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Abstract

The phenomena of heavy-tailedness and asymmetry are ubiquitous in a variety
of practical applications. The intriguing property of heavy-tailedness implies
that the underlying distribution is capable of producing anomalous observa-
tions which deviate too far from the main body of observations. Down-weighing
such extreme observations for an asymmetric distribution can sacrifice inherited
information and introduce considerable bias on parameter estimation. Over the
past decades, two main approaches have emerged to tackle the distributional de-
viation caused by heavy-tailedness. The first procedure adopts mixture models
to accommodate the heterogeneity in the distribution of the data. The second
technique considers appropriate distributions to take care of the majority as
well as the heavy tail of the data.

This thesis aims to make some novel contributions to the following three issues
related to massive data and extreme longitudinal data exhibiting heavy-tailed
characteristics. First, the multitude of existing literature coping with contin-
uous distributions with heavy-tailedness contrasts sharply with the scarcity of
integer-valued distributions. This especially applies to integer-valued time se-
ries modelling. Second, heavy tails can considerably shadow the nature of the
dependence between the response and the covariates of interest, calling the nor-
mality assumption and conventional linear models into question. The quantile
regression (QR) approach, which is robust to outlier contamination associated
with heavy-tailed errors, serves as a remedy for these hurdles. Bayesian quan-
tile regression (BQR) has received increasing attention from both theoretical
and empirical viewpoints with wide applications and variants, but little at-
tention has been paid to BQR for big data analysis. Third, the phenomena of
heavy-tailedness often arise with the semi-continuous data, which are commonly
characterized by a mixture of zero values and continuously distributed positive
values. This conceptual framework leads to the formulation of a two-part model.
The literature on two-part models, especially in Bayesian paradigms, for inves-
tigating quantiles of semi-continuous longitudinal data with bounded support
such as the standard unit interval p0, 1q, is relatively limited.

This thesis encapsulates three themes to address the above-mentioned chal-
lenges: Bayesian integer-valued time series modelling with heavy-tailedness
characteristics, Bayesian quantile regression for big data analysis and Bayesian
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quantile parametric mixed regression for semi-continuous longitudinal data with
bounded support. The main contributions are elaborated as below:

• Chapter 2 gives rise to the Bayesian inference for log-linear Beta–negative
binomial integer-valued generalized autoregressive conditional heteroscedas-
tic (BNB-INGARCH) models and conducts parameter estimations within
adaptive Markov chain Monte Carlo frameworks. The conditions for the
posterior distribution of the full model parameter to be proper given some
general priors have been presented.

• Chapter 3 contributes to a new approach of Bayesian quantile regression
for big data. This chapter introduces the structure link between Bayesian
scale mixtures of normals linear regression and BQR via normal-inverse-
gamma (NIG) distribution type of likelihood function, prior distribution
and posterior distribution. The big data based algorithms for BQR and
Bayesian LASSO quantile regression are provided and the proposed algo-
rithms are demonstrated via simulations and a real-world data analysis.

• Chapter 4 introduces a two-part latent class Kumaraswamy quantile mixed
regression with Bayesian inference for bounded longitudinal data that ex-
hibit a large spike at zeros. Correlated random effects with class-specific
covariance structures are formulated for the binary and the bounded pos-
itive components to account for both zero inflation and unobserved het-
erogeneity. The developed method portrays the trajectory of distinct la-
tent class evolutions in the underlying outcome process, which provides
valuable insights into the latent cluster structure at various quantiles en-
compassing the tails and caters to the exploration of skewed longitudinal
data with bounded support.
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Chapter 1

Introduction

1.1 Heavy-tailedness phenomena and asymme-
try

The distributional assumption on disturbances is the most important premise in
probabilistically modelling in a diverse set of disciplines including physical, bi-
ological, and social science. Theoretical supports such as estimator consistency
and statistical hypotheses formulation depend crucially on the distributional as-
sumption for the underlying model. The traditional and most widely employed
distributional assumption in statistical procedures has been the Gaussian dis-
tribution. The Gaussian theory works well especially when fitting the empirical
data which conform to a bell-shaped curve and the random fluctuations in the
experimental observations of some quantity are scattered symmetrically around
the true value of the quantity. A pivotal statistical argument for the Gaussian
assumption is the Central Limit Theorem (CLT), which establishes that the
arithmetic mean of a number of independent and identically distributed (i.i.d.)
random variables, drawn with overall mean and finite variance, approaches the
Gaussian distribution as the number of variables diverges to infinity. The fun-
damental theory of the Gaussian probability law manifests its prevalence in all
branches of science discipline dealing with disturbances and randomness.

However, empirical studies which provide evidence against the Gaussian as-
sumption have proliferated in literature. The phenomena of heavy-tailedness
and asymmetry are ubiquitous in a variety of practical applications. It is well
known that financial returns often exhibit fat tails which makes heavy-tail anal-
ysis aimed at improving risk management indispensable. Other fields where
a prevalence of heavy tails has emerged encapsulate meteorology, physics, hy-
drology and engineering (see, Resnick, 1997; Lu and Molz, 2001; Cappé et al.,
2002; Kysely and Picek, 2007; Frankenberg et al., 2016, among others). The
intriguing property of heavy-tailedness implies that the underlying distribution
is capable of producing anomalous data points which deviate too far from the
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main body of observations. Modelling data with an asymmetric heavy-tailed
distribution merits well-deserved attention through its connection with the con-
cept of outliers. Outliers occur in the tails of a sample, prompted by deviations
from the bulk of the data conspicuously exceeding expectancy. The existence
of outliers can dramatically impact the results of statistical analysis and inter-
pretation. When the distribution is symmetric around the mean, the problem
caused by outliers can be remedied by robust statistical techniques (Huber, 2011;
Rousseeuw and Hubert, 2011; Maronna et al., 2019), which aim at removing or
putting less weights on anomalous data objects to preserve the integrity of the
models. However, down-weighing outliers for an asymmetric distribution, where
departures from the mean arise from a long tail of larger or smaller values in
the underlying process, can sacrifice some inherited information and introduce
considerable bias on parameter estimation. This sketches the significant rele-
vance of heavy-tailed phenomena and underlines the importance of having the
right probabilistic distribution models for capturing their behaviours. Over the
past decades, two main approaches have emerged to tackle the distributional
deviation caused by heavy-tailednes. The first procedure incorporates mixture
models to accommodate the heterogeneity in the distribution of the data. The
parameter estimates for such models are commonly implemented via expec-
tation–maximization (EM) approach or Markov chain Monte Carlo (MCMC)
sampling algorithm. The second technique is to adopt appropriate distributions
to take care of the majority as well as the heavy tail of the data.

The search for continuous distributions with the nature of heavy-tailedness has
been invigorated in literature. Early explorations in this area can be traced
back to Lévy (1925), where the Lévy stable distributions with support p´8,8q

replying on a power law behaviour were introduced to represent a rich class of
probability distributions allowing for skewness and fat tails. Other proposed
distributions that share the same attractive power law tails and real line sup-
port incorporate the Pearson-type IV (e.g., Nagahara, 1999), Student t (e.g.,
Zabell, 2008), doubly Pareto-uniform (DPU) distribution (Singh et al., 2007)
and among others. The study of modelling heavy-tailed continuous data re-
stricted to a bounded interval has also grasped an increasing attention. Aban et
al. (2006) investigated the truncated Pareto distribution with bounded support
and illustrated the derived maximum likelihood estimators (MLEs) facilitate
robust tail estimation for truncated models with power law tails. Hahn (2008)
proposed the beta-rectangular (BR) distribution as a mixture of the uniform and
the classical beta distribution. The BR distribution permits modelling heavy-
tailed bounded data in equal proportions of both tails. To circumvent this lim-
itation, very recently, Figueroa-Zúñiga et al. (2022) introduced the trapezoidal
beta (TB) distribution which extends both the beta and rectangular beta dis-
tributions to permit the description of bounded data with heavy right or left
tails in different proportions.

The multitude of existing literature coping with continuous distributions with
heavy-tailedness stands in sharp contrast to the relative scarcity of research
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on integer-valued distributions. This especially applies to integer-valued time
series modelling. Time series analysis can be considered as a subclass of lon-
gitudinal studies, with a specific focus on the univariate data observed over
multiple time points. The challenge in modelling heavy-tailed discrete time se-
ries data lies in seeking appropriate distributions to accommodating data with
tails longer than the customarily employed negative binomial and Poisson dis-
tributions. The well-known Poisson inverse Gaussian (PIG) distribution has
long served as a robust alternative to the negative binomial (Holla, 1967; Will-
mot, 1987). Barreto-Souza (2019) proposed an integer-valued autoregressive
(INAR) process with PIG distribution for overdispersed count time series data.
Nevertheless, heavy-tailedness was not referred to by the author. Silva and
Barreto-Souza (2019) explored a general class of integer-valued generalized au-
toregressive conditional heteroscedastic (INGARCH) models based on a flexible
family of mixed Poisson (MP) distributions, which incorporate the PIG and
Poisson generalized hyperbolic secant processes. The authors illustrated the
robustness of the PIG-INGARCH model than the negative binomial count pro-
cess considered. Recently, Qian et al. (2020) proposed a new INAR(1) process
with the generalized Poisson inverse Gaussian (GPIG) innovations. The devel-
oped model can take into account both equidispersion and overdispersion, as
well as excessive zero characteristics in count time series data. Gorgi (2020)
explored a heavy-tailed mixture of negative binomial distributions, known as
the Beta–negative binomial (BNB) distribution, and introduced a BNB auto-
regression process for modelling integer-valued time series with outliers, where
a linear observation-driven dynamic equation for the conditional mean has been
specified. The above-mentioned contributions all performed model parameter
estimations from the frequentist perspective.

Conventional regression approaches fit models replying on certain central ten-
dencies, including the mean, median and mode. Ordinary least square (OLS)
regression follows the central tendency theorem and possesses readily compre-
hensible statistical properties for conditional expectations. This fact contributes
to the primacy of OLS regression as an empirical tool. Nevertheless, towards
extreme distributions the OLS model loses its effectiveness to investigate the
nuanced relationships between response and explanatory variables. Quantile re-
gression (QR) has emerged as a robust and distribution-free modelling tool since
the seminal work of Koenker and Bassett (1978a). Part of the appeal of quantile
regression evolves from a natural parallel with the conventional ordinary least
square regression. The OLS estimates provide the minimum mean-squared error
linear approximation to a conditional expectation function (White, 1980). On
the other hand, QR is anchored on minimizing the sum of absolute residuals
and provides a way to model the conditional quantiles of a response variable
with respect to the explanatory variables. The quantile regression model is an
extremely powerful tool for capturing a more complete picture of the entire
conditional distribution than traditional linear regression. In fact, the pervasive
phenomena in natural and social science, such as skewness, heavy tails, het-
eroskedasticity and truncated and censored data, can considerably shadow the
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nature of the dependence between the response and the covariates of interest,
calling the normality assumption and conventional linear models into question.
The quantile regression approach serves as a remedy for these hurdles. The
nature of QR implies that it is robust to outlier contamination associated with
heavy-tailed errors, which has become a subject of intense investigation and
attracted considerable research interest in the past decades (see, e.g., Zou and
Yuan, 2008; Fan et al., 2014; Sherwood and Wang, 2016; Huang et al., 2017;
Chen et al., 2020, among others).

In the “big data” era of statistical science, the richness and complexity of data
structures along with the increase of extreme values and heterogeneity may
see quantile regression methods more competent than mean regressions to dig
deep into the data and grab information from it. In particular, with the ad-
vanced power of computer technology, complicated quantile regression-based
models could be developed under a Bayesian framework, and Bayesian quan-
tile regression (BQR) has received increasing attention from both theoretical
and empirical viewpoints with wide applications and variants (see Kozumi and
Kobayashi, 2011a; Bernardi et al., 2015; Wang et al., 2016b; Rodrigues and
Fan, 2017; Petrella and Raponi, 2019; Gonçalves et al., 2020 and among oth-
ers). So far, in the context of quantile regression, several methods have been
explored for big data analysis (Wu and Yin, 2015; Yu et al., 2017; Gu et al.,
2018; Chen et al., 2019b and among others), but little attention has been paid
to such methodology under Bayesian inference paradigm.

Heavy tails can also be ascribed to data with an abundance of zeros, where the
shifting of the overall sample mean closer to zero will increase the skewness of
the observations (Lord and Geedipally, 2018). Integer-valued outcomes are typ-
ically modelled employing discrete distributions such as the Poisson or negative
binomial distribution. However, one frequent manifestation of heterogeneity
in count data is that the incidence of zeros is greater than what a standard
count distribution would predict. In this way, flexible mixture mechanisms are
usually adopted to accommodate the unique characteristic of the data. Zero-
inflated models (Lambert, 1992) are mixture models of two data generation
processes, where one generates the point mass at zero and the other allows for
both zero and non-zero counts. In contrast, hurdle models (Mullahy, 1986)
can be viewed as a two-component mixture model consisting of a zero mass
and a positive component for observations, where the latter follows a truncated
count distribution. A similar phenomenon arises with semi-continuous data,
which are commonly characterized by a mixture of zero values and continuously
distributed positive values. The semi-continuous variables can be regarded as
arising from two distinct stochastic processes, where one determines the oc-
currence of zero values and the other identifies the actual values for nonzero
observations. This conceptual framework leads to the formulation of a two-part
model, which caters to both the preponderance of zeros and the typically highly
skewed distribution of nonzero observations (Heckman, 1976). A lognormal dis-
tribution is frequently considered to model the nonzero continuous component,
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giving rise to the Bernoulli-lognormal two-part model (Cragg, 1971). Alterna-
tive distributions have been investigated to relax the log-symmetry condition
inherent in the lognormal distribution, such as the two-part log-skew-normal
model (Chai and Bailey, 2008) and the two-part generalized gamma model (Liu
et al., 2010).

The existing literature on two-part models targeted at semi-continuous data
where the continuous component is characterized by positive support is well
explored. On the other hand, the literature encompassing two-part models
for variables with bounded support is relatively limited. Practitioners often-
times encounter variables whose values fall into the standard unit interval p0, 1q,
such as rates, proportions and concentration indices. The most commonly used
model with such variables is the beta regression model proposed by Ferrari and
Cribari-Neto (2004). The chief motivation for the beta regression model lies in
the flexibility delivered by the postulated beta law. However, Kumaraswamy
(1976) noted that the beta law may fail to deliver desirable fits especially when
the data are hydrological observations of small frequency. He then introduced
a new distribution referred to as the Kumaraswamy distribution. The Ku-
maraswamy distribution is very similar to the beta distribution but has the
advantage of possessing a closed form for both the probability density function
and the cumulative distribution function. For details on the Kumaraswamy
law, one can refer to Jones (2009). Bayes et al. (2017) proposed a new quantile
parametric mixed regression model which is built upon a reparameterization of
the Kumaraswamy distribution in terms of a given quantile and the precision
parameter, and formulated a Bayesian approach for parameter inference includ-
ing model comparison criteria. The authors demonstrated that the developed
quantile parametric model complements for bounded response variables mod-
elling such as the poverty index in Brazilian municipalities.

The Kumarawasmy and beta distributions cannot be employed when the data
contain zeros and/or ones. New laws embodying a discrete component which
imposes positive probability to such point(s) have been proposed. Ospina and
Ferrari (2010) considered inflated beta distributions for modelling fractional
data. More recently, Cribari-Neto and Santos (2019) introduced inflated Ku-
maraswamy distributions. The authors employed the standard Kumaraswamy
parametrization indexed by two shape parameters. On the contrary, Bayer et al.
(2021) developed an inflated version of the Kumaraswamy distribution utilizing
the median-based parametrization from Mitnik and Baek (2013) and conducted
model parameter estimation by maximum likelihood inference.

1.2 Bayesian analysis

Bayesian analysis offers unparalleled flexibility in accommodating hierarchi-
cal structures inherent in many real-world datasets. Unlike classical frequen-
tist methods, which often struggle with the complexity of hierarchical models,
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Bayesian frameworks seamlessly integrate prior information and incorporate
varying levels of uncertainty across parameters (Gelman et al., 2013). This
flexibility is paramount in capturing intricate relationships within data hierar-
chies, especially in scenarios where traditional models fall short.

By leveraging prior distributions, researchers can encode existing information
into the analysis, thereby enhancing the robustness of inference. This aspect
becomes particularly valuable in situations where data are scarce or noisy, al-
lowing for more informed and stable estimations compared to classical meth-
ods. A significant challenge encountered in certain statistical models, such as
those involving dispersion parameter estimation in distributions like the neg-
ative binomial, is the presence of likelihood multimodality. Traditional max-
imum likelihood estimation may falter in such scenarios, often converging to
local optima (Dai et al., 2013). As discussed in Section 2.4, the dispersion
parameter r within our developed log-linear BNB-INGARCH model framework
faces a challenge in achieving unique identification. Consequently, the likelihood
function may present with multiple maxima or regions of elevated likelihood,
introducing ambiguity in parameter estimation. This ambiguity increases the
risk of erratic estimates characterized by small fluctuations or the emergence of
multiple modes. This inherent complexity underscores the importance of care-
ful consideration and robust methodologies in addressing parameter estimation
challenges within the model. Bayesian methods offer distinct advantages in
addressing these complexities by regularizing the estimation process through
the incorporation of prior knowledge about the parameter in Bayesian infer-
ence. This proves particularly beneficial when the available data alone may
be insufficient to resolve multiple modes, thereby facilitating more robust and
comprehensive parameter estimation and overcoming the limitations of classical
approaches.

When tackling mixture models through the frequentist approach, challenges
such as non-convergence or entrapment in local modes can impede effective in-
ference. Consequently, Bayesian analysis emerges as a compelling alternative,
offering robustness against these pitfalls. One notable advantage lies in its ac-
commodation of uncertainty regarding the number of classes present in the data,
a common scenario in practical applications. In such instances, where the num-
ber of classes is unknown or the model lacks identifiability due to limited sample
size, Bayesian methodology shines by enabling the incorporation of prior infor-
mation. Even with scant data, Bayesian inference provides meaningful estimates
through the formulation of posterior distributions for model parameters, under-
scoring its suitability for research endeavors characterized by complex mixture
models and limited data availability.

Bayesian methods also excel in the realm of latent class analysis, providing a
principled framework for modelling intricate data structures and capturing la-
tent heterogeneity (Frühwirth-Schnatter, 2006). By harnessing Bayesian infer-
ence, researchers can seamlessly integrate correlated random effects with class-
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specific covariance structures, thereby delineating distinct latent class evolutions
and gaining profound insights into underlying cluster structures across different
quantiles. This comprehensive approach facilitates the exploration of skewed
longitudinal data, enabling a nuanced understanding of the underlying dynam-
ics that extends beyond the capabilities of classical frequentist methods (Gelman
et al., 2013). Thus, Bayesian approaches offer a powerful toolkit for addressing
the complexities inherent in modern data analysis tasks, enabling researchers to
extract meaningful insights from diverse and heterogeneous datasets (Gelman
et al., 2013).

1.3 Thesis structure

This thesis consists of three main chapters.

Chapter 2 gives rise to the Bayesian inference for log-linear Beta–negative
binomial integer-valued generalized autoregressive conditional heteroscedastic
(BNB-INGARCH) models and conducts parameter estimations within adaptive
Markov chain Monte Carlo frameworks. Moreover, the conditions for the pos-
terior distribution of the full model parameter to be proper given some general
priors have been derived and presented. The empirical application on high-
frequency intraday VIX futures tick count data indicates that the proposed
model is adequate and provides better performance than its counterpart IN-
GARCH models under negative binomial distribution assumptions. This chap-
ter complements another aspect of current literature on modelling discrete time
series with heavy-tailedness characteristics.

Chapter 3 contributes to a new approach of Bayesian quantile regression for big
data. This chapter introduces the structure link between Bayesian scale mix-
tures of normals linear regression and Bayesian quantile regression via normal-
inverse-gamma (NIG) distribution type of likelihood function, prior distribu-
tion and posterior distribution. The big data based algorithms for BQR and
Bayesian LASSO quantile regression are provided and the proposed algorithms
are demonstrated via simulations and two real-world data analyses.

Chapter 4 develops a two-part latent class Kumaraswamy quantile mixed regres-
sion with Bayesian inference for bounded longitudinal data that exhibit a large
spike at zeros. The binomial component is specified via mixed effects probit re-
gression and the continuous component is formulated through a Kumaraswamy
quantile mixed effects model. Correlated random effects with class-specific co-
variance structures are established for the binary and the bounded positive
mechanisms to account for both zero inflation and unobserved heterogeneity.
The presented method portrays the trajectory of distinct latent class evolutions
in the underlying outcome process, which provides valuable insights into the
latent cluster structure at various quantiles encompassing the tails and caters
to the exploration of skewed longitudinal data with bounded support.
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The methodologies presented in this thesis are unified by their shared focus on
addressing challenges inherent in analysing massive data sets and extreme lon-
gitudinal data. While diverse in their specific applications, these chapters are
linked by a common thread of leveraging Bayesian inference to develop robust
statistical models capable of capturing complex data structures and providing
insightful interpretations.

By adopting Bayesian inference, we embrace a flexible framework that accom-
modates uncertainty in parameter estimation, facilitates incorporation of prior
knowledge and enables principled handling of complex data structures. Un-
like frequentist methods, which often rely on asymptotic approximations and
assume fixed parameters, Bayesian approaches offer a coherent framework for
quantifying uncertainty and updating beliefs as new data become available.

The integration of Bayesian techniques across the chapters underscores their
versatility and adaptability to diverse modelling contexts. From log-linear
Beta–negative binomial INGARCH models for count data to Bayesian quan-
tile regression for big data sets and latent class Kumaraswamy quantile mixed
regression for bounded longitudinal data, the Bayesian paradigm offers a cohe-
sive toolkit for addressing the multifaceted challenges posed by modern data
analysis.

As a whole, the methods proposed in this thesis offer several advantages. Firstly,
they provide robust solutions for modelling data with heavy-tailed distributions,
skewed distributions and bounded support, which are common characteristics
of many real-world data sets. Secondly, integrating prior information facili-
tates enhanced parameter estimation, particularly in scenarios characterized by
restricted data availability. Thirdly, these models boast adaptability, accommo-
dating diverse data structures and research inquiries, thereby rendering them
applicable across a spectrum of domains encompassing finance, transportation,
energy and healthcare.

The overarching contribution of this thesis lies in advancing the state-of-the-
art in statistical modelling for complex data scenarios. By introducing novel
Bayesian regression models tailored to address specific challenges such as heavy-
tailedness, zero inflation and extreme longitudinal dynamics, this work expands
the methodological toolkit available to researchers and practitioners. Further-
more, the empirical validations and real-world applications demonstrate the
practical utility and effectiveness of the proposed approaches, underscoring their
potential to yield valuable insights and inform decision-making in diverse do-
mains. Through these contributions, this thesis serves as a foundational step
towards enhancing our ability to extract meaningful information from massive
and complex data sets, thereby facilitating more accurate and interpretable sci-
entific inference across diverse domains.
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Chapter 2

Bayesian log-linear
Beta–negative binomial
integer-valued GARCH
model

2.1 Introduction

Despite a long history in the literature analysing continuous time series vari-
ables, it is only in the recent years or so that much attention has been given
to time series variables that are integer-valued (see Davis et al., 2016; Fahrmeir
et al., 2013; Weiß, 2018; Winkelmann, 2008, and references therein for reviews).
Generally, integer-valued time series models can be classified into two categories:
‘thinning’ operator based models (Scotto et al., 2015) and regression based mod-
els (Fokianos, 2012; Tjøstheim, 2016).

To allow for dependence between time series data, two classes of models have
been proposed in Cox et al. (1981): observation-driven models and parameter-
driven models. In observation-driven models, the mean of the conditional dis-
tribution of the current observation yt is directly specified as a function of past
observations yt´1, . . . , y1. In parameter-driven models, dependence among ob-
servations is introduced via latent factors which follow a stochastic process, such
as a hidden Markov chain (Leroux and Puterman, 1992), or a latent stationary
auto-regressive process (Chan and Ledolter, 1995; Zeger, 1988). Compared with
parameter-driven models, observation-driven models are easier to fit in practical
contexts with numerous covariates and long time series. See Zeger and Qaqish
(1988) for a review of various observation-driven models for count time series
data. A reference for the substantial development of observation-driven models
can be found in Kedem and Fokianos (2005). A variety of observation-driven

9



models for count responses have been developed. Davis et al. (2003, 2005) pre-
sented a class of observation-driven models for time series of Poisson counts and
provided properties of the maximum likelihood estimators. Ahmad and Francq
(2016) derived regularity conditions for the consistency and asymptotic normal-
ity (CAN) of the Poisson quasi-maximum likelihood estimator (QMLE) for time
series of counts. However, the equidispersion assumption in Poisson distribu-
tion makes it too restrictive to be applied in empirical settings. Given this,
Drescher (2005) considered various generalized count distributions for observa-
tion driven models and explored their maximum likelihood estimations. Regard-
ing existing R packages (R Core Team, 2021), the glarma package (Dunsmuir
and Scott, 2015) provides functions for estimation, testing, diagnostic checking
and forecasting based on the generalized linear autoregressive moving average
(GLARMA) class of observation-driven models for discrete-valued time series
with regression variables.

The benchmark parameter-driven count data model introduced in Zeger (1988)
has been widely extended. It has been considered as a class of the state-space
model, which extends the generalized linear model by introducing a latent auto-
regressive process as the conditional mean function. The parameter-driven mod-
els allow the distribution of yt to be dependent on this latent process and can
deal with auto-correlation as well as over-dispersion in the model. However,
parameter estimations in parameter-driven models require considerable compu-
tational effort. The main issue lies in the calculation requirement of very high
dimensional integrals when using maximum likelihood estimation techniques,
such that estimation methods based on Monte-Carlo (MC) integration are typi-
cally considered. To estimate the parameters of parameter-driven models, Chan
and Ledolter (1995) employed a Monte Carlo EM algorithm. Kuk and Cheng
(1997) considered the MC Newton Raphson method. However, such estimation
approaches are not yet routinely available and therefore not ready for general
use (Davis et al., 2003).

Bayesian estimation for time series of counts turns out to be a feasible and
more elaborate alternative. Applications of Bayesian paradigm to count times
series have mainly focused on parameter-driven models. Dynamic latent factor
models within Bayesian count time series contexts have been actively studied
(see, e.g., Chib and Winkelmann, 2001; Durbin and Koopman, 2000; West and
Harrison, 2006). Hay and Pettitt (2001) presented a fully Bayesian analysis of
counts time series for a parameter-driven model with the form of a generalized
linear mixed model, and investigated its application to the control of an in-
fectious disease. Unlike the MC EM estimation approach for parameter-driven
models, the Markov chain Monte Carlo (MCMC) procedure provides informa-
tion of posterior distributions for both regression and time series parameters.
In maximum likelihood-based estimations, estimation uncertainty is produced
by constructing confidence intervals around the point forecasts. However, this
kind of confidence intervals can only be justified asymptotically. When counts
are small, such approximation is less accurate and the Bayesian technique arises
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as a prime candidate. When forecasting counts from the Bayesian perspective,
not only the parameter uncertainty, but also the uncertainty caused by model
specification, can be directly incorporated into the predictive probability mass
function, which is a natural outcome of Bayes’ theorem.

Although parameter-driven models are very flexible, the existence of unobserv-
able latent factors brings a heavy computational burden even manageable via
the MCMC sampling technique. On the other hand, Bayeisan analysis of the
more parsimonious observation-driven models has received growing attention
recently. Generalized autoregressive moving average (GARMA) model extends
the univariate Gaussian ARMA model to a flexible non-Gaussian observation-
driven model. Silveira de Andrade B et al. (2015) investigated the Bayesian
approach for GARMA models with Poisson, binomial and negative binomial
distributions. They utilized the Bayesian model selection criteria to choose the
most appropriate model. Another advantage of Bayesian methodology over the
corresponding frequentist procedure for forecasting discrete time series data is
that Bayesian approach can produce only integer estimates of the count variable,
while traditional forecasting often yields non-coherent (i.e. non-integer) esti-
mates. For example, the Autoregressive Integrated Moving Average (ARIMA)
model is one of the most prominent methods in financial time series forecasting.
It has shown robust and efficient capability for short-term predictions and has
been extensively applied to economics and finance fields (Contreras et al., 2003;
Khashei et al., 2009; Lee and Ko, 2011, among others). However, forecasts from
ARIMA model can give negative values. Techniques such as log scale transfor-
mation or constrained forecast might guarantee non-negative predictions, but
with the burden of elaborate post-processing and consequences of obtaining
back-transformed forecasts that behave abnormally. Given the fact that many
actual data in socioeconomic and business areas cannot have negative values,
the classical ARIMA forecasting methods are improper when applied to non-
negative count data series. From another point of view, Bayesians utilize the
likelihood and prior multiplicity to generate forecasts from posterior predictive
distributions by the iterative loop of MCMC procedures. Therefore, Bayesian
model is prone to obey the non-negative value rules with its probabilistic predic-
tive distributions, providing new perceptions for time series forecasting research.
Nariswari and Pudjihastuti (2019) implemented Bayesian time series estimation
on ARIMA model for monthly medicine demand count data, showing the valid-
ity of Bayesian time series approach to avoid negative-value predictions, which
is consistent with characteristics in the actual medicine data where the stock
cannot have a negative value. McCabe and Martin (2005) developed Bayesian
predictions of low count time series within the context of the integer-valued
first-order autoregressive (INAR(1)) class of model, and showed the Bayesian
method is feasible for producing coherent forecasts. Estimation uncertainty as-
sociated with both parameters and model specification is fully incorporated in
their proposed methodology.

A commonly used model in most count time series data is the Poisson integer-
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valued generalized autoregressive conditional heteroscedastic (Poisson INGARCH)
model proposed in Ferland et al. (2006). Since then, this model has been widely
explored (see Doukhan et al., 2012; Neumann, 2011, among others). However,
the Poisson INGARCH model is not eligible to be applied in existence of po-
tential extreme observations due to its equidispersion assumption. To this end,
Zhu (2011) developed a negative binomial (NB) INGARCH model via the max-
imum likelihood approach. The NB-INGARCH model is flexible and allows
for both overdispersion and extreme observations simultaneously. Later, Chris-
tou and Fokianos (2014) explored probabilistic properties and quasi-likelihood
estimation for NB-INGARCH(1,1) process, and Xiong and Zhu (2019) consid-
ered a robust quasi-likelihood estimation for this process with an application to
transaction counts. From a Bayesian perspective, Truong et al. (2017) proposed
a hysteretic Poisson INGARCH model within the MCMC sampling scheme to
estimate model parameters and adopted the Bayesian information criteria for
model comparison. They highlighted their proposed model with a better per-
formance of hysteresis in modelling the integer-valued time series. Chen et
al. (2019a) developed a Markov switching Poisson INGARCH model within a
Bayesian framework to cope with the lagged dependence, overdispersion, con-
secutive zeros, non-linear dynamics and time-varying coefficients for the me-
teorological variables. Some studies considered the natural candidates for the
Poisson model. Chen and Lee (2017) proposed a Bayesian causality test based
on the Poisson, negative binomial and log-linear Poisson INGARCH models
with applications to climate and crime data. Recently, Chen and Khamthong
(2020) introduced two nonlinear negative binomial INGARCH models (Markov
switching and threshold specifications) along with the exogenous covariates in
the conditional mean to describe time series of counts. They conducted pa-
rameter estimations and one-step-ahead forecasting via the Bayesian MCMC
methods.

When modelling time series with outlying and atypical data, a commonly used
approach is to develop models based on heavy-tailed distributions. The litera-
ture coping with continuous-valued time series with extreme observations is well
explored via the Student’s t-distribution (Harvey and Luati, 2014). However,
current literature on modelling discrete time series with heavy-tailedness is less
considered. To fill this gap, very recently, Qian et al. (2020) proposed a new
integer-valued autoregressive process with generalized Poisson-inverse Gaussian
(GPIG) innovations to model heavy-tailed count time series data. Gorgi (2020)
explored a heavy-tailed mixture of negative binomial distributions, known as
the Beta–negative binomial (BNB) distribution, and developed a BNB auto-
regression process for modelling integer-valued time series with outliers, where
a linear observation-driven dynamic equation for the conditional mean has been
specified. Both Qian et al. (2020) and Gorgi (2020) employed maximum like-
lihood approaches to estimate the model parameters. This chapter gives rise
to the Bayesian inference for log-linear BNB-INGARCH models and conducts
parameter estimations within adaptive Markov chain Monte Carlo frameworks.
Moreover, the conditions for the posterior distribution of the full model param-
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eter to be proper given some general priors have been derived and presented.

2.2 The log-linear BNB-INGARCH model

The Beta-negative binomial distribution can be represented as a beta mixture
of the negative binomial distribution. Denote a discrete random variable Y ,
then Y „ BNBpβ, r, αq if its probability mass function (PMF) is given by

fpY “ yq “
Γpy ` rq

Γpy ` 1qΓprq

Bpα ` r, β ` yq

Bpα, βq
, y P N (2.1)

where Γp¨q is the gamma function and Bp¨, ¨q is the beta function. r ą 0 is
the dispersion parameter, α ą 0 is the tail parameter and β ą 0. We follow
the parameterization of the BNB distribution in terms of its mean parameter λ
presented in Gorgi (2020)

fpY “ yq “
Γpy ` rq

Γpy ` 1qΓprq

Bpα ` r, pα´1qλ
r ` yq

Bpα, pα´1qλ
r q

, y P N (2.2)

with mean λ ą 0, dispersion r ą 0 and tail α ą 1. Let tytu, t “ 1, . . . , n
denote a univariate time series with the conditional distribution following the
representation of BNBpλt, r, αq at time t. We model the log-intensity process
µt`1 “ logpλt`1q in terms of a linear auto-regression process lying on its own
past µt and the past observation yt. The log-linear BNB integer-valued gener-
alized auto-regressive conditional heteroscedastic model of order (1,1) is defined
by

yt|Ft´1 „ BNBpλt, r, αq,

µt`1 “ logpλt`1q,

µt`1 “ ω ` ϕ logpyt ` 1q ` τµt

(2.3)

where Ft´1 denotes the “σ-field” generated by tyt´1, yt´2, . . .u. Here we follow
Fokianos and Tjøstheim (2011) to choose logpyt ` cq with constant c “ 1 in
model (2.3) to map zeros of yt into zeros of logpyt ` 1q. Other reasonable
choices for c may be considered. Note that model (2.3) accommodates both
negative and positive serial correlations by allowing parameters ω, ϕ, τ to take
values in R, whereas the linear BNB-INGARCH model introduced by Gorgi
(2020) accommodates positive serial correlation only by restricting parameters
to be positive to guarantee positivity of the conditional mean. Moreover, model
(2.3) permits faster increase or decrease in λt according to the values of ω, ϕ and
τ than the linear model. Extensions to higher order log-linear BNB-INGARCH
(p, q) models can be given as follows:

yt|Ft´1 „ BNBpλt, r, αq,

µt`1 “ logpλt`1q,

µt`1 “ ω `

p
ÿ

i“1

ϕi logpyt`1´i ` 1q `

q
ÿ

j“1

τjµt`1´j

(2.4)
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We note that the BNB distribution belongs to the class of mixed Poisson distri-
butions and can approximate arbitrarily well the negative binomial distribution
as well as the Poisson distribution (Gorgi, 2020; Johnson et al., 2005; Wang,
2011). Specifically, as α Ñ 8, the parameterized distribution BNBpλ, r, αq con-
verges to a NB distribution with dispersion r and success probability λ{pλ` rq.
Furthermore, as r Ñ 8, the BNB converges to a Poisson distribution with mean
λ (Gorgi, 2020). Given this Poisson approximation to the BNB distribution, we
follow Douc et al. (2013, Lemma 14) and Liboschik et al. (2017) to impose the
conditions t|ϕ|, |τ | ă 1, |ϕ ` τ | ă 1u and t|ϕi|, |τj | ă 1, |

řp
i“1 ϕi `

řq
j“1 τj | ă 1u

to guarantee stationarity of the proposed processes (2.3) and (2.4) respectively.
We further follow Wang et al. (2014) and Gorgi (2020) to preassign the initial
point λ1 to a fixed positive value for both models (2.3) and (2.4). As noted in
Gorgi (2020), this approach is quite standard in the literature of observation-
driven time series models. In fact, Gorgi (2020) showed that the filtered pa-

rameter tλ̂tpθqutPN converges exponentially almost surely and uniformly over
the compact parameter sets Θ to a unique stationary and ergodic sequence
tλ̃tpθqutPZ for any initialization λ̂1pθq P R`.

2.3 Bayesian inference

Due to the high computational demand, we resort to Bayesian analysis for pa-
rameter estimations and inferences of the log-linear BNB-INGARCH processes.
Without loss of generality, we focus on the first-order specification pp “ q “ 1q

as presented in model (2.3) for simplicity of inference illustration. We denote
the time series of interest as y “ py1, y2, . . . , ynqT and θ “ pω, ϕ, τ, r, αqT as
the entire unknown parameter vector. By the Bayes theorem, the posterior
distribution ppθ|yq is given by

ppθ|yq9Lpy|θqπpθq (2.5)

where πpθq denotes the prior distribution and Lpy|θq represents the likelihood
function

Lpy|θq “

n
ź

t“2

Γ pyt ` rq

Γprq

B

ˆ

α ` r, pα´1qeω`ϕ logpyt´1`1q`τ logpλt´1q

r ` yt

˙

B

ˆ

α, pα´1qeω`ϕ logpyt´1`1q`τ logpλt´1q

r

˙ (2.6)

with ω P R, |ϕ| ă 1, |τ | ă 1, |ϕ ` τ | ă 1, r ą 0 and α ą 1. We implement
Bayesian inference for parameter groups (i) ω; (ii) tϕ, τu; (iii) r; and (iv) α with
the assumption that they are priori-independent. The conditional posterior dis-
tributions for each parameter group are presented as follows. Hereafter let θj
denote the j-th element of the parameter vector θ, with j “ 1, 2, 3, 4 referring
to ω, tϕ, τu, r and α respectively, and θ´j denote the vector of all parameters
excluding the component θj .
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(i) For the intercept ω, we consider a normal prior πpωq “ Npµω, σ
2
ωq. The

full conditional posterior distribution of ω is then as follows:

ppω|θ´1,yq9Lpy|θqπpωq

9Lpy|θqe
´

pω´µωq2

2σ2
ω

(2.7)

(ii) For the prior πpϕ, τq of the parameter block tϕ, τu, we employ constrained
normals πpϕq “ Npµϕ, σ

2
ϕq and πpτq “ Npµτ , σ

2
τ q with tϕ, τu satisfying

the set A

|ϕ| ă 1, |τ | ă 1, |ϕ ` τ | ă 1 (2.8)

Then the full conditional posterior distribution of tϕ, τu is given by

ppϕ, τ |θ´2,yq9Lpy|θqπpϕ, τq

9Lpy|θqe
´

pϕ´µϕq2

2σ2
ϕ e

´
pτ´µτ q2

2σ2
τ IpAq

(2.9)

where Ip¨q denotes the indicator function.

(iii) For the dispersion parameter r, we impose a gamma prior πprq “ Gapη1r,
η2rq with shape parameter η1r and rate parameter η2r, then the full con-
ditional posterior distribution of r is given by

ppr|θ´3,yq9Lpy|θqπprq

9Lpy|θqrη1r´1e´η2r¨r
(2.10)

(iv) For the tail parameter α, we impose a truncated gamma prior πpαq “

Gapη1α, η2αqIpα ą 1q with shape η1α and rate η2α, then the full condi-
tional posterior distribution of α is given by

ppα|θ´4,yq9Lpy|θqπpαq

9Lpy|θqαη1α´1e´η2α¨αIpα ą 1q
(2.11)

Theorem 2.1 elaborated below presents the sufficient conditions for the posterior
distribution of θ to be proper given some general priors.

Theorem 2.1. Let tyt|Ft´1utPZ` denote the target count time series with the
conditional Beta-negative binomial distribution and θ “ pω, ϕ, τ, r, αqT be the
full parameter vector. For ease of notation, we denote κpθq “ pα ´ 1q{r ¨

eω`ϕ logpyt´1`1q`τ logpλt´1q in the remainder of this section. Then under model
(2.3) and proper prior specifications, the posterior distribution of θ given y “

py1, y2, . . . , ynqT is obtained by

ppθ|yq9

n
ź

t“2

Γ pyt ` rq

Γprq

B pα ` r, κpθq ` ytq

B pα, κpθqq
πpωqπpϕ, τqπpαqπprq

and is well defined.
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Proof. Under proper prior specifications, we have

ż

ppθ|yqdθ

9

ż

#

n
ź

t“2

Γ pyt ` rq

Γprq

B pα ` r, κpθq ` ytq

B pα, κpθqq
ˆ πpωqπpϕ, τqπpαqπprq

+

dω dϕ dτ dα dr

“

ż

#

n
ź

t“2

Γ pyt ` rq

Γprq

Γpα ` rq

Γpαq

Γ pκpθq ` ytq

Γ pκpθqq

Γ pα ` κpθqq

Γ pα ` κpθq ` yt ` rq
πpωqπpϕ, τq

πpαqπprq

+

dω dϕ dτ dα dr (2.12)

where the equation follows by the relation Bpa, bq “
ΓpaqΓpbq

Γpa`bq
. From the Stir-

ling’s approximation of the gamma function Γp¨q, the following approximation
is obtained for large r and α:

p2.12q «

ż

r
řn

t“2 yt

#

n
ź

t“2

Γpα ` rq

Γpαq

Γ pκpθq ` ytq

Γ pκpθqq

Γ pα ` κpθqq

Γ pα ` κpθq ` yt ` rq

πpωqπpϕ, τqπpαqπprq

+

dω dϕ dτ dα dr

«

ż

r
řn

t“2 yt

#

n
ź

t“2

αr
´

κpθq

¯yt
´

α ` κpθq

¯´pyt`rq

πpωqπpϕ, τqπpαqπprq

+

dω dϕ dτ dα dr

“

ż

r
řn

t“2 yt

#

n
ź

t“2

ˆ

α

α ` κpθq

˙r ˆ

κpθq

α ` κpθq

˙yt

πpωqπpϕ, τqπpαqπprq

+

dω dϕ dτ dα dr

“

ż

r
řn

t“2 yt

#

n
ź

t“2

˜

1

1 `
κpθq

α

¸r ˜

1

1 ` α
κpθq

¸yt

πpωqπpϕ, τqπpαqπprq

+

dω dϕ dτ dα dr (2.13)

For r ě 1, we obtain

p2.13q ď

ż

r
řn

t“2 yt

#

n
ź

t“2

1

1 `
rκpθq

α

˜

1

1 ` α
κpθq

¸yt

πpωqπpϕ, τqπpαqπprq

+

dω dϕ dτ dα dr

ď

ż

r
řn

t“2 yt

#

n
ź

t“2

1

1 `
rκpθq

α

1

1 `
αyt

κpθq

πpωqπpϕ, τqπpαqπprq

+

dω dϕ dτ dα dr (2.14)
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where the first inequality follows by Bernoulli’s inequality p1 ` xqd ě 1 ` dx
for real numbers d ě 1, x ě ´1 and the second inequality follows by Bernoulli’s
inequality p1`xqd ě 1`dx for integer d ě 0 and real number x ě ´1. Without
loss of generality, we assume that the first n1 yt’s have zero-valued observations
and the remaining pn ´ n1q observations have positive yt’s. Then we have

p2.14q “

ż

r
řn

t“n1`1 yt

#

n1
ź

t“2

1

1 `
`

α´1
α

˘

eω`τ logpλt´1q

n
ź

t“n1`1

1

1 `
rκpθq

α

1

1 `
αyt

κpθq

πpωqπpϕ, τqπpαqπprq

+

dω dϕ dτ dα dr

ď

ż

r
řn

t“n1`1 yt

#

n1
ź

t“2

1
`

α´1
α

˘

eω`τ logpλt´1q

n
ź

t“n1`1

α

rκpθq

κpθq

αyt
πpωqπpϕ, τq

πpαqπprq

+

dω dϕ dτ dα dr

“

ż

r
řn

t“n1`1 yt

#

n1
ź

t“2

α e´tω`τ logpλt´1qu

α ´ 1

n
ź

t“n1`1

α e´tω`ϕ logpyt´1`1q`τ logpλt´1qu

α ´ 1

pα ´ 1q eω`ϕ logpyt´1`1q`τ logpλt´1q

α r yt
πpωqπpϕ, τqπpαqπprq

+

dω dϕ dτ dα dr

“ C1

ż

r
řn

t“n1`1pyt´1q

ˆ

α

α ´ 1

˙n1´1

e´pn1´1qωe´p
řn1

t“2 logpλt´1qqτ

πpωqπpϕ, τqπpαqπprq dω dϕ dτ dα dr (2.15)

where C1 “
śn

t“n1`1
1
yt
. By the Binomial approximation

´

α
α´1

¯n1´1

“

´

1 ` 1
α´1

¯n1´1

« 1 ` n1´1
α´1 for large α and further assuming α ě M for any large positive

number M , we obtain

p2.15q « C1

ż

r
řn

t“n1`1pyt´1q

ˆ

1 `
n1 ´ 1

α ´ 1

˙

e´pn1´1qωe´p
řn1

t“2 logpλt´1qqτ

πpωqπpϕ, τqπpαqπprq dω dϕ dτ dα dr

ď C1

ż

r
řn

t“n1`1pyt´1q

ˆ

1 `
n1 ´ 1

M ´ 1

˙

e´pn1´1qωe´p
řn1

t“2 logpλt´1qqτ

πpωqπpϕ, τqπpαqπprq dω dϕ dτ dα dr

“ C2

ż

r
řn

t“n1`1pyt´1qe´pn1´1qωπpωqπprq dω dr ă 8

given that the prior density functions πpωq, πpϕ, τq, πpαq and πprq integrate to a
finite quantity, the

řn
t“n1`1pyt ´ 1q-th moment about the origin of r exists and

the moment generating function Mωp1 ´ n1q of ω exists. Here C2 is a constant
unrelated with the parameters of interest.
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It follows from the proof of Theorem 2.1 that the priors for pϕ, τq and α can be
chosen very flexibly. In fact, any proper distributions can be considered because
the appropriateness of the posterior will not be affected. On the other hand,
the choice of the prior πprq requires existence of the

řn
t“n1`1pyt ´1q-th moment

about the origin of r and the choice of the prior πpωq requires existence of the
moment generating function Mωp1 ´ n1q.

Since the obtained posterior distributions do not correspond to closed-form dis-
tributions, we resort to MCMC sampling methods. Specifically, for faster con-
vergence and better mixing of the chain, we follow the adaptive MCMC method
of Chen and So (2006). We employ the random-walk Metropolis-Hastings in the
first H iterations (the burn-in period) and the independent-kernel Metropolis-
Hastings in the following pN ´Hq iterations to draw samples for the parameter
vector θ. The adaptive MCMC procedure is provided as follows:

Step1. Set initial values for θp0q “ pωp0q, ϕp0q, τ p0q, rp0q, αp0qqT .

Step2. When 1 ď k ď H, we adopt the random-walk Metropolis-Hastings algo-
rithm for sampling θpkq:

Step2.1. Generate candidate values θ˚ “ tθ˚
l u, l “ 1, 2, . . . , 5, where θ˚

l “

θ
pk´1q

l ` ϵ, ϵ „ Np0, σ2
l q, and the tuning parameter σ2

l is selected to
achieve the acceptance rate around 23%.

Step2.2. Keep the candidate values if θ˚ satisfies that: θ1 ą 0, tθ2, θ3u do
not violate the stationarity conditions of the model, θ4 ą 0 and
θ5 ą 1. Otherwise, go back to Step 2.1.

Step2.3. Calculate the acceptance probability

Probpθ˚,θpk´1qq “ min

"

1,
ppθ˚q

ppθpk´1qq

*

,

where pp¨q is the target posterior distribution given in (2.5). Then
generate a random uniform number u P r0, 1s. If u ă Probpθ˚,θpk´1qq,
accept the new candidate and set θpkq “ θ˚. Otherwise, set θpkq “

θpk´1q.

Step3. When k ě H ` 1, we adopt the independent-kernel Metropolis-Hastings
algorithm for sampling θpkq:

Step3.1. Generate candidate values θ˚ „ Npµθ,Ωθq, where the sample mean
µθ and sample covariance matrix Ωθ are calculated using the burn-
in H iteration samples.

Step3.2. Keep the candidate values if θ˚ satisfies that: θ1 ą 0, tθ2, θ3u do
not violate the stationarity conditions of the model, θ4 ą 0 and
θ5 ą 1. Otherwise, go back to Step 3.1.
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Step3.3. Calculate the acceptance probability

Probpθ˚,θpk´1qq “ min

"

1,
ppθ˚qgpθpk´1qq

ppθpk´1qqgpθ˚q

*

,

where gp¨q is the Gaussian proposal density with mean µθ and sam-
ple covariance matrixΩθ. Then generate a random uniform number
u P r0, 1s. If u ă Probpθ˚,θpk´1qq, accept the new candidate and
set θpkq “ θ˚. Otherwise, set θpkq “ θpk´1q.

Step4. Go to the next iteration or stop if the chain has converged.

Given the obtained N iteration samples θp1q,θp2q, . . . ,θpNq, we discard the first
H in the burn-in period and perform model parameter estimations using the
remaining pN ´ Hq iterations.

2.4 Simulation analysis

To examine the performance of the adaptive MCMC algorithm for the log-linear
BNB-INGARCH model, we conduct a simulation analysis under the following
data generating process (DGP) with sample sizes n “ 100 and n “ 250. The
count series yt is sampled from the log-linear BNB-INGARCH model (2.3) where
pω, ϕ, τ, r, αqT is set to be p0.65, 0.7,´0.2, 5, 3qT . To investigate the sensitivity
of the prior and hyperparameter selections, we consider the following five prior
calibrations for the parameters of interest:

Prior 1: ω „ Np0.1, 0.32q, tϕ, τu „ Np0.1, 0.252q ¨ Np0.1, 0.752qIpAq, r „ Ga
p10, 0.5q and α „ Gap10, 1qIpα ą 1q

Prior 2: ω „ Np0.1, 0.52q, πpϕ, τq9IpAq, r „ Gap10, 0.5q and α „ Expp0.1q

Ipα ą 1q

Prior 3: ω „ Np0.1, 0.52q, πpϕ, τq9IpAq, r „ Gap10, 0.5q and α „ IGp0.5, 1q

Ipα ą 1q

Prior 4: ω „ Np0.1, 0.52q, πpϕ, τq9IpAq, r „ Expp0.01qpr ą 0q and α „ LN
p0, 1.25qIpα ą 1q

Prior 5: ω „ Np0.1, 0.32q, tϕ, τu „ Np0.1, 0.252q ¨ Np0.1, 0.752qIpAq, r „ Ga
p10, 1q and πpαq9 1

p1`αq2
Ipα ą 1q

where Exppηq denotes the exponential distribution with rate parameter η, IGpρ1,
ρ2q represents the inverse gamma distribution with shape ρ1 and scale ρ2,
LN pδ, ζq indicates the log-normal distribution with parameters mean δ and
standard deviation ζ of the distribution on the natural log scale, and the set
A is given in (2.8). Note that in Priors 2-4, we employ a constrained uniform
prior on tϕ, τu which configures a flat prior on the parameters restricted by the
indicator IpAq. We perform 10,000 MCMC iterations by discarding 5000 itera-
tions as a burn-in sample for inference in each scenario. We employ R (R Core
Team, 2021) as our programming language for all computational tasks. The
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CPU time required for parameter estimation in each prior and sample size con-
figuration is under 1.3 hrs over 100 replications. Table 2.1 presents the averages
of posterior means (Ave Mean), medians (Ave Median), standard deviations
(Ave Std), and 95% credible intervals (95% CI) for all model parameters. For a
comparison with the frequentist approach, we report the simulation results for
the maximum likelihood (ML) estimator of the considered model in Table 2.2.
The averages of the mean and the standard deviation for different parameter
values and sample sizes are obtained from 100 Monte Carlo replications.

To facilitate the ML estimation, we follow Gorgi (2020) to reparameterize r and
α in terms of their inverse. Our empirical findings reveal that, particularly in
small sample sizes, a situation may arise where the likelihood function exhibits a
flat profile in the vicinity of the true parameter values. As a consequence, the es-
timates for r and α could become arbitrarily large and unbounded. To mitigate
this issue, we employ inverse reparameterizations based upon the parameteriza-
tion invariance property of maximum likelihood estimates (same ML estimation
obtained independent of the chosen parametrization) (Barndorff-Nielsen, 1983)
to secure stable parameter estimates for r and α, and to enhance the conver-
gence properties of optimization algorithms.

Given Tables 2.1 and 2.2, we summarize the simulation results as follows:

(1) We observe that the employed adaptive MCMC approach gives a reasonably
accurate estimate of the parameters of interest for small sample sizes. The stan-
dard deviation decreases as the sample size increases from 100 to 250 in both
Bayesian and ML estimation scenarios. Furthermore, all the reported stan-
dard deviation values for parameters ω, ϕ and τ under Bayesian estimation are
smaller than that of ML estimator in each simulation scheme.

(2) The simulation results demonstrate that both positive and negative serial
correlations can be captured by the proposed model. Moreover, the average pos-
terior means and posterior medians are overall reasonably close to the true val-
ues of the parameters, implying the validity of the considered adaptive MCMC
method. We therefore suggest using posterior medians as the model parameter
estimates since the median is a robust measure of central tendency compared
with the mean.

(3) We observe that the adaptive MCMC procedure is robust to the selection of
priors and hyperparameters via delivering similar reasonably accurate estima-
tion results under different setting scenarios.

(4) We extensively examine the sensitivity of starting values by specifying dif-
ferent starting points for the adaptive MCMC sampler. We also investigate the
sensitivity relating to the choice of λ1 by randomly setting different initializa-
tion values for the intensity process. We observe that the employed MCMC
sampler is robust to the selection of the starting values and the initial intensity
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as different calibrations deliver similar reasonably accurate estimation results
for the considered small sample sizes n.

Figure 2.1 displays the kernel density of the ML estimates. The density esti-
mates affirm the consistency of the estimations, as the distributions converge
towards the true parameter values with an augmentation in sample size. The
graphical representation underscores that particularly in scenarios with limited
sample sizes, one can observe more skewed distributions and subtle fluctuations
in the estimates of the tail parameter α, along with the emergence of bimodal
distribution patterns for the dispersion r. This aligns with the Lemma 8 pre-
sented in Gorgi (2020), which states that the dispersion parameter may not be
uniquely identified and its distribution is anticipated to exhibit a second lower
mode in small sample sizes. The obtained results support the notion that, par-
ticularly in scenarios where ML estimation encounters challenges such as skewed
distributions, small sample sizes and multiple maxima in the likelihood func-
tion, Bayesian inference emerges as a more robust and coherent framework for
parameter estimation. In situations with limited sample sizes, there is an in-
herent elevation of uncertainty surrounding parameter estimates. Furthermore,
when parameters lack unique identification, the likelihood function may mani-
fest multiple maxima or regions of high likelihood, resulting in ambiguity during
parameter estimation and the potential for erratic estimates with small bumps
or multiple modes. Bayesian methods offer distinct advantages in addressing
these complexities. The incorporation of prior knowledge about the parameter
in Bayesian inference serves to regularize the estimation process, proving par-
ticularly beneficial when the available data alone may be inadequate to resolve
multiple modes. Bayesian approaches, notably through MCMC methods, pos-
sess the capability to comprehensively explore the entire parameter space. This
feature mitigates the risk of becoming trapped in a local maximum, a concern
inherent in maximum likelihood inference. The ability of Bayesian estimation to
provide a full distribution of parameter estimates allows for the quantification
of uncertainty and enhances the reliability and interpretability of parameter
estimates.
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Parameter
True
Value

Ave
Mean

Ave
Std

True
Value

Ave
Mean

Ave
Std

n “ 100 n “ 250
ω 0.65 0.6407 0.2976 ω 0.65 0.6412 0.1846
ϕ 0.7 0.6945 0.1286 ϕ 0.7 0.6914 0.0874
τ -0.2 -0.2392 0.1830 τ -0.2 -0.2107 0.1075
r´1 0.2 0.1692 0.2740 r´1 0.2 0.1613 0.2001
α´1 0.3333 0.1454 0.1552 α´1 0.3333 0.1992 0.1379

Table 2.2 Simulation results for the ML estimators of the log-linear BNB-
INGARCHmodel obtained from 1000 Monte Carlo replications. The parameters
r and α are reparameterized in terms of their inverse

2.5 Empirical application on futures tick count
data

Figure 2.2 Numbers of minute-bar VIX futures tick count data on 02nd
January, 2020 from 01:00 a.m. to 11:00 p.m. (top panel) and sample auto-
correlation function (bottom left) and partial auto-correlation function of the
series (bottom right)

This section illustrates the proposed methodology by an empirical application
on the numbers of minute-bar VIX futures tick count data. This historical in-
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traday market data is delivered by Tick Data provider and is available from
https://www.tickdata.com/. The sample data set we consider consists of 920
available observations between 01:00 a.m. and 11:00 p.m. on the day January
02, 2020. The empirical mean and variance are 25.789 and 1669.625 respec-
tively, indicating considerable over-dispersion pattern of the data set. Figure
2.2 depicts the plot and the empirical auto-correlation functions of the tick
count series. The auto-correlation function (ACF) and partial auto-correlation
function (PACF) plots suggest the existence of significant auto-correlations in
the data. The series exhibits several extreme observations. Specifically, the
number of minute-bar VIX futures tick count is exceedingly high at 08:31 a.m.,
14:58 p.m. and 15:15 p.m.. These attributes indicate the desirability of BNB
auto-regressions to capture the auto-correlation structure and to account for the
extreme observations in the data by means of the heavy-tailedness characteris-
tics of the BNB distribution.

We compare the performances of Bayesian log-linear BNB-INGARCH models
and their counterpart log-linear NB-INGARCH models with order specifications
tpp, qqu “ tp1, 1q, p1, 2q, p2, 1q, p2, 2qu. The prior calibrations are presented be-
low. For both BNB-INGARCH and NB-INGARCH models, we adopt normal
prior Np0.5, 0.252q for ω, constrained normal priors Np0.2, 0.152q for ϕi and τj
with tϕi, τju satisfying |ϕi| ă 1, |τj | ă 1, |

řp
i“1 ϕi `

řq
j“1 τj | ă 1 and gamma

prior Gap5, 0.5q for r. For the tail parameter α under BNB model specifications,
we consider the truncated gamma prior Gap5, 0.5qIpα ą 1q. We also refer to the
analogical prior establishments in the simulation analysis section for the con-
sidered empirical application and observe the parameter estimations are robust
to the selection of priors and hyperparameters. We perform 100,000 MCMC
iterations and discard the first 50,000 iterations as a burn-in sample in each
model set-up scenario. The remaining 50,000 samples are thinned to every 10th
iteration to alleviate autocorrelation, which results in a total of 5000 posterior
samples. Table 2.3 summarizes the estimation results including the posterior
mean, standard deviation, the posterior 2.5th and 97.5th percentiles, Akaike
information criterion (AIC) and Bayesian information criterion (BIC) for each
specification separately. The convergence diagnostics of each of the Markov
chains is investigated through the trace plots for each parameter of the fitted
models. We conclude that proper mixing is achieved by each MCMC sampler.
Based on the values of AIC and BIC provided in Table 2.3, the BNB-INGARCH
models under all considered order specifications are superior to their correspond-
ing NB-INGARCH counterparts. The preference for the BNB distribution can
be further embodied in the low estimate values of the tail parameter α, which
is estimated to be around 2.6 with a standard deviation of about 0.2 in most
order specification scenarios. This implies the heavy-tailedness of the estimated
conditional distribution of the data with only a finite second order moment.
Moreover, the BNB-INGARCH(1,2) is found to be a competitive model for this
data set among all the considered candidates. Due to space limitation, we only
provide the diagnostic trace plots of the Markov chains for each parameter in the
favoured BNB-INGARCH(1,2) model in Figure 2.3. Figure 2.4 presents a map
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of the original tick count time series (in black) and posterior mean predictions
under the BNB-INGARCH(1,2) model (depicted by the red line) and the NB-
INGARCH(1,2) model (depicted by the blue line). In general, the estimated
means closely mimic the count series and capture well the trends within the
time series, suggesting the proposed models aptly accommodate the underlying
data. Notably, during periods of heightened volatility characterized by elevated
counts around 08:30 a.m. and 15:00 p.m., the BNB model outperforms its NB
counterpart in precisely describing these extreme observations as tail events and
yielding more accurate PMF predictions. It is pertinent to highlight that the
BNB models, with their inherent ability to accurately capture pronounced evi-
dence of heavy-tailedness, contribute to an enhanced overall model fit.

To check the adequacy of the best fitted log-linear BNB-INGARCH(1,2) model
based on the lowest AIC and BIC values, we examine the standardized Pear-

son residuals zt “
yt´Epyt|Ft´1q?

Varpyt|Ft´1q
proposed by Jung et al. (2006). For correctly

specified model, the Pearson residuals should have mean zero and variance one,
with no significant auto-correlations. Figure 2.5 presents the series plot and
auto-correlation functions of the standardized residuals for the fitted BNB-
INGARCH(1,2) model. The plots indicate no significant serial correlations
in the residuals. On the basis of the diagnostic checking figures, the auto-
correlation characteristics in the futures tick count data can be captured and
described by the dynamics of log-linear BNB-INGARCH models. We conclude
that the proposed and fitted model is adequate.

26



Par.
BNB-INGARCH(1,1) NB-INGARCH(1,1)

Mean Std. 2.50% 97.50% Mean Std. 2.50% 97.50%
ω 0.1388 0.0336 0.0859 0.2071 0.2977 0.0713 0.1784 0.4522
ϕ 0.2018 0.0241 0.1535 0.2462 0.2535 0.0349 0.1888 0.3252
τ 0.7780 0.0278 0.7195 0.8337 0.6789 0.0493 0.5750 0.7677
r 5.4710 0.6199 4.6494 6.9842 1.0310 0.0484 0.9384 1.1288
α 2.5587 0.1417 2.2907 2.8484

AIC 7084.05 7328.54
BIC 7108.17 7347.84

Par.
BNB-INGARCH(1,2) NB-INGARCH(1,2)

Mean Std. 2.50% 97.50% Mean Std. 2.50% 97.50%
ω 0.1483 0.0340 0.0892 0.2218 0.2450 0.0534 0.1519 0.3624
ϕ 0.2360 0.0256 0.1884 0.2888 0.2366 0.0297 0.1811 0.2979
τ1 0.4231 0.0824 0.2672 0.5847 0.4474 0.0874 0.2787 0.6263
τ2 0.3220 0.0747 0.1754 0.4641 0.2637 0.0814 0.1046 0.4214
r 4.9836 0.8121 3.6044 6.8434 1.0340 0.0475 0.9453 1.1291
α 2.5639 0.1559 2.2722 2.8801

AIC 7069.43 7304.76
BIC 7098.38 7328.88

Par.
BNB-INGARCH(2,1) NB-INGARCH(2,1)

Mean Std. 2.50% 97.50% Mean Std. 2.50% 97.50%
ω 0.1274 0.0376 0.0690 0.2137 0.3395 0.0959 0.1814 0.5520
ϕ1 0.2176 0.0316 0.1540 0.2797 0.2174 0.0378 0.1452 0.2920
ϕ2 -0.0202 0.0412 -0.0976 0.0651 0.0823 0.0546 -0.0226 0.1909
τ 0.7855 0.0364 0.7048 0.8515 0.6246 0.0779 0.4615 0.7624
r 4.8684 0.8512 3.3995 6.8476 1.0280 0.0478 0.9369 1.1254
α 2.5717 0.1709 2.2644 2.9241

AIC 7078.84 7311.16
BIC 7107.79 7335.28

Par.
BNB-INGARCH(2,2) NB-INGARCH(2,2)

Mean Std. 2.50% 97.50% Mean Std. 2.50% 97.50%
ω 0.1796 0.0482 0.1040 0.2859 0.3414 0.0817 0.2023 0.5149
ϕ1 0.2111 0.0299 0.1532 0.2700 0.1976 0.0364 0.1274 0.2701
ϕ2 0.0723 0.0451 -0.0128 0.1602 0.1338 0.0484 0.0361 0.2273
τ1 0.2999 0.1159 0.0608 0.5256 0.2425 0.1189 0.0115 0.4786
τ2 0.3935 0.0907 0.2172 0.5762 0.3529 0.0938 0.1701 0.5371
r 4.9360 0.7878 3.5750 6.6344 1.0345 0.0466 0.9463 1.1283
α 2.5674 0.1700 2.2490 2.9613

AIC 7071.68 7304.86
BIC 7105.45 7333.80

Table 2.3 Summary of estimation results for VIX futures tick count data
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Figure 2.4 Estimated posterior means of the log-linear BNB-INGARCH(1,2)
model (in red) and the log-linear NB-INGARCH(1,2) model (in blue). The
original tick count series is depicted in black

Figure 2.5 The top panel reports the standardized Pearson residuals of the log-
linear BNB-INGARCH(1,2) model for VIX futures tick count data. The bottom
left panel and bottom right panel present the auto-correlation and partial auto-
correlation functions of the residuals respectively
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2.6 Chapter summary

The Bayesian estimation approach and model selections for the proposed log-
linear Beta–negative binomial integer-valued GARCH model have been pre-
sented. Parameter estimations for the proposed process are performed based
on adaptive Markov chain Monte Carlo methods. The empirical application
on high-frequency intraday VIX futures tick count data indicates that the pro-
posed model is adequate and provides better performance than the INGARCH
model under negative binomial distribution assumptions. This chapter, by ex-
tending the log-linear BNB-INGARCH model in Bayesian frameworks, comple-
ments another aspect of current literature on modelling discrete time series with
heavy-tailedness characteristics.
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Chapter 3

Bayesian scale mixtures of
normals linear regression
and Bayesian quantile
regression with big data
and variable selection

3.1 Introduction

Quantile regression (QR) estimates various conditional quantiles of a response
or dependent random variable, including the median (0.5th quantile). Putting
different quantile regressions together provides a more complete description of
the underlying conditional distribution of the response than a simple mean re-
gression. This is particularly useful when the conditional distribution is asym-
metric or heterogeneous or fat-tailed or truncated. Quantile regression has been
widely used in statistics and numerous application areas (Cole and Green, 1992;
Koenker and Hallock, 2001; Yu et al., 2003; Briollais and Durrieu, 2014, among
others). In the “big data” era for statistical science, the richness of data sources
with many complicated data structures and the increase of extreme values and
heterogeneity may see quantile regression methods more relevant than mean
regression to dig deep into the data and grab information from it. In particular,
with advanced power of computer technology, complicated quantile regression-
based models could be developed under a Bayesian framework, and Bayesian
quantile regression (BQR) has received increasing attention from both theoret-
ical and empirical viewpoints with wide applications (see Bernardi et al., 2015;
Wang et al., 2016b; Rodrigues and Fan, 2017; Petrella and Raponi, 2019, among
others). So far, several methods have been developed to quantile regression for
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big data analysis (Wu and Yin, 2015; Yu et al., 2017; Gu et al., 2018; Chen
et al., 2019b, among others), but little attention has been paid to such method-
ology under Bayesian inference paradigm.

In this chapter, we propose a new approach of BQR for big data. This ap-
proach has its posterior distribution on the whole data as a joint posterior from
M sub-datasets split from the whole data. Section 3.2 and Section 3.3 give
details of the normal-inverse-gamma (NIG) expressions of the prior and poste-
rior distributions for Bayesian scale mixtures of normals linear regression and
BQR respectively. Section 3.4 presents the posterior predictive distributions.
Section 3.5 develops big data based algorithms for Bayesian scale mixtures of
normals model and BQR via the introduction of NIG summation operator. Sec-
tion 3.6 provides big data based algorithms for Bayesian LASSO scale mixtures
of normals regression and Bayesian LASSO quantile regression. Section 3.7
demonstrates the proposed algorithms via simulations and a real data analysis.

3.2 Bayesian scale mixtures of normals linear re-
gression for big data

3.2.1 Model and likelihood

Consider the scale mixtures of normals linear model

yi “ xT
i β ` σϵi, i “ 1, . . . , n,

where xi is a k ˆ 1 vector of predictors for observation yi, β is a k ˆ 1 unknown
vector of regression coefficients, ϵ1, . . . , ϵn are i.i.d. random variables distributed

as scale mixtures of normals. That is, ϵi
d
“

?
ζizi where zi follows a standard

normal distribution and ζi is an independent random variable with some known
probability distribution fζi on p0,8q. σ is an unknown scaling factor. We aim
to model the conditional mean Eryi|xi, ζis under Bayesian estimation paradigm.
Our primary interest is in inference of the unknown parameters β and σ. More
compactly, the scale mixtures of normals linear regression in matrix format is
specified as

Y “ Xβ ` σϵ, (3.1)

where Y “ py1, . . . , ynqT is an n ˆ 1 response vector, X “ px1, . . . ,xnqT is
an n ˆ k predictor matrix and ϵ “ pϵ1, . . . , ϵnqT is an n ˆ 1 scale mixtures of
normals disturbances with a mean vector of zeros and n ˆ n positive definite
covariance matrix Σ “ diagpζ1, . . . , ζnq. Then the conditional likelihood of Y
is given by

fpY |X,β, σ2,Σq9pσ2q´ n
2 expt´

1

2σ2
pY ´ XβqTΣ´1pY ´ Xβqu. (3.2)
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Consider the formulation

pY ´ Xβq
TΣ´1

pY ´ Xβq “ pY ´ Xβ̂q
TΣ´1

pY ´ Xβ̂q ` pβ ´ β̂q
T

pXTΣ´1Xqpβ ´ β̂q,

where β̂ “ pXTΣ´1Xq´1XTΣ´1Y , we can thus rewrite likelihood (3.2) as

fpY |X,β, σ2,Σq9pσ2q´
n´k

2 expt´
1

2σ2
pY ´ Xβ̂qTΣ´1pY ´ Xβ̂qu

pσ2q´ k
2 expt´

1

2σ2
pβ ´ β̂qT pXTΣ´1Xqpβ ´ β̂qu (3.3)

“ pσ2q´pa` k
2 `1q expt´

1

σ2
rb `

1

2
pβ ´ µqTΛpβ ´ µqsu

9IGpa, bqNkpµ, σ2Λ´1q, (3.4)

where IGpa, bq denotes the inverse-gamma distribution with shape parame-
ter a and scale parameter b. Nkpµ, σ2Λ´1q denotes the multivariate normal
distribution with mean vector µ and covariance matrix σ2Λ´1. The repre-
sented likelihood (3.4) is a typical structure of a k-dimensional normal-inverse-
gamma distribution NIGkpµ,Λ, a, bq in terms of parameters pβ, σ2q. Here

µ “ β̂,Λ “ XTΣ´1X, a “ n´k´2
2 , b “ 1

2 pY ´ Xβ̂qTΣ´1pY ´ Xβ̂q.

3.2.2 NIG expressions of posterior distribution

3.2.2.1 Posterior distribution under non-informative prior

The conjugate non-informative prior fpβ, σ2q9σ´2 suggests a specific case of
the NIG distribution which is denoted as NIGkp0k,0kˆk,´k

2 , 0q. Under this
prior, the posterior distribution fpβ, σ2|Y ,X,Σq is given by

fpβ, σ2|Y ,X,Σq “ fpσ2|Y ,X,Σqfpβ|σ2,Y ,X,Σq

“ IGpra,rbqNkprµ, σ2
rΛ´1q

9pσ2q´pra` k
2 `1q expt´

1

σ2
rrb `

1

2
pβ ´ rµqT rΛpβ ´ rµqsu.

Then we denote the joint posterior distribution of pβ, σ2q as fpβ, σ2|Y ,X,Σq

“ NIGkprµ, rΛ,ra,rbq. Here rµ “ pXTΣ´1Xq´1XTΣ´1Y , rΛ “ XTΣ´1X,ra “
n´k
2 ,rb “ 1

2Y
TΣ´1Y ´ 1

2
rµT

rΛrµ.

3.2.2.2 Posterior distribution under informative prior

Consider a form of conjugate informative prior for pβ, σ2q:

fpβ, σ2q “ fpσ2qfpβ|σ2q

9pσ2q´pa0`1q expt´
b0
σ2

upσ2q´ k
2 expt´

1

2σ2
pβ ´ µ0qTΛ0pβ ´ µ0qu

“ pσ2q´pa0` k
2 `1q expt´

1

σ2
rb0 `

1

2
pβ ´ µ0qTΛ0pβ ´ µ0qsu,
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where fpσ2q is IGpa0, b0q with prior values a0, b0 and fpβ|σ2q is Nkpµ0, σ
2Λ´1

0 q

with prior values µ0,Λ0. We can thus calibrate the joint prior as an NIG
distribution fpβ, σ2q “ NIGkpµ0,Λ0, a0, b0q. Under this prior, the posterior
distribution is given by

fpβ, σ2|Y ,X,Σq “ fpσ2|Y ,X,Σqfpβ|σ2,Y ,X,Σq

“ IGpā, b̄qNkpµ̄, σ2Λ̄´1q

9pσ2q´pā` k
2 `1q expt´

1

σ2
rb̄ `

1

2
pβ ´ µ̄qT Λ̄pβ ´ µ̄qsu,

which can be denoted as fpβ, σ2|Y ,X,Σq “ NIGkpµ̄, Λ̄, ā, b̄q. Here µ̄ “

pΛ0 `XTΣ´1Xq´1pΛ0µ0 `XTΣ´1Y q, Λ̄ “ Λ0 `XTΣ´1X, ā “ a0 ` n
2 , b̄ “

b0 ` 1
2Y

TΣ´1Y ` 1
2µ

T
0 Λ0µ0 ´ 1

2 µ̄
T Λ̄µ̄.

3.3 Bayesian quantile regression for big data

3.3.1 Model and likelihood

Let yi be a continuous response variable and xi a k ˆ 1 vector of predictors
for the ith observation, i “ 1, . . . , n. Denote Qppyi|xiq as the pth (0 ă p ă 1)
quantile regression function of yi given xi. Suppose that all conditional quantiles
Qppyi|xiq can be modelled as Qppyi|xiq “ xT

i βp, where βp is a k ˆ 1 vector of
unknown parameters that depends on quantile p. Then the linear Quantile
Regression (QR) model for the pth quantile can be denoted as

yi “ xT
i βp ` ϵi, i “ 1, . . . , n,

where ϵi is the error term whose distribution is assumed to have zero pth quan-
tile. Following Koenker and Bassett (1978b), the estimation for βp proceeds by
minimizing

n
ÿ

i“1

ρppyi ´ xT
i βpq, (3.5)

where ρppuq “ utp ´ Ipu ă 0qu is the check function and Ip¨q denotes the
indicator function. Equivalently, we can express ρppuq as

ρppuq “
|u| ` p2p ´ 1qu

2
. (3.6)

According to Yu and Moyeed (2001) and Yu and Stander (2007), minimizing
(3.5) is equivalent to maximizing a likelihood function that is based on the
asymmetric Laplace distribution (ALD) at specific value of p. Assuming an
ALD-based working model such that ϵi „ ALDpκ, σ, pq with location parameter
κ “ 0, scale parameter σ P p0,8q and skewness parameter p P p0, 1q, then the
probability density function of ϵi is given by

fpϵi;κ “ 0, σ, pq “
pp1 ´ pq

σ
expt´

ρppϵiq

σ
u, i “ 1, . . . , n,
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where ρppuq is defined in (3.6). Following Reed and Yu (2009) and Kozumi and
Kobayashi (2011b), we can represent ϵi as a scale mixture of normals with an
exponential mixing density as follows:

ϵi|vi, σ „ Npp1 ´ 2pqvi, 2σviq, vi|σ „ Exppσ´1pp1 ´ pqq,

where Exppθq denotes an exponential distribution with rate parameter θ. Conse-
quently, the conditional distribution of yi is normal with mean xT

i βp`p1´2pqvi
and variance 2σvi:

yi|βp, σ, vi,xi „ NpxT
i βp ` p1 ´ 2pqvi, 2σviq, i “ 1, . . . , n. (3.7)

The matrix form of (3.7) is as follows:

Y |βp, σ,v,X,V „ NnpXβp ` p1 ´ 2pqv, 2σV q,

where Y “ py1, . . . , ynqT is an n ˆ 1 response vector, X is an n ˆ k predic-
tor matrix with ith row xT

i , v “ pv1, . . . , vnqT and V “ diagpvq. Thus, the
conditional likelihood of Y is given by

fpY |βp, σ,v,X,V q9σ´n{2 expt´
1

2σ
rY ´Xβp´p1´2pqvs

T V ´1

2
rY ´Xβp´p1´2pqvsu.

Let Y ˚
p “ 1?

2
pY ´ p1 ´ 2pqvq and X˚ “ 1?

2
X, then Y ˚

p follows a normal-type

of conditional likelihood as

fpY ˚
p |βp, σ,X

˚,V q9σ´n{2 expt´
1

2σ
rY ˚

p ´ X˚βpsTV ´1rY ˚
p ´ X˚βpsu.

(3.8)

Denote further β̂p “ pX˚TV ´1X˚q´1X˚TV ´1Y ˚
p , we can rewrite (3.8) as

fpY ˚
p |βp, σ,X

˚,V q9σ´
n´k

2 expt´
1

2σ
rY ˚

p ´ X˚β̂psTV ´1rY ˚
p ´ X˚β̂psu

σ´ k
2 expt´

1

2σ
pβp ´ β̂pqT pX˚TV ´1X˚qpβp ´ β̂pqu

“ pσq´pa` k
2 `1q expt´

1

σ
rbp `

1

2
pβp ´ µpqTΛpβp ´ µpqsu

9IGpa, bpqNkpµp, σΛ
´1q, (3.9)

where µp “ β̂p,Λ “ X˚TV ´1X˚, a “ n´k´2
2 , bp “ 1

2 rY ˚
p ´X˚β̂psTV ´1rY ˚

p ´

X˚β̂ps. The reformulated likelihood (3.9) is a structure of a k-dimensional
distribution NIGkpµp,Λ, a, bpq in terms of parameters pβp, σq.

3.3.2 NIG expressions of posterior distribution

3.3.2.1 Posterior distribution under non-informative prior

The conjugate non-informative prior fpβp, σq9σ´1 suggests a form ofNIGkp0k,

0kˆk,´k
2 , 0q. Given this prior, the joint conditional posterior distribution fpβp, σ,
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v|Y ˚
p ,X˚q can be written as

fpβp, σ,v|Y ˚
p ,X˚

q9fpY ˚
p |βp, σ,vqfpβp|σ,vqfpv|σqfpσq

9σ´p
3n`2

2
q
p

n
ź

i“1

v
´1{2
i q

ˆ expt´
1

2σ
rpY ˚

p ´ X˚βpq
TV ´1

pY ˚
p ´ X˚βpq ` 2pp1 ´ pq

n
ÿ

i“1

visu.

The posterior distribution fpβp, σ|v,Y ˚
p ,X˚q is thus given by

fpβp, σ|v,Y ˚
p ,X˚

q9σ´p
3n`2

2
q expt´

1

2σ
rpY ˚

p ´ X˚βpq
TV ´1

pY ˚
p ´ X˚βpq ` 2pp1 ´ pq

n
ÿ

i“1

visu

“ σ´p
3n´k

2
` k

2
`1q expt´

1

σ
rrbp `

1

2
pβp ´ rµpq

T
rΛpβp ´ rµpqsu,

which can be denoted as a k-dimensional distribution NIGkprµp, rΛ,ra,rbpq, where

rµp “ pX˚TV ´1X˚q´1X˚TV ´1Y ˚
p , rΛ “ X˚TV ´1X˚,ra “ 3n´k

2 ,rbp “ 1
2Y

˚
p

TV ´1

Y ˚
p ´ 1

2Y
˚
p

TV ´1X˚
rµp ` pp1 ´ pq

řn
i“1 vi. Furthermore, the full posterior dis-

tribution of each vi conditional on βp, σ and raw data yi,xi, i “ 1, 2, . . . , n is
obtained by

fpvi|βp, σ, yi,xiq9v
´1{2
i expt´

1

4σ
rv´1

i pyi ´ p1 ´ 2pqvi ´ xT
i βpq2s ´

pp1 ´ pq

σ
viu

“ v
´1{2
i expt´

1

4σ
rv´1

i pyi ´ xT
i βpq2 ` visu

“ v
´1{2
i expt´

1

2
pv´1

i
rξi
2

` vi rζi
2
qu,

where rξi
2

“ pyi ´xT
i βpq2{2σ and rζi

2
“ 1{2σ. This conditional posterior can be

recognized as a form of generalized inverse Gaussian distribution GIGp 1
2 ,

rξi, rζiq.
Recall that if z „ GIGpφ, η1, η2q, then the probability density function of z is
given by

fpz|φ, η1, η2q “
pη2{η1q

φ

2Kφpη1η2q
zφ´1 expt´

1

2
pz´1 η2

1 ` z η2
2qu, z ą 0, ´8 ă φ ă 8, η1, η2 ě 0,

where Kφp¨q is a modified Bessel function of the third kind (Barndorff-Nielsen
and Shephard, 2001).

3.3.2.2 Posterior distribution under informative g-prior

For the informative prior setting, following Alhamzawi and Yu (2013), a conju-
gate prior for pβp, σq with a modification of Zellner’s informative g-prior (Zellner,
1986) in QR could be provided as

βp|σ,X˚,V „ Nkp0k, gσpX˚TV ´1X˚q´1q, fpσq9σ´1,
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where g ą 0 is a known scaling factor prescribed by the user. Smith and
Kohn (1996) proposed a Bayesian variable selection algorithm utilizing regres-
sion splines. They found that the choice of g “ 100 works well and suggested to
choose g between 10 and 1000. Following Smith and Kohn (1996), the fixed set-
ting of g “ 100 has been considered by some other authors (see Lee et al., 2003;
Gupta et al., 2007, among others). Then we obtain the joint prior distribution
of pβp, σq as

fpβp, σ|X˚,V q9σ´p k
2 `1q expt´

1

σ
r
1

2
βT
p

X˚TV ´1X˚

g
βpsu, (3.10)

which is a special case ofNIGkpµ0,Λg0, a0, b0q with µ0 “ 0k,Λg0 “ X˚TV ´1X˚

g ,
a0 “ 0, b0 “ 0.

The joint conditional posterior distribution fpβp, σ,v|Y ˚
p ,X˚q under prior (3.10)

is given by

fpβp, σ,v|Y ˚
p ,X˚

q9fpY ˚
p |βp, σ,vqfpβp|σ,vqfpv|σqfpσq

9σ´p
3n`k`2

2
q
p

n
ź

i“1

v
´1{2
i q|X˚TV ´1X˚

|
1{2

ˆ expt´
1

2σ
rpY ˚

p ´ X˚βpq
TV ´1

pY ˚
p ´ X˚βpq ` βT

p
X˚TV ´1X˚

g
βp ` 2pp1 ´ pq

n
ÿ

i“1

visu.

The corresponding posterior fpβp, σ|v,Y ˚
p ,X˚q is given as follows:

fpβp, σ|v,Y ˚
p ,X˚q9σ´p

3n`k`2
2 q expt´

1

2σ
rpY ˚

p ´ X˚βpqTV ´1pY ˚
p ´ X˚βpq

` βT
p

X˚TV ´1X˚

g
βp ` 2pp1 ´ pq

n
ÿ

i“1

visu

“ σ´p 3n
2 ` k

2 `1q expt´
1

σ
rb̄p `

1

2
pβp ´ µ̄pqT Λ̄pβp ´ µ̄pqsu,

which has an expression ofNIGkpµ̄p, Λ̄, ā, b̄pq, where µ̄p “ rp1` 1
g qX˚TV ´1X˚s´1

X˚TV ´1Y ˚
p , Λ̄ “ p1` 1

g qX˚TV ´1X˚, ā “ 3n
2 , b̄p “ 1

2Y
˚
p

TV ´1Y ˚
p ´ 1

2 µ̄
T
p Λ̄µ̄p`

pp1´pq
řn

i“1 vi. Moreover, the full conditional marginal distributions of βp and
σ can be obtained respectively by

fpβp|σ,v,Y ˚
p ,X˚

q9 expt´
1

2σ
rpY ˚

p ´ X˚βpq
TV ´1

pY ˚
p ´ X˚βpq ` βT

p
X˚TV ´1X˚

g
βpsu,

which can be expressed as an Nkpµ̄p, σΛ̄
´1q, and

fpσ|βp,v,Y
˚
p ,X˚q9σ´p

3n`k
2 `1q expt´

1

2σ
rpY ˚

p ´ X˚βpqTV ´1pY ˚
p ´ X˚βpq

` βT
p

X˚TV ´1X˚

g
βp ` 2pp1 ´ pq

n
ÿ

i“1

visu,
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which is an IG distribution with shape 3n`k
2 and scale 1

2 rpY ˚
p ´X˚βpqTV ´1pY ˚

p

´X˚βpq`βT
p

X˚TV ´1X˚

g βp`2pp1´pq
řn

i“1 vis. The full posterior distribution

of each vi, i “ 1, 2, . . . , n is also tractable:

fpvi|βp, σ, yi,xiq9v´1
i expt´

1

4σ
rv´1

i ppyi ´ p1 ´ 2pqvi ´ xT
i βpq

2
`

βT
p xix

T
i βp

g
qs ´

pp1 ´ pq

σ
viu

“ v´1
i expt´

1

4σ
rv´1

i ppyi ´ xT
i βpq

2
`

βT
p xix

T
i βp

g
q ` visu

“ v´1
i expt´

1

2
pv´1

i ξ̄i
2

` viζ̄i
2
qu,

where ξ̄i
2

“ rpyi ´ xT
i βpq2 ` βT

p xix
T
i βp{gs{2σ and ζ̄i

2
“ 1{2σ, which can be

recognized as a GIGp0, ξ̄i, ζ̄iq.

3.4 Posterior predictive distributions

3.4.1 Posterior predictive distribution for Bayesian scale
mixtures of normals regression

Given a new nˆk predictor matrix Xnew, one may be interested in the Bayesian
prediction of a new response outcome Y new under the current posterior calibra-
tion of pβ, σ2q with the observations X,Y . To obtain the analytic expression of
fpY new|Y q, we first derive the following computation result of integrating out
σ2 from the joint posterior fpβ, σ2|Y q “ NIGkpµ̄, Λ̄, ā, b̄q, where the expres-
sions for µ̄, Λ̄, ā and b̄ are given in Section 3.2.2.2.

ż 8

0

NIGkpµ̄, Λ̄, ā, b̄q dσ2 “
b̄ā

p2πq
k
2 |Λ̄´1|

1
2Γpāq

ż 8

0

pσ2q´pā` k
2 `1q expt´

1

σ2
rb̄ `

1

2
pβ ´ µ̄qT Λ̄pβ ´ µ̄qsu dσ2

“
b̄āΓpā ` k

2 q

p2πq
k
2 |Λ̄´1|

1
2Γpāq

rb̄ `
1

2
pβ ´ µ̄qT Λ̄pβ ´ µ̄qs´pā` k

2 q

“
Γp 2ā`k

2 q

Γp 2ā
2 qp2āq

k
2 π

k
2 | b̄āΛ̄

´1|
1
2

r1`
1

2ā
pβ´µ̄qT p

b̄

ā
Λ̄´1q´1pβ´µ̄qs´p

2ā̀ k
2 q

“
Γp vt`k

2 q

Γp vt
2 qv

k
2
t π

k
2 |Σt|

1
2

r1 `
1

vt
pβ ´ µtq

TΣ´1
t pβ ´ µtqs´

vt`k
2

“ tvtpµt,Σtq.
(3.11)

That is, the marginal posterior fpβ|Y q is a k-dimensional multivariate t-distribution

tvtpµt,Σtq with location vector µt “ µ̄, shape matrix Σt “ b̄
āΛ̄

´1 and degrees
of freedom vt “ 2ā. Then the computation of the posterior predictive distribu-
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tion of Y new can be proceeded as follows:

fpY new|Y q “

ż 8

0

ż 8

´8

fpY new|β, σ2qfpβ, σ2|Y q dβ dσ2

“

ż 8

0

ż 8

´8

NnpXnewβ, σ2ΣqNIGkpµ̄, Λ̄, ā, b̄q dβ dσ2

“

ż 8

0

NIGkpXnewµ̄, pΣ ` XnewΛ̄´1XnewT q´1, ā, b̄q dσ2. (3.12)

Applying the integral result (3.11) to (3.12), the computation of the density
fpYnew|Yq is given by

fpY new|Y q “ t2āpXnewµ̄,
b̄

ā
pΣ ` XnewΛ̄´1XnewT qq,

which is an n-dimensional multivariate t-distribution with location Xnewµ̄,
shape matrix b̄

ā pΣ ` XnewΛ̄´1XnewT q and degrees of freedom 2ā. Further-
more, by the law of total conditional variance (Bowsher and Swain (2012)), we
can obtain the variance of the future observation Y new conditional on σ2

varpY new|σ2q “ ErvarpY new|β, σ2q|σ2s ` varrEpY new|β, σ2q|σ2s

“ Erσ2Σ|σ2s ` varrXnewβ|σ2s

“ pΣ ` XnewΛ̄´1XnewT qσ2.

Therefore, given σ2, the posterior predictive distribution has two constituents
of uncertainty: (1) the model variability induced by the term σ2 in Y and (2)
the posterior uncertainty within the current calibration of pβ, σ2q due to the
finite sample size of Y .

3.4.2 Posterior predictive distribution for Bayesian quan-
tile regression

In the context of the Bayesian quantile regression model, we carry out the
prediction of a new measurement Y new given a new predictor matrix Xnew

along with the current estimated parameters pβp, σq as follows. Consider the
linear QR model for the pth quantile and observations X and Y , and fol-
low the notations for X˚,Y ˚

p ,v and V presented in Section 3.3.1. Under the

joint posterior fpβp, σ|v,Y˚
p ,X

˚q “ NIGkpµ̄p, Λ̄, ā, b̄pq, where µ̄p, Λ̄, ā and

b̄p are given in Section 3.2.2, we can proceed with the prediction of Y new in
two steps: (1) let Xnew˚ “ 1?

2
Xnew and compute the corresponding con-

ditional density fpY new˚
p |Y ˚

p q (with conditioning on Xnew˚ implicit), where

Y new˚
p “ 1?

2
pY new ´ p1´ 2pqvq is a linear transformation of variable Y new; (2)

derive the target density fpY new|Y ˚
p q. The conditional distribution of Y new˚

p
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is given by

fpY new˚
p |Y ˚

p q “

ż 8

0

ż 8

´8

fpY new˚
p |βp, σqfpβp, σ|Y ˚

p q dβp dσ

“

ż 8

0

ż 8

´8

NnpXnew˚βp, σV qNIGkpµ̄p, Λ̄, ā, b̄pq dβp dσ

“

ż 8

0

NIGkpXnew˚µ̄p, pV ` Xnew˚Λ̄´1Xnew˚T q´1, ā, b̄pq dσ

“ t2āpXnew˚µ̄p,
b̄p
ā

pV ` Xnew˚Λ̄´1Xnew˚T qq. (3.13)

The conditional of Y new “
?
2Y new˚

p ` p1 ´ 2pqv is a linear combination of the
deduced distribution (3.13). Following the affine transformation property of the
multivariate t-distribution (see Roth, 2012 for more details), the new response
outcome Y new is distributed as

fpY new
|Y ˚

p q “ t2āp
?
2Xnew˚µ̄p ` p1 ´ 2pqv,

2b̄p
ā

pV ` Xnew˚Λ̄´1Xnew˚T
qq, (3.14)

which is an n-dimensional multivariate t-distribution with location
?
2Xnew˚µ̄p`

p1 ´ 2pqv, shape matrix
2b̄p
ā pV ` Xnew˚Λ̄´1Xnew˚T q and degrees of freedom

2ā. Accordingly, the posterior predictive distribution sampling for BQR can be
achieved as below. For each l “ 1, . . . , L, we draw samples σplq „ IGpā, b̄pq and

β
plq
p „ Nkpµ̄p, σ

plqΛ̄´1q. The obtained samples tβ
plq
p , σplquLl“1 give L replicates

from the joint posterior distribution fpβp, σ|v,Y ˚
p ,X˚q “ NIGkpµ̄p, Λ̄, ā, b̄pq.

For each sample tβ
plq
p , σplqu, we generate Y

new˚plq
p „ NnpXnew˚β

plq
p , σplqV q. The

resulting tY
new˚plq
p uLl“1 provide draws for the conditional distribution (3.13).

Then the corresponding samples tY newplquLl“1 “ t
?
2Y

new˚plq
p ` p1 ´ 2pqvuLl“1

give L replicates from the target posterior predictive density (3.14).

3.5 Big data based algorithms for Bayesian scale
mixtures of normals regression and BQR

In this section, we propose two divide-and-conquer algorithms to facilitate the
calculation of full data posterior distribution in big data settings for Bayesian
scale mixtures of normals regression and BQR respectively. We first introduce
the concept of NIG multiplication operator as follows.

3.5.1 NIG multiplication operator of posterior distribu-
tion

Given the linear regression model (3.1) with n ˆ 1 response vector Y , observed
nˆk design matrixX and nˆn positive definite covariance matrixΣ, where the
sample size n is so large that the data cannot be stored on a single computer.
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If we partition the big data into M subsets, such that Y “ pY1, . . . ,YM qT ,
X “ pX1, . . . ,XM qT and Σ “ diagpΣ1, . . . ,ΣM q, where Ym is an nm ˆ 1
vector, Xm is an nm ˆ k matrix, Σm is an nm ˆ nm diagonal matrix and
řM

m“1 nm “ n, then following (3.3) and given the sub-datasets, the conditional
likelihood function (3.2) can be written as

fpY |X,β, σ2,Σq9pσ2
q
´p

řM
m“1 nm´kq{2 expt´

1

2σ2

M
ÿ

m“1

pYm´Xmβ̂q
TΣ´1

m pYm´Xmβ̂qu

ˆpσ2
q
´ k

2 expt´
1

2σ2

M
ÿ

m“1

pβ ´ β̂q
T

pXT
mΣ´1

m Xmqpβ ´ β̂qu, (3.15)

where β̂ “ p
řM

m“1 X
T
mΣ´1

m Xmq´1
řM

m“1 X
T
mΣ´1

m Ym. The reformulated ex-
pression (3.15) with regard to parameters of interest pβ, σ2q further indicates a
multiplication of M NIG distributions

fpY |X,β, σ2,Σq9

M
ź

m“1

pσ2q´pam` k
2 `1q expt´

1

σ2
rbm `

1

2
pβ ´ µmqTΛmpβ ´ µmqsu

“

M
ź

m“1

NIGpµm,Λm, am, bmq,

where µm “ β̂,Λm “ XT
mΣ´1

m Xm, am “ nm´k´2
2 , bm “ 1

2 pYm ´ Xmβ̂qTΣ´1
m

pYm ´ Xmβ̂q. Therefore, we have the following Proposition 3.1.

Proposition 3.1. Given regression model (3.1) and the described data parti-
tion rule, the whole data based likelihood and all sub-datasets based likelihood
functions follow NIG distributions and satisfy

NIGkpµ,Λ, a, bq “

M
ź

m“1

NIGpµm,Λm, am, bmq, (3.16)

where µ “ p
řM

m“1 Λmq´1
řM

m“1 Λmµm,Λ “
řM

m“1 Λm, a “
řM

m“1 am`
pM´1qpk`2q

2 , b “
řM

m“1 bm ` 1
2

řM
m“1pµm ´ µqTΛmpµm ´ µq.

Posterior distributions induced by the entire data set can be obtained by
combining formulation (3.16) with specific priors imposed on β and σ2. The fol-
lowing Theorem 3.1 elaborates the acquisition of the posterior density through
the use of the NIG multiplication operator.

Theorem 3.1. Suppose the posterior distribution, under the prior NIGkpµ,Λ, a,
bq and big data observations X,Y , be NIGkpµ̄, Λ̄, ā, b̄q. Partition the entire
data into M subsets, then we have the full data posterior distribution

fpβ, σ2|Y ,X,Σq “ NIGkpµ,Λ, a, bq
M
ź

m“1

NIGkpµm,Λm, am, bmq

“ NIGkpµ̄, Λ̄, ā, b̄q,
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where µ̄ “ pΛ `
řM

m“1 X
T
mΣ´1

m Xmq´1pΛµ `
řM

m“1 X
T
mΣ´1

m Ymq, Λ̄ “ Λ `
řM

m“1 X
T
mΣ´1

m Xm, ā “ a ` n
2 , b̄ “ b ` 1

2 r
řM

m“1 Y
T
mΣ´1

m Ym ` µTΛµ ´ µ̄T Λ̄µ̄s.

Corollary 3.1.1. The full data posterior distribution under the non-informative
prior NIGkp0k,0kˆk,´k

2 , 0q can be obtained as NIGkprµ, rΛ,ra,rbq, where rµ “

p
řM

m“1 X
T
mΣ´1

m Xmq´1
řM

m“1 X
T
mΣ´1

m Ym, rΛ “
řM

m“1 X
T
mΣ´1

m Xm,ra “ n´k
2 ,

rb “ 1
2 r

řM
m“1 Y

T
mΣ´1

m Ym ´ rµT
rΛrµs.

3.5.2 Algorithm for Bayesian scale mixtures of normals
regression

The following efficient divide-and-conquer algorithm is provided to facilitate the
study of scale mixtures of normals linear regression in big data scenario.

Algorithm 3.1. Consider the Bayesian scale mixtures of normals linear regres-
sion under informative prior NIGkpµ0,Λ0, a0, b0q for pβ, σ2q and with observed
nˆk design matrix X, nˆ1 response vector Y and positive definite nˆn diag-
onal covariance matrix Σ, where the data set is too large to be fit into a single
computer. By partitioning the entire data set into M subsets and utilizing the
aforementioned NIG multiplication operator, we can obtain the full data poste-
rior distribution by the following divide-and-conquer algorithm.

Step 1 let X “

«

X1

...
XM

ff

, Y “

«

Y1

...
YM

ff

, Σ “

«

Σ1 ¨¨¨ 0

...
...

...
0 ¨¨¨ ΣM

ff

, where Xm is an

nm ˆ k predictor matrix, Ym is an nm ˆ 1 response vector, Σm is an nm ˆ nm

diagonal covariance matrix, m “ 1, . . . ,M and
řM

m“1 nm “ n.

Step 2 for each subset, the corresponding likelihood has a representation of
NIGkpµm,Λm, am, bmq distribution for pβ, σ2q. Calculate the multiplicative

distribution NIGkpµ,Λ, a, bq “
śM

m“1 NIGpµm,Λm, am, bmq, then the full data
posterior can be acquired by merging the prior NIGkpµ0,Λ0, a0, b0q with the dis-
tribution NIGkpµ,Λ, a, bq:

NIGkpµ̄, Λ̄, ā, b̄q “ NIGkpµ0,Λ0, a0, b0qNIGkpµ,Λ, a, bq,

where µ̄ “ pΛ0 `
řM

m“1 X
T
mΣ´1

m Xmq´1pΛ0µ0 `
řM

m“1 X
T
mΣ´1

m Ymq, Λ̄ “ Λ0 `
řM

m“1 X
T
mΣ´1

m Xm, ā “ a0 ` n
2 , b̄ “ b0 ` 1

2 r
řM

m“1 Y
T
mΣ´1

m Ym ` µT
0 Λ0µ0 ´

µ̄T Λ̄µ̄s.

In the high-dimensional setting pk " nq, the induced multicollinearity of X
implies the singularity of XTΣ´1X. However, one can always choose proper
prior matrix Λ0 such that Λ0`

řM
m“1 X

T
mΣ´1

m Xm is non-singular and therefore
µ̄ is well-defined.
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3.5.3 Algorithm for Bayesian quantile regression

Consider the linear QR model for the pth (0 ă p ă 1) quantile

Y “ Xβp ` ϵ, (3.17)

where Y is an n ˆ 1 response vector, X is an n ˆ k predictor matrix and ϵ
is an n ˆ 1 vector of ALDp0, σ, pq disturbances. Following the reformulated
conditional likelihood (3.8), model (3.17) is equivalent to

Y ˚
p “ X˚βp `

?
σϵ˚, (3.18)

where Y ˚
p “ 1?

2
pY ´ p1 ´ 2pqvq, X˚ “ 1?

2
X and ϵ˚ „ Nnp0n,V q with n ˆ n

diagonal positive definite covariance matrix V . We proceed with Bayesian in-
ference for big data quantile regression through the proposed NIG multipli-
cation operator. We consider model (3.17) under the g-prior (3.10) and par-
tition the entire data into M subsets pXm,Ymq with individual sample size
nm,m “ 1, . . . ,M . Then the posterior distribution for the whole data can be
obtained by merging the given prior with the multiplication of M subset NIG
distributions induced from the massive observations. Based on this, an efficient
divide-and-conquer algorithm for big data BQR is provided as below.

Algorithm 3.2. Consider a pth p0 ă p ă 1q Bayesian quantile regression un-
der g-prior (3.10) with the observed n ˆ k design matrix X and n ˆ 1 response
vector Y , where the large data cannot be fit into a single computer due to the
memory constraint. We obtain the full data posterior distribution by the follow-
ing divide-and-conquer algorithm.

Step 1 partition the entire data into M subsets Xm,Ym,m “ 1, 2, . . . ,M , where
Xm is an nm ˆ k matrix, Ym is an nm ˆ 1 vector and

řM
m“1 nm “ n.

Step 2 for each Xm,Ym, a Gibbs sampler for sampling βp, σ and the nm ˆ 1
latent vector vm follows the below sub-steps:

2.1 denote j as the iteration count. Then set j “ 0 and establish pβ
pj“0q
p ,

σpj“0q,v
pj“0q
m q to some starting values.

2.2 let X˚
m “ 1?

2
Xm, Y ˚

pm “ 1?
2

pYm ´ p1 ´ 2pqvmq and Vm “ diag pvmq.

2.3 follow the full conditional posterior distributions of βp, σ and vm given
in Section 3.3.2.2,

(i) sample v
pj`1q
m from its GIG posterior fpvm|β

pjq
p , σpjqq.

(ii) sample σpj`1q from its IG posterior fpσ|β
pjq
p ,v

pj`1q
m q.

(iii) sample β
pj`1q
p from its multivariate normal posterior fpβp|σpj`1q,v

pj`1q
m q.
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2.4 set j “ j ` 1 and return to Step 2.3 until j “ L, where L is the
number of iteration times.

Step 3 calculate the empirical estimates of the means β̄p and σ̄ separately
based on the pL ´ Bq realizations of the Gibbs sequence (discarding the first
B iterations as a burn-in). Then generate an nm i.i.d. sample on v̄i, where

v̄i „ GIGp0, ξ̄i, ζ̄iq with ξ̄i
2

“ rpyi ´ xT
i β̄pq2 ` β̄T

p xix
T
i β̄p{gs{2σ̄ and ζ̄i

2
“

1{2σ̄, i “ 1, 2, . . . , nm. Let v:
m “ pv̄1, . . . , v̄nm

qT ,Y :
pm “ 1?

2
pYm ´ p1 ´ 2pqv:

mq

and V :
m “ diag pv:

mq,m “ 1, 2, . . . ,M .

Step 4 for each subset, the corresponding likelihood can be represented as a form
of NIGkpµpm,Λm, am, bpmq distribution for pβp, σq. Obtain the multiplicative

distribution NIGkpµp,Λ, a, bpq “
śM

m“1 NIGpµpm,Λm, am, bpmq, then the full
data posterior is given by merging the g-prior NIGkpµ0,Λg0, a0, b0q and the
distribution NIGkpµp,Λ, a, bpq:

NIGkpµ̄p, Λ̄, ā, b̄pq “ NIGkpµ0,Λg0, a0, b0qNIGkpµp,Λ, a, bpq,

where µ̄p “ rp1 ` 1
g q

řM
m“1 X

˚T
m V :´1

m X˚
mqs´1

řM
m“1 X

˚T
m V :´1

m Y :
pm, Λ̄ “ p1 `

1
g q

řM
m“1 X

˚T
m V :´1

m X˚
m, ā “ 3n

2 , b̄p “ 1
2 r

řM
m“1 Y

:˚T
pm V :´1

m Y :˚
pm´µ̄T

p Λ̄µ̄ps`pp1´

pq
řM

m“1∥v:
m∥1 and ∥¨∥1 denotes the ℓ1 norm of a vector.

3.6 Big data based algorithms for variable selec-
tion

3.6.1 Algorithm for Bayesian LASSO scale mixtures of
normals regression

The LASSO of Tibshirani (1996) was proposed to estimate linear regression
coefficients using L1-penalized least squares. Consider the linear regression
model (3.1), the LASSO shrinkage regression can be formulated as

min
β

pY ´ XβqT pY ´ Xβq `

k
ÿ

j“1

λj |βj |,

where λ1, . . . , λk are non-negative regularization parameters. In this context, we
embrace the modified LASSO criterion introduced by Wang et al. (2007) to im-
pose different tuning parameters λj on different regression coefficients, thereby
anticipating a larger amount of shrinkage being applied to insignificant coeffi-
cients, whereas a more modest degree of shrinkage is expected for significant
coefficients. According to Tibshirani (1996), the LASSO estimates can be in-
terpreted as the posterior mode with independent and identical Laplace priors
imposed on the regression coefficients. Following Park and Casella (2008), a
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conditional Laplace prior is given by

fpβ|σ2q “

k
ź

j“1

λj

2
?
σ2

expt´λj |
βj

?
σ2

|u.

As suggested in Park and Casella (2008), any inverse-Gamma prior for σ2 would
maintain conjugacy. Here we consider the marginal prior fpσ2q “ IGpa0, b0q,
then the joint prior for fpβ, σ2q is given by

fpβ, σ2q9pσ2q´pa0` k
2 `1q expt´b0σ

´2 ´

k
ÿ

j“1

λj |
βj

σ
|u.

Given model (3.1), we have the posterior distribution

fpβ, σ2
|Y ,X,Σq9pσ2

q
ṕa0`

n`k
2

`1q expt́ b0σ
´2

´
1

2
σ´2

pY´Xβq
TΣ´1

pY´Xβq´

k
ÿ

j“1

λj |
βj

σ
|u.

Following the equality given by Andrews and Mallows (1974)

h

2
expt´h|z|u “

ż 8

0

1
?
2πs

expt´z2{p2squ
h2

2
expt´h2s{2uds, h ą 0,

and introducing the latent variables γ “ pγ1, . . . , γkqT with prior fpγq “
śk

j“1
λ2
j

2 expp´
λ2
jγj

2 q, we have the following Bayesian hierarchical model:

Y |β,X,Σ „ NnpXβ, σ2Σq,

β|σ2, γ1, . . . , γk „ Nkp0k, σ
2Dγq,

Dγ “ diag pγ1, . . . , γkq,

σ2, γ1, . . . , γk „ fpσ2q dσ2
k

ź

j“1

λ2
j

2
expp´

λ2
jγj

2
q dγj ,

σ2, γ1, . . . , γk ą 0.

Then we obtain the conditional prior distribution

fpβ, σ2|γq „ NIGkp0k,D
´1
γ , a0, b0q, (3.19)

where D´1
γ “ diag pγ´1

1 , . . . , γ´1
k q. For the conditional posterior of γ, we have

γ´1
j |β, σ2,Y following an inverse-Gaussian distribution with parameters

c

λ2
jσ

2

β2
j

and λ2
j (see Park and Casella, 2008). A corresponding Gibbs sampler algorithm

can be provided as below.

Algorithm 3.3. Consider the Bayesian LASSO scale mixtures of normals re-
gression model with prior specification (3.19). Given the big data X and Y , we
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obtain the following Gibbs sampler algorithm.

Step 1 the same as presented in Algorithm 3.1.

Step 2 for each subset, the corresponding likelihood has a representation of
NIGkpµm,Λm, am, bmq distribution for pβ, σ2q. Calculate the multiplicative

distribution NIGkpµ,Λ, a, bq “
śM

m“1 NIGpµm,Λm, am, bmq, then iterate the
following sub-steps until draws pβ, σ2,γq achieve convergence.

2.1 given the current draw of γ, compute D´1
γ “ diag pγ´1

1 , . . . , γ´1
k q; ob-

tain posterior NIGkpµ̄, Λ̄, ā, b̄q “ NIGkp0k,D
´1
γ , a0, b0qNIGkpµ,Λ, a, bq, where

µ̄ “ pD´1
γ `

řM
m“1 X

T
mΣ´1

m Xmq´1
řM

m“1 X
T
mΣ´1

m Ym, Λ̄ “ D´1
γ `

řM
m“1 X

T
m

Σ´1
m Xm, ā “ a0 ` n

2 , b̄ “ b0 ` 1
2 r

řM
m“1 Y

T
mΣ´1

m Ym ´ µ̄T Λ̄µ̄s; then generate a
draw of pβ, σ2q from NIGkpµ̄, Λ̄, ā, b̄q.

2.2 given the current draw of pβ, σ2q, generate a draw for each γ´1
j from

the inverse-Gaussian distribution with parameters

c

λ2
jσ

2

β2
j

and λ2
j , j “ 1, 2, . . . , k.

In the high-dimensional setting pk " nq, one can always choose proper prior

matrix D´1
γ such that D´1

γ `
řM

m“1 X
T
mΣ´1

m Xm is non-singular and therefore
µ̄ is well-defined.

3.6.2 Algorithm for Bayesian LASSO quantile regression

Following the notations outlined in Section 3.3.1, the LASSO regularized quan-
tile regression (Li and Zhu, 2008) can be formulated by

min
βp

n
ÿ

i“1

ρppyi ´ xT
i βpq ` λ

k
ÿ

j“1

|βpj |,

where βp “ pβp1, . . . , βpkqT and λ ě 0 is a penalization parameter. Consider a
conditional Laplace prior

fpβp|σq “

k
ź

j“1

λj

2
?
σ
expt´λj |

βpj
?
σ

|u,

where λ1, . . . , λk are non-negative penalization parameters and specify the marginal
prior fpσq “ IGpa0, b0q, the prior for fpβp, σq is obtained by

fpβp, σq9σ´pa0` k
2 `1q expt´b0σ

´1 ´

k
ÿ

j“1

λj |
βpj
?
σ

|u.
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Consider further the reformulated linear QR model (3.18), we have the posterior
distribution

fpβp, σ|v,Y ˚
p ,X˚q9σ´pa0`

3n`k
2 `1q expt´σ´1rb0 ` p p1 ´ pq

n
ÿ

i“1

vis

´
1

2
σ´1pY ˚

p ´ X˚βpqTV ´1pY ˚
p ´ X˚βpq ´

k
ÿ

j“1

λj |
βpj
?
σ

|u.

Again, by introducing the latent variables γ “ pγ1, . . . , γkqT with the prior

fpγq “
śk

j“1

λ2
j

2 expp´
λ2
jγj

2 q, we have the following Bayesian hierarchical model:

Y ˚
p |βp, σ,v,X

˚ „ NnpX˚βp, σV q,

βp|σ, γ1, . . . , γk „ Nkp0k, σDγq,

Dγ “ diag pγ1, . . . , γkq,

σ, γ1, . . . , γk „ fpσq dσ
k

ź

j“1

λ2
j

2
expp´

λ2
jγj

2
q dγj ,

σ, γ1, . . . , γk ą 0.

Then the conditional prior distribution can be denoted as

fpβp, σ|γq „ NIGkp0k,D
´1
γ , a0, b0q, (3.20)

where D´1
γ “ diag pγ´1

1 , . . . , γ´1
k q. For the conditional posterior of γj , we have

γ´1
j |βp, σ,Y

˚
p following an inverse-Gaussian with parameters p

c

λ2
jσ

β2
pj
, λ2

j q, j “

1, . . . , k. The full conditional posterior of βp is obtained by

fpβp|σ,v,γ,Y ˚
p ,X˚q9 expt´

1

2σ
rpY ˚

p ´ X˚βpqTV ´1pY ˚
p ´ X˚βpq ` βT

p D
´1
γ βpsu,

(3.21)

which can be expressed as anNkpµ̄p, σΛ̄
´1q, where µ̄p “ rD´1

γ `X˚V ´1X˚s´1X˚

V ´1Y ˚
p and Λ̄ “ D´1

γ `X˚V ´1X˚. The full conditional posterior of σ is given
by

fpσ|βp,v,γ,Y
˚
p ,X˚q9σ´p

3n`k`2a0
2 `1q expt´

1

2σ
rpY ˚

p ´ X˚βpqTV ´1pY ˚
p ´ X˚βpq

` βT
p D

´1
γ βp ` 2pp1 ´ pq

n
ÿ

i“1

vi ` 2b0su, (3.22)

which is an IG distribution with shape 3n`k`2a0

2 and scale 1
2 rpY ˚

p ´X˚βpqTV ´1

pY ˚
p ´X˚βpq `βT

p D
´1
γ βp ` 2pp1´ pq

řn
i“1 vi ` 2b0s. The full posterior of each
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vi, i “ 1, 2, . . . , n is also tractable:

fpvi|βp, σ, yi,xiq9v
´1{2
i expt´

1

4σ
rv´1

i pyi ´ p1 ´ 2pqvi ´ xT
i βpq2s ´

pp1 ´ pq

σ
viu

“ v
´1{2
i expt´

1

4σ
rv´1

i pyi ´ xT
i βpq2 ` visu

“ v
´1{2
i expt´

1

2
pv´1

i ξ̄i
2

` viζ̄i
2
qu, (3.23)

where ξ̄i
2

“ pyi ´ xT
i βpq2{2σ and ζ̄i

2
“ 1{2σ, which can be recognized as a

GIGp 1
2 , ξ̄i, ζ̄iq. A corresponding Gibbs sampling algorithm can be presented as

below.

Algorithm 3.4. Consider a pth p0 ă p ă 1q Bayesian LASSO regularized QR
with prior calibration (3.20) and the big data X and Y , we obtain the following
Gibbs sampler algorithm.

Step 1 the same as presented in Algorithm 3.2.

Step 2 for each Xm,Ym, a Gibbs sampler for sampling βp, σ, the nm ˆ1 latent
vector vm and γ follows the sub-steps below:

2.1 denote r as the iteration count. Then set r “ 0 and establish pβ
pr“0q
p ,

σpr“0q,v
pr“0q
m ,γpr“0qq to some starting values.

2.2 let X˚
m “ 1?

2
Xm, Y ˚

pm “ 1?
2

pYm ´ p1 ´ 2pqvmq,Vm “ diag pvmq and

Dγ “ diag pγq.

2.3 follow the inverse-Gaussian conditional posterior of γ´1
j , and the full

conditional posteriors of βp, σ,vm given in (3.21) - (3.23),

(i) sample v
pr`1q
m from its GIG posterior fpvm|β

prq
p , σprqq.

(ii) sample γpr`1q “ pγ
pr`1q

1 , . . . , γ
pr`1q

k qT , where 1{γ
pr`1q

j follows an inverse-

Gaussian with parameters p

c

λ2
jσ

prq

pβ
prq

pj q2
, λ2

j q, j “ 1, . . . , k.

(iii) sample σpr`1q from its IG posterior fpσ|β
prq
p ,v

pr`1q
m ,γpr`1qq.

(iv) sample β
pr`1q
p from its multivariate normal posterior fpβp|σpr`1q,v

pr`1q
m ,

γpr`1qq.

2.4 set r “ r ` 1 and return to Step 2.3 until r “ L, where L is the
number of iteration times.

Step 3 calculate the empirical estimates of the means β̄p, σ̄ and γ̄ based on
the pL ´ Bq realizations of the Gibbs sequence (discarding the first B itera-
tions as a burn-in). Then generate an nm i.i.d. sample on v̄i, where v̄i „
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GIGp 1
2 , ξ̄i, ζ̄iq with ξ̄i

2
“ rpyi ´ xT

i β̄pq2s{2σ̄ and ζ̄i
2

“ 1{2σ̄, i “ 1, 2, . . . , nm.
Let D:

γ “ diag pγ̄q,v:
m “ pv̄1, . . . , v̄nm

qT ,Y :
pm “ 1?

2
pYm ´ p1 ´ 2pqv:

mq and

V :
m “ diag pv:

mq,m “ 1, 2, . . . ,M .

Step 4 for each subset, the corresponding likelihood can be represented as a form
of NIGkpµpm,Λm, am, bpmq distribution for pβp, σq. Obtain the multiplicative

distribution NIGkpµp,Λ, a, bpq “
śM

m“1 NIGpµpm,Λm, am, bpmq, then the full
data posterior is given by merging the prior NIGkp0k,D

´1
γ , a0, b0q and the dis-

tribution NIGkpµp,Λ, a, bpq:

NIGkpµ̄p, Λ̄, ā, b̄pq “ NIGkp0k,D
´1
γ , a0, b0qNIGkpµp,Λ, a, bpq,

where µ̄p “ rD´1
γ `

řM
m“1 X

˚T
m V :´1

m X˚
ms´1

řM
m“1 X

˚T
m V :´1

m Y :
pm, Λ̄ “ D´1

γ `
řM

m“1 X
˚T
m V :´1

m X˚
m, ā “ 3n`2a0

2 , b̄p “ b0` 1
2 r

řM
m“1 Y

:˚T
pm V :´1

m Y :˚
pm´µ̄T

p Λ̄µ̄ps`

pp1 ´ pq
řM

m“1∥v:
m∥1 and ∥¨∥1 denotes the ℓ1 norm of a vector.

3.7 Numerical demonstrations and real-data anal-
ysis

In this section, we assess the performance of the proposed big data based al-
gorithms for posterior distribution calculation through a series of numerical
demonstrations and two real-world data analyses.

3.7.1 Numerical demonstrations

3.7.1.1 Bayesian scale mixtures of normals regression

In the Bayesian scale mixtures of normals linear regression scenario, we gen-
erate data from a true model of the form Y “ Xβ ` σϵ, where Y is a
106 ˆ 1 response vector, X is a 106 ˆ 104 predictor matrix with the first col-
umn assigned as a vector of all 1’s and the remaining elements generated from
Np0, 1q. β is a 104 ˆ1 vector where only the first 10 coefficients pβ0, . . . , β9qT “

p10, 9, 8, 7, 6, 5, 4, 3, 2, 1qT are set to be non-zero and σ2 is set as
?
1.25. ϵi

d
“

?
ζizi, i “ 1, . . . , 106 where zi follows Np0, 1q and ζi is an independent random

variable generated from the uniform distribution Up0.5,
?
5q. We further specify

an informative prior NIG104p0, I, 2, 1q for pβ, σ2q where I denotes the identity
matrix. The whole data is partitioned into 100 subsets with each containing
10,000 observations. We use R (R Core Team, 2021) as our programming lan-
guage for all computing tasks. We implement Algorithm 3.1 and the com-
putation of the specified linear model consumes 6.25 min of CPU time. Table
3.1 reports the posterior means, standard deviations and 95% credible intervals
for the non-zero coefficients pβ0, . . . , β9qT . The estimated coefficients for the
remaining predictors closely align with the true values of zero, suggesting their
decisive exclusion from the regression. The simulation results indicate that our
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Parameter True Value Mean Std
95% CI

P2.5 P97.5
β0 10 9.9662 0.0450 9.8769 10.0540
β1 9 8.9525 0.0466 8.8622 9.0443
β2 8 8.0115 0.0460 7.9206 8.1023
β3 7 7.0212 0.0456 6.9320 7.1102
β4 6 6.0759 0.0435 5.9911 6.1608
β5 5 4.9944 0.0467 4.9030 5.0864
β6 4 3.9454 0.0441 3.8582 4.0325
β7 3 2.9999 0.0463 2.9092 3.0899
β8 2 1.9993 0.0457 1.9106 2.0897
β9 1 0.9729 0.0458 0.8829 1.0621

Table 3.1 Estimation results of the first 10 non-zero coefficients for the Bayesian
scale mixtures of normals regression model

proposed big data based approach for the Bayesian scale mixtures of normals re-
gression behaves well and provides an accurate estimation of the true regression
coefficients.

3.7.1.2 Bayesian quantile regression

To investigate the performance of our proposed algorithms for the pth Bayesian
quantile regression, we generate data from a true model Y “ Xβ ` ϵ, where Y
is a 106 ˆ 1 response vector, X is a 106 ˆ 104 design matrix with all elements
generated from Np0, 1q. β “ p10, 9, 8, . . . , 1, 0, . . . , 0qT is a 104 ˆ 1 vector with
only the first 10 coefficients set to be non-zero. ϵ is the disturbance vector
where ϵi „ ALDp0, σ, pq, i “ 1, . . . , 106. We implement Algorithm 3.2 for our
big data BQR model at quantiles p “ 0.50 and p “ 0.95 respectively. In each
scenario, three postulates of σ are considered: σ “ 0.05, σ “ 0.1 and σ “ 0.5.
The given full data is partitioned into 100 subsets with equal size of 10,000
and the Gibbs samplers are run for 15,000 iterations with a burn-in of 5000.
An informative g-prior with g “ 100 is specified, as suggested in Smith and
Kohn (1996). The CPU time required for completing parameter estimation in
each quantile calibration and sigma postulation is under 2.3 hrs. Tables 3.2-3.4
present the posterior means, standard deviations and 95% credible intervals of
the non-zero coefficients for each assignment of σ respectively. Moreover, our
approach effectively excludes most predictors with true coefficients equal to zero
in the DGP. The acquired estimates validate the efficacy of our proposed big
data based algorithms for the BQR model.

3.7.2 Real-data analysis

In this section, we illustrate our divide-and-conquer algorithms for big data
Bayesian quantile regression by two real-world data sets.
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p=0.50 p=0.95

95% CI 95% CI

Parameter True Value Mean Std P2.5 P97.5 Mean Std P2.5 P97.5

β0 10 9.8967 0.0407 9.8156 9.9756 9.7613 0.0503 9.6625 9.8574

β1 9 8.8896 0.0375 8.8158 8.9639 9.0528 0.0485 8.9580 9.1486

β2 8 7.9260 0.0402 7.8469 8.0043 7.8225 0.0483 7.7269 7.9165

β3 7 6.9322 0.0365 6.8594 7.0033 6.7894 0.0457 6.6983 6.8789

β4 6 5.9569 0.0363 5.8866 6.0277 5.7217 0.0439 5.6365 5.8077

β5 5 4.9479 0.0342 4.8809 5.0162 5.0657 0.0451 4.9781 5.1542

β6 4 3.9637 0.0331 3.8996 4.0281 3.9624 0.0373 3.8909 4.0356

β7 3 2.9587 0.0352 2.8903 3.0291 2.9109 0.0417 2.8298 2.9932

β8 2 1.9797 0.0341 1.9130 2.0443 1.9608 0.0410 1.8793 2.0406

β9 1 0.9905 0.0307 0.9293 1.0512 1.0409 0.0410 0.9615 1.1209

Table 3.2 Estimation results of the first 10 non-zero coefficients for the Bayesian
quantile regression model for σ “ 0.05

p=0.50 p=0.95

95% CI 95% CI

Parameter True Value Mean Std P2.5 P97.5 Mean Std P2.5 P97.5

β0 10 9.9201 0.0429 9.8355 10.0025 9.6914 0.1711 9.3500 10.0240

β1 9 8.9235 0.0396 8.8461 9.0017 8.8140 0.1718 8.4757 9.1524

β2 8 7.9363 0.0391 7.8596 8.0129 8.0678 0.1708 7.7326 8.4005

β3 7 6.9333 0.0376 6.8590 7.0063 6.9045 0.1611 6.5836 7.2187

β4 6 5.9282 0.0331 5.8638 5.9925 5.6809 0.1565 5.3736 5.9869

β5 5 4.9604 0.0386 4.8859 5.0361 4.8938 0.1718 4.5582 5.2296

β6 4 3.9523 0.0339 3.8860 4.0183 3.7937 0.1547 3.4907 4.0929

β7 3 2.9767 0.0354 2.9072 3.0461 3.0477 0.1616 2.7333 3.3663

β8 2 1.9761 0.0341 1.9092 2.0426 2.0570 0.1624 1.7381 2.3724

β9 1 0.9944 0.0322 0.9311 1.0570 1.0894 0.1606 0.7765 1.4029

Table 3.3 Estimation results of the first 10 non-zero coefficients for the Bayesian
quantile regression model for σ “ 0.1

3.7.2.1 Airline on-time performance data

The airline on-time performance data set from the 2009 ASA Data Expo is pub-
licly available at http://stat-computing.org/dataexpo/2009/the-data.html.
The data has been used for a demonstration of massive data by Wang et al.
(2016a) and Schifano et al. (2016). It consists of flight arrival and departure
details for all commercial flights within the United States from October 1987
to April 2008. About 12 million flights were involved with 29 variables. Due to
the computing limit, we only consider a complete sub-dataset of the year 2008
with N “ 584, 583 after removing all the missing records. We consider arrival
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p=0.50 p=0.95

95% CI 95% CI

Parameter True Value Mean Std P2.5 P97.5 Mean Std P2.5 P97.5

β0 10 9.8176 0.0549 9.7084 9.9242 8.6045 0.2124 8.1819 9.0229

β1 9 8.8578 0.0509 8.7589 8.9583 7.6146 0.2078 7.2084 8.0211

β2 8 7.9462 0.0514 7.8440 8.0468 6.8295 0.2068 6.4228 7.2320

β3 7 6.9935 0.0498 6.8934 7.0900 6.1102 0.2028 5.7050 6.5057

β4 6 6.0137 0.0467 5.9227 6.1041 5.4773 0.1937 5.0990 5.8537

β5 5 5.0526 0.0488 4.9577 5.1492 4.6158 0.2114 4.2051 5.0316

β6 4 3.9439 0.0389 3.8693 4.0206 3.9798 0.1962 3.5949 4.3631

β7 3 2.9775 0.0458 2.8884 3.0677 2.0863 0.2041 1.6877 2.4921

β8 2 2.1202 0.0451 2.0300 2.2076 1.4316 0.2028 1.0351 1.8261

β9 1 1.0292 0.0433 0.9451 1.1135 0.8008 0.2015 0.4081 1.1914

Table 3.4 Estimation results of the first 10 non-zero coefficients for the Bayesian
quantile regression model for σ “ 0.5

delay (AD) as a continuous variable by modelling logpAD ´ minpADq ` 1q and
employ a linear model that specifies the pth quantile of AD as follows:

QppADq “ βp0 ` βp1HD ` βp2DIS ` βp3NF ` βp4WF ` ϵ,

where HD is the departure time (continuous, in hours), DIS is the distance
(continuous, in thousands of miles), NF is the day/night flight indicator (bi-
nary; 1 if departure between 8 p.m. and 5 a.m., 0 otherwise) and WF is the
weekend/weekday flight indicator (binary; 1 if departure occurred during the
weekend, 0 otherwise). This model was also investigated by Schifano et al.
(2016).

We fit our big data BQR to the above specified regression model by implement-
ing Algorithm 3.2 at p “ 0.50, 0.75 and 0.95 respectively. In each scenario, the
whole observations are partitioned into 100 subsets with the size of nm “ 5845
for m “ 1, . . . , 99 and n100 “ 5928. We assign the informative g-prior by choos-
ing g “ 100. All results are based on 15,000 draws obtained from the Gibbs
samplers with a burn-in of 5000 iterations. Table 3.5 presents the estimated
coefficients and posterior standard deviations at the specified quantile levels.
We observe that the departure time bears a positive association with the arrival
delay, whereas the distance, night-time and weekend flights have negative effects
on the delay across all the three quantiles considered. Nevertheless, the effects
of these covariates are mitigated with the increase of quantile. Night-time flight
is found to be a non-negligible factor to improve on-time performance of flights
facing median and long arrival delays. This empirical study shows that our pro-
posed BQR method facilitates the investigation of the effects of different factors
on various levels of flight arrival delays in the big data scenario.
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p “ 0.50 p “ 0.75 p “ 0.95

Coeff Std Coeff Std Coeff Std
Intercept 1.9483 3.3380 2.6819 3.3598 4.1028 2.9804

HD 0.0790 0.2038 0.0735 0.2014 0.0403 0.1709
DIS -0.0577 1.5080 -0.0573 1.5440 -0.0150 1.4152
NF -0.4222 3.0845 -0.3932 3.0592 -0.1398 2.6500
WF -0.0545 1.9676 -0.0444 1.9923 -0.0372 1.8048

Table 3.5 Coefficient estimates and posterior standard deviations (ˆ103) of
big data BQR estimator for the airline on-time data

Aeolos Iweco Rokas
Min 0.000 0.000 0.000

Quantile (.25) 1.692 0.921 1.573
Median 4.002 2.112 4.579
Mean 4.142 2.141 4.857

Quantile (.75) 6.745 3.426 8.049
Max 8.302 4.549 11.635

Standard deviation 2.649 1.346 3.407
Sample size 17819 15621 21949

Table 3.6 Summary statistics for wind power observations at Aeolos, Iweco
and Rokas

3.7.3 Hourly wind power data

The hourly wind power data set is recorded from 31 December 2007 to 30
December 2010 at the following three wind farms in Crete: Aeolos, Iweco and
Rokas. The data is a collection of hourly observations for wind speed (measured
in m/s), direction (measured in degrees) and power (measured in megawatts).
A complete wind power data of the year 2010 is examined in Taylor (2017).
We remove all the missing data and retain positive observations of the recorded
hourly periods. Table 3.6 presents the summary statistics for wind power ob-
servations (in MW) at Aeolos, Iweco and Rokas respectively.

We fit our big data BQR by modeling the wind power as a linear function of
wind speed and direction. We implement Algorithm 3.2 for these three power
sequences at p “ 0.50 and p “ 0.95 respectively. In each case, the Gibbs sam-
plers are run for 11000 iterations, discarding the first 1000 as a burn-in. For
Aeolos farm, the whole observations are partitioned into 50 subsets with the size
of n1 “ n2 . . . “ n49 “ 356 and n50 “ 375. For Iweco, we partition the whole
data into 50 subsets with the size of n1 “ n2 . . . “ n49 “ 312 and n50 “ 333.
For Rokas, we consider 50 subsets as n1 “ n2 . . . “ n49 “ 438 and n50 “ 487.
We assign the informative g-prior by choosing g “ 100. Table 3.7 displays the
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Model Covariates

Aeolos Iweco Rokas

p “ 0.50 p “ 0.95 p “ 0.50 p “ 0.95 p “ 0.50 p “ 0.95

Coeff S.D. Coeff S.D. Coeff S.D. Coeff S.D. Coeff S.D. Coeff S.D.

Intercept -2.8624 0.0151 -3.6681 0.0160 -0.7907 0.0110 -0.5663 0.0135 -2.8004 0.0130 -1.9270 0.0150

Speed 0.7485 0.0151 1.0447 0.0018 0.3770 0.0015 0.5316 0.0015 0.7860 0.0013 1.0616 0.0010

Direction -0.0003 0.0000 -0.0021 0.0000 -0.0023 0.0000 -0.0039 0.0000 0.0005 0.0000 -0.0040 0.0000

Table 3.7 Coefficient estimates along with posterior standard deviations (S.D.)
for Aeolos, Iweco and Rokas in big data BQR analysis

estimates and posterior standard deviations in our big data BQR model for the
given three wind power series separately. Note that for all power series, the
estimated coefficients of direction are close to zero at the measured percentiles,
meaning that the effect of wind direction on power seems to be minor. Instead,
wind power presents a much stronger correlation to speed than to direction.
The positive coefficients of speed indicate that as wind speed increases, so does
the power capacity. Furthermore, it is visible that speed has a greater impact
on higher (95th percentile) power than lower (50th percentile) power capacity
for all the three aforementioned wind farms.

3.8 Chapter summary

The methods of Bayesian scale mixtures of normals linear regression and Bayesian
quantile regression for big data analysis, including variable selection and pos-
terior predictive distributions, have been explored. This is achieved by using
ALD-based working likelihood functions and conjugate NIG priors. The result-
ing algorithms are easily implemented and the numerical demonstrations show
that the proposed approaches are promising.
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Chapter 4

Bayesian two-part
Kumaraswamy quantile
mixed model with latent
class for semi-continuous
longitudinal data

4.1 Introduction

Semi-continuous data frequently exhibit a combination of zero values and posi-
tively distributed values. These variables can be conceptualized as outcomes of
two distinct stochastic processes. One process governs the occurrence of zeros,
while the other determines the actual values for non-zero observations. This
conceptual framework gives rise to a two-part model designed to account for
both the prevalence of zeros and the typically skewed distribution of non-zero
observations (Heckman, 1976).

The literature focusing on two-part models targeted at semi-continuous data,
where the continuous component is characterized by variables with bounded
support, has garnered increasing attention. In instances where the values of
variables fall within the standard unit interval, the predominant model employed
is the beta regression model proposed by Ferrari and Cribari-Neto (2004). De-
spite the beta distribution being the premier family of continuous distributions
on bounded support and demonstrating reasonable tractability, it possesses cer-
tain complexities. Specifically, its distribution function is an incomplete beta
function ratio and its quantile function is the inverse thereof.
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Jones (2009) introduced an alternative two-parameter distribution defined on
the interval p0, 1q, termed as the Kumaraswamy distribution which is charac-
terized by two positive shape parameters. The roots of this distribution can
be traced back to hydrological studies (Kumaraswamy, 1980; Nadarajah, 2008).
However, its close interchangeability with the beta distribution has not garnered
widespread recognition until Jones (2009), where a comprehensive analysis of
the properties of the Kumaraswamy distribution is first provided to the existing
literature. Notably, the density of the Kumaraswamy distribution exhibits sim-
ilar characteristics to the beta distribution, such as unimodality, uniantimodal-
ity, monotonicity and constancy, depending on the parameter values. Both the
Kumaraswamy and beta distributions exhibit favourable behaviour of skewness
and kurtosis measures as functions of the respective parameters, showcasing
their shared attributes. However, Jones (2009) proposed the Kumaraswamy
distribution as a viable alternative to the beta distribution, emphasizing that
the former shares many properties with the latter while offering greater ease of
handling in various aspects. A distinctive feature of the Kumaraswamy distri-
bution is its straightforward explicit formula for the distribution function and
quantile functions, eliminating dependencies on special functions. This sim-
plicity facilitates effortless random variate generation and plays a specific role
in quantile-based statistical modelling, making the Kumaraswamy distribution
particularly appealing for practical applications due to its tractability. Addition-
ally, the distribution provides simpler formulae for moments of order statistics
compared to the beta distribution. Bayes et al. (2017) proposed a new quantile
parametric mixed regression model which is built upon a reparameterization of
the Kumaraswamy distribution in terms of a given quantile and the precision
parameter, and formulated a Bayesian approach for parameter inference includ-
ing model comparison criteria. The investigation of the beta and Kumaraswamy
regression models, while accounting for the challenge of multi-collinearity, is ex-
plored in Pirmohammadi and Bidram (2022). Performance evaluations of these
models are conducted via the maximum likelihood estimator and the Liu Re-
gression Estimator (Liu, 1993). Through a comprehensive comparative analysis,
the authors demonstrated that the Kumaraswamy regression model outperforms
the beta model in both simulation scenarios and real-world data analyses in-
volving the gasoline yield data and data from the Australian Institute of Sport.

The Kumaraswamy and beta distributions are unsuitable for datasets contain-
ing zeros and/or ones. In light of these limitations, various adaptations in the
realm of semi-continuous data modelling with inflated beta and Kumaraswamy
distributions have emerged. For example, Cook et al. (2008) developed a zero-
inflated beta model with the analysis of corporate capital structure decisions.
Ospina and Ferrari (2010) introduced the zero-and-one-inflated beta distribu-
tion and discussed its estimation based on maximum likelihood and conditional
moments. Liu and Eugenio (2018) presented a thorough review and comparison
of Bayesian and likelihood-based inferences in beta regression and zero-or-one-
inflated beta regression. More recently, Cribari-Neto and Santos (2019) intro-
duced inflated Kumaraswamy distributions. Bayer et al. (2021) proposed an
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inflated version of the Kumaraswamy distribution utilizing the median-based
parametrization from Mitnik and Baek (2013) and conducted model parameter
estimation by maximum likelihood inference.

In the context of longitudinal data analysis, the random effects can account
for heterogeneity that is inexplicable by fixed effects estimator. However, they
may become inappropriate when the response profile exhibits underlying sub-
populations with different patterns. Latent class models (LCMs) are becoming
increasingly popular to handle such heterogeneous processes. A major ana-
lytic goal of LCMs is to identify subgroups, called latent classes, based upon
responses to a set of observed covariates. LCMs assume that subjects are as-
signed into a finite number of classes which share similar characteristics of data.
As such, individuals have their own unique longitudinal trajectories signified by
a set of random effects with variance parameters varying across distinct clus-
ters. The latent class approach has become a widely applicable instrument for
detecting and decomposing unobserved heterogeneity in longitudinal data anal-
ysis. Lin et al. (2002) employed the latent class joint model to the nutritional
prevention of cancer (NPC) trials data to aid the estimation of longitudinally
measured prostate-specific antigen (PSA) trajectories and risk for prostate can-
cer in distinct subpopulations. Han et al. (2007) proposed a parametric latent
class model to jointly accommodate association between the biomarker and re-
current event processes. Proust-Lima et al. (2014) developed joint latent class
models for predicting prostate cancer recurrence after radiation therapy based
on repeated measures of Prostate Specific Antigen. In the Bayesian framework,
Elliott et al. (2005) considered a Bayesian latent growth curve model to identify
patient trajectories of positive affect and negative events over a 35-day experi-
ment in psychiatric care settings. Leiby et al. (2009) proposed a Bayesian growth
curve latent class factor analytic model for multivariate data from a randomized
clinical trial evaluating the efficacy of a new treatment for interstitial cystitis.
Neelon et al. (2011a) put forth a Bayesian two-part latent class model to delin-
eate the impact of parity on mental health utilization and expenditures. In the
same year, Neelon et al. (2011b) pioneered a flexible Bayesian growth mixture
model to jointly investigate the associations between longitudinal blood pres-
sure measurements, preterm birth (PTB) and low birth weight (LBW). Very
recently, Yang and Puggioni (2021) explored Bayesian latent class models for
longitudinal data with zero-inflated count response variables and applied the
established method to cigarette smoking data. Kim et al. (2023) developed a
Bayesian latent class modelling approach for characterizing variation in circa-
dian rhythms among longitudinal metabolites data. To our knowledge, there
is a sparse literature on the Bayesian analysis of two-part latent class quantile
models for bounded longitudinal data.

This chapter extends the model introduced by Bayes et al. (2017) to a two-part
latent class Kumaraswamy quantile mixed regression with Bayesian inference
for semi-continuous longitudinal data. The binomial component is specified
via mixed effects probit regression and the continuous component is formulated
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through a Kumaraswamy quantile mixed effects model. The two components
are linked together by correlated random effects since ignoring such potential
correlation can yield biased inferences (Su et al., 2009). We employ the proposed
model to investigate how available covariates affect the proportion of outpatient
expenses to the total spending on health services in US families. The well-known
RAND Health Insurance Experiment serves as the source of information for the
real data analysis presented in Section 4.4. In view of the tendency among
enrollees to share characteristics related to medical care spending, the two-part
latent class quantile mixed model permits us to cluster individuals with similar
observed expenditure trajectories and identify latent classes of subjects who
exhibited moderate-to-high probability of outpatient spending and the amount
spent as well as subjects who were hesitant to such expenses across the total
health outlay.

4.2 Bayesian two-part latent class Kumaraswamy
quantile mixed model

4.2.1 Two-part latent class Kumaraswamy quantile mixed
model

A random variable Y follows the Kumaraswamy distribution if its probability
density function is given by

fpy|α, βq “ αβyα´1p1 ´ yαqβ´1, 0 ă y ă 1, α, β ą 0. (4.1)

The cumulative distribution function (cdf) has a closed expression by

F py|α, βq “ 1 ´ p1 ´ yαqβ (4.2)

Then the quantile function of the Kumaraswamy distribution is readily obtained
from the cdf as

κpqq “ F´1pqq “ t1 ´ p1 ´ qq1{βu1{α (4.3)

for any quantile level 0 ă q ă 1. Following Bayes et al. (2017), we consider
a reparameterization of the Kumaraswamy distribution in terms of the q-th
quantile κ “ κpqq and the precision parameter φ “ φpqq

κ “ t1 ´ p1 ´ qq1{βu1{α and φ “ ´ logp1 ´ p1 ´ qq1{βq, (4.4)

where q is assumed to be known and the parameter space of pκ, φqT is given by
p0, 1q ˆ p0,8q. Then the pdf and the cdf of the reparameterized Kumaraswamy
distribution turn out to be

fpy|κ, φq “ ´
logp1 ´ qqφ

logp1 ´ e´φq logpκq
y´

φ
logpκq

´1
t1 ´ y´

φ
logpκq u

logp1´qq

logp1´e´φq
´1

(4.5)
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and

F py|κ, φq “ 1 ´ t1 ´ y´
φ

logpκq u
logp1´qq

logp1´e´φq (4.6)

respectively. We denote this parameterization as Y „ Kumpκ, φ, qq where the
quantile parameter κ P p0, 1q acts as a location parameter, φ ą 0 is a precision
parameter and the probability q is assumed to be fixed according to the quantile
of interest.

Let yij denote the semi-continuous response of the j-th repeated measurement
for the i-th individual, where yij P r0, 1q, i “ 1, . . . , n and j “ 1, . . . , ni. The
density of yij in the proposed two-part Kumaraswamy quantile mixed model
can be written in the following way:

fpyijq “ p1 ´ γijqIpyij “ 0q ` γij ˆ Kumpyij |κij , φ, qqIp0 ă yij ă 1q, (4.7)

where γij “ Prpyij ą 0q, Ip¨q is the indicator function and Kumpκij , φ, qq

denotes the Kumaraswamy distribution with observation-specific quantile κij ,
precision φ and fixed quantile level q. The m-th raw moment of this distribution
is given by EpY m

ij |κij , φ, q, γijq “ γijµm, where µm is the m-th raw moment of
the distribution Kumpκij , φ, qq. For example, we have

EpYij |κij , φ, q, γijq “ γijµ1,

VarpYij |κij , φ, q, γijq “ γijµ2 ´ γ2
ijµ

2
1.

The model (4.7) can be extended to accommodate latent classes by introducing
a latent categorical variable Ci such that Ci “ k if subject i belongs to class
k, k “ 1, . . . ,K. Given the value of Ci, the density of Yij is obtained with
class-specific parameters:

fpyij |Ci “ kq “ p1 ´ γijkqIpyij “ 0q ` γijk ˆ Kumpyij |κijk, φk, qqIp0 ă yij ă 1q,

gγpγijkq “ xT
1ijβ1k ` b1i,

gκpκijkq “ xT
2ijβ2k ` b2i, k “ 1, . . . ,K.

(4.8)

We refer to the formulation (4.8) as a two-part latent class Kumaraswamy quan-
tile mixed model, where gγ and gκ denote the probit or logit link function for
γijk and κijk respectively; xlij are pl ˆ 1 vectors of fixed effect covariates for
component l; βlk are class-specific fixed effect coefficient vectors for component
l (l “ 1, 2) and bi|Ci “ pb1i, b2iq

T |Ci is a stacked random effects vector for sub-
ject i, here we assume bi|Ci „ N2p0,Σkq with class-specific covariance Σk.

We assume the latent categorical variable Ci follows a categorical distribution,
that is, Ci takes the value k with probability δik, k “ 1, . . . ,K:

Ci „Catpδ1k, . . . , δiKq,

δik “
eη

T
i ϕk

řK
h“1 e

ηT
i ϕh

,
(4.9)
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where δik is formulated via a generalized logit model, ηi denotes a vˆ1 covariate
vector and ϕk represents the vector of associated regression parameters for each
class k, with ϕ1 “ 0 for identifiability such that the remaining coefficients
can be interpreted in terms of the change in log-odds relative to this reference
category. We assume the number of latent classes K is fixed throughout this
chapter. For model comparison and the determination of K, we consider the
deviance information criterion (DIC) proposed by Spiegelhalter et al. (2002)
and its adaption DIC3 developed by Celeux et al. (2006).

4.2.2 Bayesian inference for the model

4.2.2.1 Prior specification

We assign weakly informative priors to all class-specific parameters tϕk,β1k,β2k,
φk,Σku. Specifically, we impose a diffuse v-dimensional normal prior πpϕkq “

Nvp0, 100Ivq on ϕk. In the case of v “ 1, we assign a conjugate Dirichlet prior
DirpK,αq on probabilities δ “ pδ1, . . . , δKqT directly, where α “ pα1, . . . , αKqT

is a collection of the concentration hyperparameters for the Dirichlet distribu-
tion. Then the conditional posterior of δ can be given by δ|Ci,α „ DirpK,m`

αq, where m “ pm1, . . . ,mKqT with mk denoting the number of occurrences of
Ci “ k, k “ 1, . . . ,K. The hyperparameter αk plays a crucial role in influenc-
ing how uniform the distribution will be. Specifically, it denotes the proportion
of cases allocated to each of the K latent classes. When the values of αk are
equal across all classes, the estimated class proportions are more evenly bal-
anced in size. The choice of αk can significantly impact the posterior results.
Research has indicated that an increase in αk leads to more informative Dirich-
let distributions, thereby reducing the likelihood of very small mixture weights.
This reduction in probability mass assigned by the prior to membership vectors
with empty components contributes to a lower probability of overestimating the
number of latent classes K in the dataset (Frühwirth-Schnatter, 2006; Nobile,
2004). Adhering to the suggestion in Asparouhov and Muthén (2011), we adopt
the practice of using values of αk larger than 1 (e.g., αk = 10) to prevent the
emergence of empty class solutions.

For the fixed effect coefficients, we assume priors πpβ1kq “ Np1pµβ1 ,Σβ1q and
πpβ2kq “ Np2pµβ2 ,Σβ2q respectively. Above, we have assumed identical prior
hyperparameters throughout different classes, but in general this is not neces-
sary. We assign noninformative inverse gamma priors IGpρ1, ρ2q with shape ρ1
and scale ρ2 for the Kumaraswamy precisions φk. For class-specific covariance
Σk of the random effects vector bi, we assume a conjugate inverse-Wishart prior
IWpτ0,Ψ0q with degrees of freedom τ0 and 2 ˆ 2 scale matrix Ψ0, which leads
to closed-form conditional inverse-Wishart posteriors.
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4.2.2.2 Posterior formulation

Denote θk “ pβT
1k,β

T
2k, φkqT and assume a priori independence of the parame-

ters, the joint posterior of the full model parameters is obtained by

fpϕT
1 , . . . ,ϕ

T
K , C1, . . . , Cn,θ

T
1 , . . . ,θ

T
K , bT1 , . . . , b

T
n ,Σ1, . . . ,ΣK |yq

9

K
ź

k“1

#

n
ź

i“1

„ ni
ź

j“1

fpyij |θk, biq δik fpbi|Σkq

ȷIpCi“kq

ˆ πpβ1kqπpβ2kqπpΣkq

+

K
ź

h“2

πpϕhq,

(4.10)

where y “ py11, . . . , y1n1
, . . . , yn1, . . . , ynnn

qT and fpyij |θk, biq is given in (4.8).
We elaborate the posterior formulations of ϕk, Ci,θk, bi and Σk as follows:

(i) The full conditional for the v-dimensional vector ϕk, k “ 1, . . . ,K is given
by

fpϕk|¨q9

n
ź

i“1

PrpCi “ k|ϕkqIpCi“kqπpϕkq

“
ź

i:Ci“k

ˆ

eη
T
i ϕk

řK
h“1 e

ηT
i ϕh

˙

Nvp0, 100Ivq. (4.11)

Considering there is no closed-form expression of the density (4.11), we
resort to a random-walk Metropolis approach for sampling this full con-
ditional posterior, where a multivariate v-dimensional normal proposal
distribution centered at previous value ϕold

k and with covariance matrix
sv Σϕk

is employed. For better mixing and correct convergence, we adopt
the idea of adaptive Metropolis algorithm proposed by Haario et al. (1999,
2001) to tune Σϕk

using the empirical covariance obtained from an ex-
tended burn-in period. The use of the scaling parameter sv is to achieve
an optimal acceptance rate of approximately 23%. As a basic choice, we
adopt the value sv “ 2.4{

?
v as suggested in Gelman et al. (1996).

(ii) We draw the latent classification variable Ci from its full categorical pos-
terior distribution with updated probabilities δ̄ik:

Ci „ Catpδ̄1k, . . . , δ̄iKq,

δ̄ik “
δik

“
śni

j“1 fpyij |θk, biq
‰

πpbi|Ci “ kq
řK

h“1 δih
“
śni

j“1 fpyij |θh, biq
‰

πpbi|Ci “ hq

“
δik

“
śni

j“1 fpyij |θk, biq
‰

N2p0,Σkq
řK

h“1 δih
“
śni

j“1 fpyij |θh, biq
‰

N2p0,Σhq
. (4.12)

(iii) For the fixed effect coefficient vector β1k of the component 1 in model
(4.8), we consider a probit link gγ for modelling γijk, that is, Prpyij ą

0|Ci “ k,β1k, b1iq “ γijk “ ΦpxT
1ijβ1k ` b1iq, where Φp¨q denotes the cdf
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of a standard normal distribution. Assuming a multivariate normal prior
πpβ1kq “ Np1pµβ1 ,Σβ1q, the posterior of β1k is given by

fpβ1k|¨q9

!

Ipyij ą 0qfpyij |Ci “ k,β1k, b1iqΦpxT
1ijβ1k ` b1iq

`Ipyij “ 0qr1 ´ ΦpxT
1ijβ1k ` b1iqs

)

πpβ1kq.

Due to the intractability of this posterior density, we resort to the well-
known data augmentation strategy of the Bayesian probit regression model
proposed by Albert and Chib (1993), which enables Gibbs-sampling for the
model fitting. Specifically, we introduce latent variables zij , i “ 1, . . . , n,
j “ 1, . . . , ni such that zij |Ci “ k,β1k, b1i „ NpxT

1ijβ1k ` b1i, 1q. The
augmented likelihood is thus given by

fpyij , zij |Ci “ k,β1k, b1iq “
ź

i:Ci“k

ni
ź

j“1

Npzij |xT
1ijβ1k ` b1i, 1qˆ

“

Ipzij ą 0qIpyij ą 0qfpyij |Ci “ k,β1k, b1iq ` Ipzij ď 0qIpyij “ 0q
‰

.

The full conditional distribution of zij |yij , Ci “ k,β1k, b1i follows a trun-
cated normal distribution:

fpzij |yij ą 0, Ci “ k,β1k, b1iq9Npzij |xT
1ijβ1k ` b1i, 1q Ipzij ą 0q,

fpzij |yij “ 0, Ci “ k,β1k, b1iq9Npzij |xT
1ijβ1k ` b1i, 1q Ipzij ď 0q.

The full conditional of β1k follows a p1-dimensional normal distribution:

fpβ1k|¨q “ Np1
pµ̄β1k

, Σ̄β1k
q,

where Σ̄β1k
“ pXT

k Xk ` Σ´1
β1

q´1,

µ̄β1k
“ Σ̄β1k

“

XT
k pzk ´ b1kq ` Σ´1

β1
µβ1

‰

. (4.13)

Here µβ1
and Σβ1

indicate the prior mean vector and covariance matrix
of β1k respectively; Xk is an Nk ˆ p1 design matrix, where Nk denotes
the number of observations in class k; zk is an Nk ˆ 1 vector of the latent
zij collections and b1k is an Nk ˆ1 concatenation of the random intercept
b1i for class k.

(iv) Denote y˚
k as a ζk ˆ 1 sub-vector of nonzero observations in class k, X˚

2k

the corresponding ζk ˆ p2 design matrix and b˚
2k a ζk ˆ 1 concatenation of

the random intercept b2i restricted to positive observations for class k. For
the fixed effect coefficient vector β2k of the Kumaraswamy component in
model (4.8), we consider a logit link gκ for modelling quantile κijk, that is,
logitpκijkq “ xT

2ijβ2k ` b2i, k “ 1, . . . ,K. Assuming a multivariate normal
prior πpβ2kq “ Np2

pµβ2
,Σβ2

q, the conditional posterior of β2k is obtained
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by

fpβ2k|y˚
k , b

˚
2k, φk, qq9

!

ź

@i,j s.t. yiją0
i:Ci“k

fpyij |Ci “ k,β2k, b2i, φk, qq

)

πpβ2kq

“

!

ź

@i,j s.t. yiją0
i:Ci“k

´ logp1 ´ qqφk

logp1 ´ e´φkq logpκijkq
y

´
φk

logpκijkq
´1

ij

”

1 ´ y
´

φk
logpκijkq

ij

ı

logp1´qq

logp1´e´φk q
´1)

Np2
pµβ2

,Σβ2
q,

(4.14)

where κijk “ ex
T
2ijβ2k`b2i{p1 ` ex

T
2ijβ2k`b2iq. Conditional on Ci “ k, we

update β2k via a random-walk Metropolis algorithm with a multivariate
p2-dimensional normal proposal centered at previous value βold

2k and with
covariance matrix sp2

Rβ2k
where sp2

is a scaling factor for optimal accep-
tance rate achievement and Rβ2k

is tuned using the empirical covariance
obtained from an extended burn-in period of the chain.

(v) Assuming a noninformative inverse gamma prior on the Kumaraswamy
precision φk, its conditional posterior is then given by

fpφk|y˚
k ,β2k, b

˚
2k, qq9

!

ź

@i,j s.t. yiją0
i:Ci“k

fpyij |Ci “ k,β2k, b2i, φk, qq

)

πpφkq

“

!

ź

@i,j s.t. yiją0
i:Ci“k

´ logp1 ´ qqφk

logp1 ´ e´φkq logpκijkq
y

´
φk

logpκijkq
´1

ij

”

1 ´ y
´

φk
logpκijkq

ij

ı

logp1´qq

logp1´e´φk q
´1)

IGpρ1, ρ2q,

(4.15)

where κijk,y
˚
k and b˚

2k are defined in (iv). Again, we resort to random-
walk Metropolis to draw φk from its full conditional (4.15). Specifically,
we generate and only keep positive candidate values drawn from a nor-
mal proposal Npφold

k , σ2
φk

q, where φold
k is the realization of φk at previous

iteration and σ2
φk

is tuned to achieve the acceptance rate around 23%.

(vi) Under an inverse-Wishart prior πpΣkq “ IWpτ0,Ψ0q, we update Σk from
its full inverse-Wishart conditional:

fpΣk|¨q9

!

ź

i:Ci“k

|Σk|´
1
2 e

1
2b

T
i Σ´1

k bi

)

πpΣkq

9|Σk|
mk
2 e

1
2 tr

`

p
ř

i:Ci“k bib
T
i qΣ´1

k

˘

|Σk|´
τ0`2`1

2 e´ 1
2 trpΨ0Σ

´1
k q

“ |Σk|
mk`τ0`2`1

2 e
1
2 tr

`

pΨ0`b:

k
T b:

kqΣ´1
k

˘

, (4.16)

which is an IWpmk`τ0,Ψ0`b:

k
T b:

kq, where mk “
ř

i IpCi “ kq is defined

in sec. 4.2.2.1 and b:

k is an mk ˆ2 matrix with the first column containing
b1i’s and the second column containing b2i’s for subject i assigned to the
k-th class.

(vii) The full conditional of the stacked random effects vector bi “ pb1i, b2iq
T

is as follows:

fpbi|¨q9fpyi|Ci “ k,β1k,β2k, bi, φk, qqπpbi|Ci “ kq

“ fpyi|Ci “ k,β1k,β2k, bi, φk, qqN2p0,Σkq, (4.17)

63



where yi “ pyi1, . . . , yiniq
T . Conditional on ci “ k, we update bi via the

seminal idea of adaptive random-walk Metropolis algorithm. We consider
a bivariate normal proposal N2pboldi , s2Rbiq, where boldi is the previous
iteration value of bi, Rbi is the proposal covariance adjusted according to
the empirical covariance obtained from an extended burn-in period and
s2 is the proposal scale based on the optimal acceptance rates.

4.2.2.3 Sampling schemes

Appealing to the presented results, the Bayesian sampling schemes for the pos-
terior computation of the proposed two-part latent class Kumaraswamy quantile
mixed model proceed by iterating the following steps after initializing values:

(i) Draw ϕk, k “ 1, . . . ,K using the adaptive random-walk Metropolis algo-
rithm;

(ii) Sample Ci from its full categorical conditional with updated probabilities
δ̄ik given in (4.12);

(iii) Given the current value of Ci “ k, k “ 1, . . . ,K, update the class-specific
parameters β1k,β2k, φk and Σk:

(iii.a) Draw β1k from its full p1-dimensional normal conditional formulated
in (4.13).

(iii.b) Draw β2k using the adaptive random-walk Metropolis algorithm.

(iii.c) Draw φk by the adaptive random-walk Metropolis algorithm.

(iii.d) Draw Σk from its full inverse-Wishart conditional given in (4.16).

(iv) Update bi using the adaptive random-walk Metropolis algorithm.

A well-known computational issue emerged in Bayesian finite mixture models is
the so-called label switching in MCMC outputs, where samples of component-
specific parameters may be associated with different class labels during the
MCMC run. Consequently, the ergodic averages of component-specific quan-
tities will coincide and become invalid for model inference. Several attempts
to solve the label switching have focused on imposing suitable identifiability
constraints (Richardson and Green, 1997; Lenk and DeSarbo, 2000; Frühwirth-
Schnatter, 2001). However, as Stephens (2000) states, the label switching prob-
lem may remain after imposing an identifiability constraint if the constraint
has not been carefully chosen. As an alternative, Stephens (2000) proposed a
post hoc relabelling algorithm which iteratively minimizes the Kullback-Leibler
divergence between an averaged matrix of classification probabilities during the
course of the MCMC run, and the classification matrix in each MCMC iteration.
We adopt Stephens’ approach to address the potential label switching problem
before assessing posterior convergence for the proposed model.
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4.2.3 Model selection

The DIC for model comparison was developed by Spiegelhalter et al. (2002)
and takes the form

DIC “ DpΨq ` pD

“ DpΨq ` pDpΨq ´ Dp rΨqq

“ 2DpΨq ´ Dp rΨq

“ ´4Eθrlog fpy|Ψq|ys ` 2 log fpy| rΨq,

where DpΨq “ EΨr´2 log fpy|Ψq|ys is the posterior mean deviance. pD is re-

ferred to as the effective number of parameters and defined as pDpΨq ´Dp rΨqq,

wherein rΨ is an estimate of Ψ depending on the data y. One commonly em-
ployed estimate is the posterior mean rΨ “ Ψ̄ “ ErΨ|ys (Gelman et al., 2014).

Celeux et al. (2006) proposed an adapted version of DIC, referred to as DIC3,

which computes Dp rΨq by estimating the posterior mean of the marginal like-
lihood across all classes, rather than relying on an estimate of the parameters
depending on data as in DIC. For mixture models, DIC3 is preferred because
the density of mixtures remains invariant to label switching, rendering this ap-
proach more stable compared to utilizing the posterior mean of the parameters.
Specifically,

DIC3 “ DpΨq ` pD3

“ DpΨq ` pDpΨq ´ Dp rΨq3q

“ 2DpΨq ´ Dp rΨq3

“ ´4EΨrlog fpy|Ψq|ys ` 2 log f̂pyq,

where Dp rΨq3 “ ´2 log ŷ. Both DpΨq and Dp rΨq3 can be approximated using
M simulated values Ψp1q, . . . ,ΨpMq from MCMC chains. In particular,

DpΨq “ ´2
1

M

M
ÿ

m“1

log
N

ź

i“1

K
ÿ

k“1

δ
pmq

ik fpyik|Ψ
pmq

ik q,

Dp rΨq3 “ ´2 log
1

M

M
ÿ

m“1

N
ź

i“1

K
ÿ

k“1

δ
pmq

ik fpyik|Ψ
pmq

ik q.

We employ the DIC3 as model selection criteria in our real data application
analysis.

4.3 Simulation studies

We conduct a simple simulation study to assess the performance of our proposed
Bayesian two-part latent class Kumaraswamy quantile mixed model. Models
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0.5-Quantile Kumaraswamy Mixed Model

Class Model Component Parameter True Value Posterior Mean (SD)

1 (18%) Binomial β111 (Intercept) 0.25 0.2379 (0.2236)

β112 (Time) -0.5 -0.4463 (0.0435)

Kumaraswamy β211 (Intercept) 1.5 1.0583 (0.3966)

β212 (Time) -0.85 -0.7968 (0.1284)

φ1 (Precision) 1 0.8822 (0.1155)

Covariance σ2
11 (Varrb1is) 2 1.5911 (0.4997)

σ2
12 (Varrb2is) 2 1.6785 (0.6384)

ϱ1 (Covrb1i, b2is) 0.5 0.6814 (0.4498)

2 (20.8%) Binomial β121 (Intercept) 0.2 0.1085 (0.1375)

β122 (Time) 0.2 0.2040 (0.0210)

Kumaraswamy β221 (Intercept) 1.25 1.1954 (0.0336)

β222 (Time) 1.25 1.2581 (0.0059)

φ2 (Precision) 0.5 0.5086 (0.0279)

Covariance σ2
21 (Varrb1is) 1 1.0472 (0.2902)

σ2
22 (Varrb2is) 1 0.9203 (0.1624)

ϱ2 (Covrb1i, b2is) -0.15 -0.0688 (0.1370)

3 (61.2%) Binomial β131 (Intercept) -0.45 -0.4003 (0.1002)

β132 (Time) 0.35 0.3261 (0.0152)

Kumaraswamy β231 (Intercept) 0.3 0.3660 (0.0275)

β232 (Time) 0.3 0.3115 (0.0015)

φ3 (Precision) 1.25 1.0414 (0.0276)

Covariance σ2
31 (Varrb1is) 1.5 1.4599 (0.2208)

σ2
32 (Varrb2is) 0.5 0.6361 (0.0620)

ϱ3 (Covrb1i, b2is) 0 0.0976 (0.0740)

SD: Posterior standard deviation.
True class proportions are 17.6%, 22.4% and 60%.

Table 4.1 Posterior summaries for the simulated two-part three-class 0.5-
quantile Kumaraswamy mixed model
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0.75-Quantile Kumaraswamy Mixed Model

Class Model Component Parameter True Value Posterior Mean (SD)

1 (18%) Binomial β111 (Intercept) 0.25 0.1656 (0.1973)

β112 (Time) -0.5 -0.4487 (0.0474)

Kumaraswamy β211 (Intercept) 1.5 1.0928 (0.3210)

β212 (Time) -0.85 -0.8004 (0.1019)

φ1 (Precision) 1 0.8819 (0.1378)

Covariance σ2
11 (Varrb1is) 2 1.6339 (0.4893)

σ2
12 (Varrb2is) 2 1.7680 (0.6406)

ϱ1 (Covrb1i, b2is) 0.5 0.6832 (0.4351)

2 (21%) Binomial β121 (Intercept) 0.2 0.1421 (0.1399)

β122 (Time) 0.2 0.2040 (0.0211)

Kumaraswamy β221 (Intercept) 1.25 1.3319 (0.0856)

β222 (Time) 1.25 1.2522 (0.0161)

φ2 (Precision) 0.5 0.5037 (0.0294)

Covariance σ2
21 (Varrb1is) 1 1.0277 (0.2814)

σ2
22 (Varrb2is) 1 0.9224 (0.1469)

ϱ2 (Covrb1i, b2is) -0.15 -0.0841 (0.1186)

3 (61%) Binomial β131 (Intercept) -0.45 -0.4185 (0.0952)

β132 (Time) 0.35 0.3267 (0.0150)

Kumaraswamy β231 (Intercept) 0.3 0.2140 (0.0454)

β232 (Time) 0.3 0.3184 (0.0040)

φ3 (Precision) 1.25 0.8962 (0.0245)

Covariance σ2
31 (Varrb1is) 1.5 1.4446 (0.1933)

σ2
32 (Varrb2is) 0.5 0.6548 (0.0648)

ϱ3 (Covrb1i, b2is) 0 0.1241 (0.0769)

SD: Posterior standard deviation.
True class proportions are 17.6%, 22.4% and 60%.

Table 4.2 Posterior summaries for the simulated two-part three-class 0.75-
quantile Kumaraswamy mixed model
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0.95-Quantile Kumaraswamy Mixed Model

Class Model Component Parameter True Value Posterior Mean (SD)

1 (18%) Binomial β111 (Intercept) 0.25 0.1844 (0.2088)

β112 (Time) -0.5 -0.4392 (0.0422)

Kumaraswamy β211 (Intercept) 1.5 1.3028 (0.2871)

β212 (Time) -0.85 -0.8171 (0.0580)

φ1 (Precision) 1 0.8781 (0.1447)

Covariance σ2
11 (Varrb1is) 2 1.5339 (0.4495)

σ2
12 (Varrb2is) 2 1.7608 (0.4735)

ϱ1 (Covrb1i, b2is) 0.5 0.5306 (0.3860)

2 (21.2%) Binomial β121 (Intercept) 0.2 0.1925 (0.1473)

β122 (Time) 0.2 0.2049 (0.0211)

Kumaraswamy β221 (Intercept) 1.25 1.2639 (0.0001)

β222 (Time) 1.25 1.2488 (0.0001)

φ2 (Precision) 0.5 0.5155 (0.0338)

Covariance σ2
21 (Varrb1is) 1 1.0904 (0.3017)

σ2
22 (Varrb2is) 1 0.9915 (0.1434)

ϱ2 (Covrb1i, b2is) -0.15 -0.1754 (0.1264)

3 (60.8%) Binomial β131 (Intercept) -0.45 -0.4640 (0.1020)

β132 (Time) 0.35 0.3255 (0.0156)

Kumaraswamy β231 (Intercept) 0.3 0.3074 (0.0299)

β232 (Time) 0.3 0.3001 (0.0046)

φ3 (Precision) 1.25 0.7119 (0.0245)

Covariance σ2
31 (Varrb1is) 1.5 1.4463 (0.2260)

σ2
32 (Varrb2is) 0.5 0.7740 (0.0676)

ϱ3 (Covrb1i, b2is) 0 0.1097 (0.0818)

SD: Posterior standard deviation.
True class proportions are 17.6%, 22.4% and 60%.

Table 4.3 Posterior summaries for the simulated two-part three-class 0.95-
quantile Kumaraswamy mixed model
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with different classes were fitted in R (R Core Team, 2021) using the MCMC
sampling schemes presented in Section 4.2.2.3. The R code was developed by
the authors with some adaptions based upon the code provided in Neelon et
al. (2015). We choose three quantile levels: q “ 0.5, q “ 0.75 and q “ 0.95.
For the data generation process in each quantile specification scenario, we draw
100 datasets from a three-class model according to formulation (4.8). We con-
sider 500 subjects (i “ 500), each with 10 observations (j “ 10). We con-
struct fixed effect covariates matrix T500ˆ10, with each row consisting of the
time indexes 1, 2, . . . , 10. The fixed effect covariates for both the binomial and
the Kumaraswamy components are then set as xlij “ pxlij1, xlij2qT , l “ 1, 2,
where xlij1 “ 1 corresponds to the intercept and xlij2 is chosen as class-specific
fixed effect time covariates. The parameters are specified as follows: β11 “

pβ111, β112qT “ p0.25,´0.5qT , β21 “ pβ211, β212qT “ p1.5,´0.85qT , φ1 “ 1 for
class 1; β12 “ pβ121, β122qT “ p0.2, 0.2qT , β22 “ pβ221, β222qT “ p1.25, 1.25qT ,
φ2 “ 0.5 for class 2; β13 “ pβ131, β132qT “ p´0.45, 0.35qT , β23 “ pβ231, β232qT “

p0.3, 0.3qT , φ3 “ 1.25 for class 3. Given Ci “ k, the stacked random effect vec-

tors are set as bi “ pb1i, b2iq
T „ N2p0,Σkq, k “ 1, 2, 3, where Σ1 “

` σ2
11 ϱ1

ϱ1 σ2
12

˘

“

`

2 0.5
0.5 2

˘

, Σ2 “
` σ2

21 ϱ2

ϱ2 σ2
22

˘

“
`

1 ´0.15
´0.15 1

˘

and Σ3 “
` σ2

31 ϱ3

ϱ3 σ2
32

˘

“
`

1.5 0
0 0.5

˘

. Fol-

lowing (4.9), we allow the categorical probability δik to be associated with the
covariate vector ηi which consists of an intercept and independent Bernoulli
Berp0.65q variables. We set ϕ2 “ p0.1, 0.1qT , ϕ3 “ p1.75,´0.9qT and ϕ1 “ 0
for identifiability. We assign non-informative priors for formulated model pa-
rameters. Specifically, we have πpϕkq “ πpβ1kq “ πpβ2kq “ N2p0, 100I2q,
πpφkq “ IGp0.001, 0.001q and πpΣkq “ IWp2,diagp2qq. For each replication,
we discard the first 10,000 iterations of the MCMC chain as a burn-in and run
10,000 iterations with a thinning equal to 5, leading to 2000 samples upon which
the posterior inference for each parameter is performed. The CPU time takes
around 25 min to complete parameter estimation in each quantile calibration
for one simulated dataset.

With the three different quantile level specifications, Tables 4.1-4.3 present the
model fitting summaries averaged over the 100 simulations respectively. The
first column reports the estimated class percentages, which present a very good
approximation to the true class proportions of 17.6%, 22.4% and 60% for class
1-3 separately. The fifth column provides the averaged posterior means with
the posterior standard deviations for each parameter of interest. We observe
that the bias is reasonably low for all parameters, including the estimation for
the random effect covariance components and the estimates under the upper
quantile level (p “ 0.95) scenario. This simulation study indicates our pro-
posed Bayesian approach for the two-part latent class Kumaraswamy quantile
mixed model achieves desirable estimation results for regimes covering different
quantile levels including extremes.
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4.4 Real data analysis

In this section we present the application of the proposed methodology to the
RAND Health Insurance Experiment (HIE) dataset. The RAND HIE is one
of the longest running and largest controlled health insurance experiments ever
conducted in the United States, to assess how the patient’s use of health ser-
vices and quality of care are affected by different types of randomly assigned
health insurance. Because of the random assignment, the reliability of insurance
coverage and the availability of important health care utilisation variables, the
data is widely regarded as the most reliable basis for health insurance and med-
ical demand modelling. The experiment, conducted by the RAND Corporation
from 1974 to 1982, collects data from about 8,000 enrollees in 2,823 families
from six sites across the USA. Each family was enrolled in one of 14 different
HIS insurance plans for either 3 or 5 years. For a full description and discussion
of the data, see, e.g., Aron-Dine et al. (2013), Deb and Trivedi (2002), Duan
et al. (1983), and Manning et al. (1987). The data is well documented and
publicly available in the R package sampleSelection.

Our objective is to explore the impact of various covariates, including temporal
trends and economic budget characteristics, on the ratio of outpatient expenses
(outpdol) to the overall expenditure on health services (meddol) within US
households across various quantile levels. Additionally, we aim to uncover latent
subgroups within the population. Outpatient expenses encompass all covered
outpatient medical services, excluding dental care, outpatient psychotherapy
and outpatient drugs or supplies. Total medical expenses comprise all covered
inpatient and outpatient services, inclusive of drugs, supplies and inpatient costs
for newborns, but excluding dental care and outpatient psychotherapy. We con-
sider an available subsample N “ 4080 from the complete cases of families who
were enrolled in the HIS insurance plans from year 1 to year 5 of the study,
where the ratio of outpatient to medical expenditures falls within the range
[0,1). We allow the natural logarithm of medical expenses (lnmeddol) to serve
as class-membership covariates; the ηi in (4.9) therefrom represents a 2 ˆ 1
vector consisting of an intercept and the considered continuous variables. The
fixed effect covariates xij for both the binomial and the Kumaraswamy compo-
nents are composed of an intercept term and five dummy indicators representing
years 1-5. Here categorical modelling of time is chosen to accommodate optimal
flexibility in capturing the time trend. Alternative parameterizations, such as
polynomials or splines of the time, may be preferable in scenarios with numer-
ous time points. The summary statistics for the response variable are reported
in Table 4.4. From the table, there are 23.92% enrollees who did not have any
outpatient expense over the total medical expenditure. Furthermore, the me-
dian, 0.25th and 0.75th quantiles of the proportional outpatient expenditure
are 0.4412, 0.0216 and 0.7444 respectively, with the maximum proportion be-
ing 0.9981. The displayed characteristics indicate the desirability of adopting
a two-part quantile regression model for accommodating the data. Specifically,

70



Mean SD Kurtosis No Exp. (%) Maximum q-th quantile
0.25 0.50 0.75

0.4247 0.3408 1.5199 23.9216 0.9981 0.0216 0.4412 0.7444

Table 4.4 Summary statistics for the proportion of outpatient expenses to the
total medical expenditures

the binomial process will assess the association between the covariates and the
probability of having any outpatient expense. The Kumaraswamy process will
investigate whether the covariates exert different influences on the proportion
of outpatient outgo and provide insights for significant determinants across low
and high outpatient cost, such as proportions at the 25th and 75th percentiles.

We implement a series of two-part latent class Kumaraswamy quantile mixed
models as in (4.8), allowing the number of classes K to range from two to
four. Within each class, we fit mixed effect models with random intercepts for
both components under three quantile level scenarios: q “ 0.25, q “ 0.5 and
q “ 0.75. We impose diffuse priors for model parameters in each class: πpϕkq “

N3p0, 100I3q, πpβ1kq “ πpβ2kq “ N4p0, 100I4q, πpφkq “ IGp0.001, 0.001q and
πpΣkq “ IWp2,diagp2qq. We run 200,000 iterations for each model, discard-
ing the first 50,000 for the burn-in. We retain every 50th draw for thinning to
reduce autocorrelation. We examine trace plots and autocorrelation function
plots for all model parameters to assess convergence of the chains. All trace
plots showed good overlapping and mixing trajectories, indicating evidence of
convergence to the stationary distribution. Little evidence of label switching
has emerged within individual chains in our MCMC estimates.

Model comparison is performed by employing DIC3 measures illuminated in
Section 4.2.3. The results are presented in Table 4.5. The DIC3 kept decreasing
as the number of classes increased for each specified quantile level of the pro-
portional outpatient expenditures data. Overall, the four-class Kumaraswamy
quantile mixed effects models were preferred, followed by the three- and two-
class mixed models. We select the two-part four-class Kumaraswamy quantile
mixed regression as our working model based on its lowest information criteria.

Tables 4.6-4.8 provide the posterior means and the 95% highest posterior den-
sity (HPD) intervals for the four-class models at q “ 0.25, q “ 0.5 and q “ 0.75
respectively. For the fitted 0.25-quantile Kumaraswamy mixed model, the first
class comprised an estimated 34.19% of the population and we term this group
as “high-first quartile spenders”. Participants from this class had a relatively
high initial probability of outpatient spending and then a rapid decreasing trend
until year 4. The level of the 25th percentile spending was high in years 1-3
and then decreased until year 5. Class 2 included 36.76% of the participants
and the trajectory pattern was characterized by a low probability of initial
spending and prudent first quartile spending. For these individuals, a high
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Model Description Number of Classes pD3 DIC3

0.25-Quantile Kumaraswamy Mixed Regression

2 509.733 -1603.395

3 348.176 -5097.910

4 438.688 -7562.129

0.5-Quantile Kumaraswamy Mixed Regression

2 516.127 -1610.492

3 374.535 -5217.575

4 440.337 -7471.915

0.75-Quantile Kumaraswamy Mixed Regression

2 543.170 -1546.525

3 380.942 -5217.156

4 408.757 -7597.464

Table 4.5 Model comparison statistics for the proportional outpatient expenses
data

probability of spending during years 2-5 but an average spending level around
0 during years 2-4 with a rapid decreasing trend in year 5 could be observed.
Enrollees from this class were labelled as “light-first quartile spenders”. The
third class embraced 16.79% of participants and we call this group “heavy-first
quartile spenders”. Individuals from this class were characterized by a high ini-
tial probability of spending and high 25th percentile of proportional outpatient
expenses. In this scenario, except for year 3, all the other four time indicators
showed non-negligible (i.e., the 95% HPD interval for the regression coefficient
does not include 0) positive relationships with the spending, with year 4 and
year 2 being the most remarkable factors followed by year 1 and year 5. Class 4
incorporated 12.26% of subjects and showed a comparatively high probability of
spending during years 3-4 but a very low level of the 25th percentile of propor-
tional spending. These participants, defined as “non/occasional-first quartile
spenders”, were relatively rare users of outpatient medical services who exhib-
ited a spending pattern occasionally at a very low level in year 3.

For the formulated median Kumaraswamy mixed model, the first class com-
prised 43.26% of subjects and exhibited a comparatively high initial probabil-
ity of spending along with median expenditure proportions. Notably, all the
five time indicators were significant and positively associated with the 50th per-
centile of outpatient expense proportions, with year 1 and year 3 being the most
influential time factors. We designate this class as “high-median spenders”. The
second class, encompassing an estimated 32.11% of participants, demonstrated
a low initial probability of spending and an overall light level of median propor-
tional outpatient expenditures. These individuals displayed a significant expen-
diture on outpatient medical services in year 1, followed by diminishing costs in
years 2-4, with a declining trend in year 5. Participants in this class are charac-
terized as “light-median spenders”. Embracing 13.36% of participants, class 3,
labelled as “non/occasional-median spenders”, showed a high initial probability
of spending and high baseline median proportional outpatient expenses. How-
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Class (%) Model Component Parameter (Covariate) Posterior Mean 95% HPD Interval

1 (34.19%) Binomial β111 (Intercept) 1.1357 (-0.1875, 2.3976)

β112 (Year1q 2.0759 (0.7346, 3.6103)

β113 (Year2q -0.0666 (-1.3319, 1.2608)

β114 (Year3q -0.3339 (-1.6723, 0.9489)

β115 (Year4q -0.1864 (-1.5416, 1.1200)

β116 (Year5q -0.2321 (-1.4662, 1.1811)

Kumaraswamy β211 (Intercept) -0.8447 (-1.4150, -0.1859)

β212 (Year1q 0.6583 (0.0530, 1.2466)

β213 (Year2q 0.4041 (-0.1960, 1.0244)

β214 (Year3q 0.5451 (0.0656, 1.0248)

β215 (Year4q 0.1201 (-0.3133, 0.8402)

β216 (Year5q 0.2366 (-0.4015, 0.7751)

φ1 (Precision) 1.4309 (1.3378, 1.5132)

Covariance σ2
11 (Varrb1is) 0.8095 (0.4883, 1.1633)

σ2
12 (Varrb2is) 0.3278 (0.1445, 0.4820)

ϱ1 (Covrb1i, b2is) 0.1946 (0.0372, 0.3561)

2 (36.76%) Binomial β121 (Intercept) -1.0701 (-2.3142, 0.2786)

β122 (Year1q -3.3467 (-5.2086, -1.7352)

β123 (Year2q 0.4911 (-0.9351, 1.6125)

β124 (Year3q 0.3741 (-0.9554, 1.6172)

β125 (Year4q 0.3992 (-0.9439, 1.6441)

β126 (Year5q 0.6971 (-0.6652, 1.9477)

Kumaraswamy β221 (Intercept) -0.5803 (-1.8355, 0.4908)

β222 (Year1q 0.2307 (-1.7838, 2.4397)

β223 (Year2q -0.0582 (-1.1445, 1.1134)

β224 (Year3q 0.0599 (-1.0557, 1.1918)

β225 (Year4q 0.0471 (-1.1459, 1.4068)

β226 (Year5q -0.2160 (-1.3691, 0.9850)

φ2 (Precision) 1.4237 (1.2404, 1.6317)

Covariance σ2
21 (Varrb1is) 1.3510 (0.7121, 1.9853)

σ2
22 (Varrb2is) 1.0082 (0.1992, 1.8279)

ϱ2 (Covrb1i, b2is) -0.1263 (-0.8069, 0.5340)

3 (16.79%) Binomial β131 (Intercept) 2.9787 (1.2556, 4.7502)

β132 (Year1q 0.4620 (-1.7143, 3.1251)

β133 (Year2q -0.2092 (-2.2136, 2.1166)

β134 (Year3q 1.1081 (-1.2103, 3.4454)

β135 (Year4q 0.8899 (-1.1381, 2.9818)

β136 (Year5q 0.7161 (-1.1716, 3.2447)

Kumaraswamy β231 (Intercept) -0.7653 (-0.8960, -0.6299)

β232 (Year1q 0.4058 (0.0748, 0.6197)

β233 (Year2q 0.5283 (0.3192, 0.7446)

β234 (Year3q 0.1095 (-0.2101, 0.3902)

β235 (Year4q 0.5352 (0.2919, 0.7091)

β236 (Year5q 0.2391 (0.0180, 0.5082)

φ3 (Precision) 2.4138 (2.1461, 2.6805)

Covariance σ2
31 (Varrb1is) 0.6362 (0.1286, 1.6511)

σ2
32 (Varrb2is) 0.7161 (0.4601, 0.9970)

ϱ3 (Covrb1i, b2is) -0.0115 (-0.5812, 0.6327)

4 (12.26%) Binomial β141 (Intercept) 2.1137 (0.8631, 3.5185)

β142 (Year1q 1.0454 (-0.3461, 2.5421)

β143 (Year2q 0.0202 (-1.3919, 1.2145)

β144 (Year3q 0.3866 (-0.9391, 1.7084)

β145 (Year4q 0.5609 (-0.9418, 1.8283)

β146 (Year5q 0.1381 (-1.2533, 1.4339)

Kumaraswamy β241 (Intercept) -1.2702 (-2.5155, 0.0992)

β242 (Year1q -1.7083 (-3.1902, -0.4547)

β243 (Year2q -0.3462 (-2.1322, 0.7296)

β244 (Year3q 0.0391 (-1.5053, 1.4051)

β245 (Year4q -0.0301 (-1.3065, 1.1697)

β246 (Year5q -0.0605 (-1.4098, 1.1652)

φ4 (Precision) 1.5004 (1.3831, 1.6490)

Covariance σ2
41 (Varrb1is) 2.3814 (0.9063, 4.4555)

σ2
42 (Varrb2is) 0.6366 (0.1881, 1.1457)

ϱ4 (Covrb1i, b2is) 0.7374 (0.1432, 1.7306)

Table 4.6 Posterior means and 95% HPD intervals for the two-part four-class 0.25-quantile Ku-
maraswamy mixed model
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Class (%) Model Component Parameter (Covariate) Posterior Mean 95% HPD Interval

1 (43.26%) Binomial β111 (Intercept) 1.3213 (-0.0082, 2.5861)

β112 (Year1q 2.3489 (0.6688, 4.6767)

β113 (Year2q -0.1206 (-1.4035, 1.1494)

β114 (Year3q -0.3443 (-1.5207, 1.0090)

β115 (Year4q -0.2129 (-1.5062, 1.0842)

β116 (Year5q -0.2549 (-1.4855, 1.0163)

Kumaraswamy β211 (Intercept) -0.0317 (-0.1535, 0.0071)

β212 (Year1q 0.7590 (0.7270, 0.8914)

β213 (Year2q 0.5951 (0.5835, 0.6447)

β214 (Year3q 0.6935 (0.6336, 0.8590)

β215 (Year4q 0.4532 (0.4196, 0.5559)

β216 (Year5q 0.6006 (0.5816, 0.6603)

φ1 (Precision) 0.7807 (0.7275, 0.8368)

Covariance σ2
11 (Varrb1is) 0.9242 (0.6208, 1.3106)

σ2
12 (Varrb2is) 0.2689 (0.1771, 0.3674)

ϱ1 (Covrb1i, b2is) 0.1990 (0.0427, 0.3332)

2 (32.11%) Binomial β121 (Intercept) -1.0617 (-2.2584, 0.3595)

β122 (Year1q -3.2133 (-5.0556, -1.2381)

β123 (Year2q 0.4808 (-0.9967, 1.6495)

β124 (Year3q 0.3795 (-0.9972, 1.6282)

β125 (Year4q 0.3843 (-0.9493, 1.7718)

β126 (Year5q 0.6803 (-0.6630, 2.0175)

Kumaraswamy β221 (Intercept) 0.3245 (-1.1245, 1.6804)

β222 (Year1q 0.8014 (-1.6515, 3.3192)

β223 (Year2q 0.0162 (-1.4925, 1.4539)

β224 (Year3q 0.1034 (-1.1822, 1.6228)

β225 (Year4q 0.1179 (-1.3451, 1.5539)

β226 (Year5q -0.0993 (-1.5291, 1.3514)

φ2 (Precision) 0.7329 (0.5902, 0.9044)

Covariance σ2
21 (Varrb1is) 1.3477 (0.7148, 1.9810)

σ2
22 (Varrb2is) 0.6441 (0.1628, 1.1821)

ϱ2 (Covrb1i, b2is) -0.0767 (-0.5888, 0.4592)

3 (13.36%) Binomial β131 (Intercept) 2.9674 (1.6054, 4.9743)

β132 (Year1q -0.0940 (-2.0541, 1.6595)

β133 (Year2q 0.3589 (-1.7405, 2.8990)

β134 (Year3q 1.0029 (-0.8776, 3.2685)

β135 (Year4q 1.0906 (-1.4470, 3.4211)

β136 (Year5q 0.8206 (-1.3554, 2.8342)

Kumaraswamy β231 (Intercept) 0.7305 (0.5800, 1.0466)

β232 (Year1q -0.6323 (-1.0567, -0.4435)

β233 (Year2q -0.6929 (-1.0116, -0.5324)

β234 (Year3q -1.0934 (-1.4977, -0.8822)

β235 (Year4q -0.7983 (-1.1643, -0.5846)

β236 (Year5q -1.2199 (-1.4397, -0.9837)

φ3 (Precision) 1.7698 (1.4929, 2.0295)

Covariance σ2
31 (Varrb1is) 0.9045 (0.0917, 3.3553)

σ2
32 (Varrb2is) 0.4222 (0.1967, 0.6758)

ϱ3 (Covrb1i, b2is) 0.1688 (-0.3614, 1.1215)

4 (11.27%) Binomial β141 (Intercept) 2.2175 (0.6901, 3.5672)

β142 (Year1q 1.2597 (-0.5648, 3.1138)

β143 (Year2q -0.0431 (-1.1999, 1.3319)

β144 (Year3q 0.3687 (-0.8487, 1.6506)

β145 (Year4q 0.5582 (-0.6327, 1.9989)

β146 (Year5q 0.0876 (-1.1249, 1.3714)

Kumaraswamy β241 (Intercept) -1.0028 (-1.7131, -0.3775)

β242 (Year1q -0.3499 (-1.1639, 0.5301)

β243 (Year2q 0.5464 (-0.0741, 1.3153)

β244 (Year3q 0.9049 (0.3365, 1.5666)

β245 (Year4q 0.8426 (0.1589, 1.5486)

β246 (Year5q 0.8612 (0.2265, 1.5821)

φ4 (Precision) 0.7641 (0.6531, 0.8558)

Covariance σ2
41 (Varrb1is) 2.5543 (0.7660, 4.7494)

σ2
42 (Varrb2is) 0.3256 (0.0985, 0.5900)

ϱ4 (Covrb1i, b2is) 0.4912 (-0.0214, 1.1461)

Table 4.7 Posterior means and 95% HPD intervals for the two-part four-class 0.5-quantile Ku-
maraswamy mixed model
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Class (%) Model Component Parameter (Covariate) Posterior Mean 95% HPD Interval

1 (14.34%) Binomial β111 (Intercept) 2.9441 (1.3846, 4.8740)

β112 (Year1q 0.0728 (-2.1435, 1.9469)

β113 (Year2q 0.1398 (-1.6477, 2.4935)

β114 (Year3q 0.9612 (-0.9428, 3.3729)

β115 (Year4q 0.7499 (-1.7570, 2.8529)

β116 (Year5q 0.7142 (-0.8877, 2.8719)

Kumaraswamy β211 (Intercept) 1.0527 (0.8258, 1.2605)

β212 (Year1q -0.1081 (-0.3692, 0.1688)

β213 (Year2q 0.0062 (-0.2795, 0.1872)

β214 (Year3q -0.2346 (-0.4888, -0.0028)

β215 (Year4q -0.1214 (-0.5228, 0.2710)

β216 (Year5q -0.2742 (-0.6303, 0.0581)

φ1 (Precision) 0.9063 (0.7475, 1.0680)

Covariance σ2
11 (Varrb1is) 0.5839 (0.0837, 1.6199)

σ2
12 (Varrb2is) 0.4283 (0.2462, 0.5864)

ϱ1 (Covrb1i, b2is) 0.0704 (-0.3210, 0.5146)

2 (32.84%) Binomial β121 (Intercept) 2.1698 (0.9328, 3.5042)

β122 (Year1q 1.1089 (-0.2819, 2.4520)

β123 (Year2q 0.0179 (-1.1057, 1.2042)

β124 (Year3q 0.3824 (-0.8735, 1.5923)

β125 (Year4q 0.5805 (-0.7514, 1.8451)

β126 (Year5q 0.1703 (-1.0621, 1.4777)

Kumaraswamy β221 (Intercept) 1.2827 (0.6884, 1.9102)

β222 (Year1q -1.2246 (-1.8244, -0.7369)

β223 (Year2q -0.5846 (-1.3994, -0.1002)

β224 (Year3q -0.3709 (-1.0432, 0.0678)

β225 (Year4q -0.3666 (-0.8412, 0.3145)

β226 (Year5q -0.3541 (-0.9863, 0.0207)

φ2 (Precision) 0.3399 (0.2871, 0.3980)

Covariance σ2
21 (Varrb1is) 0.5839 (0.0837, 1.6199)

σ2
22 (Varrb2is) 0.4283 (0.2462, 0.5864)

ϱ2 (Covrb1i, b2is) 0.0704 (-0.3210, 0.5146)

3 (33.82%) Binomial β131 (Intercept) 1.1156 (-0.0925, 2.3173)

β132 (Year1q 2.0520 (0.6488, 3.5159)

β133 (Year2q -0.1062 (-1.2602, 1.1446)

β134 (Year3q -0.3573 (-1.4756, 0.9439)

β135 (Year4q -0.2163 (-1.4603, 0.9116)

β136 (Year5q -0.2569 (-1.4752, 0.9116)

Kumaraswamy β231 (Intercept) 0.6328 (0.5449, 0.7722)

β232 (Year1q 1.0552 (0.9167, 1.1768)

β233 (Year2q 0.8236 (0.6552, 0.9488)

β234 (Year3q 0.9064 (0.7996, 0.9918)

β235 (Year4q 0.7894 (0.5719, 0.9528)

β236 (Year5q 0.7938 (0.7199, 0.9564)

φ3 (Precision) 0.3168 (0.2808, 0.3564)

Covariance σ2
31 (Varrb1is) 0.7382 (0.4493, 1.0416)

σ2
32 (Varrb2is) 0.1908 (0.1111, 0.2734)

ϱ3 (Covrb1i, b2is) 0.1320 (-0.0021, 0.2412)

4 (19.00%) Binomial β141 (Intercept) -1.1212 (-2.4012, 0.2125)

β142 (Year1q -3.1880 (-5.0173, -1.3034)

β143 (Year2q 0.5430 (-0.8488, 1.7900)

β144 (Year3q 0.4375 (-0.8454, 1.7640)

β145 (Year4q 0.4531 (-0.9063, 1.6596)

β146 (Year5q 0.7639 (-0.5162, 2.0945)

Kumaraswamy β241 (Intercept) 1.2207 (0.1343, 2.3102)

β242 (Year1q -1.2629 (-4.0363, 1.9640)

β243 (Year2q 0.2226 (-0.8911, 1.2510)

β244 (Year3q 0.3363 (-0.6203, 1.5274)

β245 (Year4q 0.3071 (-0.6281, 1.7350)

β246 (Year5q 0.0988 (-0.9122, 1.3839)

φ4 (Precision) 0.3113 (0.2131, 0.4176)

Covariance σ2
41 (Varrb1is) 1.3211 (0.7230, 1.9126)

σ2
42 (Varrb2is) 0.4977 (0.1225, 0.8824)

ϱ4 (Covrb1i, b2is) -0.1221 (-0.6012, 0.2809)

Table 4.8 Posterior means and 95% HPD intervals for the two-part four-class 0.75-quantile Ku-
maraswamy mixed model
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ever, their median proportional spending remained very low throughout years
1-5. All the five time indicators exhibited non-negligible negative relationships
with spending, with year 3 and year 5 standing out as the most prominent fac-
tors, followed by year 4. Only 11.27% of participants fell into class 4, described
as “heavy-median spenders”. This class demonstrated a high probability of
spending and substantial median spending. Individuals in this group were char-
acterized as chronic users of outpatient medical services with consistently high
expenditure trends, particularly evident throughout years 2-5.

The first class in the assessed Kumaraswamy mixed model at the third quartile
comprised 14.34% of participants and was termed “light-third quartile spenders”.
Individuals in this category exhibited a high initial probability of spending but
consistently low 75th percentile of proportional outpatient expenses. Notably,
Year 3 and year 5 exerted remarkable negative influence on this upper level
of spending. Class 2, encompassing an estimated 32.84% of participants, dis-
played a high initial probability of spending alongside baseline 0.75-quantile
proportional outpatient expenses. However, their upper level of proportional
spending remained very low throughout years 1-5. All the five time indica-
tors exhibited negative relationships with spending. These subjects, referred
to as “non/occasional-third quartile spenders”, were infrequent users of out-
patient medical services despite showing an increasing spending pattern over
time. Around 33.82% of participants fell into class 3, which were character-
ized as “heavy-third quartile spenders”. This group showed a relatively high
probability of spending and maintained a high level of spending throughout the
five-year period. All the five time indicators exhibited non-negligible positive
relationships with spending. Individuals in this group were characterized as fre-
quent users of outpatient medical services with stably high expenditure trends.
The fourth class, comprising an estimated 32.11% of participants, demonstrated
a low initial probability of spending but a high baseline upper level of expendi-
ture proportions. The utilization of outpatient medical services was minimal in
year 1 but increased rapidly until years 3 and 4, followed by a sharp decrease
in year 5. This class is designated as “moderate-third quartile spenders”.

As illustrated in Tables 4.6-4.8, concerning the fitted 0.25-quantile Kumaraswamy
mixed model, class 1 exhibited a moderate positive correlation among the ran-
dom intercepts (ρ1 “ 0.378), whereas classes 2 and 3 displayed slight nega-
tive correlations (ρ2 “ ´0.108 and ρ3 “ ´0.017, respectively). On the other
hand, class 4 showcased a high positive correlation (ρ4 “ 0.599), indicating
a strong association between the probability of spending and the 25th per-
centile of proportional outpatient expenditures. Regarding the estimated me-
dian Kumaraswamy mixed model, classes 1 and 3 exhibited moderate posi-
tive correlations (ρ1 “ 0.399 and ρ3 “ 0.273), while class 2 demonstrated a
slight negative correlation (ρ2 “ ´0.082). In contrast, class 4 displayed a rel-
atively high positive correlation (ρ4 “ 0.539). In the case of the 0.75-quantile
Kumaraswamy mixed model, classes 1 and 2 showed slight positive correla-
tions (ρ1 “ ρ2 “ 0.141), whereas class 4 revealed a slight negative correlation
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(ρ4 “ ´0.151). Class 3 demonstrated a moderate positive correlation among
the random intercepts (ρ3 “ 0.352).

4.5 Chapter summary

This chapter introduces a two-part latent class Kumaraswamy quantile mixed
regression with Bayesian inference for bounded longitudinal data that exhibit
a large spike at zeros. Correlated random effects with class-specific covariance
structures are formulated for the binary and the bounded positive components
to account for both zero inflation and unobserved heterogeneity. The proposed
approach comes with several favourable characteristics. First, under the repa-
rameterization of Kumaraswamy distribution in terms of an assigned quantile
and a precision parameter, the model permits the consideration of distinct fac-
tors such as time-varying or categorical covariates which can be linked directly
to any quantile of interest in the population distribution and allows for individ-
ual characteristic attributes which impact the assignment to class membership.
Second, the developed method portrays the trajectory of distinct latent class
evolutions in the underlying outcome process, which provides valuable insights
into the latent cluster structure at various quantiles encompassing the tails and
caters to the exploration of skewed longitudinal data with bounded support. No-
tably, our empirical application convincingly demonstrates that the significance
of a covariate may vary across different levels of the response variable within one
designated class. In addition, since the posterior distribution is not amenable
to analytical solutions, we resort to MCMC estimations which accommodate
full posterior inference including HPD regions of parameters and address model
uncertainty. Evidenced by the simulation studies, our Bayesian estimators yield
desirable results even in the scenario of extreme quantiles (0.75 and 0.95). The
application to the RAND HIE on proportional outpatient spending behaviours
shows our proposed approach enables the identification of distinct classes of in-
dividuals, incorporating the group of spenders who exhibited moderate-to-high
probability of spending and the amount spent as well as the group of spenders
who showed hesitancy towards such expenses across the lower (0.25-quantile),
middle (0.5-quantile) and upper (0.75-quantile) levels of expenditure propor-
tions, respectively. The presented methodology complements the current liter-
ature on the analysis of longitudinal data where extreme values are of primary
interest.

77



Chapter 5

Conclusions and future
research

The foundation of Bayesian statistics can be traced back to inverse probabil-
ity (Bayes, 1763) and Bayes’ theorem (Laplace, 1814), which have long been
established in mathematics but gained significant prominence in applied statis-
tics over the last 50 years. The applications of Bayesian analysis have since
flourished across various science-related domains (see Schoot et al., 2021 and
references therein for reviews). In sharp contrast to conventional statistics, the
Bayesian paradigm treats parameters as random variables, thereby providing a
comprehensive quantification of all uncertainties present by means of probability
distributions. The principles of Bayesian probability have exhibited remarkable
success in the newly emerging natural language processing (NLP) model, Chat-
GPT. This model combines unsupervised and supervised learning to generate
human-like text in response to user input. Bayesian methods provide an elegant
approach to managing uncertainty and capturing the inherent structure of the
data within ChatGPT. By representing objective functions as probability dis-
tributions, the model is empowered to seamlessly integrate and update based
on new evidence. Accordingly, ChatGPT can generate responses that are more
plausible and coherent, even when confronted with ambiguous or incomplete
input.

This thesis has presented several new developments on Bayesian regression mod-
els for addressing the challenges related to massive data and extreme longitudi-
nal data exhibiting heavy-tailed characteristics. Clear advantages over existing
methods include an adaptive MCMC framework for modelling integer-valued
time series with heavy-tailedness, a structure link between Bayesian scale mix-
tures of normals linear regression and BQR via NIG distribution type of likeli-
hood function, prior and posterior distributions for the calculation of full data
posteriors in big data settings and a two-part latent class quantile parametric
mixed model with Bayesian inference for skewed longitudinal data with bounded
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support. The main contributions and future research topics are listed below.

5.1 Main contributions

A Bayesian log-linear Beta–negative binomial integer-valued GARCH process is
proposed in Chapter 2. Parameter estimations are performed within adaptive
Markov chain Monte Carlo paradigms. The conditions for the posterior distri-
bution of the full model parameter to be proper given some general priors have
been derived and presented. In contrast to existing frequentist approaches to
modelling discrete time series with heavy-tailedness, the established Bayesian
estimators provide a natural way to quantify uncertainty through characteriz-
ing the entire posterior distribution and enable model comparison and selection
within a unified probabilistic framework.

Chapter 3 contributes to a new approach of Bayesian quantile regression for big
data and variable selection. A structure link between Bayesian scale mixtures
of normals linear regression and BQR via NIG distribution type of likelihood
function, prior distribution and posterior distribution is introduced. The pos-
terior predictive distributions are presented and efficient divide-and-conquer al-
gorithms for BQR and Bayesian LASSO quantile regression are provided.

In Chapter 4, a Bayesian two-part latent class Kumaraswamy quantile mixed
model for bounded longitudinal data that exhibit a large spike at zeros is de-
veloped. Correlated random effects with class-specific covariance structures are
formulated for the binary and the positive components to account for both zero
inflation and unobserved heterogeneity. The presented methodology comple-
ments the current literature on the analysis of longitudinal data where extreme
values are of primary interest.

5.2 Recommendations for future research

In Chapter 2, we considered the application of adaptive MCMC methods for
sampling from complex posterior distributions. However, despite achieving con-
vergence, we observed that the MCMC chains may still suffer from high auto-
correlation, leading to inefficient exploration of the posterior distribution and
increased computational burden. To address the issue of high auto-correlation
in MCMC chains, several strategies and algorithms could be potentially con-
sidered in our future research. One promising direction is the development
of Hamiltonian Monte Carlo (HMC) and its variants, such as the No-U-Turn
Sampler (NUTS). HMC employs Hamiltonian dynamics to generate proposals,
which can lead to more effective exploration of the posterior distribution com-
pared to traditional random-walk-based MCMC methods (Neal et al., 2011).
By simulating trajectories through the parameter space guided by Hamiltonian
dynamics, HMC can produce more independent samples with lower autocor-
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relation. Another avenue of exploration involves the utilization of Sequential
Monte Carlo (SMC) methods. SMC, also known as particle filtering, simulates
a sequence of weighted particles representing the posterior distribution, with
each particle evolving through a series of importance sampling and resampling
steps (Doucet et al., 2001). By adaptively updating the particle set, SMC algo-
rithms can effectively explore complex and multimodal posterior distributions,
potentially reducing autocorrelation in the MCMC samples.

The work presented in Chapter 2 can be further extended to the threshold model
of Tong (1978, 2012), with the intensity process λt defined as follows:

λt “

#

ωp1q ` ϕp1qyt´1 ` τ p1qλt´1, if yt´d ď c,

ωp2q ` ϕp2qyt´1 ` τ p2qλt´1, if yt´d ą c,

where yt´d is the threshold variable determining the dynamic switching mech-
anism of the model, d is a delay lag and c is the threshold value. The thresh-
old model enjoys a piecewise linear path property and is able to capture the
dynamic behaviours of time series by a flexible regime-switching framework.
The threshold BNB-INGARCH model accommodates both the characterization
of heavy-tailedness and the detection of structural changes, which are pivotal
to pinpointing since thick tail phenomena and frequent changes in the data-
generating mechanism are often encountered owing to instabilities in the real
world.

Robust inference is categorized as one of the eight groundbreaking statistical
ideas of the past 50 years (Gelman and Vehtari, 2021). Apart from the check loss
function tailored to quantile regression given in Chapter 3, other loss functions
arising from the M-estimation family, such as the popular Huber loss (Huber,
1964), have received increasing attention. The Huber loss is defined as

Hδpuq “

#

u2{2, if |u| ď δ,

δ|u| ´ δ2{2, if |u| ą δ,

where δ ą 0 is a tuning constant termed as the robustification parameter. The
Huber loss function features outlier-robustness of the absolute loss for the least
absolute deviation (LAD) regression while maintaining analytical tractability
of the squared loss for the least squares. The regression paradigm associated
with the Huber loss is referred to as Huber regression. As one of the milestones
of robust statistics, Huber regression presents a feasible alternative to quantile
regression and leads to the development of various subsequent M-estimators.
To date, little attention has been paid to Huber regression in big data anal-
ysis. Specifically, Huber robust regression with variable selection methods for
distributed massive data represents an area of much research meaning.

We envision future works in Chapter 4 by treating the number of latent classes
K as an unknown parameter to estimate. In the endeavour to estimate the num-
ber of latent classes, we employed a commonly used model-comparison technique
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reliant on DIC. Although widely utilized, this method presents certain draw-
backs. Notably, it necessitates multiple iterations of the analysis to compare
models encompassing differing numbers of classes, resulting in a time-consuming
process. Furthermore, the DIC-based approach lacks the capacity to integrate
the inherent uncertainty surrounding the determination of the number of classes
K, thus potentially overlooking critical nuances within the data structure. Al-
ternative methodologies exist within the realm of Bayesian analysis that offer
promising avenues for addressing these limitations. Bayesian nonparametric
techniques offer a flexible framework for estimating the latent structure, par-
ticularly through methods such as the Dirichlet process (DP) mixture model
(Antoniak, 1974). DP mixture models are particularly advantageous in sce-
narios where the true number of classes is uncertain, offering a probabilistic
framework for inferring the underlying class structure from the data (Teh et al.,
2006). Other options, such as the Indian Buffet Process (IBP) or Hierarchical
Dirichlet Process (HDP), also offer the flexibility to automatically determine the
number of latent classes from the data, thus mitigating the need for predefined
class specifications (Gershman and Blei, 2012). In addition to these methodolo-
gies, other approaches within Bayesian analysis, such as reversible jump Markov
chain Monte Carlo (RJMCMC) algorithms which automatically determine the
number of latent classes by exploring the model space efficiently, also present
viable alternatives for inferring latent class structures while simultaneously ac-
commodating uncertainty in the number of classes (Green, 1995).
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