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Abstract. We consider the following Gierer-Meinhardt system in R1:




At = ε2A
′′ −A +

Ap

Hq
x ∈ (−1, 1), t > 0,

τHt = DH
′′ −H +

Ar

Hs
x ∈ (−1, 1), t > 0,

A
′
(−1) = A

′
(1) = H

′
(−1) = H

′
(1) = 0,

where (p, q, r, s) satisfy
1 <

qr

(s + 1)(p− 1)
< +∞, 1 < p < +∞,

and where ε << 1, 0 < D < ∞, τ ≥ 0,

D and τ are constants which are independent of ε.
We give a rigorous and unified approach to show that the existence and stability of N−peaked
steady-states can be reduced to computing two matrices in terms of the coefficients D,N, p, q, r, s.
Moreover, it is shown that N−peaked steady-states are generated by exactly two types of peaks,
provided their mutual distance is bounded away from zero..

1. Introduction

Since the work of Turing [26] in 1952, many models have been established and investigated to
explore the so-called Turing instability [26]. One of the most famous models in biological pattern
formation is the Gierer-Meinhardt system [11], [16], [17], which in one dimension can be stated as
follows:

(1.1)





At = ε2∆A− A +
Ap

Hq
x ∈ (−1, 1), t > 0,

τHt = D∆H −H +
Ar

Hs
x ∈ (−1, 1), t > 0,

A
′
(±1, t) = H

′
(±1, t) = 0,

where (p, q, r, s) satisfy

1 <
qr

(s + 1)(p− 1)
< +∞, 1 < p < +∞,

and where ε << 1, 0 < D < ∞, τ ≥ 0,

D and τ are constants which are independent of ε.
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Problem (1.1) has been studied by numerous authors. Let us mention several important results
which are related to our present paper.

1) (Existence of symmetric N−peaked steady-state Solutions)
I. Takagi [25] first established the existence of N -peaked steady-state solutions with peaks centered

at

xj = −1 +
2j − 1

N
, j = 1, . . . , N,

for ε << 1, ε√
D

<< 1.

Such solutions are symmetric and they are obtained from a single spike by reflection. We call them
symmetric N−peaked solution since all the peaks have the same heights. Takagi’s proof is based
on symmetry and the implicit function theorem.

2) (Stability of symmetric N−peaked solutions)
Using matched asymptotic analysis, D. Iron, M. Ward, and J. Wei [15] studied the stability of the

symmetric N -peaked solutions for 0 ≤ τ < τ0 (where τ0 > 0 is independent of ε) and the following
results are established (formally):

Result A. There exists a sequence of numbers D1 > D2 > ... > DN > ... (which has been given
explicitly) such that for ε << 1: If D < DN , the symmetric N -peaked solutions are stable, while for
D > DN , the symmetric N -peaked solutions are unstable.

In the shadow system case (D = ∞) the existence of single- or N -peaked solutions is established
in [1, 2, 3, 13, 12, 19, 20, 31, 32, 33] and other papers. In the two-dimensional strong coupling case
(D < ∞), the existence of 1-peaked solutions is established in [37], and the stability of N -peaked
solutions is studied in [38, 39]. Results similar to Result A are proved.

3) (Existence of asymmetric N−peaked solutions)
By using the same matched asymptotic analysis in [15], M. Ward and the first author in [28]

discovered that problem (1.1) has asymmetric N−peaked steady-state solutions which bifurcate
off the branch of symmetric N -peaked solutions at D = DN , where DN is given by Result A. Such
asymmetric solutions are generated by two types of peaks – called type A and type B, respectively.
Type A and type B peaks have different heights. They can be arranged in any given order

ABAABBB...ABBBA...B

to form an N−peaked solution. The existence of such solutions is surprising. It shows that the
solution structure of (1.1) is much more complicated than one would expect. The stability of such
asymmetric N−peaked solutions is also studied in [28], through a formal approach. We remark that
asymmetric patterns can also be obtained for the Gierer-Meinhardt system on the real line, see [8].

The purpose of of this paper is to provide a rigorous and unified theoretic foundation for
the existence and stability of general N−peaked (symmetric or asymmetric) solutions. In particular,
the results of [15] and [28] are rigorously established. Moreover, we show that if the N peaks are
separated, then they are generated by peaks of type A and type B, respectively. This implies that
there are only two kinds of N -peaked patterns: symmetric N−peaked solutions constructed in [25]
and asymmetric N−peaked patterns constructed in [28].
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The existence proof is based on Liapunov-Schmidt reduction. Stability is proved by first separating
the problem into the case of large eigenvalues which tend to a nonzero limit and the case of small
eigenvalues which tend to zero in the limit ε → 0. Large eigenvalues are then explored by study-
ing nonlocal eigenvalue problems using results of [35] and employing an idea of Dancer [5]. Small
eigenvalues are calculated explicitly by an asymptotic analysis with rigorous error estimates.

A particular feature of the study of small eigenvalues is that one needs to expand the eigenfunction
up to the order O(ε2) term. This step is different from the single interior peak case [35] and the
result is given in Lemma 9.4. We remark that a similar expansion is also needed in the study of small
eigenvalues for single boundary spike solutions (see [4] and [34]).

We believe that our approach here, combined with the techniques in [15] and [28], can be very
useful in the study of other reaction-diffusion systems as well. With our results we solve a conjecture
which was raised in [18].

It turns out that in the case of symmetric N -peaked solutions for increasing D the first instability
always arises from the small eigenvalues in contrast to the multi-pulses on the real line [6], [7], [9],
where the first instability arises from the large eigenvalues.

In [14] the spectra of asymmetric solutions are studied near the point at which they bifurcate off
a symmetric branch. It is confirmed that all such solutions are unstable in a neighborhood of the
bifurcation point and an explicit expression for the leading order terms of the critical eigenvalues is
derived.

A similar analysis for the Fitzhugh-Nagumo model has been carried out in [22]. We note also that
in [27], H. van der Ploeg used an alternative dynamical systems approach to study the stability of
symmetric spikes.

Before we state our main results in Section 2, we introduce some notation. Let L2(−1, 1) and
H2(−1, 1) be the usual Lebesgue and Sobolev spaces. With the variable w we denote the unique
solution of the following problem:

(1.2)

{
w
′′ − w + wp = 0 in R1,

w > 0, w(0) = maxy∈R w(y), w(y) → 0 as |y| → ∞
In fact, it is easy to see that w(y) can be written explicitly

(1.3) w(y) =

(
p + 1

2

) 1
p−1

(
cosh

(
p− 1

2
y

))− 2
p−1

.

Let Ω = (−1, 1) and GD(x, z) be the Green’s function of

(1.4)

{
DG

′′
D(x, z)−GD(x, z) + δz(x) = 0 in (−1, 1),

G
′
D(−1, z) = G

′
D(1, z) = 0.

We can calculate explicitly

(1.5) GD(x, z) =

{
θ

sinh(2θ)
cosh[θ(1 + x)] cosh[θ(1− z)], −1 < x < z,

θ
sinh(2θ)

cosh[θ(1− x)] cosh[θ(1 + z)], z < x < 1

where
θ = D−1/2.

We set

(1.6) KD(|x− z|) =
1

2
√

D
e
− 1√

D
|x−z|
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to be the non-smooth part of GD(x, z) and by GD = KD−HD we define the regular part HD of GD.
Note that HD is C∞ in both x and z.

We use the notation e.s.t to denote an exponentially small term of order O(e−d/ε) for some d > 0
in the corresponding norm. By C we denote a generic constant which may change from line to line.

We shall establish the existence and stability of N−peaked steady-state solutions to (1.1). The
steady-state problem for (1.1) is the following:

(1.7)





ε2A
′′ − A +

Ap

Hq
= 0 in (−1, 1),

DH
′′ −H +

Ar

Hs
= 0 in (−1, 1),

A(x) > 0, H(x) > 0, in (−1, 1),

A
′
(−1) = A

′
(1) = H

′
(−1) = H

′
(1) = 0.

Since the 1−peaked interior solution has been well-understood in [15], [21], [35] we will assume
throughout this paper that

(1.8) N ≥ 2.

This paper has the following structure: In Section 2 we introduce our three main hypotheses, (H1)
– (H3) and state our three main results, Theorem 2.1, Theorem 2.2 and Theorem 2.3. In Section 3
we study the spectra of a few nonlocal eigenvalue problems on the real line. In Section 4–6 we prove
the existence of multiple-peaked solutions: In Section 4 we construct suitable approximate solutions,
in Section 5 we use the Liapunov-Schmidt method to reduce the existence of solutions to (1.7) to a
finite dimensional problem, in Section 6 we solve this finite-dimensional problem. In Section 7, we
completely classify all possible N -peaked solutions, provided the N peaks are separated. In Section 8
we study the large eigenvalues of the linearized operator. In Section 9 we study the small eigenvalues
of the linearized operator and give a complete description of their asymptotic behavior in Lemma
9.1. Finally, in the Appendix we compute the eigenvalues of the two main matrices explicitly in the
case of symmetric N -peaked solutions.

Acknowledgements: The work of JW is supported by an Earmarked Grant of RGC of Hong Kong.
MW thanks the Department of Mathematics at CUHK for their kind hospitality. We thank Professor
M. J. Ward for valuable discussions.

2. Main Results: Existence and Stability

Let −1 < t01 < · · · < t0j < · · · < t0N < 1 be N points in (−1, 1) and w be the unique solution of
(1.2).

Put

(2.1) ξε :=

(
ε

∫

R

wr(z) dz

) p−1
(p−1)(s+1)−qr

.

We introduce several matrices for later use: For t = (t1, ..., tN) ∈ (−1, 1)N let

(2.2) GD(t) = (GD(ti, tj)).
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Recall that
GD(ti, tj) = KD(|ti − tj|)−HD(ti, tj).

Let us denote ∂
∂ti

as ∇ti . When i 6= j, we can define ∇tiG(ti, tj) in the classical way. When i = j,

KD(|ti − tj|) = KD(0) = 1
2
√

D
is a constant and we define

∇tiGD(ti, ti) := − ∂

∂x
|x=tiH(x, ti).

Similarly, we define

(2.3) ∇ti∇tjGD(ti, tj) =

{ − ∂
∂x
|x=ti

∂
∂y
|y=tiHD(x, y) if i = j,

∇ti∇tjGD(ti, tj) if i 6= j.

Now the derivatives of G are defined as follows:

(2.4) ∇GD(t) = (∇tiGD(ti, tj)), ∇2GD(t) = (∇ti∇tjGD(ti, tj)).

We now have our first assumption:
(H1) There exists a solution (ξ̂0

1 , . . . , ξ̂
0
N) of the following equation

(2.5)
N∑

j=1

GD(t0i , t
0
j)(ξ̂

0
j )

qr
p−1

−s = ξ̂0
i , i = 1, ..., N.

Next we introduce the following matrix

(2.6) bij = GD(t0i , t
0
j)(ξ̂

0
j )

qr
p−1

−s−1, B = (bij).

Our second assumption is the following:
(H2) It holds that

(2.7)
p− 1

qr − s(p− 1)
6∈ σ(B),

where σ(B) is the set of eigenvalues of B.
Remark 2.1: Since the matrix B is of the form GDD, where GD is symmetric and D is a diagonal
matrix, it is easy to see that the eigenvalues of B are real.

By the assumption (H2) and the implicit function theorem, for t = (t1, ..., tN) near t0 = (t01, ..., t
0
N),

there exists a unique solution ξ̂(t) = (ξ̂1(t), ..., ξ̂N(t)) for the following equation

(2.8)
N∑

j=1

GD(ti, tj)ξ̂j

qr
p−1

−s
= ξ̂i, i = 1, ..., N.

Set

(2.9) H(t) = (ξ̂i(t)δij).

We define the following vector field:

F (t) = (F1(t), ..., FN(t)),

where

(2.10) Fi(t) =
N∑

l=1

∇tiGD(ti, tl)ξ̂
qr

p−1
−s

l
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= −∇tiHD(ti, ti)ξ̂
qr

p−1
−s

i +
∑

l 6=i

∇tiGD(ti, tl)ξ̂
qr

p−1
−s

l , i = 1, . . . , N.

Set

(2.11) M(t) = (ξ̂−1
i ∇tjFi(t)).

Our final assumption concerns the vector field F (t).
(H3) We assume that at t0 = (t01, ..., t

0
N):

(2.12) F (t0) = 0,

(2.13) det (M(t0)) 6= 0.

Let us now calculate M(t0): Therefore we first compute the derivatives of ξ̂. It is easy to see that

ξ̂(t) is C1 in t and from (2) we can calculate:

∇tj ξ̂i = (
qr

p− 1
− s)

N∑

l=1

GD(ti, tl)ξ̂
qr

p−1
−s−1

l ∇tj ξ̂l +
N∑

l=1

∂

∂tj
(GD(ti, tl))ξ̂

qr
p−1

−s

l .

For i 6= j, we have

∇tj ξ̂i = (
qr

p− 1
− s)

N∑

l=1

GD(ti, tl)ξ̂
qr

p−1
−s−1

l ∇tj ξ̂l +∇tjGD(ti, tj)ξ̂
qr

p−1
−s

j .

For i = j, we have

∇tj ξ̂i = (
qr

p− 1
− s)

N∑

l=1

GD(ti, tl)ξ̂
qr

p−1
−s−1

l ∇ti ξ̂l +
N∑

l=1

∂

∂ti
(GD(ti, tl))ξ̂

qr
p−1

−s

l

= (
qr

p− 1
− s)

N∑

l=1

GD(ti, tl)ξ̂
qr

p−1
−s−1

l ∇ti ξ̂l +∇tiGD(ti, ti)ξ̂
qr

p−1
−s

i +
N∑

l=1

∇tiGD(ti, tl)ξ̂
qr

p−1
−s

l ,

since ∂
∂ti

GD(ti, ti) = 2∇tiGD(ti, ti).
Note that

(∇tjGD(ti, tj)) = (∇GD)T .

Therefore if we denote the matrix

(2.14) ∇ξ = (∇tj ξ̂i)

then we have

(2.15) ∇ξ(t) = (I − (
qr

p− 1
− s)GDH

qr
p−1

−s−1)−1(∇GD)TH qr
p−1

−s + O(
N∑

j=1

|Fj(t)|).

Let

(2.16) Q = (qij) = ((−θ2ξ̂
1+s− qr

p−1

i +
θ3

2
)δij)

We can compute M(t0) by using (2.15): we note for i 6= j:

∇tj(
N∑

l=1

∇tiGD(ti, tl))ξ̂
qr

p−1
−s

l = (∇tj∇tiGD(ti, tj))ξ̂
qr

p−1
−s

j
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and for i = j

∇ti

(
N∑

l=1

∇tiGD(ti, tl)

)
ξ̂

qr
p−1

−s

l = ∇ti

( ∑

l=1,...,N,l 6=i

∇tiGD(ti, tl)

)
ξ̂

qr
p−1

−s

l − (∇ti∇tiHD(ti, ti))ξ̂
qr

p−1

i

=
1

D

N∑

l=1

GD(ti, tl)ξ̂
qr

p−1
−s

l − (
1

D
KD(0))ξ̂

qr
p−1

−s

i +∇ti∇tiGD(ti, ti)ξ̂
qr

p−1
−s

i

= θ2ξ̂i − θ3

2
ξ̂

qr
p−1

−s

i +∇ti∇tiGD(ti, ti)ξ̂
qr

p−1
−s

i

and hence

(2.17) M(t0) = H−1(∇2GD −Q)H qr
p−1

−s

+H−1(
qr

p− 1
− s)∇GDH

qr
p−1

−s−1(I − (
qr

p− 1
− s)GDH

qr
p−1

−s−1)−1(∇GD)TH qr
p−1

−s.

To simplify our notations, we introduce the following matrices

(2.18) P1 := (I + sGDH
qr

p−1
−s−1)−1,

(2.19) P2 := (I − (
qr

p− 1
− s)GDH

qr
p−1

−s−1)−1.

Our first result can be stated as follows:

Theorem 2.1. Assume that assumptions (H1), (H2) and (H3) are satisfied. Then for ε << 1,
problem (1.7) has an N-peaked solution which concentrates at tε1, . . . , t

ε
N , or more precisely:

(2.20) Aε(x) ∼
N∑

j=1

ξ
q

p−1
ε (ξ̂j

0
)

q
p−1 w(

x− tεj
ε

),

(2.21) Hε(t
ε
i) ∼ ξεξ̂

0
i , i = 1, . . . , N,

(2.22) tεi → t0i , i = 1, . . . , N.

Remark 2.2: In the case of symmetric N -peaked solutions, conditions (H2) and (H3) are not needed,
as in the construction of solutions one can restrict the function space to the class of symmetric
functions (see for example [25]). Note that for small ε (and not only in the limit ε → 0) the peaks
are placed equidistantly.
Remark 2.3. Our results here can be applied to give a rigorous proof for the existence and
stability of N−peaked solutions consisting of peaks with different heights.

In [28], by using matched asymptotic analysis, Ward and the first author constructed such solutions
and studied their stability. We now summarize their main ideas. First (1.7) is solved in a small
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interval (−l, l):

(2.23)





ε2A
′′ − A +

Ap

Hq
= 0 in (−l, l),

DH
′′ −H +

Ar

Hs
= 0 in (−l, l),

A(x) > 0, H(x) > 0 in (−l, l),

A
′
(−l) = A

′
(l) = H

′
(−l) = H

′
(l) = 0.

Then the single interior symmetric spike solution is considered which was constructed by I. Takagi
[25]. By some simple computations based on (1.4), we have that

(2.24) H(l) ∼ c(D)b(
l√
D

),

where c(D) is some positive constant depending on D only and the function b(z) is given by

(2.25) b(z) :=
tanhα(z)

cosh(z)
, α :=

(p− 1)

qr − (s + 1)(p− 1)
.

The idea now is that we fix l and try to find another l̄ 6= l such that the following holds

(2.26) b(
l√
D

) = b(
l̄√
D

), 0 < l < l̄ < 1,

which will imply that H(l) ∼ H(l̄). This shows that if there exists a solution to (2.26), we may
match up H(l) and H(l̄). In other words, we may match up solutions of (2.23) in different intervals.

It turns out that for D small, (2.26) is always solvable. Now (2.26) has to be solved along with
the following interval constraint:

(2.27) N1l + N2l̄ = 1, N1 + N2 = N.

For a solution l of (2.26) and (2.27) and j = 1, . . . , N we define

(2.28) lj = l or lj = l̄

where the number of j’s such that lj = l is N1 (and consequently the number of j’s such that lj = l̄
is N2). We call the small spike with lj = l type A and the large spike with lj = l̄ type B.

Then we choose t0j such that

|t0j − t0j+1| = lj + lj−1, j = 0, ..., N,

where t00 = −1, t0N+1 = 1.
By using matched asymptotics, we now have N1 type A and N2 type B peaks. This ends our short

review of the ideas in [28]. Let us now use Theorem 2.1 to give a rigorous proof of results of [28]. In
order to apply Theorem 2.1, we have to check the three assumptions (H1), (H2) and (H3).

To this end, let us set

(2.29) ξ̂0
j = (2

√
D) tanh (θj), j = 1, ..., N,

where

(2.30) θj =
lj√
D

.
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It is difficult to check (H1) directly. Instead we note that G−1
D is a tridiagonal matrix. (See [15]

and [28].) More precisely, we calculate

G−1
D = (aij) = 2

√
D




γ1 β1 0
. . . . . . 0

β1 γ2 β2
. . . . . .

. . . . . . . . . . . . . . . . . .

. . . . . . βj−1 γj βj 0

. . . . . . . . . . . . . . . . . .

0
. . . . . . 0 βN−1 γN




where
γ1 = coth(θ1 + θ2) + tanh(θ1),

γj = coth(θj−1 + θj) + coth(θj + θj+1), j = 2, . . . , N − 1,

γN = coth(θN−1 + θN) + tanh(θN),

βj = −csch(θj + θj+1), j = 1, . . . , N − 1

and θj was defined in (2.30). Note that

(2.31) aij = 2
√

D(βjδi(j−1) + γjδij + βj+1δi(j+1)).

Verifying (2.5) amounts to checking the following identity

(2.32)
N∑

j=1

aij ξ̂
0
j = (ξ̂0

i )
qr

p−1
−s,

which is an easy exercise.
It remains to verify (H2) and (H3).
To this end, we need to know the eigenvalues of B andM. In the same way as for the matrix GD, one

can show that B−1 is a tridiagonal matrix. Even with this piece of information, it is almost impossible
to obtain an explicit formula for the eigenvalues. Numerical software for solving eigenvalue problems
of large matrices is indispensable. Then (H2) has to be checked explicitly. Numerical computations
in [28] do suggest that assumption (H3) is always satisfied.

A natural question is the following: Are all N−peaked solutions generated by two types of peaks
as the solutions which were constructed in [28]?

Our next theorem gives an affirmative answer. It completely classifies all N -peaked solutions,
provided that the N peaks are separated.

Theorem 2.2. Suppose that for ε sufficiently small, there are solutions (Aε, Hε) of (1.7) such that

(2.33) Aε(x) ∼
N∑

j=1

ξ
q

p−1
ε (ξ̂ε

j)
q

p−1 w(
x− tεj

ε
),

and

(2.34) Hε(t
ε
i) ∼ ξεξ̂

ε
i , i = 1, . . . , N,

where ξε is given by (2.1),

(2.35) ξ̂ε
i → ξ̂0

i > 0, tεi → t0i , t
0
i 6= t0j , i 6= j, i, j = 1, . . . , N.
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Then necessarily, we have

(2.36) li := t0i − t0i−1 ∈ {l, l̄}, i = 1, ..., N,

where t00 = −1, l and l̄ satisfy (2.26) and (2.27) with N1 being the number of i’s for which li = l and
N2 being the number of i’s for which li = l̄ (hence N1 + N2 = N).

Theorem 2.2 shows that an N−peaked solution must be generated by exactly two types of peaks
– type A with shorter length l and type B with larger length l̄. This shows that the solutions
constructed in [28] (through a formal approach) exhaust all possible separated N−peaked solutions.
In particular, it shows that there are at most 2N N−peaked solutions. If the assumptions (H1)–(H3)
are met, then there are exactly 2N N−peaked solutions.

Finally, we study the stability of the N−peaked solutions constructed in Theorem 2.1.

Theorem 2.3. Let (Aε, Hε) be the solutions constructed in Theorem 2.1. Assume that ε << 1.
(1) (Stability) If

(2.37) r = 2, 1 < p < 5 or r = p + 1, 1 < p < +∞
and furthermore

(2.38)

(
qr

p− 1
− s

)
min

σ∈σ(B)
σ > 1

and

(2.39) σ(M) ⊆ {σ|Re(σ) > 0},
there exists τ0 > 0 such that (Aε, Hε) is linearly stable for 0 ≤ τ < τ0.

(2) (Instability) If

(2.40)

(
qr

p− 1
− s

)
min

σ∈σ(B)
σ < 1,

there exists τ0 > 0 such that (Aε, Hε) is linearly unstable for 0 ≤ τ < τ0.
(3) (Instability) If there exists

(2.41) σ ∈ σ(M), Re(σ) < 0,

then (Aε, Hε) is linearly unstable for all τ > 0.

Remark 2.4. In the original Gierer-Meinhardt model, (p, q, r, s) = (2, 1, 2, 0) or (p, q, r, s) =
(2, 4, 2, 0). This means that condition (2.37) is satisfied. In the general case, one has to study a
nonlocal eigenvalue problem (Theorem 3.1), which is difficult since the operator is not self-adjoint.
See [5], [40] for progress in this direction.
Remark 2.5. For the stability, we have to assume that 0 ≤ τ < τ0 for some τ0 > 0 which we do
not know explicitly. Stability in the case where τ is large has been investigated in [29] and [30] for
symmetric spikes.

For the case of asymmetric spikes, the stability problem with respect to the large eigenvalues
remains mainly open. It is expected that there is stability with respect to the large eigenvalues for
some range for D > DN if D is sufficiently close to DN and τ is small enough.

We remark that stability in the case of large τ for the shadow system has been studied in [5].
Remark 2.6. By Theorem 2.1 and Theorem 2.3, the existence and stability of N−peaked solutions
are completely determined by the two matrices B and M. They are related to the asymptotic
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behavior of large eigenvalues which tend to a nonzero limit and small eigenvalues which tend to zero
as ε → 0, respectively. The computations of these two matrices are by no means easy. We refer
to [15] and [28] for exact computations and numerics. For the reader’s convenience, we include in
the Appendix A a sketch of the computations of the eigenvalues of the matrices B and M in the
symmetric N−peaked case. Combining the results here and the computations in [15], the stability
of symmetric N−peaked solutions is completely characterized and the following result is established
rigorously.

Theorem 2.4. Let (Aε,N , Hε,N) be the symmetric N−peaked solutions constructed by I. Takagi [25].
Assume that ε >> 1.

(a) (Stability) Assume that 0 < τ < τ0 for some τ0 small and that

(2.42) r = 2, 1 < p < 5 or r = p + 1, 1 < p < +∞
and

(2.43) D < DN :=
1

N2(log(
√

α +
√

α + 1))2
,

where α is given by (2.25), then the symmetric N-peaked solution is linearly stable.
(b) (Instability) If

(2.44) D > DN ,

where DN is given by (2.43), then the N-peaked solution is linearly unstable for all τ > 0.

The proof of Theorem 2.4 is given in Appendix A.

3. Some preliminaries

In this section, we consider a system of nonlocal linear operators. We first recall

Theorem 3.1. Consider the following nonlocal eigenvalue problem

(3.1) φ
′′ − φ + pwp−1φ− γ(p− 1)

∫
R

wr−1φ∫
R

wr
wp = αφ.

(1) (Appendix E of [15].) If γ < 1, then there is a positive eigenvalue to (3.1).
(2) (Theorem 1.4 of [35].) If γ > 1 and (2.37) holds then for any nonzero eigenvalue α of (3.1), we
have

Re(α) ≤ −c0 < 0.

(3) If γ 6= 1 and α = 0, then φ = c0w
′
for some constant c0.

In our applications to the case when τ > 0, we have to deal with the situation when the coefficient
γ is a function of τα. Let γ = γ(τα) be a complex function of τα. Let us suppose that

(3.2) γ(0) ∈ R, |γ(τα)| ≤ C for αR ≥ 0, τ ≥ 0,

where C is a generic constant independent of τ, α. A simple example of σ(τα) satisfying (3.2) is

σ(τα) =
2√

1 + τα + 1

where
√

1 + τα is the principal branch.
Now we have
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Theorem 3.2. Consider the following nonlocal eigenvalue problem

(3.3) φ
′′ − φ + pwp−1φ− γ(τα)(p− 1)

∫
R

wr−1φ∫
R

wr
wp = αφ,

where γ(τα) satisfies (3.2). Then there is a small number τ0 > 0 such that for τ < τ0,
(1) if γ(0) < 1, then there is a positive eigenvalue to (3.1);
(2) if γ(0) > 1 and (2.37) holds, then for any nonzero eigenvalue α of (3.3), we have

Re(α) ≤ −c0 < 0.

Proof: Theorem 3.2 follows from Theorem 3.1 by a perturbation argument. To make sure that the
perturbation argument works, we have to show that if αR ≥ 0 and 0 < τ < 1, then |α| ≤ C, where C
is a generic constant (independent of τ). In fact, multiplying (3.3) by φ̄ – the conjugate of φ – and
integrating by parts, we obtain that

(3.4)

∫

R

(|φ′|2 + |φ|2 − pwp−1|φ|2) = −α

∫

R

|φ|2 − γ(τα)(p− 1)

∫
R

wr−1φ∫
R

wr

∫

R

wpφ̄.

From the imaginary part of (3.4), we obtain that

|αI | ≤ C1|γ(τα)|,
where α = αR +

√−1αI and C1 is a positive constant (independent of τ). By assumption (3.2),
|γ(τα)| ≤ C and so |αI | ≤ C. Taking the real part of (3.4) and noting that

l.h.s. of (3.4) ≥ C

∫

R

|φ|2 for some C ∈ R,

we obtain that αR ≤ C2, where C2 is a positive constant (independent of τ > 0). Therefore, |α| is
uniformly bounded and hence a perturbation argument gives the desired conclusion.

¤
Next, we consider the following system of linear operators

LΦ := Φ
′′ − Φ + pwp−1Φ

(3.5) −qr(I + sB)−1B(

∫

R

wr−1Φ)(

∫

R

wr)−1wp,

where B is given by (2.6) and

Φ =




φ1

φ2
...
φN


 ∈ (H2(R))N .

Set

(3.6) L0u := u
′′ − u + pwp−1u, where u ∈ H2(R).

Then using Remark 2.1 the conjugate operator of L under the scalar product in L2(R) is

L∗Ψ = Ψ
′′ −Ψ + pwp−1Ψ

(3.7) −qrBT (I + sBT )−1(

∫

R

wpΨ)(

∫

R

wr)−1wr−1,
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where

Ψ =




ψ1

ψ2
...
ψN


 ∈ (H2(R))N .

We obtain the following

Lemma 3.3. Assume that assumption (H2) holds. Then

(3.8) Ker(L) = X0 ⊕X0 ⊕ · · · ⊕X0,

where

X0 = span
{

w
′
(y)

}

and

(3.9) Ker(L∗) = X0 ⊕X0 ⊕ · · · ⊕X0.

Proof: Let us first prove (3.8). Suppose

LΦ = 0.

Let us diagonalize B such that
P−1BP = J,

where P is an orthogonal matrix and by Remark 2.1 J has diagonal form, i.e.,

J =




σ1 0
σ2

. . .
0 σN




with suitable real numbers σj, j = 1, 2, . . . , N .
Defining

Φ = P Φ̃

we have

(3.10) Φ̃
′′ − Φ̃ + pwp−1Φ̃− qr(

∫

R

wr)−1(

∫

R

wr−1(I + sJ)−1JΦ̃)wp = 0.

For l = 1, 2, . . . , N we look at the l-th equation of system (3.10):

Φ̃
′′
l − Φ̃l + pwp−1Φ̃l

(3.11) −qr(

∫

R

wr)−1(
σl

1 + sσl

∫

R

wr−1Φ̃l)w
p = 0.

By Theorem 3.1 (3), the last equation (3.11) tells us that (since by condition (H2) we know qr σl

1+sσl
6=

p− 1)

(3.12) Φ̃l ∈ X0.

Continuing in this way for l = 1, . . . , N , we have

(3.13) Φ̃l ∈ X0, l = 1, . . . , N.
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(3.8) is thus proved.
To prove (3.9), we proceed in the same way for L∗.
Using σ(B) = σ(BT ) the l-th equation of the diagonalized system is as follows:

Ψ̃
′′
l − Ψ̃l + pwp−1Ψ̃l

(3.14) −qr(

∫

R

wr)−1 σl

1 + sσl

(

∫

R

wpΨ̃l)w
r−1 = 0.

Multiplying (3.14) by w and integrating over the real line, we obtain

(p− 1− qr
σl

1 + sσl

)

∫

R

wpΨ̃l = 0,

which implies that ∫

R

wpΨ̃l = 0,

since qr σl

1+sσl
6= p− 1.

Thus all the nonlocal terms vanish and we have

(3.15) L0Ψ̃l = 0, l = 1, . . . , N.

This implies that Ψ̃l ∈ X0 for l = 1, . . . , N .
¤

As a consequence of Lemma 3.3, we have

Lemma 3.4. The operator
L : (H2(R))N → (L2(R))N

is invertible if it is restricted as follows

L : (X0 ⊕ · · · ⊕X0)
⊥ ∩ (H2(R))N → (X0 ⊕ · · · ⊕X0)

⊥ ∩ (L2(R))N .

Moreover, L−1 is bounded.

Proof: This follows from the Fredholm Alternatives Theorem and Lemma 3.3.
¤

Finally, we study the eigenvalue problem for L:

(3.16) LΦ = αΦ.

We have

Lemma 3.5. Assume that all the eigenvalues of B are real. Then we have:

(1) If
(

qr
p−1

− s
)

minσ∈σ(B) > 1, then for any nonzero eigenvalue of (3.16) we must have α ≤
−c0 < 0.

(2) If there exists σ ∈ σ(B) such that
(

qr
p−1

− s
)

σ < 1, then there exists a positive eigenvalue of

(3.16).

Proof: Let (Φ, α) satisfy (3.16). Suppose αR ≥ 0 and α 6= 0. Similar to Lemma 3.3, we diagonalize
(3.16)

(3.17) Φ
′′ − Φ + pwp−1Φ− qr(

∫

R

wr)−1(

∫

R

wr−1(I + sJ)−1JΦ)wp = αΦ
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and the l-th equation of system (3.17) becomes

Φ
′′
l − Φl + pwp−1Φl − qr

σl

1 + sσl

(

∫

R

wr)−1(

∫

R

wr−1Φl)w
p = αΦl.

(i) By Theorem 3.1 (1) and the fact that
qr

p− 1

σl

1 + sσl

> 1

we conclude that
Φ1 = · · · = ΦN = 0

or
α ≤ −c0 < 0.

Since by assumption the eigenfunctions are non-vanishing the second alternative holds. (1) is proved.

(ii) if σl

(
qr

p−1
− s

)
< 1 for some σl ∈ σ(B), then the equation corresponding to σl becomes

Φ
′′
l − Φl + pwp−1Φl − qr

σl

1 + sσl

(

∫

R

wr)−1(

∫

R

wr−1Φl) = αΦl.

By Theorem 3.1 (2), we know that there exists an eigenvalue α0 > 0 and an eigenfunction Φ0 such
that

L0Φ0 − qr(

∫

R

wr)−1(
σl

1 + sσl

∫

R

wr−1Φ0) = α0Φ0.

Let us take Φl = Φ0 and Φj = 0 for j 6= l. Then (Φ, α) satisfy (3.16). (2) is proved.
¤

4. Study of the approximate solutions

Let −1 < t01 < · · · < t0j < · · · t0N < 1 be N points satisfying the assumptions (H1) – (H3). Let

ξ̂0 = (ξ̂0
1 , ..., ξ̂

0
N) be the unique solution of (2.5). Let

(4.1) t0 = (t01, . . . , t
0
N).

We now construct an approximate solution to (1.7) which concentrates near these prescribed N
points.

Let −1 < t1 < · · · < tj < · · · < tN < 1 be such that t = (t1, . . . , tN) ∈ Bε3/4(t0). Set

(4.2) wj(x) = w

(
x− tj

ε

)
,

and

(4.3) r0 =
1

10
(min(t01 + 1, 1− t0N ,

1

2
min
i6=j

|t0i − t0j |)).
Let χ : R → [0, 1] be a smooth cut-off function such that χ(x) = 1 for |x| < 1 and χ(x) = 0 for

|x| > 2. We now define our approximate solution

(4.4) w̃j(x) = wj(x)χ(
x− tj

r0

).

Then it is easy to see that w̃j(x) satisfies

(4.5) ε2w̃
′′
j − w̃j + w̃p

j = e.s.t.
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in L2(−1, 1).

Let ξ̂(t) = (ξ̂1, ..., ξ̂N) be as defined by (H1).
Put

(4.6) wε,t(x) =
N∑

j=1

ξ̂
q/(p−1)
j w̃j(x).

Fix any function A ∈ H2(−1, 1) and define T [A] to be the solution of

(4.7)





DT [A]
′′ − T [A] + cε

Ar

(T [A])s
= 0, −1 < x < 1,

T [A]
′
(−1) = T [A]

′
(1) = 0,

where

(4.8) cε = (ε

∫

R

wr)−1 = ξ
qr

p−1
−s−1

ε .

(Recall that ξε was first defined in (2.1)). The solution T [A] is unique and positive.
Let A = wε,t, where t ∈ Bε3/4(t0). Let us now compute

(4.9) τi := T [A](ti).

From (4.7), we have

τi = cε

∫ 1

−1

GD(ti, z)
Ar(z)

(T [A](z))s
dz

= cεε

N∑
j=1

ξ̂
qr

p−1

j

∫ 1

−1

GD(ti, z)w̃r
j (z)τ−s

j dz(1 + O(ε))

= cεε

N∑
j=1

ξ̂
qr

p−1

j τ−s
j

[
GD(ti, tj)

∫ +∞

−∞
wr

j (y) dy + O(ε)

]

=
N∑

j=1

GD(ti, tj)ξ̂
qr

p−1

j τ−s
j + O(ε) (by (4.8)).

Thus we have obtained the following system of equations:

(4.10) τi =
N∑

j=1

GD(ti, tj)ξ̂
qr

p−1

j τ−s
j + O(ε).

Since the matrix

I + s
(
GD(ti, tj)ξ̂

qr
p−1

−s−1

j

)

is clearly nonsingular (note that GD(ti, tj) > 0), by the implicit function theorem and assumption
(H1) the equations (4.10) have a unique solution

τi = ξ̂i + O(ε), i = 1, ..., N.

Hence

(4.11) T [A](ti) = ξ̂i + O(ε).
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Now let x = ti + εy. We calculate for A = wε,t:

T [A](x)− T [A](ti) = cε

∫ 1

−1

[GD(x, z)−GD(ti, z)]
Ar

(T [A])s
(z) dz

= cεξ̂
qr

p−1

i

∫ 1

−1

[GD(x, z)−GD(ti, z)]
w̃r

i

(T [A])s
(z) dz

+cε

∑

j 6=i

ξ̂
qr

p−1

j

∫ 1

−1

[GD(x, z)−GD(ti, z)]
w̃r

j

(T [A])s
(z) dz

= cεξ̂
qr

p−1

i

∫ 1

−1

[KD(|x− z|)−KD(|ti − z|)] w̃r
i

(T [A])s
(z) dz

−cεξ̂
qr

p−1

i

∫ 1

−1

[HD(x, z)−HD(ti, z)]
w̃r

i

(T [A])s
(z) dz

+cε

∑

j 6=i

ξ̂
qr

p−1

j

∫ 1

−1

[GD(x, z)−GD(ti, z)]
w̃r

j

(T [A])s
(z) dz (letting z = tj + εy)

= ε2cεξ̂
qr

p−1
−s

i

∫ +∞

−∞
[

1

2D
|z| − 1

2D
|y − z|]wr(|z|) dz(1 + O(ε|y|))

+εξ̂
qr

p−1
−s

i [−y∇tiHD(ti, ti) + O(εy2)]

+ε
∑

j 6=i

[y∇tiGD(ti, tj)ξ̂
qr

p−1
−s

j + O(εy2)]

(4.12) = ε

[
ξ̂i

qr
p−1

−s
Pi(|y|)− ξ̂i

qr
p−1

−s
y∇tiHD(ti, ti) + y

∑

j 6=i

∇tiGD(ti, tj)ξ̂j

qr
p−1

−s
+ O(εy2)

]
,

where

(4.13) Pi(|y|) = (

∫

R

wr)−1

∫ +∞

−∞
[

1

2D
|z| − 1

2D
|y − z|]wr(|z|) dz.

Note that Pi is an even function.
Let us now define

(4.14) S[A] := ε2A
′′ − A +

Ap

(T [A])q
,

where T [A] is defined by (4.7). Let us choose A = wε,t and compute S[wε,t]. In fact,

S[wε,t] = ε2w
′′
ε,t − wε,t +

wp
ε,t

(T [wε,t])q

=
N∑

j=1

ξ̂
q/(p−1)
j (ε2w̃

′′
j − w̃j) +

wp
ε,t

(T [wε,t])q
+ e.s.t.

=

[
(
∑K

j=1 ξ̂
q/(p−1)
j w̃j)

p

(T [wε,t])q
−

K∑
j=1

ξ̂
q/(p−1)
j w̃p

j

]
+ e.s.t.



18 JUNCHENG WEI AND MATTHIAS WINTER

(4.15) = E1 + E2 + e.s.t.

in L2(−1
ε
, 1

ε
), where

(4.16) E1 =

[
(
∑K

j=1 ξ̂
q/(p−1)
j w̃j)

p

(T [wε,t](tj))q
−

K∑
j=1

ξ̂
q/(p−1)
j w̃p

j

]

and

(4.17) E2 =

[
(
∑K

j=1 ξ̂
q/(p−1)
j w̃j)

p

(T [wε,t](x))q
− (

∑K
j=1 ξ̂

q/(p−1)
j w̃j)

p

(T [wε,t](tj)q

]
.

For E1 we calculate using (4.11)

(4.18) E1 =
(
∑N

j=1 ξ̂
q/(p−1)
j w̃j)

p

(T [wε,t](tj))q
−

N∑
j=1

ξ̂
q/(p−1)
j w̃p

j

=
N∑

j=1

(
ξ̂

qp/(p−1)
j

ξ̂q
j + O(ε)

− ξ̂
q/(p−1)
j

)
w̃p

j = O(ε)
N∑

j=1

ξ̂
q/(p−1)
j w̃p

j .

Thus we have

(4.19) ‖E1‖L2(−1/ε,1/ε) = O(ε).

For E2 we calculate

E2 = −
N∑

j=1

q
(ξ̂

q/(p−1)
j w̃j)

p

(T [wε,t](tj))q+1
(T [wε,t](x)− T [wε,t](tj))

+O

(
N∑

j=1

|T [wε,t]− T [wε,t](tj)|2w̃p
j

)

= −
N∑

j=1

qξ̂
q/(p−1)
j w̃p

j

T [wε,t]− T [wε,t](tj)

T [wε,t](tj)
+ O(ε2y2

N∑
j=1

w̃p
j )

= −ε

N∑
j=1

qξ̂
q

p−1
−1

j w̃p
j

{
ξ̂

qr
p−1

−s

j Pj(|y|)

(4.20) −ξ̂
qr

p−1
−s

j y∇tjHD(tj, tj) + y[
∑

l 6=j

∇tjGD(tj, tl)ξ̂
qr

p−1
−s

l ]

}
+ O(ε2y2

N∑
j=1

w̃p
j ).

This implies that

(4.21) ‖E2‖L2(− 1
ε
, 1
ε
) = O(ε).

Combining (4.19) and (4.21), we conclude that

(4.22) ‖S[wε,t]‖L2(− 1
ε
, 1
ε
) = O(ε)

The estimates derived in this section provide the main steps that will make our approach work in
the rest of the paper.
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5. The Liapunov-Schmidt Reduction Method

In this section, we use the Liapunov-Schmidt reduction method to solve the problem

(5.1) S[wε,t + v] =
N∑

j=1

βj
dw̃j

dx

for real constants βj and a function v ∈ H2(−1
ε
, 1

ε
) which is small in the corresponding norm, where

w̃i is given by (4.4) and wε,t by (4.6).
To this end, we need to study the linearized operator

L̃ε,t : H2(Ωε) → L2(Ωε)

defined by

L̃ε,t := S
′
ε[A]φ = ε2φ

′′ − φ +
pAp−1φ

(T [A])q
− q

Ap

(T [A])q+1
(T

′
[A]φ),

where A = wε,t, Ωε = (−1
ε
, 1

ε
), and for a given φ ∈ L2(Ω) we introduce T

′
[A]φ as the unique solution

of

(5.2)

{
D(T

′
[A]φ)

′′ − (T
′
[A]φ) + cεrA

r−1φ = 0, −1 < x < 1,
(T

′
[A]φ)

′
(−1) = (T

′
[A]φ)

′
(1) = 0.

We define the approximate kernel and co-kernel, respectively, as follows:

Kε,t := span

{
dw̃i

dx

∣∣∣∣∣i = 1, . . . , N

}
⊂ H2(Ωε),

Cε,t := span

{
dw̃i

dx

∣∣∣∣∣i = 1, . . . , N

}
⊂ L2(Ωε),

Recall the definition of the following system of linear operators from (3.5):

LΦ := ∆Φ− Φ + pwp−1Φ

(5.3) −qr(

∫

R

wr−1(I + sB)−1BΦ)(

∫

R

wr)−1wp,

where

Φ =




φ1

φ2
...
φN


 ∈ (H2(R))N .

By Lemma 3.3 we know that

L : (X0 ⊕ · · · ⊕X0)
⊥ ∩ (H2(R))N → (X0 ⊕ · · · ⊕X0)

⊥ ∩ (L2(R))N

is invertible with a bounded inverse.
We will see that this system is a limit of the operator L̃ε,t as ε → 0. We also introduce the

projection π⊥ε,t : L2(Ωε) → C⊥ε,t and study the operator Lε,t := π⊥ε,t ◦ L̃ε,t. By letting ε → 0, we will

show that Lε,t : K⊥ε,t → C⊥ε,t is invertible with a bounded inverse provided ε is small enough. This
statement is contained in the following proposition.
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Proposition 5.1. There exist positive constants ε̄, δ̄, λ such that for all ε ∈ (0, ε̄), t ∈ ΩN with
min(|1 + t1|, |1− tN |, mini6=j |ti − tj|) > δ̄,

(5.4) ‖Lε,tφ‖L2(Ωε) ≥ λ‖φ‖H2(Ωε).

Furthermore, the map
Lε,t = π⊥ε,t ◦ L̃ε,t : K⊥ε,t → C⊥ε,t

is surjective.

Proof of Theorem 5.1: This proof follows the method of Liapunov-Schmidt reduction which
was also used in [3], [4], [12], [13], [10], [23], [24], [33] and [36].

Suppose (5.4) is false. Then there exist sequences {εk}, {tk}, {φk} with εk → 0, tk ∈ ΩN , min(|1+
tk1|, |1− tkN |, mini6=j |tki − tkj |) > δ̄, φk = φεk

∈ K⊥
εk,tk , k = 1, 2, . . . such that

‖Lεk,tkφk‖L2(Ωεk
) → 0, as k →∞,(5.5)

‖φk‖H2(Ωεk
) = 1, k = 1, 2, . . . .(5.6)

We define φε,i, i = 1, 2, . . . , N and φε,N+1 as follows:

(5.7) φε,i(x) = φε(x)χ(
x− ti

r0

), x ∈ Ω,

φε,N+1(x) = φε(x)−
N∑

i=1

φε,i(x), x ∈ Ω.

At first (after rescaling) φε,i are only defined on Ωε. However, by a standard result they can be
extended to R such that their norm in H2(R) is still bounded by a constant independent of ε and
t for ε small enough. In the following we will study this extension. For simplicity of notation we
keep the same notation for the extension. Since for i = 1, 2, . . . , N each sequence {φk

i } := {φεk,i}
(k = 1, 2, . . .) is bounded in H2

loc(R) it has a weak limit in H2
loc(R), and therefore also a strong limit

in L2
loc(R) and L∞loc(R). Call these limits φi. Then φ =




φ1

φ2
...

φN


 solves the system

Lφ = 0.

By Lemma 3.3, φ ∈ Ker(L) = X0⊕· · ·⊕X0. Since φk ∈ K⊥
εk,xk

by taking k →∞ we get φ ∈ Ker(L)⊥.
Therefore, φ = 0.

By elliptic estimates we get ‖φεk,i‖H2(R) → 0 as k →∞ for i = 1, 2, . . . , N .
Furthermore, φε,N+1 → φN+1 in H2(R), where ΦN+1 satisfies

∆φN+1 − φN+1 = 0 in R.

Therefore we conclude φN+1 = 0 and ‖φk
N+1‖H2(R) → 0 as k →∞.

This contradicts ‖φk‖H2(Ωεk
) = 1. To complete the proof of Proposition 5.1 we just need to show

that the operator which is conjugate to Lε,t (denoted by L∗ε,t) is injective from K⊥ε,t to C⊥ε,t. Note that

L∗ε,tψ = πε,t ◦ L̃∗ε,t with

L̃∗ε,tψ = ε2∆ψ − ψ +
pAp−1ψ

(T [A])q
− qT

′
[A](

Apψ

(T [A])q+1
).
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The proof for L∗ε,t follows exactly along the same lines as the proof for Lε,t and is therefore omitted. ¤
Now we are in a position to solve the equation

(5.8) π⊥ε,t ◦ Sε(wε,t + φ) = 0.

Since Lε,t|K⊥
ε,t

is invertible (call the inverse L−1
ε,t ) we can rewrite this as

(5.9) φ = −(L−1
ε,t ◦ π⊥ε,t ◦ Sε(wε,t))− (L−1

ε,t ◦ π⊥ε,t ◦Nε,t(φ)) ≡ Mε,t(φ),

where

(5.10) Nε,t(φ) = Sε(wε,t + φ)− Sε(wε,t)− S
′
ε(wε,t)φ

and the operator Mε,t is defined by (5.9) for φ ∈ H2(Ωε). We are going to show that the operator
Mε,t is a contraction on

Bε,δ ≡ {φ ∈ H2(Ωε)|‖φ‖H2(Ωε) < δ}
if δ and ε are small enough. We have by (4.22) and Proposition 5.1

‖Mε,t(φ)‖H2(Ωε) ≤ λ−1(‖π⊥ε,t ◦Nε,t(φ)‖L2(Ωε)

+
∥∥π⊥ε,t ◦ Sε(wε,t)

∥∥
L2(Ωε)

)

≤ λ−1C(c(δ)δ + ε),

where λ > 0 is independent of δ > 0, ε > 0 and c(δ) → 0 as δ → 0. Similarly we show

‖Mε,t(φ)−Mε,t(φ
′
)‖H2(Ωε)

≤ λ−1C(c(δ)δ)‖φ− φ
′‖H2(Ωε),

where c(δ) → 0 as δ → 0. If we choose δ = εα for α < 1 and ε small enough, then Mε,t is a
contraction on Bε,δ. The existence of a fixed point φε,t now follows from the standard contraction
mapping principle and φε,t is a solution of (5.9).

We have thus proved

Lemma 5.2. There exist ε > 0 δ > 0 such that for every pair of ε, t with 0 < ε < ε and t ∈ ΩN ,
1 + t1 > δ, 1 − tN > δ, 1

2
|ti − tj| > δ there is a unique φε,t ∈ K⊥

ε,t satisfying Sε(wε,t + φε,t) ∈ Cε,t.
Furthermore, we have the estimate

(5.11) ‖φε,t‖H2(Ωε) ≤ Cεα,

where α < 1.

Remark 5.1: By one more iteration, it can actually be shown that

(5.12) ‖φε,t‖H2(Ωε) ≤ Cε.
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6. The reduced problem

In this section we solve the reduced problem and prove our main existence result given by Theorem
2.1.

By Lemma 5.2, for every t ∈ Bε3/4(t0), there exists a unique solution φε,t ∈ K⊥ε,t such that

(6.1) S[wε,t + φε,t] = vε,t ∈ Cε,t.

Our idea is to find tε = (tε1, . . . , t
ε
N) near t0 such that also

(6.2) S[wε,tε + φε,tε ] ⊥ Cε,tε

(and therefore S[wε,tε + φε,tε ] = 0).
To this end, we let

Wε,i(t) := ε−1(ξ̂i)
1− q

p−1

∫ 1

−1

S[wε,t + φε,t]
dw̃i

dx
dx,

Wε(t) := (Wε,1(t), ...,Wε,N(t)) : Bε3/4(t0) → RN .

Then Wε(t) is a map which is continuous in t and our problem is reduced to finding a zero of the
vector field Wε(t).

Let us now calculate Wε(t).
We calculate:

Wε,i(t) = ε−1(ξ̂i)
1− q

p−1

∫ 1

−1

S[wε,t + φε,t]
dw̃i

dx

= ε−1(ξ̂i)
1− q

p−1

∫ 1

−1

S[wε,t]
dw̃i

dx

+ε−1(ξ̂i)
1− q

p−1

∫ 1

−1

S
′
ε[wε,t]φε,t

dw̃i

dx

+ε−1(ξ̂i)
1− q

p−1

∫ 1

−1

Nε(φε,t)
dw̃i

dx

= I1 + I2 + I3,

where I1, I2 and I3 are defined by the last equality.
The computation of I3 is the easiest: note that by Taylor expansion for (5.10), the first term in

the expansion of Nε is quadratic in φε,t. So

(6.3) I3 = O(ε).

We will now compute I1 and I2. The result will be that I1 is the leading term and I2 = O(ε).
For I1, we have

I1 = ε−1(ξ̂i)
1− q

p−1

∫ 1

−1

(E1 + E2)
dw̃i

dx
dx = ε−1(ξ̂i)

1− q
p−1

∫ 1

−1

E2
dw̃i

dx
dx + O(ε),

where E1 and E2 were defined in (4.16) and (4.17), respectively, using that E1 is an even function.
We calculate by (4.20)

ε−1(ξ̂i)
1− q

p−1

∫ 1

−1

E2
dw̃i

dx
dx
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= −q[
N∑

j=1

∇tiGD(ti, tj)ξ̂
qr

p−1
−s

j ]

∫

R

ywp(y)w
′
(y) dy + O(ε)

= (
q

p + 1

∫

R

wp+1)[
N∑

j=1

∇tiGD(ti, tj)ξ̂
qr

p−1
−s

j ] + O(ε).

Thus we have

(6.4) I1 =
q

p + 1

∫

R

wp+1(y)dy[
N∑

j=1

∇tiGD(ti, tj)ξ̂
qr

p−1
−s

j ] + O(ε).

For I2 we calculate

ε(ξ̂i)
q

p−1
−1I2 =

∫ 1

−1

S
′
[wε,t](φε,t)

dw̃i

dx

=

∫ 1

−1

[
ε2∆φε,t − φε,t +

pwp−1
ε,t φε,t

(T [wε,t])q
− q

wp
ε,t

(T [wε,t])q+1
(T

′
[wε,t]φε,t)

]
dw̃i

dx

=

∫ 1

−1

[
ε2∆

dw̃i

dx
− dw̃i

dx
+

dw̃i

dx

pwp−1
ε,t

(T [wε,t])q

]
φε,t

−q

∫ 1

−1

wp
ε,t

(T [wε,t])q+1
(T

′
[wε,t]φε,t)

dw̃i

dx

=

∫ 1

−1

(
p

ξ̂q
i w̃

p−1
i

(T [wε,t])q
− pw̃p−1

i

)
φε,t

dw̃i

dx

−q

∫ 1

−1

wp
ε,t

(T [wε,t])q+1
(T

′
[wε,t]φε,t)

dw̃i

dx
= O(ε2),

since

‖( pξ̂q
i w̃

p−1
i

(T [wε,t])q
− pw̃p−1

i )φε,t‖L2(Ωε) = O(ε),

‖φε,t‖H2(Ωε) = O(ε),

T
′
[wε,t](φε,t)(ti) = O(ε),

T
′
[wε,t](φε,t)(ti + εy)− T

′
[wε,t](φε,t)(ti) = O(ε2|y|).

Combining I1 and I2, we have

Wε,i(t) =
q

p + 1

∫

R

wp+1 ×
[

N∑
j=1

∇tiGD(ti, tj)ξ̂
qr

p−1
−s

j

]
+ O(ε)

=
q

p + 1

∫

R

wp+1Fi(t) + O(ε),

where Fi(t) was defined in (2.10).
By our assumption (H3), at t0, we have F (t0) = 0 and

det(∇t0F (t0)) 6= 0.
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Therefore we have Wε(t) = −c1H(t0)M(t0)(t− t0) + O(|t− t0|2 + ε), where c1 is given by

(6.5) c1 = − q

p + 1

∫

R

wp+1.

Then Brouwer’s fixed point theorem shows that for ε << 1 there exists a tε such that Wε(t
ε) = 0

and tε ∈ Bε3/4(t0).
Thus we have proved the following proposition.

Proposition 6.1. For ε sufficiently small there exist points tε with tε → t0 such that Wε(t
ε) = 0.

Remark 6.1: A more detailed computation reveals that

(6.6) |tε − t0| = O(ε).

Finally, we prove Theorem 2.1.
Proof of Theorem 2.1: By Proposition 6.1, there exists tε → t0 such that Wε(t

ε) = 0. In other

words, S[wε,tε + φε,tε ] = 0. Let Aε = ξ
q

p−1
ε (wε,tε + φε,tε), Hε = ξεT [wε,tε + φε,tε ]. By the Maximum

Principle, Aε > 0, Hε > 0. Moreover (Aε, Hε) satisfies all the properties of Theorem 2.1.
¤

7. Classifying the N−peaked solutions: proof of Theorem 2.2

Let (Aε, Hε) be a solution of (1.7) satisfying (2.33) and (2.34). We now show that (Aε, Hε) is
generated exactly by two types of peaks, that is, we prove Theorem 2.2. First we make the following
scaling

Aε = ξ
q

p−1
ε Âε, Hε = ξεĤε

where ξε is defined at (2.1). Hence (Âε, Ĥε) satisfies

(7.1)

{
ε2∆Âε − Âε + Âp

ε

Ĥq
ε

= 0,−1 < x < 1,

D∆Ĥε − Ĥε + cε
Âr

ε

Ĥs
ε

= 0,−1 < x < 1,

where cε is defined in (4.8).
Now (2.33) and (2.34) imply that

(7.2) Âε ∼
N∑

j=1

(ξ̂ε
j)

q
p−1 w(

x− tεj
ε

), Ĥε(t
ε
j) = ξ̂ε

j .

Letting ε → 0, we assume that

ξ̂ε
j → ξ̂0

j , tεj → t0j , j = 1, ..., N.

We see that Ĥε → h0(x) where h0(x) satisfies

(7.3)

{
D∆h0 − h0 +

∑N
j=1(ξ̂

0
j )

qr
p−1

−sδ(x− t0j) = 0, −1 < x < 1,

h
′
0(−1) = h

′
0(1) = 0.

In other words, we have

(7.4) h0(x) =
N∑

j=1

(ξ̂0
j )

qr
p−1

−sGD(x, t0j).
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Since h0(t
0
j) = ξ̂0

j , j = 1, . . . , N , we have from (7.4) that (ξ̂0
1 , ..., ξ̂

0
N) must satisfy the following identity:

(7.5)
N∑

j=1

GD(t0i , t
0
j)(ξ̂

0
j )

qr
p−1

−s = ξ̂0
i , i = 1, ..., N.

This is the same as (2.5).
Define

Ãε,j = Âεχ(
x− t0j

r̃0

)

where r̃0 is a very small number. Then Ãε,j is supported in the interval Iε
j = (−r̃0 + tεj, r̃0 + tεj). We

may choose r̃0 so small that Iε
i ∩ Iε

j = ∅ for i 6= j. Then

Âε =
N∑

j=1

Ãε,j + e.s.t.

Now we multiply the first equation in (7.1) by Ã
′
ε,j and integrate over (−1, 1). We obtain

0 =

∫ 1

−1

[(
Âε

p

Ĥε
q )Ã

′
ε,j − (

Âp
ε

Ĥq
ε

)
′
Ãε,j]

= −2

∫

Iε
j

(
Âp

ε

Ĥq
ε

)
′
Âε + e.s.t.

= −2

∫

Iε
j

[
pÂp

ε Â
′
ε

Ĥq
ε

− qÂp+1
ε Ĥ

′
ε

Ĥq+1
ε

] + e.s.t.

(7.6) =
q(p + 2)

p + 1

∫

Iε
j

Âp+1
ε

Ĥq+1
ε

Ĥ
′
ε + e.s.t.

By the equation for Ĥε, we have that

Ĥε(x) = cε

∫ 1

−1

GD(x, z)
Âr

ε

Ĥs
ε

and thus for x ∈ Iε
j ,

Ĥε(x) =
N∑

k=1

GD(x, tεk)(ξ̂
ε
k)

qr
p−1

−s + O(ε)

and

(7.7) Ĥ
′
ε(t

ε
j) =

N∑

k=1

∇tεj
GD(tεj, t

ε
k)(ξ̂

ε
k)

qr
p−1

−s + O(ε).

Substituting (7.7) into (7.6) and using (7.2), we obtain the following identity

(7.8)
N∑

k=1

∇tεj
GD(tεj, t

ε
k)(ξ̂

ε
k)

qr
p−1

−s = o(1)
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and hence

(7.9)
N∑

k=1

∇t0j
GD(t0j , t

0
k)(ξ̂

0
k)

qr
p−1

−s = 0, j = 1, ..., N,

which is the same as (2.12).
Note that by the expression for h0 in (7.4), (7.9) is equivalent to the following

(7.10) h
′
0(t

0
j+) + h

′
0(t

0
j−) = 0, j = 1, ..., N,

where h
′
0(t

0
j+) is the right-hand derivative of h0 at t0j and h

′
0(t

0
j−) is the left-hand derivative of h0 at

t0j . On the other hand, from the equation for h0, we have that

(7.11) D(h
′
0(t

0
j+)− h

′
0(t

0
j−)) = −(ξ̂0

j )
qr

p−1
−s, j = 1, ..., N.

Solving (7.10) and (7.11), we have that

(7.12) h
′
0(t

0
j+) = −h

′
0(t

0
j−) = − 1

2D
(ξ̂0

j )
qr

p−1
−s < 0, j = 1, ..., N.

Since h0 satisfies Dh
′′
0 = h0 > 0 in each interval (t0j−1, t

0
j), j = 2, ..., N , we see that there exists a

unique point sj−1 ∈ (t0j−1, t
0
j) such that h

′
0(sj−1) = 0. Since h

′
0(−1) = 0, by using symmetry, we see

that

(7.13)
sj−1 + sj

2
= t0j , j = 1, ..., N,

where we take s0 = −1, sN = 1. Let 2lj = sj − sj−1, j = 1, ..., N . Note that on each interval

(−lj + t0j , lj + t0j), h0 satisfies D∆h0−h0 +(ξ̂0
j )

qr
p−1

−sδ(t− t0j) = 0 with Neumann boundary conditions
at both ends. Thus from (1.4) it is easy to see that

(7.14) (ξ̂0
j )

qr
p−1

−s−1 = 2
√

Dtanh(
lj√
D

), j = 1, ..., N,

(7.15) h0(lj) =
ξ̂0
j

cosh(
lj√
D

)
.

Since h0 is continuous on (−1, 1), we have

(7.16) h0(l1) = h0(l2) = ... = h0(lN).

Using (7.14) and (7.15), we see that (7.16) is equivalent to

(7.17) b(
l1√
D

) = b(
l2√
D

) = ... = b(
lN√
D

),

where the function b was defined in (2.25). Suppose without loss of generality that l1 ≤ l2, then we
take l1 = l and (7.17) implies that l2 ∈ {l, l̄} and that lj ∈ {l, l̄} for j = 2, ..., N . Thus l must satisfy
(2.26) and (2.27).

This finishes the proof of Theorem 2.2.
Remark 7.1: The proof of Theorem 2.2 implies that if t0 = (t01, ..., t

0
N) satisfies (H1) and (2.12),

then necessarily, we have t0j − t0j−1 = lj ∈ {l, l̄}. That is, there are at most 2N solutions satisfying
(H1)–(H3).



EXISTENCE AND STABILITY ANALYSIS 27

8. Stability Analysis: Large Eigenvalues

In this section, we study the eigenvalues with λε → λ0 6= 0 as ε → 0 (or, more precisely, with
nonzero accumulation points).

We need to analyze the following eigenvalue problem

L̃ε,tεφε = ε2φ
′′
ε − φε +

pAp−1
ε φε

(T [Aε])q
− q

Ap
ε

(T [Aε])q+1
ψε

(8.1) = λεφε,

where ψε satisfies

(8.2) Dψ
′′
ε − ψε + rcε

Ar−1
ε

(T [Aε])s
φε − scε

Ar
ε

(T [Aε])s+1
ψε = τλεψε.

Here λε is some complex number, Aε = wε,tε + φε,tε with tε determined in Section 6.
In this section, we study the large eigenvalues, i.e., we assume that there exists c > 0 with

|λε| ≥ c > 0 for ε small. If Re(λε) ≤ −c, we are done.(Since then λε is a stable large eigenvalue.)
Therefore we may also assume that Re(λε) ≥ −c.

We first present the analysis of (8.1), (8.2) for the case τ = 0. At the end, we shall explain how
we proceed if τ > 0 and is small.

By (8.2) we have

(8.3) ψε = T
′
[Aε](φε).

First of all, since we are concerned only with those eigenvalues such that Re(λε) ≥ −c, we see that
by following the same argument as in the proof as (2) of Theorem 3.2, we have that |λε| ≤ C for
some positive constant C (independent of ε > 0).

Recall the definition of φε,j given in (5.7).
From (8.1) and the facts that Re(λε) ≥ −c and that wε,tε has exponential decay, we have that

φε =
K∑

j=1

φε,j + e.s.t.

Then we extend φε,j to a function defined on R1 such that

‖φε,j‖H1(R1) ≤ C‖φε,j‖H1(Ωε), j = 1, . . . , K.

Without loss of generality we may assume that ‖φε‖ε = ‖φε‖H1(Ωε) = 1. Then ‖φε,j‖ε ≤ C. By taking
a subsequence of ε, we may also assume that φε,j → φj as ε → 0 in H1(R) for j = 1, . . . , K.

Sending ε → 0 with λε → λ0, this implies (as in Section 5)

LΦ = ∆Φ− Φ + pwp−1Φ

(8.4) −qr(I + sB)−1B(

∫

R

wr−1BΦ)(

∫

R

wr)−1wp = λ0Φ,

where

Φ =




φ1

φ2
...
φN


 ∈ (H2(R))N .
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Then we have

Theorem 8.1. Let λε be an eigenvalue of (8.1) and (8.2) such that Re(λε) > −c for some c > 0.
(1) Suppose that (for suitable sequences εn → 0) we have λεn → λ0 6= 0. Then λ0 is an eigenvalue

of the problem (NLEP) given in (8.4).
(2) Let λ0 6= 0 with Re(λ0) > 0 be an eigenvalue of the problem (NLEP) given in (8.4). Then for

ε sufficiently small, there is an eigenvalue λε of (8.1) and (8.2) with λε → λ0 as ε → 0.

Proof:
(1) of Theorem 8.1 follows by asymptotic analysis similar to Section 5.
To prove (2) of Theorem 8.1, we follow the argument given in Section 2 of [5], where the following

eigenvalue problem was studied:

(8.5)

{
ε2∆h− h + pup−1

ε h− qr
s+1+τλε

R
Ω ur−1

ε hR
Ω ur

ε
up

ε = λεh in Ω,

h = 0 on ∂Ω,

where uε is a solution of the single equation{
ε2∆uε − uε + up

ε = 0 in Ω,
uε > 0 in Ω, uε = 0 on ∂Ω.

Here 1 < p < n+2
n−2

if n ≥ 3 and 1 < p < +∞ if n = 1, 2, qr
(s+1)(p−1)

> 1 and Ω ⊂ Rn is a smooth

bounded domain. If uε is a single interior peak solution, then it can be shown ([35]) that the limiting
eigenvalue problem is a NLEP

(8.6) ∆φ− φ + pwp−1φ− qr

s + 1 + τλ0

∫
RN wr−1φ∫

RN wr
wp = λ0φ

where w is the corresponding ground state solution in Rn:

∆w − w + wp = 0, w > 0 in Rn, w = w(|y|) ∈ H1(Rn).

Dancer in [5] showed that if λ0 6= 0, Re(λ0) > 0 is an unstable eigenvalue of (8.6), then there exists
an eigenvalue λε of (8.5) such that λε → λ0.

We now follow his idea. Let λ0 6= 0 be an eigenvalue of problem (8.4) with Re(λ0) > 0. We first
note that from the equation for ψε, we can express ψε in terms of φε (as in (8.3)). Now we rewrite
(8.1) as follows:

(8.7) φε = −Rε(λε)

[
pAp−1

ε φε

Hq
ε

− qAp
ε

Hq+1
ε

ψε

]
,

where Rε(λε) is the inverse of −∆ + (1 + λε) in H2(R) (which exists if Re(λε) > −1 or Im(λε) 6= 0),
and ψε = T

′
ε [Aε](φε) is given by (8.2). The important thing is that Rε(λε) is a compact operator if

ε is sufficiently small. The rest of the argument follows in the same way as in [5]. For the sake of
limited space, we omit the details here.

¤
We now study the stability of (8.1), (8.2) for large eigenvalues explicitly and prove (2.38) and

(2.40) of Theorem 2.3.
Suppose now that we have

(8.8)

(
qr

p− 1
− s

)
min

σ∈σ(B)
σ < 1,
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by Theorem 3.1 (1), there exists a positive eigenvalue of (8.4) and thus by Theorem 8.1, there exists
an eigenvalue λε of (8.1) and (8.2) such that Re(λε) > c0 for some positive number c0 > 0. This
implies that (Aε, Hε) is unstable.

Suppose now that

(8.9)

(
qr

p− 1
− s

)
min

σ∈σ(B)
σ > 1,

and (2.37) is satisfied, then by Theorem 3.1 (2), we know that for any nonzero eigenvalue λ0 of L we
have

Re(λ0) < c0 < 0 for some c0 > 0.

So by Theorem 8.1, for ε small enough all nonzero large eigenvalues of (8.1), (8.2) all have strictly
negative real parts. We conclude that in this case all eigenvalues λε of (8.1), (8.2), for which |λε| ≥
c > 0 holds, satisfy Re(λε) ≤ −c < 0 for ε small enough. They are all stable.

Finally we comment that when τ 6= 0 and τ is small, we use Theorem 3.2 to conclude. In this
case, the matrix B will have to be replaced by a matrix Bτλε which depends on τλε. (In fact, one
just replaces the Green’s function GD by the following Green’s function:

(8.10) D∆G− (1 + τλε)G + δz = 0, G
′
(±1, z) = 0).

It is easy to check that the new matrix will have eigenvalues satisfying (3.2). The rest follows in the
same way as before.

¤
In conclusion, we have finished the study of large eigenvalues. It remains to study small eigenvalues

only.
In the next section we shall study the eigenvalues λε which tend to zero as ε → 0.

9. Stability Analysis: Small Eigenvalues

We now study small eigenvalues for (8.1) and (8.2). Namely, we assume that λε → 0 as ε → 0.
Let

(9.1) w̄ε = wε,tε + φε,tε , H̄ε = T [wε,tε + φε,tε ],

where tε = (tε1, . . . , t
ε
N).

After scaling, the eigenvalue problem (8.1), (8.2) becomes

(9.2) ε2∆φε − φε +
pw̄p−1

ε

H̄q
ε

φε − q
w̄p

ε

H̄q+1
ε

ψε = λεφε,

(9.3) D∆ψε − ψε + cεr
Ār−1

ε

H̄s
ε

φε − scε
Ār

ε

H̄s+1
ε

ψε = λετψε.

where cε is given by (4.8).
We take τ = 0 for simplicity. As τλε << 1 the results in this section are also valid for τ finite.

As we shall prove, the small eigenvalues are of the order O(ε2). Unlike in the single interior peak
case [35], we need to expand the eigenfunction up to the order O(ε) term. (Such an expansion is also
needed in the study of boundary spikes for the shadow system (see [4] and [34].))

Let us define

(9.4) w̃ε,j(x) = χ(
x− tεj

r0

)w̄ε(x), j = 1, ..., N,
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where χ(x) and r0 are given in (4.3) and (4.4). Similarly as in Section 5, we define

Knew
ε,tε := span {w̃′

ε,j|j = 1, . . . , N} ⊂ H2(Ωε),

Cnew
ε,tε := span {w̃′

ε,j|j = 1, . . . , N} ⊂ L2(Ωε).

Then it is easy to see that

(9.5) w̄ε(x) =
N∑

j=1

w̃ε,j(x) + e.s.t.

Note that w̃ε,j(x) ∼ ξ̂
q

p−1

j w(
x−tεj

ε
) in H2

loc(−1, 1) and w̃ε,j satisfies

ε2∆w̃ε,j − w̃ε,j +
(w̃ε,j)

p

H̄q
ε

+ e.s.t. = 0

Thus w̃
′
ε,j :=

dw̃ε,j

dx
satisfies

(9.6) ε2∆w̃
′
ε,j − w̃

′
ε,j +

p(w̃ε,j)
p−1

(H̄ε)q
w̃
′
ε,j − q

w̃p
ε,j

(H̄ε)q+1
H̄

′
ε + e.s.t. = 0.

Let us now decompose

(9.7) φε = ε
N∑

j=1

aε
jw̃

′
ε,j + φ⊥ε

with complex numbers aε
j, (the factor ε is for scaling), where

φ⊥ε ⊥ Knew
ε,tε .

Suppose that ‖φε‖H2(Ωε) = 1. Then |aε
j| ≤ C.

Similarly, we can decompose

(9.8) ψε = ε

N∑
j=1

aε
jψε,j + ψ⊥ε ,

where ψε,j satisfies

(9.9) D∆ψε,j − ψε,j + cεr
w̄r−1

ε

H̄s
ε

w̃
′
ε,j − scε

w̄r
ε

H̄s+1
ε

ψε,j = 0

and ψ⊥ε satisfies

(9.10) D∆ψ⊥ε − ψ⊥ε + cεr
w̄r−1

ε

H̄s
ε

φ⊥ε − scε
w̄r

ε

H̄s+1
ε

ψ⊥ε = 0.

Both (9.9) and (9.10) are solved with Neumann boundary conditions.
Substituting the decompositions of φε and ψε into (9.2) we have

qε

N∑
j=1

aε
j

(
(w̃ε,j)

p

H̄q+1
ε

H̄
′
ε −

(w̄ε)
p

H̄q+1
ε

ψε,j

)

+ε2∆φ⊥ε − φ⊥ε +
pw̄p−1

ε

H̄q
ε

φ⊥ε − q
w̄p

ε

H̄q+1
ε

ψ⊥ε − λεφ
⊥
ε + e.s.t.
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(9.11) = λε

(
ε

N∑
j=1

aε
jw̃

′
ε,j

)
.

Let us first compute

I4 := qε

N∑
j=1

aε
j

(
(w̃ε,j)

p

H̄q+1
ε

H̄
′
ε −

(w̄ε)
p

H̄q+1
ε

ψε,j

)

= qε

N∑
j=1

aε
j

(
(w̃ε,j)

p

H̄q+1
ε

(H̄
′
ε − ψε,j)

)
− qε

N∑
j=1

aε
j

∑

k 6=j

(w̃ε,k)
p

H̄q+1
ε

ψε,j + e.s.t.

= qε

N∑
j=1

aε
j

(w̃ε,j)
p

H̄q+1
ε

[
−ψε,j + H̄

′
ε

]

−q

N∑
j=1

∑

k 6=j

aε
kεψε,k

w̃p
ε,j

H̄q+1
ε

.

We can rewrite I4 as follows

(9.12) I4 = −qε

N∑
j=1

N∑

k=1

aε
k

w̃p
ε,j

H̄q+1
ε

(
ψε,k − H̄

′
εδjk

)
+ e.s.t..

Let us also put

(9.13) L̃εφ
⊥
ε := ε2∆φ⊥ε − φ⊥ε +

pw̄p−1
ε

H̄q
ε

φ⊥ε − q
pw̄p

ε

H̄q+1
ε

ψ⊥ε

and

(9.14) aε := (aε
1, ..., a

ε
N)T .

Multiplying both sides of (9.11) by w̃
′
ε,l and integrating over (−1, 1), we obtain

r.h.s. = ελε

N∑
j=1

aε
j

∫ 1

−1

w̃
′
ε,jw̃

′
ε,l

(9.15) = λεa
ε
l ξ̂

2q
p−1

l

∫

R

(w
′
(y))2 dy (1 + O(ε))

and

l.h.s. = (−qε

N∑
j=1

N∑

k=1

aε
k

∫ 1

−1

w̃p
ε,j

H̄q+1
ε

(
ψε,k − H̄

′
εδjk

)
w̃
′
ε,l

+

∫ 1

−1

q
w̃p

ε,l

H̄q+1
ε

(H̄
′
εφ
⊥
ε )

−
∫ 1

−1

q
w̃p

ε,l

H̄q+1
ε

(ψ⊥ε w
′
ε,l))(1 + o(1))

= (J1,l + J2,l + J3,l)(1 + o(1)),

where Ji,l, i = 1, 2, 3 are defined by the last equality.
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We define the vectors

(9.16) Ji = (Ji,1, ..., Ji,N)T , i = 1, 2, 3.

The following is the key lemma.

Lemma 9.1. We have

(9.17) J1 = c1ε
2H 2q

p−1
−1

[
(∇2GD −Q)H qr

p−1
−s − s∇GDH

qr
p−1

−s−1P1(∇GD)TH qr
p−1

−s
]
aε + o(ε2),

(9.18) J2 = o(ε2),

and

(9.19) J3 = c1ε
2H 2q

p−1
−1

[
qr

p− 1
∇GDH

qr
p−1

−s−1P2(∇GD)TH qr
p−1

−s

+s∇GDH
qr

p−1
−s−1 qr

p− 1
P1GDH

qr
p−1

−s−1P2(∇GD)TH qr
p−1

−s

]
aε + o(ε2),

where c1 is given by (6.5) and P1 and P2 are defined by (2.18) and (2.19), respectively. Recall that
GD are H are introduced in (2.2) and (2.9), respectively, and aε is given in (9.14).

By Lemma 9.1, Theorem 2.3 can be proved. Indeed, note that

s∇GDH
qr

p−1
−s−1P1(∇GD)TH qr

p−1
−s

−s∇GDH
qr

p−1
−s−1 qr

p− 1
P1GDH

qr
p−1

−s−1P2(∇GD)TH qr
p−1

−s

= s∇GDH
qr

p−1
−s−1P1

(
I − qr

p− 1
GDH

qr
p−1

−s−1P2

)
(∇GD)TH qr

p−1
−s

(9.20) = s∇GDH
qr

p−1
−s−1P2(∇GD)TH qr

p−1
−s.

Combining the estimates for J1, J2 and J3 and using (9.20), we have

l.h.s. = J1 + J2 + J3 = c1ε
2H 2q

p−1
−1

×
(

(∇2GD −Q)H qr
p−1

−s + (
qr

p− 1
− s)∇GDH

qr
p−1

−s−1P2(∇GD)TH qr
p−1

−s

)
aε + o(ε2)

= c1ε
2H 2q

p−1M(tε)aε + o(ε2).

Comparing with r.h.s. we have

(9.21) c1ε
2H 2q

p−1M(tε)aε + o(ε2) = λεH
2q

p−1aε

∫

R

(w
′
(y))2 dy (1 + O(ε)).

Equation (9.21) shows that the small eigenvalues λε of (9.2) are

λε ∼ ε2c2σ(M(t0)),

where c2 = c1R
R(w′ )2 < 0. This shows that if all the eigenvalues of M(t0) are positive, then the small

eigenvalues are stable. On the other hand, if M(t0) has a negative eigenvalue, then we can construct
eigenfunctions and eigenvalues to make the system unstable.

This proves Theorem 2.3.
¤
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Lemma 9.1 follows from the following series of lemmas.
We first study the asymptotic behavior of ψε,j.

Lemma 9.2. We have

(9.22) ((ψε,k − H̄
′
εδkl)(t

ε
l )) = −H qr

p−1
−s∇GDPT

1 + O(ε).

Proof: Note that for l 6= k, we have

(ψε,k − H̄
′
εδkl)(t

ε
l ) = ψε,k(t

ε
l )

= cεr

∫ 1

−1

GD(tεl , z)
w̄r−1

ε

H̄s
ε

w̃
′
ε,k dz − cεs

∫ 1

−1

GD(tεl , z)
w̄r

ε

H̄s+1
ε

ψε,k dz

(9.23) = −∇tεk
GD(tεk, t

ε
l )ξ̂

qr
p−1

−s

k − s

N∑
m=1

GD(tεl , t
ε
m)ψε,k(t

ε
m)ξ̂

qr
p−1

−(s+1)
m + O(ε).

Next we compute ψε,l − H̄
′
ε near tεl :

H̄ε(x) = cε

∫ 1

−1

GD(x, z)
w̄r

ε

H̄s
ε

= cε

∫ +∞

−∞
KD(|z|)w̃

r
ε,l

H̄s
ε

(x + z)dz − cε

∫ 1

−1

HD(x, z)
w̃r

ε,l

H̄s
ε

dz

+cε

∑

k 6=l

∫ 1

−1

GD(x, z)
w̃r

ε,k

H̄s
ε

.

So

H̄
′
ε = cε

∫ +∞

−∞
KD(|z|)(r w̃r−1

ε,l

H̄s
ε

(x + z))dz − cε

∫ 1

−1

HD(x, z)r
w̃r−1

ε,l

H̄s
ε

dz

+cε

∑

k 6=l

∫ 1

−1

GD(x, z)r
w̃r−1

ε,k

H̄s
ε

dz

−scε

∫ 1

−1

GD(x, z)
w̄r

ε

H̄s+1
ε

H̄
′
εdz.

Thus

H̄
′
ε − ψε,l = −scε

∫ 1

−1

KD(|x− z|) w̃r
ε,l

H̄s+1
ε

H̄
′
ε

−cε

∫ 1

−1

∇xHD(x, z)
w̃r

ε,l

H̄s
+ cε

∑

k 6=l

∫ 1

−1

∇xGD(x, z)
w̃r

ε,k

H̄s
ε

−(−cε

∫ 1

−1

HD(x, z)
rw̃r

ε,l

H̄s
w̃
′
ε,l − cεs

∫ 1

−1

GD(x, z)
w̄r

ε

H̄s+1
ε

ψε,l).

Therefore we have,

H̄
′
ε(t

ε
l )− ψε,l(t

ε
l ) = −cε

∫ 1

−1

∇tεl
H(tεl , z)

w̃r
ε,l

H̄s
+ cε

∑

k 6=l

∫ 1

−1

∇tεl
G(tεl , z)

w̃r
ε,k

H̄s
ε
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−∇tεl
HD(tεl , t

ε
l )ξ̂

qr
p−1

−s

l − s

N∑

k=1

GD(tεl , t
ε
k)ξ̂

qr
p−1

−(s+1)

k ψε,l(t
ε
k) + O(ε)

(9.24) = −∇tεl
HD(tεl , t

ε
l )ξ̂

qr
p−1

−s

l − s

N∑

k=1

GD(tεl , t
ε
k)ξ̂

qr
p−1

−(s+1)

k ψε,l(t
ε
k) + O(ε).

Solving the equations (9.23) and (9.24), we have (9.22).
¤

Similar to Lemma 9.2, we have

Lemma 9.3. We have

(9.25) (ψε,k − H̄
′
εδlk)(t

ε
l + εy)− (ψε,k − H̄

′
εδlk)(t

ε
l )

= −εy

[
∇tεl

∇tεk
GD(tεl , t

ε
k)− qlkδlk

]
ξ̂

qr
p−1

−s

k − εys

N∑
m=1

∇tεl
GD(tεl , t

ε
m)ψε,k(t

ε
m)ξ̂

qr
p−1

−(s+1)
m + O(ε2y2)

where qlk is defined at (2.16).

We next study the asymptotic expansion of φ⊥ε . Let us first denote

(9.26) φ1
ε,j =

N∑

l=1

(
q

p− 1
ξ̂

q
p−1

−1

l ∇tεj
ξ̂lw̃ε,l

)
, φ1

ε := ε

N∑
j=1

aε
jφ

1
ε,j.

Then we have

Lemma 9.4. For ε sufficiently small, we have

(9.27) ‖φ⊥ε − φ1
ε‖H2(−1/ε,1/ε) = O(ε2).

Proof:
Before we prove Lemma 9.4, we first obtain a relation between ψ⊥ε and φ⊥ε . Note that similar to

the proof of Proposition 5.1, L̃ε is invertible from (Knew
ε )⊥ to (Cnew

ε )⊥. By Lemma 9.2 and the fact
that L̃ε is invertible, we deduce that

(9.28) ‖φ⊥ε ‖H2(− 1
ε
, 1
ε
) = O(ε).

Let us decompose

(9.29) φ̃ε,j =
φ⊥ε
ε

χ(
x− tεj

r0

).

Then

φ⊥ε = ε

N∑
j=1

φ̃ε,j + e.s.t.

Suppose that

(9.30) φ̃ε,j → φj in H1.

Let

Φ0 = (φ1, ..., φN)T .
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Then we have by the equation for ψ⊥ε (similar to the proof of Lemma 9.2):

ψ⊥ε (tεj) = ε

N∑

k=1

cεr

∫ 1

−1

GD(tεj, z)
w̄r−1

ε

H̄s
ε

φ̃ε,k dz

−cεs

∫ 1

−1

GD(tεj, z)
w̄r

ε

H̄s+1
ε

ψ⊥ε dz + e.s.t.

= −εr

N∑

k=1

GD(tεj, t
ε
k)ξ̂

q(r−1)
p−1

−s

k

∫
R

wr−1φk∫
R

wr

(9.31) −s

N∑

k=1

GD(tεj, t
ε
k)ψ

⊥
ε (tεk)ξ̂

qr
p−1

−(s+1)

k + O(ε2).

Hence

(9.32) (ψ⊥ε (tε1), ..., ψ
⊥
ε (tεN))T = −εrP1GDH

q(r−1)
p−1

−s

∫
R

wr−1Φ0∫
R

wr
+ O(ε2).

Substituting (9.32) into (9.11) and using Lemma 8.2, we have that in the limit Φ0 satisfies

∆Φ0 − Φ0 + pwp−1Φ0

−qrH q
p−1

−1P1GDH
q(r−1)

p−1
−s

∫
R

wr−1Φ0∫
R

wr
wp

+qH q
p−1

−1P1(∇GD)TH qr
p−1

−sa0wp = 0

where
a0 = lim

ε→0
aε.

So

Φ0 = − q

p− 1

(
I − qr

p− 1
H q

p−1
−1P1GDH

q(r−1)
p−1

−s

)−1

H q
p−1

−sP1(∇GD)TH qr
p−1

−sa0w

= − q

p− 1
H q

p−1
−1

(
I − (

qr

p− 1
− s)GDH

qr
p−1

−s−1

)−1

(∇GD)TH qr
p−1

−sa0w

(9.33) = − q

p− 1
H q

p−1
−1P2(∇GD)TH qr

p−1
−sa0w.

Now we compare Φ0 with φ1
ε . By definition

φ1
ε = ε

N∑

k=1

aε
k

N∑
m=1

(
q

p− 1
ξ̂

q
p−1

−1
m ∇tεk

ξ̂mw̃ε,m

)

(9.34) = ε

N∑
m=1

q

p− 1
ξ̂

q
p−1

−1
m

[
N∑

k=1

(∇tεk
ξ̂maε

k)

]
w̃ε,m.

On the other hand

φ⊥ε = ε

N∑
j=1

φ̃ε,j + e.s.t.
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(9.35) = ε

N∑
j=1

φj(
x− tεj

ε
) + O(ε2).

Using (9.33) and (2.15), and comparing (9.34) and (9.35), we obtain (9.27).
¤

From Lemma 9.4, we have that

(9.36) (ψ⊥ε (tε1), ..., ψ
⊥
ε (tεN))T = ε

qr

p− 1
P1GDH

qr
p−1

−s−1P2(∇GD)TH qr
p−1

−s + O(ε2)

and

ψ⊥ε (tεj + εy)− ψ⊥ε (tεj)

= −ε2yr

N∑

k=1

∇tεj
GD(tεj, t

ε
k)ξ̂

q(r−1)
p−1

−s

k

∫
R

wr−1φk∫
R

wr

(9.37) −sεy

N∑

k=1

∇tεj
GD(tεj, t

ε
k)ψ

⊥
ε (tεk)ξ̂

qr
p−1

−(s+1)

k + O(ε3y2).

Finally we prove the key lemma – Lemma 9.1.
Proof of Lemma 9.1:

The computation of J2 follows from Lemma 9.3: In fact, since H̄
′
ε = o(1),

J2,l = −qε

N∑

k=1

aε
k

∫ 1

−1

w̃p
ε,l

H̄q+1
ε

(
ψε,k − H̄

′
εδlk

)
w̃
′
ε,l + e.s.t.

= −qε

N∑

k=1

aε
k

∫ 1

−1

w̃p
ε,l

H̄q+1
ε

(
[ψε,k(x)− H̄

′
ε(x)δlk]− [ψε,k(t

ε
l )− H̄

′
ε(t

ε
l )δlk]

)
w̃
′
ε,l + o(ε2)

= qε2

∫

R

(ywpw
′
(y))dy × ξ̂

2q
p−1

−1

l

N∑

k=1

[
∇tεl

∇tεk
GD(tεl , t

ε
k)ξ̂

qr
p−1

−s

k + s

N∑
m=1

∇tεl
GD(tεl , t

ε
m)ψε,k(t

ε
m)ξ̂

qr
p−1

−(s+1)
m

]
aε

k + o(ε2)

which, by Lemma 9.2, proves (9.17).
(9.18) follows from Lemma 9.4 and the fact that at tεj

H̄ε(t
ε
j) = ξ̂j + O(ε2), H̄

′
ε(t

ε
j + εy)− H̄

′
ε(t

ε
j) = ε× odd function + O(ε2).

It remains to prove (9.19):

J3 = −
∫ 1

−1

q
w̃p

ε,l

H̄q+1
ε

(ψ⊥ε w
′
ε,l)

= −
∫ 1

−1

q
w̃p

ε,l

H̄q+1
ε

(ψ⊥ε (tεl )w
′
ε,l)

−
∫ 1

−1

q
w̃p

ε,l

H̄q+1
ε

(ψ⊥ε (x)− ψ⊥ε (tεl ))w
′
ε,l
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= −
∫ 1

−1

q
w̃p

ε,l

H̄q+1
ε

(ψ⊥ε (x)− ψ⊥ε (tεl ))w
′
ε,l + o(ε2).

Now (9.19) follows from (9.33), (9.36) and (9.37).
¤

10. Appendix A: Computation of the Eigenvalues of B and M and the proof of
Theorem 2.4

In this appendix, we give a sketch of the computations of the eigenvalues of B and M in the case
of symmetric N -peaked solutions. Then Theorem 2.4 follows from Theorem 2.3. For more detailed
computations, we refer the reader to [15] and [28].

We need to consider the three matrices GD,∇GD and ∇2GD.
Recall that

t0j = −1 +
2j − 1

N
, j = 1, ..., N, θ =

1√
D

.

By definition, it is easy to compute

GD =
θ

sinh(2θ)
(aij), ∇GD =

θ2

sinh(2θ)
(bij), ∇2GD =

θ3

sinh(2θ)
(cij),

where

(10.1) aij =

{
cosh(θ(1 + t0i )) cosh(θ(1− t0j)), if i ≤ j;

cosh(θ(1− t0i )) cosh(θ(1 + t0j)), if i > j,

(10.2) bij =





sinh(θ(1 + t0i )) cosh(θ(1− t0j)), if i < j;

1
2
sinh(2θt0i ), if i = j;

− sinh(θ(1− t0i )) cosh(θ(1 + t0j)), if i > j,

and

(10.3) cij =





− sinh(θ(1 + t0i )) sinh(θ(1− t0j)), if i < j;

− sinh(θ(1 + t0i )) sinh(θ(1− t0i )) + 1
2
sinh(2θ), if i = j;

− sinh(θ(1− t0i )) sinh(θ(1 + t0j)), if i > j,

In the symmetric N−peaked case, ξ̂0
1 = ξ̂0

2 = ... = ξ̂0
N = ξ̂0. Hence

H = ξ̂0I.

One can compute ξ̂0 explicitly

(10.4) ξ̂
qr

p−1
−s−1

0 = 2
tanh( θ

N
)

θ
.
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Hence

(10.5) Q = (
θ3

2
− θ3

2 tanh( θ
N

)
)I.

The following three observations make the computation easier:
Observation I: G−1

D is a tridiagonal matrix. More precisely, we have

(10.6) G−1
D =

√
D




d1 f1 0
. . . 0

f1 e1 f1 0
. . .

. . . . . . . . . . . . . . .

. . . 0 f1 e1 f1

0
. . . 0 f1 d1




where

d1 = coth(2θ/N) + tanh(θ/N), e1 = 2 coth(2θ/N), f1 = −csch(2θ/N).

Since G−1
D is a symmetric tridiagonal matrix, we can easily compute the eigenvalues and eigenvectors

of GD as follows:

(10.7) λj = θ(e1 + 2f1 cos(
π(j − 1)

N
))−1, j = 1, ..., N,

qt
1 =

1√
N

(1, ..., 1),

qt
j = (q1,j, ..., qN,j), j = 2, ..., N,

ql,j =

√
2

N
(cos(

π(j − 1)

N
(l − 1

2
)), j = 2, ..., N, l = 1, ..., N.

In summary, if we take

P1 = (q1, ...,qN),

then we have

(10.8) P−1
1 GDP1 =




λ1 0 0
. . . 0

0 λ2 0
. . . 0

. . . 0 λj 0
. . .

. . . . . . . . . . . . . . .

0
. . . 0 0 λN




.

Observation II: (∇2GD − θ3

2
I)−1 is a tridiagonal matrix. That is
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(10.9) (∇2GD − θ3

2
I)−1 = −θ−3




d2 f1 0
. . . 0

f1 e1 f1
. . . 0

. . . f1 e1 f1
. . .

. . . . . . . . . . . . . . .

0
. . . 0 f1 d2




where

d2 = coth(2θ/N) + coth(θ/N).

Since ∇2GD − θ3

2
I is a symmetric tridiagonal matrix, we can easily compute the eigenvalues and

eigenvectors of ∇2GD as follows:

(10.10) µj =
θ3

2
− θ3(e1 + 2f1 cos(

π(j − 1)

N
))−1, j = 2, ..., N,

µ1 =
θ3

2
− θ3(e1 − 2f1)

−1,

vt
1 =

1√
N

(1,−1, 1, ..., (−1)N+1),

vt
j = (v1,j, ..., vN,j), j = 2, . . . , N,

vl,j =

√
2

N
(sin(

π(j − 1)

N
(l − 1

2
)), j = 2, ..., N, l = 1, ..., N.

Thus, if we take

P2 = (v1, ...,vN),

then we have

(10.11) P−1
2 ∇2GDP2 =




µ1 0 0
. . . 0

0 µ2 0
. . . 0

. . . 0 µj 0
. . .

. . . . . . . . . . . . . . .

0
. . . 0 0 µN




.

The last observation makes the connection between ∇GD and the other two matrices GD and∇2GD.
Observation III:

(10.12) P−1
2 ∇GDP1 =




ν1 0 0
. . . 0

0 ν2 0
. . . 0

. . . 0 νj 0
. . .

. . . . . . . . . . . . . . .

0
. . . 0 0 νN






40 JUNCHENG WEI AND MATTHIAS WINTER

where

(10.13) νj = csch (2θ/N) sin(π(j − 1)/N)λj, j = 1, ..., N.

Now let
s̃ = s− qr

p− 1
, γ̃ = ξ̂−s̃−1

0 .

Then by (10.8), (10.11) and (10.12), we have that the eigenvalues of M are given by

mj = µj − q0 − s̃γ̃ν2
j (1 + s̃γ̃λj)

−1, j = 1, ..., N,

where µj is given in (10.10), νj is given in (10.13), and

q0 =
θ3

2
− θ3

2 tanh( θ
N

)
.

For stability, we need

(10.14) −s̃γ̃ min
j=1,...,N

λj > 1

and

(10.15) min
j=1,...,N

mj > 0.

The first condition (10.14) gives us the following criterion (see [15]):

(10.16) D < D1
N ≡ 1

θ2
N,1

, θN,1 ≡ N

2
log[a +

√
a2 − 1],

where a = 1 + [1 + cos( π
N

)]( qr
p−1

− s− 1)−1.

The second condition (10.15) gives us another critical threshold (see [15]):

(10.17) D < D2
N ≡ 1

θ2
N,2

, θN,2 ≡ N log[
√

β +
√

β + 1],

where β ≡ ( qr
p−1

− (1 + s))−1.

It is easy to see that D1
N > D2

N . Thus we obtain the stability of symmetric N−peaked solution
for D < DN ≡ D2

N and instability of symmetric N−peaked solutions for D > DN . (Note that the
estimates for small eigenvalues involve no τ .)

This proves Theorem 2.4.
¤
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