ2 = O(1) in H2,∗
N (Ω).

Substituting the decompositions of φε and ψε into (7.1), we have, using (7.7),

εaε
0

(
(w̃ε,0)

2

h̄2
ε

h̄
′
ε −

(w̄ε)
2

h̄2
ε

ψε,0

)

+ε2∆φ⊥ε − φ⊥ε + 2
w̄ε

h̄ε

φ⊥ε −
w̄2

ε

h̄2
ε

ψ⊥ε − λεφ
⊥
ε + e.s.t. = λεεa

ε
0w̃

′
ε,0. (7.14)

We first compute

I4 := εaε
0

(
(w̃ε,0)

2

h̄2
ε

h̄
′
ε −

(w̄ε)
2

h̄2
ε

ψε,0

)

= εaε
0

(w̃ε,0)
2

h̄2
ε

[
−ψε,0 + h̄

′
ε

]
+ e.s.t..

Let us also put

L̃εφ
⊥
ε := ε2∆φ⊥ε − φ⊥ε +

2w̄ε

h̄ε

φ⊥ε −
w̄2

ε

h̄2
ε

ψ⊥ε . (7.15)
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Multiplying both sides of (7.14) by w̃
′
ε,0 and integrating over (−1, 1), we obtain

r.h.s. = ελεa
ε
0

∫ 1

−1
w̃
′
ε,0w̃

′
ε,0 dx

= λεa
ε
0ξ̂

2
0

∫

R
(wy(y))2 dy (1 + O(ε)) (7.16)

and

l.h.s. = −εaε
0

∫ 1

−1

w̃2
ε,0

h̄2
ε

[
ψε,0 − h̄

′
ε

]
w̃
′
ε,0 dx +

∫ 1

−1

w̃2
ε,0

h̄2
ε

(h̄
′
εφ
⊥
ε ) dx−

∫ 1

−1

w̃2
ε,0

h̄2
ε

(ψ⊥ε w̃
′
ε,0) dx

= J1 + J2 + J3 + O(ε2),

where Ji, i = 1, 2, 3, are defined by the last equality. The following is the key lemma.

Lemma 7.1. We have

J1 = εaε
0ξ̂

3
0(θ

2
2 − θ2

1)w
3(L) (ρ(L)/α− β) + o(ε) (7.17)

= −εaε
0ξ̂

3
0(θ

2
2 − θ2

1)I
′(L) + o(ε), (7.18)

J2 + J3 = o(ε), (7.19)

Using Lemma 7.1 and comparing l.h.s. with r.h.s., we obtain

− εξ̂3
0(θ

2
2 − θ2

1)I
′(L)aε

0 + o(ε) = 1.2λεa
ε
0ξ̂

2
0 (1 + o(1)), (7.20)

using (2.3). Equation (7.20) shows that the small eigenvalue λε of (7.1) satisfies

λε = − 1

1.2
εξ̂0(θ

2
2 − θ2

1)I
′(L) + o(ε).

This shows that if I ′(L) is positive, the small eigenvalue λε satisfies Re(λε) ≤ −cε for some c > 0

which is independent of ε. On the other hand, if I ′(L) is negative, then for ε sufficiently the system is

unstable due to a Reduction Theorem (Theorem 8.1 of [25]). This, together with the results in Section

5, concludes the proof of the stability theorem for a spike near a jump. The result is given in Theorem

7.2.

¤

Theorem 7.2. The spikes near the jump have a small eigenvalue which satisfies the asymptotic expan-

sion

λε = − 1

1.2
εξ̂0(θ

2
2 − θ2

1)I
′(L) + o(ε). (7.21)

All the other eigenvalues are stable. This implies that the spike with the smaller L (the right one) is

stable, the one with the larger L (the left one) is unstable.

Before proving Lemma 7.1, we derive the following estimate for φ⊥ε .

Lemma 7.3. For ε sufficiently small, we have

‖φ⊥ε ‖H2(Ωε) = O(ε). (7.22)
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Proof: As the first step in the proof of Lemma 7.3, we obtain a relation between ψ⊥ε and φ⊥ε . Note

that L̃ε is invertible from (Knew
ε )⊥ to (Cnew

ε )⊥ with uniformly bounded inverse for ε small enough. By

the fact that L̃ε is uniformly invertible, we deduce that

‖φ⊥ε ‖H2(Ωε) = O(ε). (7.23)

¤
Finally we prove the key lemma – Lemma 7.1.

Proof of Lemma 7.1: The computation of J1 follows from the outer and inner expansions of h and

ψε,0, respectively. In fact,

J1 = −εaε
0

∫ 1

−1

w̃2
ε,0

h̄2
ε

(
ψε,0 − h̄

′
ε

)
w̃
′
ε,0 dx + o(ε)

= −εaε
0

∫ 1

−1

w̃2
ε,0

h̄2
ε(xb)

(
ψε,0 − h̄

′
ε

)
w̃
′
ε,0 dx + o(ε)

= −εaε
0ξ̂

3
0

∫ L

−∞
w2(y)wy(y)

[
ψ1(y) + ψ2(xb)− h1,y(y)− h2,x(x

−
b )

]
dy

−εaε
0ξ̂

3
0

∫ ∞

L
w2(y)wy(y)

[
ψ1(y) + ψ2(xb)− h1,y(y)− h2,x(x

+
b )

]
dy + o(ε)

= εaε
0ξ̂

3
0

∫ L

−∞
1

3
w3(y)

{
d

dy
[ψ1(y)− h1,y(y)] + [εψ2,x(x

−
b )− εh2,xx(x

−
b )]

}
dy

+εaε
0ξ̂

3
0

∫ ∞

L

1

3
w3(y)

{
d

dy
[ψ1(y)− h1,y(y)] + [εψ2,x(x

+
b )− εh2,xx(x

+
b )]

}
dy

−εaε
0ξ̂

3
0

1

3
w3(L)

[
(ψ1(L) + ψ2(xb)− h1,y(L

−)− h2,x(x
−
b )

]

+εaε
0ξ̂

3
0

1

3
w3(L)

[
(ψ1(L) + ψ2(xb)− h1,y(L

+)− h2,x(x
+
b )

]
+ o(ε)

= εaε
0ξ̂

3
0

1

3
w3(L)

[
(h1,y(L

−)− h1,y(L
+)) + (h2,x(x

−
b )− h2,x(x

+
b ))

]
+ o(ε)

= εaε
0ξ̂

3
0

1

3
(θ2

2 − θ2
1)w

3(L)[ρ(L)− 3β] + o(ε)

= −εaε
0ξ̂

3
0(θ

2
2 − θ2

1)I
′(L) + o(ε).

Here we have used

d

dy
[ψ1(y)− h1,y(y)] = −θ2

1(w
2(y)− w2(y)) = 0 for −∞ < y < L,

d

dy
[ψ1(y)− h1,y(y)] = −θ2

2(w
2(y)− w2(y)) = 0 for L < y < ∞.

Further, we have applied the estimates

h2,xx(x
−
b ) = O(1), h2,xx(x

+
b ) = O(1),

ψ2,x(x
−
b ) = O(1), ψ2,x(x

+
b ) = O(1)

and the facts that ψ1 is continuous at y = L and ψ2 is continuous at x = xb.

Thus we obtain (7.17).
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By (7.23) and the equation for ψ⊥ε we have:

ψ⊥ε (tε0) = 2εξε

∫ 1

−1
G(tε, z)w̄εφ̃ε,0 dz

= 2εG(tε, tε)ξ̂0

∫
R wφ⊥ε dy∫
R w2 dy

+ O(ε2) = O(ε). (7.24)

By (7.23), we have J2 = O(ε2) and (7.24) implies that J3 = O(ε2). The proof of Lemma 7.1 is finished.

¤
Remark 1: Large eigenvalues for a spike near the jump are treated in the same way as that of

interior spikes. Since we only need to compute ψ(xb), and no derivatives of ψ are required, the inner

expansion is not needed.

Remark 2: In view of Remark 6.1, if we turn to the case with an arbitrary number of segments,

similar results as in Section 6 and Section 7 should also hold. Indeed, we will show the existence of a

spike near a jump for N segments in Section 9 with minimal effort.

8. Existence of interior spikes for N segments

We now turn to the study of interior spikes for N segments. To show existence, we first compute the

Green’s function for N segments in (−1, 1), where the Dirac delta distribution is located at one of the

jumps:

Let G(x, xi) be the Green’s function which is defined as the unique solution of the problem




(D(x)G(x, xi)x)x −G(x, xi) + δxi
= 0, Gx(−1, xi) = Gx(1, xi) = 0,

DiGx(x
−
i , xi)−Di+1Gx(x

+
i , xi) = 1, G(x−i , xi)−G(x+

i , xi) = 0,

DjGx(x
−
j , xi)−Dj+1Gx(x

+
j , xi) = 0, G(x−j , xi)−G(x+

j , xi) = 0, j 6= i,

(8.1)

where δxi
is the Dirac delta distribution located at xi and −1 < x1 < x2 < · · · < xi < xi+1 < · · · <

xN−1 < 1. Let βi be given by

βi = DiGx(x
−
i , xi) + Di+1Gx(x

+
i , xi). (8.2)

Further, for t0 6= xi let G(x, t0) be the Green’s function defined by




(D(x)G(x, t0)x)x −G(x, t0) + δt0 = 0, Gx(−1, t0) = Gx(1, t0) = 0,

D(t0)Gx(t
−
0 , t0)−D(t0)Gx(t

+
0 , t0) = 1, G(t−0 , t0)−G(t+0 , t0) = 0,

D(x−j )Gx(x
−
j , t0)−D(x+

j )Gx(x
+
j , t0) = 0, G(x−j , t0)−G(x+

j , t0) = 0, j = 1, . . . , N − 1,
(8.3)

where δt0 is the Dirac delta distribution located at t0 and −1 < x1 < x2 < · · · < xi−1 < t0 < xi < · · · <
xN−1 < 1.

Our first goal is to prove results on the zeros of the derivative of the diagonal of the regular part of

Green’s function. This will imply existence or nonexistence of a spike.

Our second goal is to determine the sign of the second derivative at such a root. This will answer

the question of stability or instability of the spike.
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Therefore let us consider the regular part H of G. It is defined by

−H(x, t0) = G(x, t0)− θi

2
e−θi|x−t0| for y ∈ (xi−1, xi).

If t0 = xi the regular part of G is defined by

−H(x, y) = G(x, y)−





θi

2
e−θi|x−xi| , x < xi,

θi+1

2
e−θi+1|x−xi| , x > xi.

Then H(x, y) satisfies the elliptic differential equation

(D(x)Hx(x, y))x −H(x, y) = 0. (8.4)

In particular, if x ∈ (xi−1, xi) then

(DiHx(x, y))x −H(x, y) = 0.

Note that by symmetry H(x, y) = H(y, x). Denoting the derivative with respect to the first variable

with subscript x, and that of the second variable with subscript y, we have

Hx(t0, t0) = Hy(t0, t0), H ′(t0, t0) :=
d

dt
H(t0, t0) = 2Hx(t0, t0),

Hxx(t0, t0) = Hyy(t0, t0), H ′′(t0, t0) = 2Hxx(t0, t0) + 2Hxy(t0, t0),

Hxxx(t0, t0) = Hyyy(t0, t0), Hxxy(t0, t0) = Hxyy(t0, t0), etc.

We try to find a solution of

H ′(t0, t0) = 0 with t0 ∈ (xi−1, xi)

and then determine

H
′′
(t0, t0) :=

d2

dx2
0

H(t0, t0).

By (8.2) we have

DiGx(x
−
i , xi) =

βi + 1

2
, DiGx(x

+
i−1, xi−1) =

βi−1 − 1

2
.

By the definition of H we have

−DiHx(x
−
i , xi) = DiGx(x

−
i , xi)− 1

2
=

βi

2
,

−DiHx(x
+
i−1, xi−1) = DiGx(x

+
i−1, xi−1) +

1

2
=

βi−1

2
.

This implies

DiH
′
(xi−1, xi−1) = −βi−1, DiH

′
(xi, xi) = −βi.

We consider three cases:

Theorem 8.1. (i) βi−1 > 0, βi < 0.

Stable interior spike: There exists a unique interior spike which is stable.

(ii) βi−1 < 0, βi > 0.

Unstable interior spike: There exists a unique interior spike which is unstable.

(iii) βi−1 · βi > 0.

No interior spike: There is no interior spike.
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This gives a complete classification of all interior intervals.

Remark: For boundary intervals, there are two cases according to the signs of β1 and βN−1, and the

existence or nonexistence of a stable interior spike follows from the classification for the two segment

case.

Proof.

Case (i) βi−1 > 0, βi < 0, Stable interior spike:

By the intermediate value theorem there exists at least one root of H ′(t0, t0) with t0 ∈ (xi−1, xi) such

that H ′(t0, t0) changes sign at t0 from negative to positive.

We show that for this root H ′′(t0, t0) = 0 is impossible. We argue by contradiction. Using (8.4) we

get

Hxxx(t0, t0) = Hx(t0, t0) = 0,

Hxxy(t0, t0) = Hy(t0, t0) = 0

and so H ′′′(t0, t0) = 0.

Taking the derivatives with xx then with xy in (8.4) and adding up we get

Hxxxx + Hxxxy − (Hxx + Hxy) = 0.

Taking the derivatives with yy then with xy in (8.4) and adding up we get

Hxxyy + Hxxxy − (Hyy + Hxy) = 0.

Taking the sum of the two previous equations gives

Hxxxx + 2Hxxxy + Hxxyy = 0

which can be rewritten as

(Hxx + Hxy)xx + (Hxx + Hxy)xy = 0.

This is equivalent to

H ′′′′(t0, t0) = 0.

In the same way it can be shown that

dk

dxk
0

H(t0, t0) = 0, k = 1, 2, . . .

This implies H(t0, t0) = c which contradicts the boundary conditions

H
′
(xi−1, xi−1) = −βi−1, H

′
(xi, xi) = −βi.

Therefore H ′′(t0, t0) = 0 is impossible. Since H ′ changes sign from negative to positive at t0 we

necessarily have H ′′(t0, t0) > 0 and the spike at t0 is stable.

We show that there is a unique root of H ′(t0, t0) in the interval (xi−1, xi). Assume that this is not

the case, then there exist (at least) two such roots xa < xb. We assume w.l.o.g. that H ′(t0, t0) > 0 for

all t0 with xa < t0 < xb. Then obviously we have

H ′′(xa, xa) ≥ 0, H ′′(xb, xb) ≤ 0.

Using (8.4) we get

Hxx(xa, xa) =
1

D1

H(xa, xa) <
1

D1

H(xb, xb) = Hxx(xb, xb). (8.5)
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Here we have used the fact that Hx(t0, t0) > 0 for xa < t0 < xb.

Using (8.4) again, we get

Hxy(xb, xb)−Hxy(xa, xa)

=
∫ (xb,xb)

(xa,xa)
[Hxxy(x, y) dx + Hxyy(x, y) dy]

=
∫ (xb,xb)

(xa,xa)
[Hy(x, y) dx + Hx(x, y) dy] > 0 (8.6)

since the last integrand is positive if we choose the path from (xa, xa) to (xb, xb) sufficiently close to the

diagonal (x, x), xa < x < xb.

Together (8.5) and (8.6) imply that

H ′′(xa, xa) < H ′′(xb, xb)

which gives a contradiction.

To summarize, we have proved that in Case (i) there is a unique solution of H ′(t0, t0) = 0 with

t0 ∈ (xi−1, xi). Further, H ′′(t0, t0) > 0. By Proposition 4.1 there exists a unique interior spike. By (5.1)

this spike is stable.

This completes the proof in Case (i).

The proofs in Cases (ii) and (iii) are similar and are therefore omitted.

¤
We now consider the special case of three segments. An explicit computation of the Green’s function

for (8.1) which is done in Appendix A (Section 11) yields

β1 =
T1T3 + (T1− T3) 1

θ2
coth θ2(x2 − x1)− 1

θ2
2

T1T3 + (T1 + T3) 1
θ2

coth θ2(x2 − x1) + 1
θ2
2

,

β2 = −
T1T3 + (T3− T1) 1

θ2
coth θ2(x2 − x1)− 1

θ2
2

T1T3 + (T1 + T3) 1
θ2

coth θ2(x2 − x1) + 1
θ2
2

,

where

T1 =
1

θ1

tanh θ1(x1 + 1), T3 =
1

θ3

tanh θ3(1− x2).

In particular, we have the following two cases:

Case (i) β1 < 0 and β2 > 0 for
1

θ1

tanh θ1(x1 + 1) <
1

θ2

.

There exists a stable interior spike in the central interval. There exists no spike in either the left or

right interval.

Case (ii) β1 > 0 and β2 < 0 for
1

θ1

tanh θ1(x1 + 1) >
1

θ2

.

There exists an unstable interior spike in the central interval. There exists a stable spike in both the

left or right interval.
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We illustrate this behavior in Figures 3 and 4 for x1 = −0.4, x2 = 0.4 and ε2 = 0.0001. We consider

the choices θ1 = θ3 = 1, θ2 = 1√
5

which belongs to Case (i) and θ1 = θ3 = 1√
5
, θ2 = 1 which belongs to

Case (ii).

In Case (i) we show a stable interior spike in the central interval and a stable spike near a jump.

In Case (ii) we show a stable interior spike in one of the boundary intervals and a stable boundary

spike.

9. Existence of a spike near a jump for N segments

We now consider a spike near a jump for N segments.

Let βi be given by (8.2).

Using βi, θi, θi+1 in (6.7) we get

βiθ
2
i

∫ ∞

0
w2 dy

∫ ∞

−∞
w3 dy = (θ2

i+1 − θ2
i )

∫ ∞

L
w3(y)

(
ρ(y)− βi

∫ ∞

0
w2 dz

)
dy.

Separating
θ2
i+1

θ2
i

> 1 on the l.h.s. and βi on the r.h.s. we get

1
θ2
i+1

θ2
i
− 1

∫ ∞

0
w2 dy

∫ ∞

−∞
w3 dy =

∫ ∞

L
w3(y)

(
1

βi

∫ y

0
w2(z) dz −

∫ ∞

0
w2(z) dz

)
dy.

This implies the necessary and condition condition for existence of a suitable real number L to solve

this equality (for given θi+1

θi
and βi) which is given in the following theorem:

Theorem 9.1. Let βi > 0 be given by (8.2) and let θi = D
−1/2
i , θi+1 = D

−1/2
i+1 be given by the neighboring

diffusion constants. Then there exist spikes near the jump if and only if

0 <
1

θ2
i+1

θ2
i
− 1

∫ ∞

0
w2 dy

∫ ∞

−∞
w3 dy <

< max
L∈(−∞,∞)

∫ ∞

L
w3(y)

(
1

βi

∫ y

0
w2(z) dz −

∫ ∞

0
w2(z) dz

)
dy

=
∫ ∞

L0

w3(y)

(
1

βi

∫ y

0
w2(z) dz −

∫ ∞

0
w2(z) dz

)
dy,

where L0 is given by

1

βi

∫ L0

0
w2(z) dz =

∫ ∞

0
w2(z) dz.

Remark. In the previous characterization the left-hand side is a function of θi+1

θi
only and the right-

hand side is a function of βi only (note that L has been eliminated). This gives a simple criterion for

existence of a spike near a jump involving only these two quantities which both come from the order 1

length-scale. Note that for solvability no quantities of the order ε length-scale are required.

An example of a spike near a jump for three segments in presented in Figure 3.
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10. Numerical Computations

We now show some numerical computations for system (1.1). We display different types of stable one-

spike solutions for the two- and the three-segment case. We choose Ω = (−1, 1) and varying diffusion

value for the coefficients ε2 and D(x).

In each situation we always present the solution for t = 105. By this time, in all cases, the compu-

tation has come to a standstill and this steady state is numerically stable (long-time limit). The first

component, a, is shown on the left, the second component, h, on the right.

In the two-segment case we divide Ω at either xb = 0 or xb = 0.5 and choose different constants for

D(x) on each of the resulting subintervals.

In the three-segment case we divide Ω at either x1 = −0.4 and x2 = 0.4 and choose different constants

for D(x) on the resulting subintervals.
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We now show a computation with a spike near the jump discontinuity of the inhibitor diffusion or an

interior spike. Note that the spike near the jump discontinuity is located slightly left of it.

Figure 1. Long-time limit of the solution to (1.1) – (1.3) with ε2 = 0.0001 and D(x) = 1 for −1 < x < 0,

D(x) = 5 for 0 < x < 1. We observe a spike near the jump discontinuity of the inhibitor diffusivity and a spike

in the right subinterval, respectively. The conditions (3.1) and (3.5), respectively, are satisfied.



DISCONTINUOUS DIFFUSION COEFFICIENTS 25

Moving the jump discontinuity from xb = 0.5 to xb = 0 we obtain an interior spike at a position near

the center x = 0.

Figure 2. Long-time limit of the solution to (1.1) – (1.3) with ε2 = 0.0001 and D(x) = 1 for −1 < x < 0.5,

D(x) = 5 for 0.5 < x < 1. We observe an interior spike in the left subinterval. The condition (3.5) is satisfied.
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Considering three segments with high values for D in the central segment we get an interior spike in

the central segment or at one of the jumps.

Figure 3. Long-time limit of the solution to (1.1) – (1.3) with ε2 = 0.0001 and D(x) = 1 for −1 < x <

−0.4, 0.4 < x < 1, D(x) = 5 for −0.4 < x < 0.4. We observe an interior spike in the central interval and a

spike near a jump.
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Considering three segments with high values for D in the left and right segments we get an interior

spike in the left or right segment or a boundary spike.

Figure 4. Long-time limit of the solution to (1.1) – (1.3) with ε2 = 0.0001 and D(x) = 5 for −1 < x <

−0.4, 0.4 < x < 1, D(x) = 1 for −0.4 < x < 0.4. We observe an interior spike in the right interval and a

boundary spike.
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Now we show the computations for some effects not analyzed in this paper. We compute the following

situation: ε2 = 0.0001, D(x) = 0.1 for −1 < x < xb, D(x) = 0.5 for xb < x < 1 for varying xb. If we

make D(x) smaller we expect solutions with multiple spikes. Some examples for this are shown in the

following two figures.

Figure 5. Long-time limit of the solution to (1.1) – (1.3) with ε2 = 0.0001 and D(x) = 0.1 for −1 < x < 0,

D(x) = 0.5 for 0 < x < 1. We observe an interior spike on the right subinterval or two interior spikes on

different subintervals, respectively.
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Figure 6. Long-time limit of the solution to (1.1) – (1.3) with ε2 = 0.0001 and D(x) = 0.1 for −1 < x < 0.5,

D(x) = 0.5 for 0.5 < x < 1. We observe an interior spike in the left subinterval and a spike near the jump

discontinuity or two interior spikes on different subintervals, respectively.
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11. Appendix: The Green’s function for three segments

In this appendix we compute the Green’s function G(x, t0) for N = 3, i.e. in the case of two jumps

or three segments.

First we consider a spike at a jump. We solve the system (8.1) for t0 = x2 and N = 3.

G(x, t0) =





A
cosh θ1(x + 1)

cosh θ1(x1 + 1)
, −1 < x < x1,

A
sinh θ2(x− x2)

sinh θ2(x1 − x2)
+ B

sinh θ2(x− x1)

sinh θ2(x2 − x1)
, x1 < x < x2,

B
cosh θ2(x− 1)

cosh θ2(x2 − 1)
, x2 < x < 1,

(11.1)

then G(x, t0) is automatically continuous at x = x1, x2 and it satisfies the Neumann boundary condition

at x = −1 and x = 1.

The jump conditions of G at x1, x2 give the following linear system for (A, B):
(

1

θ1

tanh θ1(x1 + 1) +
1

θ2

coth θ2(t0 − x1)
)

A− B

θ2

1

sinh θ2(t0 − x1)
= 1, (11.2)

(
1

θ2

coth θ2(x2 − t0) +
1

θ3

tanh θ3(1− x2)+
)

B − A

θ2

1

sinh θ2(x2 − t0)
= 0. (11.3)

We have to compute G(t0, t0) = B. We get

B−1 =
θ2 tanh θ1(x1 + 1) cosh θ2(x2 − x1) + θ1 sinh θ2(x2 − x1)

θ2
2 tanh θ1(x1 + 1) sinh θ2(x2 − x1) + θ1θ2 cosh θ2(x2 − x1)

(11.4)

+
1

θ3

tanh θ3(1− x2).

Now we assume that −1 < x1 < t0 < x2 < 1, i.e. we investigate a spike in the central segment.

We have to solve the system (8.3) for N = 3.

Using the ansatz

G(x, t0) =





A
cosh θ1(x + 1)

cosh θ1(x1 + 1)
, −1 < x < x1,

A
sinh θ2(x− t0)

sinh θ2(x1 − t0)
+ B

sinh θ2(x− x1)

sinh θ2(t0 − x1)
, x1 < x < t0,

B
sinh θ2(x− x2)

sinh θ2(t0 − x2)
+ C

sinh θ2(x− t0)

sinh θ2(x2 − t0)
, t0 < x < x2,

C
cosh θ2(x− 1)

cosh θ3(x2 − 1)
, x2 < x < 1,

(11.5)

then G(x, t0) is automatically continuous at x = x1, t0, x2 and it satisfies the Neumann boundary

condition at x = −1 and x = 1.

The jump conditions of G at x1, t0, x2 give the following linear system for (A,B, C):
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(
1

θ1

tanh θ1(x1 + 1) +
1

θ2

coth θ2(t0 − x1)
)

A− B

θ2

1

sinh θ2(t0 − x1)
= 0,

−A

θ2

sinh θ2(x1 − t0) +
B

θ2

(coth θ2(t0 − x1) + coth θ2(x2 − t0))− C

θ2

1

sinh θ2(x2 − t0)
= 1,

(
1

θ2

coth θ2(x2 − t0) +
1

θ3

tanh θ3(1− x2)+
)

C − B

θ2

1

sinh θ2(x2 − t0)
= 0.

We have to compute G(t0, t0) = B. We get

B−1 =
1

θ2


− 1

θ2

θ1
sinh2 θ2(t0 − x1) tanh θ1(x1 + 1) sinh θ2(t0 − x1) cosh θ2(t0 − x1) (11.6)

+ coth θ2(t0 − x1) + coth θ2(x2 − t0)

− 1
θ2

θ3
sinh2 θ2(x2 − t0) tanh θ3(1− x2) + sinh θ2(x2 − t0) cosh θ2(x2 − t0)




=
1

θ2


θ2 tanh θ1(x1 + 1) cosh θ2(t0 − x1) + θ1 sinh θ2(t0 − x1)

θ2 tanh θ1(x1 + 1) sinh θ2(t0 − x1) + θ1 cosh θ2(t0 − x1)

+
θ2 tanh θ3(1− x2) cosh θ2(x2 − t0) + θ3 sinh θ2(x2 − t0)

θ2 tanh θ3(1− x2) sinh θ2(x2 − t0) + θ3 cosh θ2(x2 − t0)


.
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