
RGFGA: An Efficient Representation and Crossover
for Grouping Genetic Algorithms

Allan Tucker allan.tucker@brunel.ac.uk
Department of Information Systems and Computing,
Brunel University, Uxbridge, Middlesex, UB8 3PH, UK

Jason Crampton jason.crampton@rhul.ac.uk
Department of Mathematics, Royal Holloway,
University of London, Egham, Surrey, TW20 0EX, UK

Stephen Swift stephen.swift@brunel.ac.uk
Department of Information Systems and Computing,
Brunel University, Uxbridge, Middlesex, UB8 3PH, UK

Abstract

There is substantial research into genetic algorithms that are used to group large numbers of
objects into mutually exclusive subsets based upon some fitness function. However, nearly all
methods involve degeneracy to some degree.

We introduce a new representation for grouping genetic algorithms, the restricted growth function
genetic algorithm, that effectively removes all degeneracy, resulting in a more efficient search. A
new crossover operator is also described that exploits a measure of similarity between chromo-
somes in a population. Using several synthetic datasets, we compare the performance of our
representation and crossover with another well known state-of-the-art GA method, a strawman
optimisation method and a well-established statistical clustering algorithm, with encouraging re-
sults.

Keywords

Grouping, Genetic algorithms, Restricted growth functions, Hill climbing, Multivariate time se-
ries, Bin packing.

1 Introduction

Problems that require the partitioning of a set of variables in order to compute a solution are
typically NP-hard. Examples include the bin packing problem [Garey and Johnson, 1979] and the
line balancing problem [Sacerdoti, 1977]. Hence, researchers have focused on producing heuristic
methods for finding appropriate partitions. Algorithms that compute approximate solutions for
grouping problems include statistical clustering algorithms [Jain et al., 1999], and optimisation
algorithms such as hill climbing and evolutionary algorithms.

Falkenauer’s grouping genetic algorithm (GGA), has been designed for dealing with grouping
problems [Falkenauer, 1999]. In our previous work, we adapted the PMX crossover operator, de-
veloped for ordering problems [Goldberg and Lingle, 1985], and the GGA to deal with grouping
multivariate time series (MTS) variables [Tucker et al., 2001b].

When dealing with an n dimensional Multivariate Time Series (MTS), it is desirable to model
the data as a group of smaller MTS models as opposed to a single one. Firstly, not all of the
variables may be related, and secondly the number of parameters to be located in such a model

©200X by the Massachusetts Institute of Technology Evolutionary Computation x(x): xxx-xxx



A. Tucker, J. Crampton, S. Swift

would be very high. Therefore we are interested in developing methods to decompose a high-
dimensional MTS into groups of smaller MTSs, such that the dependency between variables
within the same group is high, but very low with variables in another group. We define an MTS
as a series of observations, xi(t); [i = 1, . . . , n; t = 1, . . . , T ], made sequentially through time
where i indexes the measurements made at each time point t.

Many of the representations used in optimisation algorithms including those in the GAs de-
scribed above suffer from degeneracy. Degeneracy occurs according to [Radcliffe and Surry, 1995]
when multiple chromosomes represent the same solution. This is not the same as redundancy
which is defined as the amount of excess information in the chromosome. Degeneracy can lead
to inefficient coverage of the search space as the same configuration of groups are repeatedly
explored. A key component of good design is the minimisation of degeneracy [Radcliffe, 1991].
However, there has been much debate in the GA community as to whether degeneracy and neu-
trality (which is where fitness does not change despite alterations in genotype) are beneficial. It
appears that the class of search space may affect this. For example, in [Hancock, 1992] degener-
acy was found to aid the efficiency of a GA through the advantages of providing multiple ways to
solve the same problem. This result was found when applied to learning neural network architec-
tures where the permutation problem leads to the same hidden node configurations being defined
in a number of different orders. However, in [Smith et al., 2001] neutrality was found to be less
useful when dealing with variable length genotypes. Furthermore, [Falkenauer, 1996] has found
that representations with less degeneracy result in more efficient GAs with respect to grouping
problems. In this paper a new representation is introduced for grouping genetic algorithms that
effectively removes all degeneracy. It is used to investigate whether the removal of degeneracy
results in more efficient search when applied to grouping problems compared to other methods.

In the next section different grouping methods are described, including statistical cluster-
ing techniques, the hill climbing procedure and different GA representations. In Section 3 we
introduce the new proposed GA as well as the representation, a similarity metric, and a set of
crossover and mutation operators. There follows in Section 4 a description of the set of experi-
ments designed to compare efficiency of the different methods when applied to the grouping of
variables in MTS data and the bin packing problem. This involves outlining the datasets used in
the study and the results obtained, including learning curves. Finally, the results of the experi-
ments are discussed and conclusions are drawn in Section 5.

2 Methods

Any algorithm that applies a global search for the optimal clusters will run in time exponential to
the size of the problem space, and so a heuristic or approximate procedure is normally required
to cope with most real world problems [Michalewicz and Fogel, 2000]. In this section we con-
sider some of these methods including statistical clustering, hill climbing and genetic grouping
algorithms.

Hereafter we assume that the problem at hand is to create a partition G of the set {1, . . . , n}
such that φ(G) is maximised, where φ is some fitness function. We denote the set {1, . . . , n} by [n]
and the set difference operator by \.

2.1 Statistical Clustering

Much research has been done on statistical clustering and there are many different heuristic algo-
rithms available, perhaps the most common being k-means [McQueen, 1967], partitioning around
medoids (PAM) [Kaufman and Rousseeuw, 1990] and hierarchical clustering [Ward, 1963]. Nearly
all of these algorithms make use of a starting allocation of variables (for example, based upon
random points in the dataspace or upon the most correlated variables), and therefore contain
bias in their search. Many are also prone to getting stuck in local maxima during the search. In
this study, PAM is compared to the other methods for grouping variables. This method is chosen

2 Evolutionary Computation Volume x, Number x



Efficient Grouping Genetic Algorithms

as it is a well established method and has generally been found the most reliable and efficient by
the authors [Swift et al., 2004].

2.1.1 Partitioning Around Medoids

The PAM algorithm creates a partition into m sets by computing m medoids. A medoid is a
representative member for each of the m sets in the partition. Informally, a medoid is the ‘most
central point’ of a set (with respect to some distance metric).1 The algorithm seeks to minimise
the sum of the distances between the medoid and the other members of its set. The algorithm first
builds a partition by selecting m medoids; the second phase of the algorithm seeks to improve this
initial selection by evaluating the effect of swapping a non-medoid for a medoid, and accepting
the swap if it improves the overall fitness of the partition.

Input: d where d(x, y) = distance between variables x
and y
-------------------build phase---------------------
medoids = ∅

for k = 1 to m {
add ck to medoids where

∑k
j=1

∑
x∈〈cj〉 d(x, cj) is minimised

}
-------------------swap phase----------------------
for c ∈ medoids
{

for x 6∈ medoids
{

if replacing x with c improves fitness then
medoids = medoids ∪ {x} \ {c}

}
}
Output: medoids

Figure 1: Pseudo-code for the PAM algorithm

One disadvantage of this method is that m is part of the input to the algorithm. In other
words, PAM needs to be run for all possible values of m and the best selected. Clearly, the
algorithm is computationally expensive if all possible swaps are evaluated (and all values of m
are considered).

2.2 Hill Climbing

Hill Climbing (HC) solves a search or optimisation problem by making a sequence of small ran-
dom changes to a random solution to the problem [Michalewicz and Fogel, 2000]. In this study,
we use mutation operators to apply these small changes which are described later in this section.
After each change a check is made to see if the new solution is better than the current solution,
and if so, subsequent changes are made to this improved solution point in the search space. (Typ-
ically the HC algorithm makes a fixed user-specified number of changes before terminating.) It
is well known that a significant drawback of this algorithm is its propensity for finding solutions
that are optimal in a neighborhood (so-called local maxima) rather than solutions that are optimal
within the entire search space.

1An alternative way of thinking about a partition defined by medoids is to consider the following equivalence relation:
given a set of medoids C = {c1, . . . , ck}, we say xi ∼ xj if xi and xj have the same closest medoid. It can easily be seen
that this is an equivalence relation. It is well known that the set of equivalence classes is a partition.

Evolutionary Computation Volume x, Number x 3



A. Tucker, J. Crampton, S. Swift

2.3 Falkenauer’s Grouping Genetic Algorithm

Falkenauer’s representation [Falkenauer, 1999] contains a vector of integers where the index of
the chromosome represents the variable and the value of the chromosome represents the group
to which that variable is assigned. The representation also has an extra part on the chromosome
which represents each group without any information about their contents. The second part of
the chromosome is simply a list of the groups found in the first part. Crossover is only applied
to this part of the chromosome as will be detailed below.

2.3.1 Representation

Falkenauer’s grouping genetic algorithm (GGA) represents a partition of [n] as f : R, where
f : [n] → [n] is a function with range R ⊆ [n].2 We will write f as a list, where the
ith position in the list denotes f(i). We will write R as a list containing the elements in
the range of f . Hence [1, 2, 3, 4, 1, 1, 1, 1, 1] : [1, 2, 3, 4], for example, represents the partition
{{1, 5, 6, 7, 8, 9} , {2} , {3} , {4}}. Note that there is redundancy in this representation: it is not
necessary to include R. However, R is used to define the crossover operation in GGA. Note also
that this representation is not unique: [2, 3, 4, 1, 2, 2, 2, 2, 2] : [2, 1, 4, 3] represents the same parti-
tion as the example above. Indeed any permutation of {1, 2, 3, 4} gives rise to a chromosome that
represents an identical partition.

2.3.2 Crossover

Let f1 : R1 and f2 : R2 be two parent chromosomes and choose S1 ⊂ R1 and S2 ⊂ R2 at random.
The crossover operation creates two children c1 : R1 ∪ S2 \ S1 and c2 : R2 ∪ S1 \ S2 as described
below. Informally, child 1 is created in the following way:

1. Elements that are mapped into S2 by f2 are inserted into child 1

2. Remaining elements are mapped into R1 \ S1 by f1

3. Any undefined elements are assigned a group at random

Child 2 is created in a similar fashion, reversing the use of f1 and f2. More formally the children
are created in the following way:

Child 1

1. For all x ∈ [n] such that f2(x) ∈ S2, define c1(x) = f2(x)

2. For all x ∈ [n] \ S2 such that f1(x) ∈ S1, define c1(x) = f1(x)

3. For all x ∈ [n] such that c1(x) is still undefined, c1(x) = i, where i is chosen at random from
R1 ∪ S2 \ S1

Child 2

1. For all x ∈ [n] such that f1(x) ∈ S1, define c2(x) = f1(x)

2. For all x ∈ [n] \ S1 such that f2(x) ∈ S2, define c2(x) = f2(x)

3. For all x ∈ [n] such that c2(x) is still undefined, c2(x) = i, where i is chosen at random from
R2 ∪ S1 \ S2

In practice, S1 and S2 are chosen by picking two pairs of random values that each identify
the beginning and end of a sublist in R1 and R2. Essentially, S1 and S2 are crossing sections; the
values associated with each of S1 and S2 are injected into the respective parents.

2In other words, for every r ∈ R there exists i ∈ [n] such that f(i) = r.

4 Evolutionary Computation Volume x, Number x



Efficient Grouping Genetic Algorithms

3 The Restricted Growth Function Genetic Algorithm

In this section we introduce the concept of a restricted growth function (RGF) [Er, 1988, Kaye, 1976,
Proskurowski et al., 1998] and describe our restricted growth function genetic algorithm (RGFGA).
We define an RGF and demonstrate its ability to represent a candidate set of groupings without
degeneracy. Then a distance measure for the representation is defined. This is used in the de-
scription of the crossover operator, which exploits the representation and metric in order to build
a ‘path’ between two parent chromosomes. Finally a set of mutation operators is described and
a ‘clean up’ procedure is introduced to ensure each mutation results in a valid RGF.

A restricted growth function is a function f : [n] → [n] such that

f(1) = 1 (1)
f(i + 1) 6 max {f(1), . . . , f(i)}+ 1. (2)

Note that there is a one-to-one correspondence between the set of RGFs and the set of parti-
tions of [n]. In particular, the RGF represents a partition into m 6 n groups, where 1 by conven-
tion belongs to the first group, i belongs to the f(i)th group, and max {f(1), . . . , f(n)} = m. The
fact that there is a one-to-one correspondence means that there is no degeneracy in the represen-
tation of a partition using an RGF.

Henceforth we represent a RGF f as a list of n integers, the interpretation being that the ith
element of the list is the value of f(i). We write ⇑f(i) to denote max {f(1), . . . , f(i)} and ⇑f to
denote ⇑f(n) = max {f(1), . . . , f(n)}.

We now introduce the idea of ‘distance’ between two RGFs based upon the Hamming dis-
tance [Hamming, 1950], two methods for deriving new RGFs from existing ones and prove some
elementary results.

Definition 3.1 Let f and g be two RGFs. We say f 6 g if f(i) 6 g(i), 1 6 i 6 n. We write f < g if
f 6 g and f 6= g.

Definition 3.2 Let f and g be two RGFs. We define

h(f, g) =
n∑

i=1

(f(i)− g(i)) , (3)

H(f, g) =
n∑

i=1

|f(i)− g(i)|. (4)

Proposition 3.1 Let f and g be RGFs. Then

h(f, g) 6 H(f, g) 6 1
2
n(n− 1).

Proof The minimum value of f(i) is 1 and the maximum value of g(i) is i. Hence

H(f, g) 6
n∑

i=1

i− 1 =
1
2
n(n− 1).

The left hand inequality is immediate. ¥

Definition 3.3 Let f and g be RGFs. Define fg : [n] → [n], where

fg(i) = max {f(i), g(i)}

Evolutionary Computation Volume x, Number x 5



A. Tucker, J. Crampton, S. Swift

Definition 3.4 Let f and g be RGFs such that f 6= g and let j be the smallest integer such that
f(j) < g(j), 2 6 j 6 n and k be the largest integer such that f(k) > g(k). We define the functions

(f↑g)(i) =





f(i) + 1 if i = j and f(j) < g(j),

f(i) otherwise;

and

(f↓g)(i) =





f(i)− 1 if i = k and f(k) > g(k),

f(i) otherwise.

Function Partition
f [1, 2, 3, 1, 4, 1, 2, 5] {{1, 4, 6} , {2, 7} , {3} , {5} , {8}}
g [1, 2, 2, 1, 3, 3, 1, 4] {{1, 4, 7} , {2, 3} , {5, 6} , {8}}
fg [1, 2, 3, 1, 4, 3, 2, 5] {{1, 4} , {2, 7} , {3, 6} , {5} , {8}}

(f↑g) [1, 2, 3, 1, 4, 2, 2, 5] {{1, 4} , {2, 6, 7} , {3} , {5} , {8}}
(f↓g) [1, 2, 3, 1, 4, 1, 2, 4] {{1, 4, 6} , {2, 7} , {3} , {5, 8}}

Table 1: Examples of RGFs

Table 1 shows examples of RGFs f , g, fg, (f↑g) and (f↓g) and the corresponding partitions.
Informally, fg is an RGF that simply takes the larger of each of the corresponding pairs of values
of f and g, and (f↑g) is an RGF that is one step closer to g than f is. More formally, we have the
following results.

Proposition 3.2 Let f and g be RGFs. Then fg is an RGF and fg = gf .

Proof First note that fg(1) = 1 since f(1) = g(1) = 1. Now

fg(i) 6 max
{⇑fg(i− 1), f(i), g(i)

}
(5)

6 max {⇑f(i− 1),⇑g(i− 1), f(i), g(i)} (6)
6 max {⇑f(i− 1) + 1,⇑g(i− 1) + 1} (7)

6 ⇑fg(i− 1) + 1 (8)

That is, fg is an RGF. Clearly fg = gf . ¥

Proposition 3.3 Let f and g be RGFs such that f 6= g. Then (f↑g) is an RGF and

H((f↑g), g) = H(f, g)− 1.

Proof We first note that (f↑g)(1) = 1. Let j be the smallest integer such that f(j) 6= g(j). Now,
since g(j − 1) = f(j − 1) and g is an RGF, we have

g(j) 6 ⇑f(j − 1) + 1 and hence f(j) 6 ⇑f(j − 1). (9)

We also have
⇑fg(j − 1) = ⇑f(j − 1). (10)

By definition,

(f↑g)(j) = f(j) + 1 (11)
6 ⇑f(j − 1) + 1 by (9) (12)
= ⇑(f↑g)(j − 1) + 1 by (10). (13)

6 Evolutionary Computation Volume x, Number x



Efficient Grouping Genetic Algorithms

That is, (f↑g) is an RGF. Furthermore,

H((f↑g), g) =
n∑

i=1

|(f↑g)(i)− g(i)|

=
∑

i 6=j

|(f↑g)(i)− g(i)|+ |(f↑g)(j)− g(j)|

=
∑

i 6=j

|f(i)− g(i)|+ |f(j) + 1− g(j)| by definition of (f↑g)

=
∑

i 6=j

|f(i)− g(i)|+ g(j)− f(j)− 1 since f(j) + 1− g(j) 6 0

=
∑

i 6=j

|f(i)− g(i)|+ |f(j)− g(j)| − 1

=
n∑

i=1

|f(i)− g(i)| − 1

= H(f, g)− 1

¥

A result analogous to Proposition 3.3 can be proved for (f↓g).

3.1 Crossover

Let f and g be two distinct RGFs. If f < g, then (f↑g) exists. Clearly, f 6 fg. Hence, by
Proposition 3.3, if f 6= fg then (f↑fg) is an RGF that is one step closer (in terms of the distance
function H) to fg than f is. Hence, by repeating this construction, there exists a finite sequence
of RGFs, f1, . . . , fk such that f1 = f , fi = (fi−1↑fg) and fk = fg. Similarly, there exists a finite
sequence of RGFs, g1, . . . , gl such that g1 = fg, gi = (gi−1↓g), and gl = g. We say the sequence of
functions f1, . . . , fk, g1, . . . , gl is a path from f to g.

The crossover operator works by building a path between two parent chromosomes f and
g. The children are two randomly chosen points (RGFs) on this path. Previously, Reeves has
explored the use of path relinking between local maxima to investigate the big valley nature of
some fitness landscapes, where local maxima were clustered around the global maxima and not
dispersed uniformly over the landscape [Reeves and Yamada, 1998]. RGFGA crossover makes
this assumption and experiments support this where we explore the fitness landscape along such
paths, and observe numerous other maxima between local optima. See Figure 2 for an example
fitness path between two local optima on the MTS data with 500 variables. Future work will
explore other methods for selecting children along these paths. Note that if the hamming distance
between two parents is less than 3 then two new children cannot be created along the path. In
this case copies of each parent are created before applying mutation.

Example 3.1 Let f = [1, 2, 3, 1, 4, 1, 2, 5] and g = [1, 2, 2, 1, 3, 3, 1, 4]. Then fg = [1, 2, 3, 1, 4, 3, 2, 5]
and the path between f and g is

f1 = f = [1, 2, 3, 1, 4, 1, 2, 5] ,

f2 = [1, 2, 3, 1, 4, 2, 2, 5] ,

f3 = g1 = fg = [1, 2, 3, 1, 4, 3, 2, 5] ,

g2 = [1, 2, 3, 1, 4, 3, 2, 4] ,

g3 = [1, 2, 3, 1, 4, 3, 1, 4] ,

g4 = [1, 2, 3, 1, 3, 3, 1, 4] ,

g5 = g = [1, 2, 2, 1, 3, 3, 1, 4] .

Evolutionary Computation Volume x, Number x 7



A. Tucker, J. Crampton, S. Swift

Figure 2: A typical feature landscape between two local optima. This one was calculated using
the path generated during RGF crossover for 500 variable MTS grouping.

3.2 Mutation

Three mutation operators are investigated which have one of the following effects:

• an element is moved from one group to another,

• two groups are merged,

• a group is split into two groups.

These mutations have been chosen as they are typically used in conjunction with Falke-
nauer’s crossover. Before describing the implementation of these mutation operators in detail we
will consider a motivating example. Consider the function [1, 2, 3, 1, 4, 1, 2, 5] and suppose that
we wish to move 2 from the group containing 2 and 7 (currently labelled group 2) to the group
containing 1, 4 and 6 (currently labelled as group 1). Simply changing the labelling of the second
position from a 2 to a 1 is not sufficient because we obtain the chromosome [1, 1, 3, 1, 4, 1, 2, 5],
which does not represent a RGF. Hence we must re-label parts of the chromosome.

3.2.1 Validating Mutated Chromosomes

Let f : [n] → N be some mapping from [n] into the set of natural numbers. Then we can convert
f into a RGF f ′ : [n] → [n] using a re-labelling algorithm. (As before we represent f as a list of n
values where the ith place is equal to f(i). Clearly not every function is a RGF.)

The algorithm requires two traversals of the list. In the first traversal, a mapping between
the values of f(i) and f ′(i) is created. We record each new value that f takes and associate it with
the next available integer. This enables us, in the second traversal, to replace the values of f(i)
with the values of f ′(i). An example will illustrate the procedure.

8 Evolutionary Computation Volume x, Number x



Efficient Grouping Genetic Algorithms

Example 3.2 Let f = [3, 8, 10, 3, 1, 3, 8, 5]. The first traversal results in the following mapping.

f(i) 3 8 10 1 5
f ′(i) 1 2 3 4 5

We now replace every occurrence of 3 with 1, every occurrence of 8 with 2, etc., to obtain f ′ =
[1, 2, 3, 1, 4, 1, 2, 5].

Clearly the time taken to execute the re-labelling procedure is proportional to the number
of elements in the list. There is a risk that this relabelling will cause some possible mutations
to result in large changes to the chromosome with very little change in fitness. However, as
the chromosome is a legal RGF prior to mutation it is thought that the changes made by one
relabelling procedure will generally be small. The mutation operators are now easy to describe.

3.2.2 Move

Moving variable i into group g. Given a chromosome representing an RGF f :

1. Pick a position i at random (1 6 i 6 n) and a value g at random (1 6 g 6 ⇑f );

2. Set f(i) = g;

3. Apply the re-labelling algorithm.

3.2.3 Merge

Merge groups g1 and g2 into a single group g2. Given a chromosome representing a RGF f :

1. Pick values g1 and g2 at random (1 6 g1, g2 6 ⇑f );

2. For all i such that f(i) = g1, set f(i) = g2;

3. Apply the re-labelling algorithm.

3.2.4 Split

Split group g into two groups. Given a chromosome representing a RGF f :

1. Pick a value g at random (1 6 g 6 ⇑f );

2. For all i such that f(i) = g, set f(i) at random to either g or to ⇑f + 1;

3. Apply the re-labelling algorithm.

4 Empirical Results

In order to assess the efficiency of the RGFGA, the methods described in the previous two sections
were applied to the problem of grouping variables in a number of multivariate time series and
the well known bin packing problem [Garey and Johnson, 1979]. The data are described in the
next section followed by a description of the fitness functions used.

Evolutionary Computation Volume x, Number x 9



A. Tucker, J. Crampton, S. Swift

4.1 Grouping MTS

As we briefly discussed in the introduction, there has been little work on the grouping of vari-
ables in an MTS. There are many statistical MTS modelling methods used for forecasting, such as
the vector auto-regressive (VAR) [Lutkepohl, 1993], as well as other linear, non-linear and Bayesian
systems [Pole et al., 1994]. Typically, these methods need to establish a large number of param-
eters, this number being a function of dimensionality and MTS length. Therefore, when dealing
with an MTS with a large number of variables, it is desirable to model the data as a group of
smaller MTS models as opposed to a single one. To use the VAR process, for example, requires
at least n2p parameters, where p is the order of the VAR process and n is the number of variables
in the data set. Alternatively, suppose we are trying to learn dynamic Bayesian network (DBN)
models [Friedman et al., 1998] from an MTS which has very high dimensionality, n, and large
possible time lags, in order to explain MTSs. Then the number of possible candidate networks
will be 2n2MaxLag where MaxLag is the maximum time lag [Tucker et al., 2001a].

Decomposing the data into smaller dimensional time-series that are independent to some
degree would narrow the search space a great deal allowing the speedier production of MTS
models. Therefore we are interested in finding out how to decompose a high-dimensional MTS
into groups of smaller MTSs, where the dependency between variables within the same group is
high, but very low with variables in another group. Note that this is different from dimensionality
reduction techniques such as principal component analysis or factor analysis which make some sort
of multivariate transformation of the data [Morrison, 1990].

4.2 The Bin Packing Problem

The bin packing problem [Garey and Johnson, 1979] is defined as follows: Given a set of N items,
with the size of the ith item equal to si, and a set of bins each of capacity c, what is the minimum
number of bins that can be used to pack the items such that no bin’s capacity is exceeded?

4.3 Synthetic Data

The efficiency of the RGFGA is tested on a number of synthetic datasets. Firstly, some
have been generated using a VAR process [Lutkepohl, 1993]. In order to generate groups of
highly dependent variables, a number of time series were generated from different VAR pro-
cesses. These groups had a number of different dimensions and were amalgamated to cre-
ate three different multivariate time series. Secondly, bin packing data from the OR library
[Falkenauer, 1996, Beasley, 1990] is used to explore the efficiency of RGFGA. A breakdown of
these datasets is shown in Table 2 where n is the number of variables (dimension), l is the length
of the MTS and k is the number of MTS used to generate the data, i.e. the number of groups, or
the smallest known number of bins to pack the objects into without overflowing. The MTS data
and its composition is available from http://people.brunel.ac.uk/ ∼cssrajt/ and the
bin packing data from www.brunel.ac.uk/depts/ma/research/jeb/info.html .

Table 2: Breakdown of the Synthetic Datasets

Dataset MTS1 MTS2 MTS3 BP1 BP2 BP3
n 50 250 500 250 500 1000
l 1000 1000 1000 NA NA NA
k 14 26 35 48 198 399

10 Evolutionary Computation Volume x, Number x



Efficient Grouping Genetic Algorithms

4.4 Fitness Function

4.4.1 MTS Grouping Fitness

Each pair of variables in a multivariate time series may be related, where the strength of that
relationship may depend on the time lag between observations for the respective variables. Our
fitness function was first used by [Tucker et al., 2001b] and makes use of Pearson’s Correlation
Coefficient [Pearson and Lee, 1903]. For each pair of variables xi and xj (1 6 i, j 6 n) and each
time lag t (1 6 t 6 T ), we evaluate the correlation coefficient between the data sets

{xi(0), xi(1) . . . , xi(l − t)} and {xj(t), xj(t + 1), . . . , xj(l)} ,

which we denote by ρ(xi, xj , t). We then construct an n× n matrix, C, where

Cij =





max {ρ(xi, xj , 0), ρ(xi, xj , 1), . . . , ρ(xi, xj , T )} if i 6= j,

0 otherwise.

Given Cij and α, where 0 < α 6 1, we construct the n× n matrix Cα, such that

Cα
ij =





1 if Cij > α,

0 if i = j,

−1 otherwise.

In other words, if there exists a time lag t such that ρ(xi, xj , t) exceeds some threshold value (α),
then we assign a value of 1 in the matrix for that pair of variables.

Given a partition G of [n], we define the fitness of G to be

φ(G) =
∑

G∈G

∑

xi,xj∈G

Cα
ij .

Informally, a high value of φ(G) is obtained when the number of variables that are correlated in
each G ∈ G is large and the number of variables that are not correlated is small.

4.4.2 Bin Packing Fitness

The RGF f represents a partition of the set [n]. In the context of the bin-packing problem, we
interpret f(i) as the index of the bin in which item i has been placed. Hence the contents of bin j
is determined by {i ∈ [n] : f(i) = j}. Let

Sj =
∑

{i∈[n]:f(i)=j}
si.

In other words, Sj is the sum of the sizes of items allocated to bin j by the function f . We define
the fitness of f to be

φ(f) =
∑

{i6⇑(f):Si6c}

(
Si

c

)2

.

This definition of fitness is based on that used by Falkenauer in his work on the bin-packing
problem [Falkenauer, 1996]. Intuitively, the fitness of f improves as the contents of each bin
approaches the capacity of the bin. Note that the contribution of bins that overflow are ignored.
If each bin contains exactly its capacity then φ(f) = ⇑(f).

Evolutionary Computation Volume x, Number x 11



A. Tucker, J. Crampton, S. Swift

4.5 The Algorithms

For both Falkenauer and RGFGA we used the following genetic algorithm set up: Parents are
randomly selected for crossover using a uniform distribution over all individuals. The result-
ing children are added to the population. Mutation is applied to all individuals in the swollen
population. Selection involves removing individuals with the lowest fitness until the original
population size is reached. The population size is set to 50, crossover rate is 0.5 and mutation
rate is 0.05. These parameters were found in general to suit both representations. For the MTS fit-
ness function, α was set to 0.5. If α is equal to 0, then the function is maximised when all variables
are placed into the same group (that is, a single large group). Alternatively, when α is equal to 1,
the function is maximised when each variable is placed into its own group. A value for α should
lie somewhere between the 0 and 1 so as not to skew the scoring function and will depend upon
the distribution of correlations between variables. Previously we have found a suitable general
value for α to be 0.5 [Swift et al., 2004]. Future work will involve a more thorough sensitivity
analysis of these parameters.

For hill climbing, each mutation operator is individually applied and tested for fitness im-
provement.

4.6 Method Comparison

Falkenauer’s GGA, the hill climbing and the proposed RGFGA were applied to each synthetic
dataset in order to compare the efficiency of each algorithm as the number of variables and
groups increased. The fitness of the best individual was measured every 100000 calls to the
correlation matrix, C, for the MTS data and every 5000 calls to the bin packing data (as the MTS
fitness function requires a lot more calls to the data matrix). All experiments were repeated 10
times and the average value recorded to account for the stochastic nature of the algorithms. For
the MTS data, the statistical clustering method PAM was also used as a strawman method of
comparison. We also make use of a statistic known as Weighted Kappa (WK) [Altman, 1991] in
order to compare the discovered groupings with the original groupings used to generate the MTS
data. This metric is used commonly in medical statistics and is used to rate agreement between
the classification decisions made by two observers. In this case observer 1 is the original MTS
groupings and observer 2 is the discovered groupings. The value for WK always falls between -1
and 1, where 1 denotes perfect agreement. For the bin packing data we recorded the final number
of bins that were required to pack the data without overflow as a measure of quality.

Figure 3a shows the average fitness curves of each method when applied to the 50 variable
MTS dataset and Table 3 shows the mean final fitness and the standard deviation for each stochas-
tic method as well as PAM. It can be seen that even on this relatively low number of variables HC

Table 3: Fitness of MTS Solution Analysis
Method n=50 n=250 n=500

HC 36.6 (15.4) 644.8 (49.9) 2089.0 (59.2)
Falkenauer 58.2 (1.0) 889.8 (14.9) 2414.8 (31.8)

RGFGA 57.8 (0.4) 880.6 (17.4) 2551.8 (7.2)
PAM (given m) 49.0 (NA) 558.0 (NA) 1414.0 (NA)

quickly hits a local maximum with an average fitness of 36.6. In comparison, Falkenauer and the
proposed RGFGA do far better both converging with an average fitness of about 58, Falkenauer
finishing with a slightly but not significantly higher fitness. PAM does better than HC but not as
well as the GAs with a fitness of 49. PAM, however, requires the number of groups as input (m)
and so has an unfair advantage being given a far smaller search space. The standard deviation
between runs was highest for HC, followed by Falkenauer with RGFGA on the lowest standard

12 Evolutionary Computation Volume x, Number x



Efficient Grouping Genetic Algorithms

(a) 50 variable MTS

(b) 250 variable MTS

(c) 500 variable MTS

Figure 3: Comparison of the HC, PAM, GGA, and RGFGA methods for generating partitions on
the MTS data

deviation. This suggests that RGFGA is more consistent than the other two methods. As PAM is
deterministic, standard deviation is not applicable.

Figure 3b shows the average fitness curves for the methods on the 250 variable MTS. Again
HC performs the worst and hits a local maximum of 644.8 on average. Now, however, Falkenauer

Evolutionary Computation Volume x, Number x 13



A. Tucker, J. Crampton, S. Swift

(a) 120 variable Bin Packing

(b) 500 variable Bin Packing

(c) 1000 variable Bin Packing

Figure 4: Comparison of the HC, GGA, and RGFGA methods for generating partitions on the bin
packing data

and the RGFGA begin to show different learning curves. In the early generations, it appears that
Falkenauer performs more efficiently with a steeper ascent. However, the RGFGA eventually
overtakes Falkenauer’s fitness before converging to a solution with a fitness of around 880. Note,
again that Falkenauer’s final fitness is slightly better than RGFGA’s and the standard deviation
(Table 3) is slightly lower though not by much. PAM now performs worse than all the stochastic
methods with a fitness of 558, even when m is given.

Figure 3c shows the average fitness curves for the full 500 variables of the MTS data. This
really shows that as the number of variables increase, the RGFGA performs more efficiently than
the other methods even though Falkenauer still does slightly better during the earlier genera-

14 Evolutionary Computation Volume x, Number x



Efficient Grouping Genetic Algorithms

tions. This was an unexpected result as we expected RGFGA to be more efficient from the outset.
A possible reason that RGFGA does not perform as well during earlier generations compared to
Falkenauer is that Falkenauer’s crossover is exploited more effectively in the early generations.
However, as mutation becomes the dominant factor in exploring the search space, Falkenauer be-
comes less and less efficient whilst the RGFGA representation continues its efficient search with
no degeneracy.

Table 3 shows that the average final fitness for RGFGA is clearly higher than Falkenauer
(2414.8 and 2551.8, respectively). The consistency of RGFGA also appears to be much higher
with a considerably lower standard deviation than the other methods.

Table 4: Fitness of Bin Packing Solution Analysis
Method n=120 n=500 n=1000

HC 28.2 (1.6) 83.3 (5.5) 154.1 (14.6)
Falkenauer 46.1 (0.2) 190.8 (0.6) 380.1 (0.6)

RGFGA 46.2 (0.3) 191.9 (0.9) 386.5 (0.8)

Figure 4 shows the equivalent curves for the bin packing data with 120, 500 and 1000 vari-
ables, whilst Table 4 shows the final fitnesses and standard deviations. Again HC hits a local
maxima in all experiments whilst RGFGA and Falkenauer do similarly well on the lower dimen-
sional 120 variable problem. For 500 and 1000 variables, Falkenauer appears to do well in the
early generation but is overtaken by RGFGA which finishes with a higher mean fitness. How-
ever the standard deviation of the RGFGA final solutions are also slightly higher.

Figure 5 illustrates the spread of the final solution fitnesses for the MTS data. They show the
mean, the maximum and the minimum for each method and dataset. It is apparent that for the
smaller dimensional datasets Falkenauer and RGFGA both discover similarly fit solutions, and
are considerably better than HC. However, on the larger dimensional dataset with 500 variables,
it is obvious that RGFGA is more consistently finding high-fitness solutions with less variation
than either of the other two methods.

Figure 6 shows the equivalent results on the bin packing data. We have omitted the HC
results as these were so much worse that they skewed the graphs. Once again it is clear that as N
increases, the improvement in final fitness is more marked.

We now look at the quality of the discovered groupings compared to the original groups
used to generate the MTS data by using the WK metric. Table 5 shows the mean and standard
deviation of the WK scores for the groupings discovered for each method for the 50, 250 and
500 variable MTS. It is evident that the WK scores indicate that the discovered groupings closely
reflect the fitness results. For smaller dimensional problems it seems that all methods perform
well with high WK and low standard deviation, whereas for higher dimensional datasets RGFGA
discovers groupings with higher WK and lower standard deviation, followed by Falkenauer’s
GGA, then PAM and HC suffering most, likely due to local maxima. Recall that m, the number
of groups in the partition, is an input to PAM and so this method has an unfair advantage over
the other ones.

For the bin packing we used the number of bins used to pack the data in the final solution as
a method for measuring the quality of the final solutions. Table 6 shows the means and standard
deviations of each method. It is evident that they closely reflect the fitnesses of the solution with
RGFGA resulting in better solutions (with a smaller number of bins) followed by Falkenauer and
then HC. It should be noted, however, that for this set of data the standard deviation for RGFGA
is slightly higher.

Evolutionary Computation Volume x, Number x 15



A. Tucker, J. Crampton, S. Swift

(a) 50 variable MTS

(b) 250 variable MTS

(c) 500 variable MTS

Figure 5: Comparison of fitness of final solutions on the MTS data

5 Conclusions and Future Work

In this paper we have introduced a new representation for grouping genetic algorithms known
as the Restricted Growth Function Genetic Algorithm (RGFGA). This avoids the problems of de-
generacy, common in other representations. In addition, we have introduced a set of operators,
including a form of crossover that only generates valid offspring, in contrast with crossover op-
erators in other methods. We have carried out an empirical study to investigate the efficiency of

16 Evolutionary Computation Volume x, Number x



Efficient Grouping Genetic Algorithms

(a) 120 variable Bin Packing Data

(b) 500 variable Bin Packing Data

(c) 1000 variable Bin Packing Data

Figure 6: Comparison of fitness of final solutions on the bin packing data

our method compared to another state-of-the-art grouping genetic algorithm representation and
a strawman hill climbing procedure, with favourable results.

The RGFGA crossover makes use of a Hamming distance metric which can also be used to
measure overall population diversity. Figure 7 illustrates how this diversity varies during each
experiment. It is interesting to note how rapidly the population diversity drops as many individ-
uals begin to represent similar groupings. This is likely to be due to the nature of our crossover

Evolutionary Computation Volume x, Number x 17



A. Tucker, J. Crampton, S. Swift

Table 5: MTS Data Weighted Kappa Analysis
Method n=50 n=250 n=500

HC 0.623 (0.042) 0.561 (0.032) 0.601 (0.074)
Falkenauer 0.707 (0.038) 0.576 (0.029) 0.614 (0.018)

RGFGA 0.748 (0.024) 0.626 (0.022) 0.656 (0.007)
PAM (given m) 0.816 (NA) 0.707 (NA) 0.638 (NA)

Table 6: Bin Packing Analysis
Method n=120 n=500 n=1000

HC 58.2 (4.97) 245.20 (10.76) 494.00 (12.86)
Falkenauer 46.05 (0.21) 204.40 (0.89) 419.40 (0.89)

RGFGA 46.15 (0.26) 203.00 (1.22) 410.40 (1.14)

operator and could be limiting the speed of convergence of the RGFGA as the search comes to
rely more and more upon mutation as generations pass. There are a number of methods that
can be explored to help prevent early convergence of GAs. For example, niching [Mahfoud, 1995]
involves maintaining sub-populations in order to generate multiple solutions. A limited amount
of breeding between sub-populations is allowed but the idea is to allow several part-solutions to
be preserved within the different populations. We intend to look into niching methods as well as
investigate the potential of other operators that do not suffer from premature convergence whilst
still generating valid RGF offspring. Several real-world datasets including medical data from
visual field tests and biological data from gene expression experiments will also be employed to
test the RGFGA as well as a parametric study of the representation.

Figure 7: The Hamming distance (measure of diversity) within the population of RGFGA during
learning for 500 variable MTS grouping.

6 Acknowledgements

The authors would like to thank the referees for their constructive comments of the manuscript
during review.

18 Evolutionary Computation Volume x, Number x



Efficient Grouping Genetic Algorithms

References

[Altman, 1991] Altman, D. G. (1991). Practical Statistics for Medical Research. Chapman and
Hall/CRC, Boca Raton, FL.

[Beasley, 1990] Beasley, J. (1990). Or-library: Distributing test problems by electronic mail. Euro-
pean Journal on Operational Research, 41:1069–1072.

[Er, 1988] Er, M. (1988). A fast algorithm for generating set partitions. The Computer Journal,
31(3):283–284.

[Falkenauer, 1996] Falkenauer, E. (1996). A hybrid grouping genetic algorithm for bin packing.
Journal of Heuristics, 2:5–30.

[Falkenauer, 1999] Falkenauer, E. (1999). Genetic Algorithms and Grouping Problems. John Wiley,
New York, NY.

[Friedman et al., 1998] Friedman, N., Murphy, K., and Russell, S. (1998). Learning the structure
of dynamic probabilistic networks. In Cooper, G. F. and Moral, S., editors, Proceedings of the
14th Conference on Uncertainty in Artificial Intelligence, pages 139–147.

[Garey and Johnson, 1979] Garey, M. and Johnson, D. (1979). Computers and Intractability. W. H.
Freeman and Company, New York, NY.

[Goldberg and Lingle, 1985] Goldberg, D. and Lingle, R. (1985). Alleles, loci, and the travelling
salesman problem. In Proceedings of the First International Conference on Genetic Algorithms and
their Applications, pages 154–159.

[Hamming, 1950] Hamming, R. (1950). Error detecting and error correcting codes. Bell Systems
Technical Journal, 29:147–160.

[Hancock, 1992] Hancock, P. (1992). Genetic algorithms and permutation problems: a com-
parison of recombination operators for neural net structure specification. In Proceedings of
COGANN-92: International Workshop on combinatorics of Genetic Algorithms and Neural Networks,
pages 108–122.

[Jain et al., 1999] Jain, A., Murty, M., and Flynn, P. (1999). Data clustering: A review. ACM
Computing Surveys, 31(3):264–323.

[Kaufman and Rousseeuw, 1990] Kaufman, L. and Rousseeuw, P. J. (1990). Finding Groups in
Data: An Introduction to Cluster Analysis. John Wiley & Sons, New York , NY.

[Kaye, 1976] Kaye, R. (1976). A Gray code for set partitions. Information Processing Letters,
5(6):171–173.

[Lutkepohl, 1993] Lutkepohl, H. (1993). Introduction to Multivariate Time Series Analysis. Springer-
Verlag, London, United Kingdom.

[Mahfoud, 1995] Mahfoud, S. (1995). Niching Methods for Genetic Algorithms. PhD thesis, Univer-
sity of Illinois at Urbana-Champaign, Urbana, IL.

[McQueen, 1967] McQueen, J. (1967). Some methods for classification and analysis of multi-
variate observations. In Proceedings of 5th Berkeley Symposium on Mathematics, Statistics and
Probabiliity, volume 1, pages 281–298.

[Michalewicz and Fogel, 2000] Michalewicz, Z. and Fogel, D. (2000). How to Solve It: Modern
Heuristics. Springer Verlag, New York, NY.

[Morrison, 1990] Morrison, D. (1990). Multivariate Statistical Methods. McGraw-Hill, Inc., New
York, NY, 3rd edition.

Evolutionary Computation Volume x, Number x 19



A. Tucker, J. Crampton, S. Swift

[Pearson and Lee, 1903] Pearson, K. and Lee, A. (1903). On the laws of inheritance in man: In-
heritance of physical characters. Biometrika, 2(4):357–462.

[Pole et al., 1994] Pole, A., West, M., and Harrison, P. (1994). Applied Bayesian Forecasting and Time
Series Analysis. Chapman-Hall, New York, NY.

[Proskurowski et al., 1998] Proskurowski, A., Ruskey, F., and Smith, M. (1998). Analysis of algo-
rithms for listing equivalence classes of k-ary strings. SIAM Journal on Discrete Mathematics,
11(1):94–109.

[Radcliffe, 1991] Radcliffe, N. (1991). Equivalence class analysis of genetic algorithms. Complex
Systems, 5:183–205.

[Radcliffe and Surry, 1995] Radcliffe, N. and Surry, P. (1995). Fitness variance of formae and per-
formance prediction. In Whitley, D. and Vose, M., editors, Foundations of genetic algorithms 3,
pages 51–72, San Mateo. Morgan Kaufmann.

[Reeves and Yamada, 1998] Reeves, C. and Yamada, T. (1998). Genetic algorithms, path relink-
ing, and the flowshop sequencing problem. Evolutionary Computation, 6(1):45–60.

[Sacerdoti, 1977] Sacerdoti, E. (1977). A Structure for Plans and Behavior. Elsevier North-Holland,
Amsterdam, Holland.

[Smith et al., 2001] Smith, T., Husbands, P., and O’Shea, M. (2001). Neutral networks and evolv-
ability with complex genotype-phenotype mapping. In Proceedings of Advances in Artificial Life,
6th European COnference, ECAL2001, pages 272–281.

[Swift et al., 2004] Swift, S., Tucker, A., Vinciotti, V., Martin, N., Orengo, C., Liu, X., and Kellam,
P. (2004). Consensus clustering and functional interpretation of data. Genome Biology, 5(11:R94).

[Tucker et al., 2001a] Tucker, A., Liu, X., and Ogden-Swift, A. (2001a). Evolutionary learning
of dynamic probabilistic models with large time lags. The International Journal of Intelligent
Systems, 16(5):621–646.

[Tucker et al., 2001b] Tucker, A., Swift, S., and Liu, X. (2001b). Grouping multivariate time series
via correlation. IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics, 31:235–
245.

[Ward, 1963] Ward, J. (1963). Hierarchical grouping to optimize an objective function. Journal of
the American Statistical Association, 58:236–244.

20 Evolutionary Computation Volume x, Number x


