

A Testability Transformation Approach for State-Based Programs

AbdulSalam Kalaji, Robert M Hierons and Stephen Swift
School of Information Systems, Math and Computing

Brunel University, Uxbridge, UB8 3PH, UK
{abdulsalam.kalaji, rob.hierons, stephen.swift}@brunel.ac.uk

Abstract

Search based testing approaches are efficient in test
data generation; however they are likely to perform
poorly when applied to programs with state variables.
The problem arises when the target function includes
guards that reference some of the program state
variables whose values depend on previous function
calls. Thus, merely considering the target function to
derive test data is not sufficient. This paper introduces
a testability transformation approach based on the
analysis of control and data flow dependencies to
bypass the state variable problem. It achieves this by
eliminating state variables from guards and/ or
determining which functions to call in order to satisfy
guards with state variables. A number of experiments
demonstrate the value of the proposed approach.

1. Introduction

Errors in software can lead to undesired outcomes
and testing is therefore a crucial stage. However,
manual testing is expensive, error-prone and time
consuming hence automation is very desirable.

SBT approaches such as evolutionary testing (ET)
[1] have received attention due to their efficiency in
deriving test data automatically, however, their
applications were largely focused on structured
programs where the input domain of a test target is
explored to select a set of input values according to a
given test criterion e.g., statement coverage. The
exploration is steered by evaluation information
represented by a fitness function. For example,
Wegener et al. [2] described a fitness function
(Equation 1) in the presence of nested IF statements
that comprises two components: a branch distance [3]
and the approach level (Equation 2) to measure how
close a particular input was to executing the target
branch that is missed and how many critical nodes are
away from the target respectively. The critical node is
a branching node at which the path control flow may
divert (see Fig. 1). Since it is necessary to contrast how

many conditions were achieved by a specific input, the
branch distance of each IF statement is normalized to a
value in the range of [0..1] (Equation 3).
fitness = approach level + norm (branch_distance) (1)
approach_level=1- NumCriticalNodeFromTarget (2)
norm (branch_distance) = 1 – 1.05-branch_distance (3)

The existence of state variables in the presence of
function calls can cause problems when using SBT
approaches. The main effect is that the fitness function
is unable to direct the search towards the desired input
values. Thus, the performance of an SBT approach is
likely to degenerate to that of random search.

In the literature, some techniques, cited in [4],
studied the problem of test data generation from
subjects with state behavior. However, an efficient and
easy test data generation approach remains a
requirement. Thus, the aim of this paper is to benefit
from the efficiency and flexibility introduced by
testability transformation (TeTra) approaches [5] and
reformulate the state variable problem as a TeTra
problem. Applying TeTra to a program with state
behavior was recently highlighted by Harman [4] as an
open research problem.

The approach presented in this paper aims to
address the problem described as: Given a target
function with state variable problems, transform the
test target so that an ET approach can automatically
generate a set of test data that exercises this function

The primary contributions of this paper are the
following: (1) It proposes a TeTra approach to bypass
state variables problems. (2) It provides a method to
suggest when a TeTra is likely to be required. (3) The
approach can be generally applied to similar problems
in a program with functions and global variables.

2. The Proposed Approach

The approach of Wegener et al. [2] described in the
previous Section is efficient when a given target
function is independent e.g., it is not control or data
dependent on other previous functions. Nevertheless,

2009 International Symposium on Search Based Software Engineering

978-0-7695-3675-0/09 $25.00 © 2009 IEEE

DOI 10.1109/SSBSE.2009.14

85

2009 International Symposium on Search Based Software Engineering

978-0-7695-3675-0/09 $25.00 © 2009 IEEE

DOI 10.1109/SSBSE.2009.14

85

1st International Symposium on Search Based Software Engineering

978-0-7695-3675-0/09 $25.00 © 2009 IEEE

DOI 10.1109/SSBSE.2009.14

85

Authorized licensed use limited to: Brunel University. Downloaded on June 3, 2009 at 05:17 from IEEE Xplore. Restrictions apply.

when such a dependency exists, it is not always
possible to consider only the target function.

In order to apply TeTra, we classify an assignment
statement op to a variable v in a function f to four
types: { opvp, opvv, opvc, opv±c} which denote that v is
assigned a value that depends on a parameter, another
variable, a constant and itself and a constant
respectively. Also, we classify a guard g with a guard
operator gop ∈ {<, >, ≠, =, <, > } in an f to five types:
{gpc, gpp, gpv, gvv, gvc} which denote a comparison
among: parameters and constant, parameters only,
parameters and variables, variables only and variables
and constant respectively. Based on the above
classifications, we can distinguish two types of
functions: affecting and affected-by functions.
Definition 1: In a given program with n functions, fi is
an affecting function within this program if fi has an op
∈ {opvp, opvc, opvv, opv±c} to v and there exists a
guarded function fj, where 0 < i < j < n, fj has a guard g
∈ {gvv, gvc} over v and the statements at op in fi and g
in fj form a definition-use (du) pair for v.
Definition 2: An fj is an affected-by function within a
program if fj has g ∈ {gvv, gvc} over v and there exists
an affecting function fi, where 0 < i < j< n, over v and
the statements at op in fi and g in fj form a du pair for v.

From Definition 2, an affected-by fj is always data
dependent on the corresponding affecting fi. fj is also
control dependant on fi if fi has a guard that controls its
assignment operations that affect fj. Based on
Definitions 1 and 2, we can distinguish four cases in
which a target function requires a transformation.
Case 1: the problem occurs between a pair of affected-

by and affecting functions (fj, fi) where op in fi ∈ {opvv,
opvc} and fj is control dependent on fi.

Fig. 2 shows a case study that describes how TeTra
is applied. The target function (target) is control
dependent on task t1 which has guards that control its
assignments (opvc). A sequence of calls to
reset t1 target does not necessarily achieve the
target guards (gvc). The fitness landscape of the
original program is plotted in Fig. 2-3. Due to the flat
region of this landscape, the search does not receive
adequate information and relies only on chance to hit
the target. Fig. 2-2 shows the transformed version of
the target task. Since the assignments of t1 are
controlled by its input parameters, these are required
on the target task. Also, the true branches of t1
predicates are considered since they lead to assigning
variables x and y the required values. Now, the fitness
landscape of Target 2 (see Fig. 2-4) has a clear
downward surface and provides adequate guidance.
Case 2: The problem occurs in a pair of affected-by
and affecting functions (fj, fi) where op in fi ∈ {opvp}
and fj is control dependent on fi.

Compared to Case 1, this case has the input
parameters of the affecting function referenced by the
state variables that appear in the target function guards.
Fig. 3 shows a case study in which a target task is
affected by two functions t1 and t2 and these functions
have guards that control their assignments.
Furthermore, the input parameters of t1 and t2 are
referenced by the state variables in the target task
guards. A sequence of calls to reset t1 t2 target
does not always lead to the target task being exercised.
Fig. 3-3 shows that the fitness landscape of the original
program is flat. The transformed version of the target
task is shown in Fig-3-2. The input parameters and the
assignment enabling predicates of t1 and t2 are

 1- if (x > y)
 2- if (x == 0)
 3- // Target

 Nodes 1 and 2 are
 critical nodes

1

2

Approach level =1
Branch distance =
norm(abs (x-y))

Figure.1 An example of a fitness calculation

T

T

Target

F

F

Approach level = 0
Branch distance = norm(abs (x))

//Case study -2-
int x,y;
void reset()
{ x = 0; y = 0; }
void t1 (int P1)
{if (P1 != 0) x= 100;
 else x= P1;}
void t2 (int P2)
{if (P2 != 0) y=100;
 else y = P2;}
void target()
{if (x ==0 && y ==0)
 //Target 1 }

//Case study 2 -TeTra
int x,y;

void reset()
{ x = 0; y = 0;}

void target(int P1,P2)
{
if (P1 ==0 && P2 ==0)
 //Target 2
}

(1) Program fragment (2) Transformed version

(3) Fitness plot of Target 1 (4) Fitness plot of Target 2
Figure.3 TeTra applied to the second case

//Case study 1
int x,y;
void reset()
{x = 0; y = 0;}
void t1 (int P1,P2)
{if (P1==0) x = 10;
 if (P2==0) y = 10;}
void target ()
{if (x>=10 && y>=10)
 //Target 1 }

//Case study 1- TeTra
int x,y;
void reset()
{ x = 0; y = 0;}
void target (int P1,P2)
{if (P1==0){x =10;
 if (P2==0){y =10;
 if (x>=10 && y>=10)
 //Target 2
}}}

(1) Program fragment (2) Transformed version

(3) Fitness plot of Target 1 (4) Fitness plot of Target 2
Figure.2 TeTra applied to the first case

868686

Authorized licensed use limited to: Brunel University. Downloaded on June 3, 2009 at 05:17 from IEEE Xplore. Restrictions apply.

embedded in the transformed version. Also, the state
variables of the original target task are replaced by the
input parameters that they reference. As observed in
Fig. 3-4, the fitness landscape of Target 2 provides the
search with enough guidance.
Case 3: The problem exists between a pair of affected-
by and affecting functions (fj, fi) where op in fi ∈ {opvv,
opvp, opvc} and fj is control dependent on fi.

This case can be seen as a generalisation of Case 1
and Case 2. However, the main difference is that the
affecting function assignments are complicated by
many types of assignments. Consequently, bypassing
the state variables in this case is not a straight forward
process. This problem can be transformed by applying
amorphous slicing [6] for the state variables of the
target function.

Fig. 4-1 presents a case study in which the target
task has two state variables which are assigned values
in t1. A sequence of calls to reset t1 target is
unlikely to solve the problem. The original fitness
landscape plotted in Fig. 4-3 is almost flat and provides
insufficient guidance. In Fig. 4-2, the transformation is
applied to replace the state variables x and y by
expressions that reference parameters. The fitness
landscape of the transformed version provides the
search with adequate guidance as shown in Fig. 4-4.
Case 4: The problem occurs between a pair of
affected-by and affecting functions (fj, fi) where op in fi
∈ {opv±c} and fj is control dependent on fi.

This problem is likely to exist when a state variable
in the target function has the role of a counter. For such
a case, it is necessary to determine which and how
many calls to be made to other functions before calling
the target one. Fig. 5-1 shows a case study of two
functions where the target task is control dependent on
the affecting t1. As shown in Fig. 5-3, the fitness

landscape does not touch the zero surface and so the
original scenario: reset t1 target is infeasible. The
transformed version shown in Fig. 5-2 tries to
construct a feasible path that enables the target task to
be triggered. Since the input parameters of the
affecting t1 decide whether the assignments are
executed, these are included in the transformed
version. Once suitable input parameters values are
found, a loop of calls is made to the affecting t1
assignments. The notion of implementing a loop to
perform the necessary calls to an affecting function is
introduced in [4]. The number of the loop cycles
(number of calls) can be determined by reversing the
guards of the target task. For this case study, this is
determined as: loop while (x<10 OR y<10). Similarly,
a logical connector AND is reversed to OR and guard
operators: {<, <, >, >, =, ≠} are reversed to: {>, >, <, <,
≠, =}. Once the affecting functions, the number of
calls, and the suitable input parameters values are
determined, a feasible path is constructed from the
original code by repeatedly calling the affecting
functions with the same suitable input parameters
values. Fig. 5-4 shows a clear downwards fitness
landscape of the transformed version for finding the
suitable input parameter values to be applied to t1.

Table 1 lists all possible combinations among
affected-by and affecting functions. The fields marked
by R indicate the cases where we conjecture that TeTra
is likely to be required. Fields marked by F/R indicate
that the transformation is only required if the scenario
is feasible and fields marked by N identify the cases
where the transformation is not necessary.

3. Experimental Study and Conclusion

Experiments were performed on the four case
studies presented in this paper by using random search

//Case study 4
int x,y;
void reset()
 { x = 0; y = 0;}
void t1 (int P1,P2)
{if (P1 >= 0)
 x=x+1; else x =0;
 if (P2 >= 0)
 y=y+1; else y=100;}
void target ()
{if (x>=10 && y>=10)
 //Target 1 }

//Case study 4 - TeTra
int x,y;
void reset()
 { x = 0; y = 0;}

void target (int P1,P2)
{if (P1 >= 0){
 if (P2 >= 0){
 //Target 2
for(i=1; (x<10 || y<10)
;i++)
 t1(P1,P2); }}}

(1) Program fragment (2) Transformed version

(3) Fitness plot of Target 1 (4) Fitness plot of Target 2
Figure.5 TeTra for finding a feasible path

//Case study 3
int x,y;
void reset()
{x = 0; y = 0;}
void t1 (int P1,P2)
{if (P1 >= 0){
 x=x+P1*2; y=y+P1;}
 else{x=100; y=100;}
 if (P2 >= 0){
 x=x+P2*3; y=y+x;}
 else{x=100; y=100;}}
void target()
{if (x==0 && y==0)
 //Target 1 }

//Case study 3 - TeTra
int x,y;

void reset()
{ x = 0; y = 0;}

void target (int P1,P2)
{
if (P1 >= 0){
 if (P2 >= 0){
 if (P1*2 + P2*3==0){
 if (P1*3 + P2*3==0){
 //Target 2
}}}}}

(1) Program fragment (2) Transformed program

(3) Fitness plot of Target 1 (3) Fitness plot of Target 2

Figure.4 TeTra applied to the third case

878787

Authorized licensed use limited to: Brunel University. Downloaded on June 3, 2009 at 05:17 from IEEE Xplore. Restrictions apply.

and the standard ET approach described in Section 1.
Although the four case studies are small in terms of
code size, the complexity for a search-based algorithm
is not related to the code size but it is a function of the
search space size [7]. The input domain size used with
the four case studies had 4×106 possible candidate
solutions. Both of the standard ET and random
approaches were implemented with the publicly
available GEATbx [8]. The population size was 50
individuals with two variables in the range [-
1000..1000]. The ET methods were: linear-ranking
with 1.8 selective pressure, discrete recombination and
mutate integer. The search was terminated after 1000
generations or if the objective value of zero was
achieved. Finally, each search was repeated 10 times.

Fig. 6 plots the performances of random and ET
approaches on each case study before applying the
transformation and once again the ET performance
after the transformation was applied. Each plot shows
the normalized best achieved fitness yet in a specific
generation for a particular search approach averaged
over ten repetitions of the experiment.

Fig. 6-1, 6-2 and 6-3 plot the performances of the
search approaches on Case study 1, 2 and 3
respectively. From these plots, we observe that ET and
random searches exhibited relatively similar
performance before applying the transformation and
they failed to exercise the test target. In contrast, the
ET search on the transformed version was successful
and hit the target relatively quickly. Fig. 6-4
corresponds to the last case study. Since the
untransformed version corresponds to an infeasible
path, it was not surprising that ET and random searches
both failed. However, the ET performance on the
transformed version was very fast in locating the
required input values. The empirical results
demonstrate that the proposed TeTra approach was
effective in improving and enhancing the ET
technique. Further research will apply the approach to

additional examples and investigate its use to derive
feasible paths for the purpose of model-based testing.

4. References

[1] P. McMinn, "Search-based software test data generation:

a survey: Research Articles," Software Testing,
Verification & Reliability, vol. 14, pp. 105-156, 2004.

[2] J. Wegener, A. Baresel, and H. Sthamer, "Evolutionary
test environment for automatic structural testing,"
Information and Software Technology, vol. 43, pp. 841-
854, 2001.

[3] N. Tracey, J. Clark, K. Mander, and J. McDermid, "An
automated framework for structural test-data
generation," presented at Automated Software
Engineering, Proceedings. 13th IEEE International
Conference on, pp. 285-288, 1998.

[4] M. Harman, "Open Problems in Testability
Transformation," presented at Software Testing
Verification and Validation Workshop, ICSTW '08.
IEEE International Conference on, pp. 196-209, 2008.

[5] M. Harman, L. Hu, R. Hierons, J. Wegener, H. Sthamer,
A. Baresel, and M. Roper, "Testability transformation,"
Software Engineering, IEEE Transactions on, vol. 30,
pp. 3-16, 2004.

[6] M. Harman and S. Danicic, "Amorphous program
slicing," presented at Program Comprehension, IWPC
'97. Proceedings, Fifth Iternational Workshop on, 1997.

[7] P. McMinn, M. Harman, D. Binkley, and P. Tonella,
"The species per path approach to Search-Based test
data generation," in Proceedings of the 2006
international symposium on Software testing and
analysis. Portland, Maine, USA: ACM, pp. 13-24, 2006.

[8] H. Pohlheim, "GEATbx - Genetic and Evolutionary
Algorithm Toolbox for Matlab," 1994-2008.
http://www.geatbx.com.

0

0.8

0 1000

Random
ET
ET-TeTra

Generation

N
or

m
al

iz
ed

 a
ve

ra
ge

be

st
 fi

tn
es

s

Case 4. Original vs. transformed

0

0.8

0 1000

Random
ET
ET-TeTra Generation

N
or

m
al

iz
ed

 a
ve

ra
ge

be

st
 fi

tn
es

s

 Case 3. Original vs. transformed

0

0.8

0 1000

Random
ET
ET-TeTra

Generation

N
or

m
al

iz
ed

 a
ve

ra
ge

be

st
 fi

tn
es

s

Case 1. Original vs. transformed
0

0.8

0 1000

Random
ET
ET-TeTra

Generation

N
or

m
al

iz
ed

 a
ve

ra
ge

be

st
 fi

tn
es

s

Case 2. Original vs. transformed

Figure 6: Results of random, ET and ET after TeTra was applied on the four case studies

-1-

-3-

-2-

-4-

Table. 1 Suggesting when TeTra is required
Guard & operator

(affected-by)
Assignment (affecting)

(oppv) (opvv) (opvc) (opv±c)
gpc

, gpp, gvp (=, <, >, <, >, ≠) N N N N
gvv(=, <, >, <, >, ≠) R R R R
gvc(=, <, >, <, >, ≠) R R F/R R

888888

Authorized licensed use limited to: Brunel University. Downloaded on June 3, 2009 at 05:17 from IEEE Xplore. Restrictions apply.

