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ABSTRACT

Linear viscoelasticity can be characterized by a stress relaxation function. We consider a power-law type
stress relaxation to yield a fractional order viscoelasticity model. The governing equation is a Volterra inte-
gral problem of the second kind with a weakly singular kernel. We employ spatially discontinuous Galerkin
methods, symmetric interior penalty Galerkin method (SIPG) for spatial discretization, and the implicit finite
difference schemes in time, Crank-Nicolson method. Further, in order to manage the weak singularity in the
Volterra kernel, we use a linear interpolation technique. We present a priori stability and error analyses with-
out relying on Grönwall’s inequality, and so provide high quality bounds that do not increase exponentially in
time. This indicates that our numerical scheme is well-suited for long-time simulations. Despite the limited
regularity in time, we establish suboptimal fractional order accuracy in time as well as optimal convergence
of SIPG. We carry out numerical experiments with varying regularity of exact solutions to validate our error
estimates. Finally, we present numerical simulations based on real material data.

Keywords Fractional order viscoelasticity · Power-law type stress relaxation · Symmetric interior penalty Galerkin method · A
priori analysis
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Viscoelasticity is a fundamental property exhibited by a wide range of materials, including polymers, gels, biological tissues,
and even certain metals, e.g. see [9]. This property indicates the materials’ capacity to display combined elastic and viscous
behaviour. Unlike purely elastic materials, which deform instantaneously and fully recover their original shape upon removal of
the load, viscoelastic materials exhibit time-dependent deformation and dissipate energy during loading and unloading. Various
models have been proposed to describe the viscoelastic behaviour of materials, including the Maxwell, Kelvin-Voigt, and Zener
models. These rheological models employ different combinations of springs and dashpots to represent the elastic and viscous
elements of the material, providing a framework to capture the viscoelastic response. For more details, we refer to [29, 5, 4, 6]
and the references therein.

We begin with the momentum balance for a linear homogeneous and isotropic viscoelastic solid material (see e.g. [29, 6]),
given by

ρü(t)−∇ · σ(t) = f(t) on Ω× (0, T ], (0.1)
where Ω ⊂ Rd is an open bounded polytopic domain, T > 0, u is displacement, σ is stress and f is an external body force.
Here overdots denote time differentiation so that u̇ is velocity and ü is acceleration, and it is assumed that ρ is the constant
mass density of the material. In addition, we suppose a mix of essential and natural boundary conditions so that

u(t) = 0 on ΓD × [0, T ], (0.2)
σ(t) · n = gN (t) on ΓN × [0, T ], (0.3)
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where ΓD is the Dirichlet boundary (assumed to have positive surface measure), ΓN is the Neumann boundary given by
ΓN = ∂Ω\ΓD, n is the outward unit normal vector defined a.e. on ΓN , and gN prescribes surface traction on ΓN . Furthermore,
for initial conditions on the displacement and the velocity we take,

u(0) = u0 and u̇(0) = w0 (0.4)

for given vector-fields u0 and w0.

The constitutive relation between stress σ and strain ε characterizes the viscoelasticity model. In this paper, we focus on
a power-law type constitutive model which is motivated by the intermediate concept of an elastic solid and viscous liquid in
continuum mechanics such that the stress is proportional to the strain in solid, e.g. σ ∝ ε, and the stress is proportional to the
rate of the strain in Newtonian fluid, e.g. σ ∝ ε̇. Hence the power-law type constitutive law would follow σ ∝ ∂α

t ε where
∂α
t is a fractional order time differential operator of order α with 0 < α < 1. For example, in [30], the constitutive relation in

elastomer 3M–467 exhibits σ ∝ ∂0.56
t ε. In this setting we formulate the constitutive equation by

σ(t) = D̂ε(t) + 0D
α
t D̃ε(t), (0.5)

where D̂ and D̃ are fourth-order tensors, and 0D
α
t is a left Riemann-Liouville differential operator of order α in time (see e.g.

[29, 5, 4]). For simplicity, we suppose D̂ and D̃ are piecewise constants, and defined by

D̂ijkl = 2µ̂δikδjl + λ̂δijδkl and D̃ijkl = 2µ̃δikδjl + λ̃δijδkl for i, j, k, l = 1, . . . , d,

where (µ̂, λ̂) and (µ̃, λ̃) are Lamé parameters, respectively. Using the notation of Cauchy’s infinitesimal tensor,

εij(v) =
1

2

(
∂vi
∂xj

+
∂vj
∂xi

)
, for i, j = 1, . . . , d,

we define the strain by ε(t) = ε(u(t)) in (0.5) for convenience. For other choice of stress relaxation models, we refer to [29],
in particular, we refer to [24, 12, 13] for Prony series type constitutive relation with internal variables.

Solving time fractional order integro-differential equations numerically is challenging due to the non-locality and memory
effects introduced by the fractional derivatives. The presence of integrals adds computational complexity, while singularities
and discontinuities require special treatment. Selecting suitable numerical methods and proving stability and error estimates
are additional difficulties. McLean and Thomée [19, 21, 20] made significant contributions to the field by developing numerical
analysis techniques for a fractional order evolution equation corresponding to a scalar analogue to a power-law type fractional
order viscoelasticity problem. In their work, they specifically focused on investigating the error analysis associated with the
homogeneous Dirichlet boundary condition. Their research provides valuable insights and advancements in understanding the
numerical aspects of fractional order evolution problems. However, since their analyses are based on spectral methods, the anal-
yses are limited to the purely homogeneous Dirichlet boundary condition. In the works of [10, 11], the well-posedness and error
estimates for the vector-valued fractional order viscoelasticity problem with a mixed boundary condition were established using
duality arguments and an L∞ approach in time, without relying on Grönwall’s inequality and a spectral approach. Additionally,
for a Mittag-Leffler type fractional order viscoelasticity problem, the works of [15, 14, 27] provide relevant contributions to the
analysis of such problems.

In this paper, we approximate the dynamic fractional order viscoelasticity model of a power-law type with discontinuous
Galerkin finite element method (DGFEM), specifically symmetric interior penalty Garlerkin method (SIPG), for spatial dis-
cretization and Crank-Nicolson type finite difference method for temporal discretization. Due to the presence of the singularity
in the fractional order Volterra kernel, particularly in the presence of non-smooth initial or boundary conditions, they require
special treatment to ensure accuracy and stability. Classical numerical schemes such as standard quadrature rules developed for
integer-order integral problems may not be directly applicable or may lose accuracy when applied to fractional order equations.
To address this, we incorporate the linear interpolation technique [16, 17] to handle the weak singularity and to improve accu-
racy. Stability bounds and spatially optimal error bounds for discrete problems are demonstrated without relying on Grönwall’s
inequality to avoid exponential growth in time of the so-called generic constants. Furthermore, the regularity of solutions is
analyzed to address weak singularities and derive suboptimal and optimal orders of convergence with respect to time.

We would like to highlight that the stability estimates of the fractional order integro-differential equation with a mixed
boundary condition can be demonstrated without the use of Grönwall’s inequality. Instead, we employ the positivity property
in fractional order integration and Markov’s inequality to prove stability bounds for semi-discrete and fully discrete problems,
respectively. Despite the presence of a weak singularity in the power-law type model and the limited regularity of solutions in
time, the fully discrete solutions achieve a higher order of accuracy compared to first-order schemes. This enhanced accuracy
is verified through duality arguments and an L∞ approach in time without Grönwall’s inequality and spectral methods. To our
knowledge, our study presents, for the first time, stability and a priori error analyses of SIPG for the dynamic viscoelasticity
model of power-law type with a mixed boundary condition including the purely elastic response. We can only find certain

2



A PREPRINT

research works with further assumptions such as imposing ΓD = ∂Ω, vanishing D̂ or problems of Mittag-Leffler type, where
the Mittag-Leffler type kernel is asymptotically equivalent to the power-law type as t → 0. The actual computational costs in
Mittag- Leffler type simulations are more expensive than the power-law type since the Mittag-Leffler type kernel involves an
infinite series. Moreover, the numerical scheme in [14] exhibits only first order accuracy in time and [27] shows optimal spatial
error estimates using Grönwall’s inequality without temporal error analysis. Therefore, the novelty of our work is the improved
analyses of stability and a priori bounds for more generalized dynamic fractional order viscoelasticity problems where the
bounds are non-exponentially increasing in time to give confidence in the long time simulation of viscoelastic response.

This article is structured as follows: In Section 1, we introduce the fundamental definitions of fractional calculus, the frame-
works of DGFEM, and our notation. Section 2 defines a semi-discrete formulation along with its stability analysis, as well as a
fully discrete formulation. The stability analysis and a priori error bounds for the fully discrete problem are stated and proved
in Section 3. Numerical experiments using FEniCS (https://fenicsproject.org/) are presented in Section 4. Finally,
Section 5 concludes the article.

1 Preliminary

We use standard notation so that Lp(Ω), H
s(Ω) and W s

p (Ω) (with s and p non-negative) denote the usual Lebesgue, Hilbert
and Sobolev spaces. For any normed space X , ∥·∥X represents the X norm which, for inner product spaces, is always the norm
induced by the inner product. For example, ∥·∥L2(Ω) is the L2(Ω) norm, as induced by the L2(Ω) inner product denoted—for
brevity—by (·, ·), but for S ⊂ Ω̄, we use (·, ·)L2(S) for the L2(S) inner product. When we denote the Bochner space by
Lp(0, T ;X), for a time-dependent function f ∈ Lp(0, T ;X), the corresponding norm is defined by

∥f∥Lp(0,T ;X) =

(∫ T

0

∥f(t)∥pX dt

)1/p

,

for 1 ≤ p < ∞. When p = ∞ this becomes the essential supremum norm:

∥f∥L∞(0,T ;X) = ess sup
0≤t≤T

∥f(t)∥X .

When convenient, we shall often replace the upper limit T in these expressions by some other value t ∈ [0, T ].

For inner products of vector-valued and tensor-valued functions we use the same notation as for the scalar cases. For instance,
we have

(v,w) =

∫
Ω

v ·w dΩ, (v,w) =

∫
Ω

v : w dΩ =

d∑
i,j=1

∫
Ω

vijwij dΩ,

for vector-valued functions v and w, and second order tensors v and w.

We follow the framework of the DGFEM in [23] and refer to it for a detailed explanation. Assume that the closure of Ω is
subdivided by Eh, where E ∈ Eh is a triangle in 2D or a tetrahedron in 3D, and the intersection of any pair of elements is either
a vertex, an edge, a face, or empty. We suppose that the subdivision is quasi-uniform, which means that there exists a positive
constant C such that h ≤ ChE for any E where hE is the diameter of E ∈ Eh and h is the maximum diameter. Let Γh be the
set of interior edges (in 2D) or faces (in 3D) contained in the subdivision Eh. Then for each edge or face element e, we can
define a unit normal vector, ne. If e ⊂ ∂Ω, ne is the outward unit normal vector. For an interior edge e such that e ⊂ Ei ∩ Ej

with i < j, the normal vector ne is oriented from Ei to Ej .

With the subdivision, we can introduce the broken Sobolev space

Hs(Eh) =
{
v ∈ L2(Ω) | ∀E ∈ Eh, v|E ∈ Hs(E)

}
and endow it with the broken Sobolev norm, |||·|||Hs(Eh)

, defined by

|||v|||Hs(Eh)
=

(∑
E∈Eh

∥v∥2Hs(E)

)1/2

.

These definitions and notations are extended in an obvious way to the the vector field analogue Hs(Eh). We can also define
the space of polynomials of degree less than or equal to k over E such that

Pk(E) = span

{
xi1
1 · · ·xid

d |
d∑

m=1

im ≤ k, x ∈ E, im ∈ N ∪ {0} for each m

}
,

3

https://fenicsproject.org/


A PREPRINT

and then define our DG finite element space as

Dk(Eh) =
{
v ∈ H1(Eh)

∣∣ v|E ∈ Pk(E) for each E ∈ Eh
}
.

The analogous vector field is given by Dk(Eh) := [Dk(Eh)]d.

Next, we want to define an average and a jump for a vector valued function v and a second order tensor v between two
elements Ee

i and Ee
j sharing the common edge e with i < j by

{v} =
(v|Ee

i
)|e + (v|Ee

j
)|e

2
, {v} =

(v|Ee
i
)|e + (v|Ee

j
)|e

2
, [v] = (v|Ee

i
)|e − (v|Ee

j
)|e, [v ⊗ ne] = (v|Ee

i
)|e ⊗ ne − (v|Ee

j
)|e ⊗ ne

where the normal vector ne is oriented from Ee
i to Ee

j and ⊗ is the outer product defined, for vectors a and b, by (a⊗ b)mn =
ambn for m,n = 1, . . . , d. On the other hand, if e ⊂ ∂Ω and e ⊂ ∂E

{v} = v|e, {v} = v|e, [v] = v|e · ne, and [v ⊗ ne] = v|e ⊗ ne.

We can now introduce the jump penalty operator,

Jγ0,γ1

0 (v,w) =
∑

e⊂Γh∪ΓD

γ0
|e|γ1

∫
e

[v] · [w] de,

where γ0 and γ1 are positive constants.

Useful inequalities We now provide the following inequalities for use later in the a priori analysis.

• Inverse polynomial trace inequalities [32]: For any v ∈ Pk(E), ∀e ⊂ ∂E,∥∥v∥∥
L2(e)

≤ Ch
−1/2
E

∥∥v∥∥
L2(E)

, and
∥∥∇v · ne

∥∥
L2(e)

≤ Ch
−1/2
E

∥∥∇v
∥∥
L2(E)

, (1.1)

where C is a positive constant and is independent of hE but depends on the polynomial degree k.
• Poincaré’s Inequality [2, 23]: If γ1(d− 1) ≥ 1 and |e| ≤ 1 for every e ⊂ Γh ∪ ΓD, then,

∥∥v∥∥
L2(Ω)

≤ C

(
|||∇v|||2H0(Eh)

+
∑

e⊂Γh∪ΓD

1

|e|γ1

∥∥[v]∥∥2
L2(e)

)1/2

, (1.2)

for any v ∈ H1(Eh).
• Inverse Inequality (or Markov Inequality) [22, 23]: For any E ∈ Eh, there is a positive constant C such that

∀v ∈ Pk(E),
∥∥∇jv

∥∥
L2(E)

≤ Ch−j
E

∥∥v∥∥
L2(E)

, ∀j ∈ {0, 1, . . . , k}, (1.3)

where

∇jv =

{
∇ · ∇j−1v for even j,
∇(∇j−1v) for odd j,

and ∇0v = v.

Note that (1.1)-(1.3) can also be applied to vector-valued functions, componentwisely.

Next, we present the definition of the (left) Riemann-Liouville fractional derivative as well as its properties.
Definition (Riemann-Liouville fractional derivative and integral). Let f be a function defined on [a, b] and α ∈ (0, 1). A left
Riemann-Liouville derivative of order α and a left fractional integral of order α are defined by for t > a

aD
α
t f(t) =

1

Γ(1− α)

d

dt

∫ t

a

f(t′)(t− t′)−αdt′ and aI
α
t f(t) =

1

Γ(α)

∫ t

a

f(t′)(t− t′)α−1dt′

where Γ is the gamma function. We can observe that

aD
α
t f(t) =

d

dt
aI

1−α
t f(t), and aD

α
t f(t) =

f(a)(t− a)−α

Γ(1− α)
+ aI

1−α
t ḟ(t) if f is differentiable.

Furthermore, we have the positive definiteness [19] of the fractional integral of order α ∈ (0, 1) such that∫ T

0
0I

1−α
t ϕ(t)ϕ(t)dt =

1

Γ(1− α)

∫ T

0

∫ t

0

(t− t′)−αϕ(t′)ϕ(t)dt′dt ≥ 0. (1.4)
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2 Space and time discretization

In this section, we first introduce the SIPG formulation for the momentum equation (0.1) to derive a semi-discrete problem.
Then, using a Crank-Nicolson type finite difference scheme, we can formulate a fully discrete problem. For this, we additionally
consider a numerical scheme for the fractional order derivative using the linear interpolation technique in [16].

With the use of the power-law type stress relaxation in [28, 11], we can derive the power-law type constitutive equation (0.5)
as

σ(t) = φ0Dε(t) + φ1t
−αDε(0) + φ1Γ(1− α)0I

1−α
t Dε̇(t), (2.1)

where φ0 is non-negative, φ1 is positive and D is a symmetric positive definite piecewise constant fourth order tensor. By
substitution of the constitutive law (2.1) into the momentum equation (0.1), the model problem becomes:

ρü(t)−∇ ·
(
φ0Dε(t) + φ1Γ(1− α)0I

1−α
t Dε̇(t)

)
= f(t) + t−αψ0 on Ω× (0, T ], (2.2)

where ψ0 := φ1∇ ·Dε(0), with the boundary conditions (0.2) and (0.3), and the initial condition (0.4).

If we set φ1 = 0 in the constitutive equation, the stress relaxation will disappear. Hence, the corresponding constitutive
relation implies linear elasticity. For the purpose of our study in viscoelasticity, we shall assume a positive value for φ1. On the
other hand, in the absence of elastic response by φ0 = 0, the model problem exhibits only stress relaxation. Furthermore, the
momentum equation can be simplified to a parabolic type integro-differential equation, not a hyperbolic type. For more details
on the reduced problem, refer to [11].

2.1 A semi-discrete problem

To formulate a spatially discrete approximation of (2.2), we first present the SIPG form in the context of our model problem.
We define a symmetric DG bilinear form a :Hs(Eh)×Hs(Eh) 7→ R for s > 3/2 by

a (v,w) =
∑
E∈Eh

∫
E

Dε(v) : ε(w) dE −
∑

e⊂Γh∪ΓD

∫
e

{Dε(v)} : [w ⊗ ne] de

−
∑

e⊂Γh∪ΓD

∫
e

{Dε(w)} : [v ⊗ ne] de+ Jγ0,γ1

0 (v,w), (2.3)

for any v,w ∈Hs(Eh). We also define our DG energy norm by

∥∥v∥∥
V
=

(∑
E∈Eh

∫
E

Dε(v) : ε(v) dE + Jγ0,γ1

0 (v,v)

)1/2

, for v ∈Hs(Eh).

Comparing these we can observe that

a (v,v) =
∥∥v∥∥2

V
− 2

∑
e⊂Γh∪ΓD

∫
e

{Dε(v)} : [v ⊗ ne] de. (2.4)

In the DG bilinear form, the third term is called the “interior penalty” term, while the last term is referred to as the “jump
penalty”. Depending on the sign of the interior penalty, the bilinear form is either symmetric or nonsymmetric. In this article, we
consider only the symmetric DG method and refer to [10, 24] for an application of the nonsymmetric method for viscoelasticity.
The choice to employ SIPG is motivated by the fact that it only requires the standard penalization parameter γ1(d − 1) ≥ 1
to achieve optimal spatial error estimates. In contrast, the nonsymmetric interior penalty Galerkin method (NIPG) demands a
super penalization parameter γ1(d − 1) ≥ 3 for optimal error estimates. It is worth noting that using super penalization can
result in a more ill-conditioned linear system, potentially leading to difficulties when solving the system with iterative solvers.
For more comprehensive details, we refer to [10].

Remark (Korn’s inequality for piecewise H1 vector fields [3, 23]). If we have γ1(d − 1) ≥ 1, then since D is symmetric
positive definite and the jump penalty is defined not only on the interior edges but also on the positive measured Dirichlet
boundary ΓD, Korn’s inequality yields, for any v ∈H1(Eh),∑

E∈Eh

∥∥∇v∥∥2
L2(E)

≤ C
∥∥v∥∥2

V
, (2.5)

for some positive C independent of v.
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Proposition 1 (DG elliptic projection). The DG elliptic projector,R, is defined for u ∈Hs(Eh) and s > 3/2 by,
R :Hs(Eh) 7→ Dk(Eh) such that a (u,v) = a (Ru,v) , ∀v ∈ Dk(Eh).

Note that we have the Galerkin orthogonality such that a (u−Ru,v) = 0 for any v ∈ Dk(Eh). Referring to [23, 26, 8, 33],
for example, we recall the following elliptic-error estimates,∥∥u−Ru

∥∥
V
≤ Chmin(k+1,s)−1|||u|||Hs(Eh)

and
∥∥u−Ru

∥∥
L2(Ω)

≤ Chmin(k+1,s)|||u|||Hs(Eh)
, (2.6)

for u ∈ Hs(Eh) with s > 3/2 and for sufficiently large penalty parameters γ0 > 0 and γ1 ≥ (d − 1)−1. Here, the positive
constant C is independent of u but dependent on the domain, its boundary, and the polynomial degree k.
Proposition 2 (Bounds for interior penalty term [13, 10] ). Suppose γ0 > 0 and γ1(d − 1) ≥ 1. For any v,w ∈ Dk(Eh), we
have ∑

e⊂Γh∪ΓD

∫
e

∣∣∣∣{Dε(v)} : [w ⊗ ne]

∣∣∣∣de ≤ C
√
γ0

(∥∥v∥∥2
V
+ Jγ0,γ1

0 (w,w)
)
, (2.7)

where C is a positive constant independent of v and w but dependent on the inverse polynomial trace inequality’s constants
and the domain.
Proposition 3 (Coercivity and continuity [13, 10]). Suppose γ0 > 0 is sufficiently large and γ1(d − 1) ≥ 1. Then there exist
positive constants κ and K such that

κ
∥∥v∥∥2

V
≤ a (v,v) , and |a (v,w)| ≤ K

∥∥v∥∥
V

∥∥w∥∥
V
, ∀v,w ∈ Dk(Eh), (2.8)

where κ and K are independent of v and w.

Hereafter, we assume s ≥ 2, γ0 > 0 and γ1(d− 1) ≥ 1 in our paper to fulfill Proposition 1–3.
Remark. On account of using the inverse polynomial trace inequality to prove the coercivity and continuity, the DG bilinear
form will not be coercive and continuous on the broken Sobolev space. In other words, (2.8) holds only on the finite element
space. For the choice of the penalty parameter γ0, we refer to [7, 33]. For instance, we will take γ0 ∈ [10, 100] in the numerical
experiments Section 4.

In the usual way for DGFEM, we follow the standard method of multiplying (2.2) by a test function in Hs(Eh) for each
E ∈ Eh, integrating by parts over the element, summing over all E and then imposing additional penalty terms. This produces
a weak formulation of (2.2). Under the assumption that the strong solution to the momentum equation has spatial continuity,
the interior penalty and jump penalty terms can be included in our DG formulation. We refer to [10] for more details of the
DG formulation for the viscoelasticity model problems. Therefore, we can obtain the following semi-discrete problem: find
uh : [0, T ] 7→ Dk(Eh) satisfying for any v ∈ Dk(Eh),

ρ (üh(t),v) + φ0a (uh(t),v) + φαa
(
0I

1−α
t u̇h(t),v

)
= F (t;v) for t > 0, (2.9)

a (uh(0),v) = a (u0,v) , (2.10)
a (u̇h(0),v) = a (w0,v) , (2.11)

where φα := φ1Γ(1− α) for convenience and the linear form F (·) is defined by

F (t;v) = (f(t),v) + (gN (t),v)L2(ΓN ) +
(
t−αψ0,v

)
.

Note that the bilinear form is only associated with spatial variables so that the Leibniz integral rule leads to

a
(
0I

1−α
t u̇h(t),v

)
= 0I

1−α
t a (u̇h(t),v) and t−αa (u0,v) = a

(
t−αu0,v

)
,

for any v ∈ Dk(Eh). The above arguments are used to obtain (2.9). It is easy to show the linear form F (·) is continuous if
f ∈ C(0, T ;L2(Ω)), gN ∈ C(0, T ;L2(ΓN )), and ψ0 ∈ L2(Ω). Indeed, we can observe that if u0 ∈ H2(Ω), it implies
ψ0 ∈ L2(Ω). Hereafter, we assume the data terms are bounded and smooth enough to satisfy the continuity condition of the
linear form. In addition to the initial data, we suppose u0 ∈H2(Ω) ∩C(Ω) andw0 ∈H2(Ω) ∩C(Ω). For the existence and
uniqueness of the solution, we refer to [27].
Theorem 1. Let uh be a solution of the semi-discrete problem (2.9)-(2.11). Suppose u̇h ∈ L∞ (0, T ;L2(Ω)) and uh ∈
L∞ (0, T ;Hs(Eh)). If γ0 is large enough and γ1(d− 1) ≥ 1, there exists a positive constant C such that

∥u̇h∥2L∞(0,T ;L2(Ω)) + ∥uh∥2L∞(0,T ;V ) ≤ C

(
∥w0∥2H2(Ω) + ∥u0∥2H2(Ω) + T ∥f∥2L2(0,T ;L2(Ω))

+ Th−1 ∥gN∥2L2(0,T ;L2(ΓN )) + T 2(1−α)
∥∥ψ0

∥∥2
L2(Ω)

)
.

Here, the constant C is independent of the semi-discrete solution, T and h but dependent on the polynomial degree k, the
fractional order α, the domain Ω, its boundary, and the material properties.
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Proof. Let v = u̇h(t) for t ∈ (0, T ] in (2.9) to get,

ρ

2

d

dt

∥∥u̇h(t)
∥∥2
L2(Ω)

+
φ0

2

d

dt

∥∥uh(t)
∥∥2
V
− φ0

∑
e⊂Γh∪ΓD

∫
e

{Dε(uh(t))} : [u̇h(t)⊗ ne] de

− φ0

∑
e⊂Γh∪ΓD

∫
e

{Dε(u̇h(t))} : [uh(t)⊗ ne] de+ φαa
(
0I

1−α
t u̇h(t), u̇h(t)

)
= F (u̇h(t)). (2.12)

For 0 < τ ≤ T , time integration yields

ρ

2

∥∥u̇h(τ)
∥∥2
L2(Ω)

+
φ0

2

∥∥uh(τ)
∥∥2
V
+ φα

∫ τ

0

a
(
0I

1−α
t u̇h(t), u̇h(t)

)
dt

=

∫ τ

0

F (u̇h(t))dt+
ρ

2

∥∥u̇h(0)
∥∥2
L2(Ω)

+
φ0

2

∥∥uh(0)
∥∥2
V

+ φ0

∑
e⊂Γh∪ΓD

∫
e

({Dε(uh(τ))} : [uh(τ)⊗ ne]− {Dε(uh(0))} : [uh(0)⊗ ne]) de, (2.13)

by the definition of the bilinear form and integration by parts in time. Since we have∫ τ

0

a
(
0I

1−α
t u̇h(t), u̇h(t)

)
dt =

1

Γ(1− α)

∫ τ

0

∫ t

0

(t− s)−αa (u̇h(t
′), u̇h(t)) dt

′dt,

and the bilinear form a (·, ·) is symmetric positive definite, (1.4) implies∫ τ

0

a
(
0I

1−α
t u̇h(t), u̇h(t)

)
dt ≥ 0.

Hence, we can get

ρ

2

∥∥u̇h(τ)
∥∥2
L2(Ω)

+
φ0

2

∥∥uh(τ)
∥∥2
V
≤
∫ τ

0

F (u̇h(t)) dt+
ρ

2

∥∥u̇h(0)
∥∥2
L2(Ω)

+
φ0

2

∥∥uh(0)
∥∥2
V

+ φ0

∑
e⊂Γh∪ΓD

∫
e

({Dε(uh(τ))} : [uh(τ)⊗ ne]− {Dε(uh(0))} : [uh(0)⊗ ne]) de.

(2.14)

Next, we shall show that the right-hand side of (2.14) is bounded. Consider the first term of the right-hand side. By the
definition of the linear form,∫ τ

0

F (u̇h(t))dt =

∫ τ

0

(f(t), u̇h(t)) dt+

∫ τ

0

(gN (t), u̇h(t))L2(ΓN ) dt+

∫ τ

0

(
t−αψ0, u̇h(t)

)
dt.

Using Cauchy-Schwarz inequality, we have∫ τ

0

F (u̇h(t))dt ≤
∫ τ

0

∥∥f(t)∥∥
L2(Ω)

∥∥u̇h(t)
∥∥
L2(Ω)

dt+

∫ τ

0

∥∥gN (t)
∥∥
L2(ΓN )

∥∥u̇h(t)
∥∥
L2(ΓN )

dt

+

∫ τ

0

t−α
∥∥ψ0

∥∥
L2(Ω)

∥∥u̇h(t)
∥∥
L2(Ω)

dt

≤
∫ τ

0

∥∥f(t)∥∥
L2(Ω)

∥∥u̇h(t)
∥∥
L2(Ω)

dt+ Ch−1/2

∫ τ

0

∥∥gN (t)
∥∥
L2(ΓN )

∥∥u̇h(t)
∥∥
L2(Ω)

dt

+

∫ τ

0

t−α
∥∥ψ0

∥∥
L2(Ω)

∥∥u̇h(t)
∥∥
L2(Ω)

dt,

with the inverse polynomial trace inequality (1.1) on the second term. An L∞ norm argument over time for
∥∥u̇h(t)

∥∥
L2(Ω)

implies that∫ τ

0

F (u̇h(t))dt ≤∥u̇h∥L∞(0,T ;L2(Ω))

(∫ τ

0

∥∥f(t)∥∥
L2(Ω)

+ Ch−1/2
∥∥gN (t)

∥∥
L2(ΓN )

+ t−α
∥∥ψ0

∥∥
L2(Ω)

dt

)
.

7
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Thus, by employing Young’s inequalities and Cauchy-Schwarz inequalities, we can obtain the bound of the linear form such
that ∫ τ

0

F (u̇h(t))dt ≤
(
ϵa + ϵb + ϵc

2

)
∥u̇h∥2L∞(0,T ;L2(Ω)) +

T

2ϵa
∥f∥2L2(0,T ;L2(Ω)) (2.15)

+
CTh−1

2ϵb
∥gN∥2L2(0,T ;L2(ΓN )) +

T 2(1−α)

2(1− α)ϵc

∥∥ψ0

∥∥2
L2(Ω)

, (2.16)

for any positive constants ϵa, ϵb and ϵc. We refer to [25] for the bound∥∥uh(0)
∥∥2
V
≤ C ∥u0∥2H2(Ω) , (2.17)

and we derive from (2.11) by Korn’s inequality (2.5) and Poincaré’s inequality (1.2)∥∥u̇h(0)
∥∥2
L2(Ω)

≤ C
∥∥u̇h(0)

∥∥2
V
≤ C ∥w0∥2H2(Ω) . (2.18)

On the other hand, (2.7) leads to∑
e⊂Γh∪ΓD

∫
e

({Dε(uh(τ))} : [uh(τ)⊗ ne]− {Dε(uh(0))} : [uh(0)⊗ ne])

≤ C
√
γ0

(∥∥uh(τ)
∥∥2
V
+
∥∥uh(0)

∥∥2
V

)
≤ C
√
γ0

(
∥uh∥2L∞(0,T ;V ) + ∥u0∥2H2(Ω)

)
, (2.19)

on account of L∞ norm in time and (2.17).

Collecting all bounds (2.16)-(2.19) in (2.14), we have
ρ

2

∥∥u̇h(τ)
∥∥2
L2(Ω)

+
φ0

2

∥∥uh(τ)
∥∥2
V
≤
(
ϵa + ϵb + ϵc

2

)
∥u̇h∥2L∞(0,T ;L2(Ω)) +

C
√
γ0

∥uh∥2L∞(0,T ;V )

+ C
ρ

2
∥w0∥2H2(Ω) +

C
√
γ0

∥u0∥H2(Ω) +
T

2ϵa
∥f∥2L2(0,T ;L2(Ω))

+
CTh−1

2ϵb
∥gN∥2L2(0,T ;L2(ΓN )) +

T 2(1−α)

2(1− α)ϵc

∥∥ψ0

∥∥2
L2(Ω)

. (2.20)

Since τ is arbitrary, we can write (2.20) as
ρ

2
∥u̇h∥2L∞(0,T ;L2(Ω)) +

φ0

2
∥uh∥2L∞(0,T ;V ) ≤(ϵa + ϵb + ϵc) ∥u̇h∥2L∞(0,T ;L2(Ω)) +

C
√
γ0

∥uh∥2L∞(0,T ;V )

+ Cρ ∥w0∥2H2(Ω) +
C

√
γ0

∥u0∥H2(Ω) +
T

ϵa
∥f∥2L2(0,T ;L2(Ω))

+
CTh−1

ϵb
∥gN∥2L2(0,T ;L2(ΓN )) +

T 2(1−α)

(1− α)ϵc

∥∥ψ0

∥∥2
L2(Ω)

,

and setting ϵa = ϵb = ϵc = ρ/12 yields
ρ

4
∥u̇h∥2L∞(0,T ;L2(Ω)) +

(
φ0

2
− C

√
γ0

)
∥uh∥2L∞(0,T ;V ) ≤Cρ ∥w0∥2H2(Ω) +

C
√
γ0

∥u0∥H2(Ω) +
12T

ρ
∥f∥2L2(0,T ;L2(Ω))

+
CTh−1

ρ
∥gN∥2L2(0,T ;L2(ΓN )) +

12T 2(1−α)

(1− α)ρ

∥∥ψ0

∥∥2
L2(Ω)

. (2.21)

Requiring a sufficiently large γ0 to give φ0/2− C/
√
γ0 > 0, we complete the proof.

If we used Grönwall’s inequality to estimate for the time integration, the stability bound would depend on time exponentially,
for example, the Grönwall’s inequality leads to∫ τ

0

F (u̇h(t))dt ≤C exp (T ) ∥u̇h∥L2(0,T ;L2(Ω))

(∫ τ

0

∥∥f(t)∥∥
L2(Ω)

+ h−1/2
∥∥gN (t)

∥∥
L2(ΓN )

+ t−α
∥∥ψ0

∥∥
L2(Ω)

dt

)
.

Whereas our stability estimates present non-exponential bounds in time.
Remark. Even though the h−1 term appears on the traction in the stability bound, it has no significant effect since h is fixed
for the finite element space. While the h−1 term appears from the inverse polynomial trace inequality, the numerical results
will only show the weakly imposed Neumann boundary condition, e.g. see [23, 25].
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2.2 A fully discrete formulation

Employing the Crank-Nicolson type time discretization, we can formulate a fully discrete problem for the non-hereditary terms.
However, due to the weak singularity in the fractional order integral, it is necessary to also use appropriate numerical techniques
for the discrete fractional integral.

A time step size ∆t = T/N > 0 is defined for some N ∈ N and we set tn = n∆t for n = 0, . . . , N . We denote the fully
discrete solution for the velocity and the displacement by W n

h ∈ Dk(Eh) and Un
h ∈ Dk(Eh), respectively, for n = 0, . . . , N

(i.e. we consider u̇(tn) ≈W n
h and u(tn) ≈ Un

h for each time step). To complete the time discretization, a linear interpolation
technique [16, 11] is introduced. A local interpolation operator Ln is defined as follows:

Ln(w)(t) = − t− tn
∆t

w(tn−1) +
t− tn−1

∆t
w(tn) for n = 1, . . . , N.

This operator provides a piecewise linear interpolation of w.
Proposition 4. If w is of C2 in time, we can define

En(t) := w(t)− Ln(w)(t) =
1

2
ẅ(ξt)(t− tn−1)(t− tn) for some ξt ∈ [tn−1, tn],

where t ∈ [tn−1, tn], by Rolle’s theorem. For any t ∈ [tn−1, tn], if w(t) ∈X for a normed spaceX , it holds that

∥En(t)∥X ≤ ∆t2

2
∥ẅ∥L∞(tn−1,tn;X).

This inequality also holds on the broken Sobolev norm sense.

Now, we can derive the numerical approximation qn(w) to the fractional order integration satisfying that

0I
1−α
t w(tn) =

1

Γ(1− α)

n∑
i=1

∫ ti

ti−1

(Li(w)(t′) +Ei(t
′)) (tn − t′)−αdt′,

=
∆t1−α

Γ(3− α)

n∑
i=0

Bn,iw(ti) +
1

Γ(1− α)

n∑
i=1

∫ ti

ti−1

Ei(t
′)(tn − t′)−αdt′ := qn(w) + en(w), (2.22)

where

Bn,i =

 n1−α(2− α− n) + (n− 1)2−α, i = 0,
(n− i− 1)2−α + (n− i+ 1)2−α − 2(n− i)2−α, i = 1, . . . , n− 1,

1, i = n.

Note that 0 < Bn,i < 2 for any n > 0 and i = 0, . . . , n. By Proposition 4, if w ∈ C2(0, T ;X), the numerical approximation
error by the linear interpolation is given by, for any n = 1, . . . , N ,

∥en(w)∥X = ∥0I1−α
t w(tn)− qn(w)∥X ≤ ∆t2

2Γ(1− α)
∥ẅ∥L∞(0,tn;X)

∫ tn

0

(tn − t′)−αdt′,≤ ∆t2

2Γ(1− α)
∥ẅ∥L∞(0,T ;X)T

1−α.

(2.23)

For more details of the linear interpolation technique for fractional integral, we refer to [16, 10, 11] and the references therein.
In the fully discrete sense, we defineQn(W h) by

Qn(W h) =
∆t1−α

Γ(3− α)

n∑
i=0

Bn,iW
i
h.

For simplicity, we assume ψ0 = 0 which implies that the linear form F (t; ·) is well-defined at t = 0. Finally, we can
formulate a fully discrete problem by using the Crank-Nicolson type scheme and the approximate fractional integral as follows:
findW n

h ∈ Dk(Eh) and Un
h ∈ Dk(Eh) for n = 0, . . . , N such that for any v ∈ Dk(Eh),(

ρ
W n+1

h −W n
h

∆t
,v

)
+ φ0a

(
Un+1

h +Un
h

2
,v

)
+ φαa

(
Qn+1(W h) +Qn(W h)

2
,v

)
+ Jγ0,γ1

0

(
W n+1

h −W n
h

∆t
,v

)
=
1

2
(F (tn+1; v) + F (tn; v)), (2.24)

9
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for n = 0, . . . , N − 1, and

a
(
U0

h,v
)
=a (u0,v) , (2.25)

a
(
W 0

h,v
)
=a (w0,v) , (2.26)

with
W n+1

h +W n
h

2
=
Un+1

h −Un
h

∆t
. (2.27)

The jump penalty term for the discrete acceleration (the fourth term in (2.24)) is not necessary for stability analysis. But we
will require it for energy error estimation for the velocity later.
Remark. In the previous work [25, 10, 13], the SIPG formulations for linear viscoelasticity problems introduced jump penalty
terms for discrete velocity to handle the spatial discontinuity of the discrete velocity. On the other hand, our method introduces
the jump penalty term of acceleration in (2.24), providing the capability to regulate the discontinuity of discrete acceleration.
For instance, as detailed in [13], an additional jump penalty term is defined as

Jγ0,γ1

0

(
W n+1

h +W n
h

2
,v

)
,

involving the time-averaged velocity. While this approach allows us to have the boundedness of Jγ0,γ1

0 (W n
h,W

n
h), it may not

ensure the management of acceleration’s discontinuity. Conversely, our scheme,

Jγ0,γ1

0

(
W n+1

h −W n
h

∆t
,v

)
,

can reduce the discontinuity of acceleration by adjusting penalty parameters, immediately.

3 Stability and convergence analyses

In this section, we present a stability bound as well as an error bound for the fully discrete problem. In the fully discrete
problem, the stability bound implies the existence and uniqueness of the solution. To estimate a priori error, we introduce the
usual approach using the elliptic projection.

3.1 A stability bound

In the semi-discrete problem, we showed the stability analysis without using Grönwall’s inequality to yield non-exponentially
increasing bounds in time. Using the positive definiteness (1.4), we could deal with the fractional integration term but in the
following case of the fully discrete scheme, we need to use a different proof technique based on mathematical induction. For
the stability analysis of the fully discrete problem, we also suppose the same smooth data terms.
Theorem 2. If γ1(d− 1) ≥ 1 and γ0 is sufficiently large, there exists a unique discrete solution to (2.24)-(2.26) that satisfies

max
0≤n≤N

∥∥W n
h

∥∥2
L2(Ω)

+ max
0≤n≤N

∥∥Un
h

∥∥2
V
+∆t2−α

N−1∑
n=0

∥∥W n+1
h +W n

h

∥∥2
V
+ max

0≤n≤N
Jγ0,γ1

0 (W n
h,W

n
h)

≤C

(
∥w0∥2H2(Ω) + ∥u0∥2H2(Ω) +∆t2−α ∥w0∥2H2(Ω) + T

(
∆t

N∑
n=0

∥∥f(tn)∥∥2L2(Ω)
+∆t

N∑
n=0

h−1
∥∥gN (tn)

∥∥2
L2(ΓN )

))
,

where C is independent of the solution, ∆t and h.

Proof. Let m be an arbitrary positive integer such that m < N . Taking v = 2∆t(W n+1
h +W n

h) for 0 ≤ n ≤ m− 1 in (2.24)
and summing all results over n = 0 to n = m− 1, we get

2ρ
(∥∥Wm

h

∥∥2
L2(Ω)

−
∥∥W 0

h

∥∥2
L2(Ω)

)
+ φ0∆t

m−1∑
n=0

a
(
Un+1

h +Un
h,W

n+1
h +W n

h

)
+ φα∆t

m−1∑
n=0

a
(
Qn+1(W h) +Qn(W h),W

n+1
h +W n

h

)
+ 2

(
Jγ0,γ1

0 (Wm
h ,Wm

h )− Jγ0,γ1

0

(
W 0

h,W
0
h

))
=∆t

m−1∑
n=0

(
f(tn+1) + f(tn),W

n+1
h +W n

h

)
+∆t

m−1∑
n=0

(
gN (tn+1) + gN (tn),W

n+1
h +W n

h

)
L2(ΓN )

. (3.1)

10
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Using the relation (2.27), e.g. ∆t(W n+1
h +W n

h) = 2(Un+1
h −Un

h), we can rewrite (3.1) as

2ρ
∥∥Wm

h

∥∥2
L2(Ω)

+ 2φ0a (U
m
h ,Um

h ) + φα∆t

m−1∑
n=0

a
(
Qn+1(W h) +Qn(W h),W

n+1
h +W n

h

)
+ 2Jγ0,γ1

0 (Wm
h ,Wm

h )

=∆t

m−1∑
n=0

(
f(tn+1) + f(tn),W

n+1
h +W n

h

)
+∆t

m−1∑
n=0

(
gN (tn+1) + gN (tn),W

n+1
h +W n

h

)
L2(ΓN )

+ 2ρ
∥∥W 0

h

∥∥2
L2(Ω)

+ 2φ0a
(
U0

h,U
0
h

)
+ 2Jγ0,γ1

0

(
W 0

h,W
0
h

)
. (3.2)

By the definition of the numerical approximation of the fractional integration, we can expand the third term of (3.2) as

φα∆t2−α

Γ(3− α)

m−1∑
n=0

a

(
n+1∑
i=0

Bn+1,iW
i
h +

n∑
i=0

Bn,iW
i
h,W

n+1
h +W n

h

)
,

and we can split it by

φα∆t2−α

Γ(3− α)

m−1∑
n=0

a
(
W n+1

h +W n
h,W

n+1
h +W n

h

)
+

φα∆t2−α

Γ(3− α)

m−1∑
n=0

a

(
n∑

i=0

Bn+1,iW
i
h +

n−1∑
i=0

Bn,iW
i
h,W

n+1
h +W n

h

)
,

since Bn,n = 1 for ∀n. By introducing this expression into (3.2), we can obtain

2ρ
∥∥Wm

h

∥∥2
L2(Ω)

+ 2κφ0

∥∥Um
h

∥∥2
V
+

κφα∆t2−α

Γ(3− α)

m−1∑
n=0

∥∥W n+1
h +W n

h

∥∥2
V
+ 2Jγ0,γ1

0 (Wm
h ,Wm

h )

≤∆t

m−1∑
n=0

(
f(tn+1) + f(tn),W

n+1
h +W n

h

)
+∆t

m−1∑
n=0

(
gN (tn+1) + gN (tn),W

n+1
h +W n

h

)
L2(ΓN )

+ 2ρ
∥∥W 0

h

∥∥2
L2(Ω)

+ 2φ0a
(
U0

h,U
0
h

)
+ 2Jγ0,γ1

0

(
W 0

h,W
0
h

)
− φα∆t2−α

Γ(3− α)

m−1∑
n=0

a

(
n∑

i=0

Bn+1,iW
i
h +

n−1∑
i=0

Bn,iW
i
h,W

n+1
h +W n

h

)
, (3.3)

by the coercivity of the bilinear form.

Now, we shall present the upper bounds of the first four terms in the right-hand side of (3.3) by following the proof of
Theorem 1, e.g. Cauchy-Schwarz inequality, Young’s inequality, inverse polynomial trace inequality, etc.

• ∆t
m−1∑
n=0

(
f(tn+1) + f(tn),W

n+1
h +W n

h

)
By the Cauchy-Schwarz inequality and the Young’s inequality, we have

∆t

m−1∑
n=0

(
f(tn+1) + f(tn),W

n+1
h +W n

h

)
≤∆t

m∑
n=0

(
2ϵa
∥∥f(tn)∥∥2L2(Ω)

+
2

ϵa

∥∥W n
h

∥∥2
L2(Ω)

)

≤∆t

N∑
n=0

2ϵa
∥∥f(tn)∥∥2L2(Ω)

+
4T

ϵa
max

0≤n≤N

∥∥W n
h

∥∥2
L2(Ω)

for any positive ϵa.

11
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• ∆t
m−1∑
n=0

(
gN (tn+1) + gN (tn),W

n+1
h +W n

h

)
L2(ΓN )

Similarly, we can also derive, with the inverse polynomial trace theorem,

∆t

m−1∑
n=0

(
gN (tn+1) + gN (tn),W

n+1
h +W n

h

)
L2(ΓN )

≤ ∆t

m∑
n=0

2ϵb
∥∥gN (tn)

∥∥2
L2(ΓN )

+∆t

m∑
n=0

2

ϵb

∑
e⊂ΓN

∥∥W n
h

∥∥2
L2(e)

≤ ∆t

m∑
n=0

2ϵb
∥∥gN (tn)

∥∥2
L2(ΓN )

+∆t

m∑
n=0

2Ch−1

ϵb

∑
E∈Eh

∥∥W n
h

∥∥2
L2(E)

≤ ∆t

N∑
n=0

2ϵb
∥∥gN (tn)

∥∥2
L2(ΓN )

+
Ch−14T

ϵb
max

0≤n≤N

∥∥W n
h

∥∥2
L2(Ω)

,

for any positive ϵb.

•
∥∥W 0

h

∥∥2
L2(Ω)

, a
(
U0

h,U
0
h

)
and Jγ0,γ1

0

(
W 0

h,W
0
h

)
As seen in (2.17) and (2.18), (2.25) and (2.26) imply that

a
(
U0

h,U
0
h

)
≤ K

∥∥U0
h

∥∥2
V
≤ C ∥u0∥2H2(Ω) , and

∥∥W 0
h

∥∥2
L2(Ω)

≤ C
∥∥W 0

h

∥∥2
V
≤ C ∥w0∥2H2(Ω) ,

by the continuity, respectively. Also, the definition of DG energy norm gives

Jγ0,γ1

0

(
W 0

h,W
0
h

)
≤
∥∥W 0

h

∥∥2
V
≤ C ∥w0∥2H2(Ω) .

Tidying up all results with (3.3), we then have

2ρ
∥∥Wm

h

∥∥2
L2(Ω)

+ 2κφ0

∥∥Um
h

∥∥2
V
+

κφα∆t2−α

Γ(3− α)

m−1∑
n=0

∥∥W n+1
h +W n

h

∥∥2
V
+ 2Jγ0,γ1

0 (Wm
h ,Wm

h )

≤2Cρ ∥w0∥2H2(Ω) + Cφ0 ∥u0∥2H2(Ω) +

(
4T

ϵa
+

Ch−14T

ϵb

)
max

0≤n≤N

∥∥W n
h

∥∥2
L2(Ω)

+∆t

N∑
n=0

2ϵa
∥∥f(tn)∥∥2L2(Ω)

+∆t

N∑
n=0

2ϵb
∥∥gN (tn)

∥∥2
L2(ΓN )

− φα∆t2−α

Γ(3− α)

m−1∑
n=0

a

(
n∑

i=0

Bn+1,iW
i
h +

n−1∑
i=0

Bn,iW
i
h,W

n+1
h +W n

h

)

:=R− φα∆t2−α

Γ(3− α)

m−1∑
n=0

a

(
n∑

i=0

Bn+1,iW
i
h +

n−1∑
i=0

Bn,iW
i
h,W

n+1
h +W n

h

)
. (3.4)

Note that in (3.4), R is positive and independent of m. Using mathematical induction, we want to show the following inequality
holds such that

2ρ
∥∥Wm

h

∥∥2
L2(Ω)

+ 2κφ0

∥∥Um
h

∥∥2
V
+

κφα∆t2−α

2Γ(3− α)

m−1∑
n=0

∥∥W n+1
h +W n

h

∥∥2
V
+ 2Jγ0,γ1

0 (Wm
h ,Wm

h ) ≤ C(R+∆t2−α
∥∥W 0

h

∥∥2
V
).

(3.5)

For m = 1 in (3.4), using the continuity of the bilinear form and Young’s inequality, we have

2ρ
∥∥W 1

h

∥∥2
L2(Ω)

+ 2κφ0

∥∥U1
h

∥∥2
V
+

κφα∆t2−α

Γ(3− α)

(∥∥W 1
h +W 0

h

∥∥2
V

)
+ 2Jγ0,γ1

0

(
W 1

h,W
1
h

)
≤R+

φα∆t2−α

Γ(3− α)

(
K2B2

1,0ϵ

2

∥∥W 0
h

∥∥2
V
+

1

2ϵ

∥∥W 1
h +W 0

h

∥∥2
V

)
,

12
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for any positive ϵ, since ∣∣a (B1,0W
0
h,W

1
h +W 0

h

)∣∣ ≤ K2B2
1,0ϵ

2

∥∥W 0
h

∥∥2
V
+

1

2ϵ

∥∥W 1
h +W 0

h

∥∥2
V
.

Taking ϵ = 1/κ, we can observe that (3.5) holds when m = 1. Let us assume that (3.5) holds for j < m. Consider (3.4) for
j + 1, particularly the last term. Denoting 0 < G := max

0≤i≤n≤N
Bn,i < 2, we have

j∑
n=0

∣∣∣∣∣a
(

n∑
i=0

Bn+1,iW
i
h +

n−1∑
i=0

Bn,iW
i
h,W

n+1
h +W n

h

)∣∣∣∣∣
≤

j∑
n=0

n−1∑
i=1

∣∣a (Bn,iW
i+1
h +W i

h,W
n+1
h +W n

h

)∣∣+ j∑
n=0

(Bn,0 +Bn+1,0 +Bn+1,1)
∣∣a (W 0

h,W
n+1
h +W n

h

)∣∣
+

j∑
n=0

Bn+1,1

∣∣a (W 1
h +W 0

h,W
n+1
h +W n

h

)∣∣
≤

j∑
n=0

n−1∑
i=1

(
K2G2ϵ

2

∥∥W i+1
h +W i

h

∥∥2
V
+

1

2ϵ

∥∥W n+1
h +W n

h

∥∥2
V

)
+

j∑
n=0

(
K2(3G)2ϵ̃

2

∥∥W 0
h

∥∥2
V
+

1

2ϵ̃

∥∥W n+1
h +W n

h

∥∥2
V

)

+

j∑
n=0

(
K2G2ϵ̌

2

∥∥W 1
h +W 0

h

∥∥2
V
+

1

2ϵ̌

∥∥W n+1
h +W n

h

∥∥2
V

)
,

for any positive ϵ, ϵ̃ and ϵ̌. Then the induction assumption (3.5) for j implies the boundedness of
j−1∑
n=0

∥∥W n+1
h +W n

h

∥∥2
V

and
j∑

n=0

n−1∑
i=1

∥∥W i+1
h +W i

h

∥∥2
V
.

Therefore, choosing proper Young’s constants such as ϵ = ϵ̃ = ϵ̌ = 1/(3κ) leads us to prove (3.5) for j + 1. Consequently,
(3.5) holds for arbitrary m.

After noting that
∥∥W 0

h

∥∥2
V
≤ C ∥w0∥2H2(Ω), combining it with the maximum argument such that

an + bn ≤ C, ∀n, ⇒ max
n

an +max
n

bn ≤ 2C,

(3.5) yields

2ρ max
0≤n≤N

∥∥W n
h

∥∥2
L2(Ω)

+ 2κφ0 max
0≤n≤N

∥∥Un
h

∥∥2
V
+

κφα∆t2−α

2Γ(3− α)

N−1∑
n=0

∥∥W n+1
h +W n

h

∥∥2
V
+ 2 max

0≤n≤N
Jγ0,γ1

0 (W n
h,W

n
h)

≤4C

(
2ρ ∥w0∥2H2(Ω) + Cφ0 ∥u0∥2H2(Ω) +

(
4T

ϵa
+

Ch−14T

ϵb

)
max

0≤n≤N

∥∥W n
h

∥∥2
L2(Ω)

+∆t

N∑
n=0

2ϵa
∥∥f(tn)∥∥2L2(Ω)

+∆t

N∑
n=0

2ϵb
∥∥gN (tn)

∥∥2
L2(ΓN )

+ C∆t2−α ∥w0∥2H2(Ω)

)
.

In the end, we can complete our proof by taking appropriate Young’s constants, for example, ϵa = 32CT/ρ and ϵb =
32CT/(ρh).

In the fully discrete case, the stability bound in Theorem 2 implies the existence and uniqueness of the fully discrete problem.
The proof uses the maximum argument instead of discrete Grönwall’s inequality to estimate the discrete integration in time. As
a consequence, the stability bound is not exponentially increasing in time. While we have applied the positive definiteness of
a fractional integration to the stability analysis of the semi-discrete problem, by employing mathematical induction, we have
proved the stability bound of the fully discrete solution and the (discrete) fractional order integration of the velocity. Indeed, in
a similar way to the positive definiteness on the fractional order integral, there exist positivity properties of the quadrature Qn.
For instance, it holds that

∆t

n∑
i=0

Qn(Φ)Φn ≥ 0, ∀Φ = (Φ0, . . . ,Φn)
T . (3.6)

However, to use the positivity (3.6) in the stability analysis, it is essential to assume the homogeneous Dirichlet boundary
condition, since a spectral decomposition is additionally required in the proof. Furthermore, using (3.6) will not provide energy
norm bounds of velocity as in Theorem 1. For more details, we refer to [19, 21].

13
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3.2 Error estimates

Following the usual path for error estimation [13], we want to split spatial and temporal error components by introducing the
DG elliptic projection. We define

θ(t) := u(t)−Ru(t), χn := Un
h −Ru(tn), ϖn :=W n

h −Ru̇(tn), E1(t) :=
ü(t+∆t) + ü(t)

2
− u̇(t+∆t)− u̇(t)

∆t
,

for t ∈ [0, T ] and n = 0, . . . , N . Then (2.27) gives

χn+1 − χn

∆t
=
ϖn+1 +ϖn

2
+ E2(tn) + E3(tn), (3.7)

for n = 0, . . . , N − 1 where

E2(t) :=
θ(t+∆t)− θ(t)

∆t
− θ̇(t+∆t) + θ̇(t)

2
and E3(t) :=

u̇(t+∆t) + u̇(t)

2
− u(t+∆t)− u(t)

∆t
.

For a three-times time-differentiable function, v(t), when we denote its third time derivative by v(3), we have

v̇(tn+1) + v̇(tn)

2
− v(tn+1)− v(tn)

∆t
=

1

2∆t

∫ tn+1

tn

v(3)(t)(tn+1 − t)(t− tn)dt. (3.8)

Hence, if v(3) ∈ L2(tn, tn+1;X), the Cauchy-Schwarz inequality gives∥∥∥∥ v̇(tn+1) + v̇(tn)

2
− v(tn+1)− v(tn)

∆t

∥∥∥∥2
X

≤ ∆t3

4
∥v(3)∥2L2(tn,tn+1;X). (3.9)

Before evaluating error estimates, we shall consider the regularity of the solution to ensure optimal errors in time. As seen
in (3.9), the Crank-Nicolson method requires H3 smoothness in time. Due to the weak singularity in fractional order integrals,
it is not trivial to have second order accuracy in time.

To describe the regularity of solutions, we first introduce a convolution form in fractional integrals and a spatial differential
operator. For instance, when we define β1−α(t) = t−α/Γ(1 − α) and A = ∇ ·Dε, and we denote a Laplace convolution by
∗, in the strong form (2.2), we can rewrite it as

ρü(t) = φ0Au(t) + φαβ1−α ∗ Au̇(t) + f(t), (3.10)
with the assumption ψ0 = 0 for simplicity. In fact, to obtain ψ0 = 0, we need to suppose u0 ∈ ker(A). When we consider Lq

norm in time, Young’s inequality for convolution yields
∥ρü∥Lq(0,T ) ≤ φ0∥Au∥Lq(0,T ) + φα∥β1−α∥L1(0,T )∥Au̇∥Lq(0,T ) + ∥f∥Lq(0,T ), (3.11)

for q ≥ 1. In (3.11), ü is L2 integrable in time if Au, Au̇ and f are L2 integrable in time. By differentiation of (3.10) in time,
we have

ρu(3)(t) = φ0Au̇(t) + φαβ1−α(t)Aw0 + φαβ1−α ∗ Aü(t) + ḟ(t). (3.12)

Since β1−α is L1 integrable, so is u(3) with L1 integrable Au̇, Aü and ḟ in time. However, β1−α is only L2 integrable for
α < 1/2. Hence, if α < 1/2 or w0 ∈ ker(A), u(3) is L2 integrable in time where Au̇, Aü, ḟ ∈ L2(0, T ). Repeating this
process, we can consider the fourth time derivative of u such that

ρu(4)(t) = φ0Aü(t) + φαβ̇1−α(t)Aw0 + φαβ1−α(t)Aü(0) + φαβ1−α ∗ Au(3)(t) + f̈(t). (3.13)

Note that β̇1−α /∈ Lq(0, T ) for q ≥ 1, for any 0 < α < 1. Hence, for the Lq integrability of u(4), it is required to assume that
w0 ∈ ker(A) and ü(0) ∈ ker(A).

Remark. For n ≥ 1, since we have u(3) ∈ L2(tn, tn+1;X) and u(4) ∈ L2(tn, tn+1;X) with sufficiently smooth initial data
and source terms, substitutions of (3.12) and (3.13) into (3.8) lead to (3.9) for u and u̇, respectively. However, when n = 0, the
singularity appears. Thus, in order to take full boundedness in time, we need further attention to manage the bound for n = 0.
Lemma 1. Suppose f ∈ H3(0, T ;L2(Ω)) ∩H2(0, T ;H2(Ω)), u0 ∈ ker(A) and w0 ∈ H2(Ω). Furthermore, we assume
that u ∈ H3(0, T ;H2(Ω)) and Au ∈ H3(0, T ;H2(Ω)). If w0 ∈ ker(A), there exists a positive constant C independent of
∆t such that ∥∥∥∥ ü(∆t) + ü(0)

2
− u̇(∆t)− u̇(0)

∆t

∥∥∥∥ ≤ C∆t2−α. (3.14)

Moreover, if w0 ∈ ker(A) and ü(0) ∈ ker(A), we can also obtain∥∥∥∥ ü(∆t) + ü(0)

2
− u̇(∆t)− u̇(0)

∆t

∥∥∥∥ ≤ C∆t2. (3.15)

14
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Proof. Consider (3.13) and split it into two parts by L2 integrable part l(t) and others. Then we have

ρu(4)(t) = l(t) + φαβ̇1−α(t)Aw0 + φαβ1−α(t)Aü(0). (3.16)

Ifw0 ∈ ker(A), (3.16) implies u(4) is L1 integrable in time. Let p2(t) = (∆t− t)t for t ∈ [0,∆t]. By substitution (3.16) into
(3.8), when w0 ∈ ker(A), we derive the following equation

ü(∆t) + ü(0)

2
− u̇(∆t)− u̇(0)

∆t
=

1

2ρ∆t

∫ ∆t

0

l(t)p2(t)dt+
φα

2ρ∆t

∫ ∆t

0

β1−α(t)Aü(0)p2(t)dt. (3.17)

Using integration by parts, we get ∫ t

0

l(t)p2(t)dt = l(t)p3(t)−
∫ t

0

l̇(t′)p3(t
′)dt′,

where p3(t) = ∆t/2t2 − t3/3, and so there exists a positive C such that∥∥∥∥∥
∫ ∆t

0

l(t)p2(t)dt

∥∥∥∥∥ ≤ C∆t3
(∥∥l(∆t)

∥∥
L2(Ω)

+ ∥l̇∥L1(0,∆t;L2(Ω))

)
.

On the other hand, since Aü(0) is time independent, we have

1

∆t

∫ ∆t

0

β1−α(t)Aü(0)p2(t)dt =
(1− α)∆t2−α

Γ(4− α)
Aü(0).

Therefore, we can obtain from (3.17)∥∥∥∥ ü(∆t) + ü(0)

2
− u̇(∆t)− u̇(0)

∆t

∥∥∥∥ ≤C
(
∆t2 +∆t2−α

)
≤ C∆t2−α, (3.18)

where C depends on u and f but is independent of ∆t.

In addition, if w0 ∈ ker(A) and ü(0) ∈ ker(A), it immediately implies that the error has second order accuracy.

We refer to [19] for the regularity of solutions of fractional order integro-differential equations, using a spectral decomposi-
tion for a representation with Fourier coefficients.
Remark. In our model problem, the weak singularity only occurs at t = 0. If the solution has sufficient regularity in time
for the second order time discretization schemes, additional regularity properties in space will not be required. Otherwise, the
solution needs higher regularity in space such that u(3)(t) ∈H4(Ω) near t = 0 where the regularity conditions rely on initial
conditions and f . For more details of regularity results with respect to time and space, and their assumptions, e.g. see [19].

Using the DG elliptic error estimates as in Proposition 1 and Crank-Nicolson type temporal errors (3.9) with Lemma 1, we
can derive the following lemma.
Lemma 2. Let γ0 > 0 be large enough and γ1(d− 1) ≥ 1. Suppose

u ∈ C2
(
0, T ;C2(Ω) ∩Hs(Eh)

)
∩W 3

∞(0, T ;Hs(Eh)),

and the data terms are sufficiently smooth to fulfil Lemma 1. For the fully discrete solutions to (2.24)-(2.26), (W n
h)

N
n=0 and

(Un
h)

N
n=0, there exists a positive constant C such that

max
0≤n≤N

∥∥ϖn
∥∥
L2(Ω)

+ max
0≤n≤N

∥∥χn
∥∥
V
+

(
∆t2−α

N−1∑
n=0

∥∥ϖn+1 +ϖn
∥∥2
V

)1/2

+ max
0≤n≤N

(Jγ0,γ1

0 (ϖn,ϖn))
1/2

≤ CT 2−α
(
hr +∆t2−α

)
,

where r = min(k + 1, s). Here, C is independent of h, ∆t and the numerical solutions. In addition to the condition of smooth
data, if ü(0) ∈ ker(A), we have

max
0≤n≤N

∥∥ϖn
∥∥
L2(Ω)

+ max
0≤n≤N

∥∥χn
∥∥
V
+

(
∆t2−α

N−1∑
n=0

∥∥ϖn+1 +ϖn
∥∥2
V

)1/2

+ max
0≤n≤N

(Jγ0,γ1

0 (ϖn,ϖn))
1/2

≤ CT 2−α
(
hr +∆t2

)
.
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Proof. Let m be an arbitrary positive integer in [1, N ]. For any 0 ≤ n ≤ m − 1, average of (2.9) over tn and tn+1 and
subtraction of it from (2.24) give

ρ

(
W n+1

h −W n
h

∆t
− ü(tn+1) + ü(tn)

2
,v

)
+ φ0a

(
Un+1

h +Un
h

2
− u(tn+1) + u(tn)

2
,v

)
+ φαa

(
Qn+1(W h) +Qn(W h)

2
− 0I

1−α
tn+1

u̇+ 0I
1−α
tn u̇

2
,v

)
+ Jγ0,γ1

0

(
W n+1

h −W n
h

∆t
− ü(tn+1) + ü(tn)

2
,v

)
=0, (3.19)

and (3.19) can be rewritten, by recalling the definitions of elliptic projection errors and (2.22), as
ρ

∆t

(
ϖn+1 −ϖn,v

)
+

φ0

2
a
(
χn+1 + χn,v

)
+

φα

2
a
(
Qn+1(ϖ) +Qn(ϖ),v

)
+

1

∆t
Jγ0,γ1

0

(
ϖn+1 −ϖn,v

)
=

ρ

∆t

(
θ̇(tn+1)− θ̇(tn),v

)
+

φ0

2
a (θ(tn+1) + θ(tn),v) +

φα

2
a
(
qn+1(θ̇) + qn(θ̇),v

)
+

φα

2
a (en+1(u̇) + en(u̇),v) + ρ (E1(tn),v) +

1

∆t
Jγ0,γ1

0

(
θ̇(tn+1)− θ̇(tn),v

)
+ Jγ0,γ1

0 (E1(tn),v) . (3.20)

The Galerkin orthogonality, the linearity of the bilinear form and the spatial continuity reduce (3.20) to
ρ

∆t

(
ϖn+1 −ϖn,v

)
+

φ0

2
a
(
χn+1 + χn,v

)
+

φα

2
a
(
Qn+1(ϖ) +Qn(ϖ),v

)
+

1

∆t
Jγ0,γ1

0

(
ϖn+1 −ϖn,v

)
=

ρ

∆t

(
θ̇(tn+1)− θ̇(tn),v

)
+

φα

2
a (en+1(u̇) + en(u̇),v) + ρ (E1(tn),v) . (3.21)

Since u̇(t) ∈ C2(Ω), en(u̇) is of C2 in the spatial domain too. Hence, the continuity implies that
a (en+1(u̇) + en(u̇),v) = (A(en+1(u̇) + en(u̇)),v) . (3.22)

To complete the proof, we will follow the same arguments in the stability analysis with the spatial error estimates as well as
the time discretization errors. By substitution of v = 2∆t(ϖn+1 +ϖn) into (3.21) with (3.7) and (3.22), summing together
from n = 0 to n = m− 1 yields

2ρ
∥∥ϖm

∥∥2
L2(Ω)

+ 2φ0a (χ
m,χm) + φα∆t

m−1∑
n=0

a
(
Qn+1(ϖ) +Qn(ϖ),ϖn+1 +ϖn

)
+ 2Jγ0,γ1

0 (ϖm,ϖm)

=2ρ
∥∥ϖ0

∥∥2
L2(Ω)

+ 2φ0a
(
χ0,χ0

)
+ 2Jγ0,γ1

0

(
ϖ0,ϖ0

)
+ 2ρ

m−1∑
n=0

(
θ̇(tn+1)− θ̇(tn),ϖn+1 +ϖn

)
+ φα∆t

m−1∑
n=0

(
A(en+1(u̇) + en(u̇)),ϖ

n+1 +ϖn
)
+ 2ρ∆t

m−1∑
n=0

(
E1(tn),ϖ

n+1 +ϖn
)

+ 2φ0∆t

m−1∑
n=0

a
(
χn+1 + χn,E2(tn)

)
+ 2φ0∆t

m−1∑
n=0

a
(
χn+1 + χn,E3(tn)

)
. (3.23)

Expanding the discrete fractional integrationQ, and using the coercivity in (3.23), we can derive

2ρ
∥∥ϖm

∥∥2
L2(Ω)

+ 2κφ0

∥∥χm
∥∥2
V
+

κφα∆t2−α

Γ(3− α)

m−1∑
n=0

∥∥ϖn+1 +ϖn
∥∥2
V
+ 2Jγ0,γ1

0 (ϖm,ϖm)

≤2ρ
∥∥ϖ0

∥∥2
L2(Ω)

+ 2φ0a
(
χ0,χ0

)
+ 2Jγ0,γ1

0

(
ϖ0,ϖ0

)
+ 2ρ

m−1∑
n=0

(
θ̇(tn+1)− θ̇(tn),ϖn+1 +ϖn

)
+ φα∆t

m−1∑
n=0

(
A(en+1(u̇) + en(u̇)),ϖ

n+1 +ϖn
)
+ 2ρ∆t

m−1∑
n=0

(
E1(tn),ϖ

n+1 +ϖn
)

+ 2φ0∆t

m−1∑
n=0

a
(
χn+1 + χn,E2(tn)

)
+ 2φ0∆t

m−1∑
n=0

a
(
χn+1 + χn,E3(tn)

)
− ∆t2−α

Γ(3− α)

m−1∑
n=0

a

(
n∑

i=0

Bn+1,iϖ
i +

n−1∑
i=0

Bn,iϖ
i,ϖn+1 +ϖn

)
. (3.24)

Next, we shall show the bounds of the right-hand side of (3.24) except for the last term.
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•
∥∥ϖ0

∥∥2
L2(Ω)

, a
(
χ0,χ0

)
and Jγ0,γ1

0

(
ϖ0,ϖ0

)
For any v ∈ Dk(Eh), we have

a
(
ϖ0,v

)
= a

(
W 0

h −w0,v
)
+ a (w0 −Rw0,v) = 0

by (2.26) and the Garlerkin orthogonality. Then Poincaré’s inequality (1.2) leads us to obtain∥∥ϖ0
∥∥2
L2(Ω)

≤ C
∥∥ϖ0

∥∥2
V
= 0 and so Jγ0,γ1

0

(
ϖ0,ϖ0

)
≤
∥∥ϖ0

∥∥2
V
= 0.

In this manner, the Galerkin orthogonality and (2.25) gives

a
(
χ0,χ0

)
= 0.

•
m−1∑
n=0

(
θ̇(tn+1)− θ̇(tn),ϖn+1 +ϖn

)
The use of Cauchy-Schwarz inequalities, Young’s inequality and elliptic error estimates yields

m−1∑
n=0

(
θ̇(tn+1)− θ̇(tn),ϖn+1 +ϖn

)
=

m−1∑
n=0

∫ tn+1

tn

(
θ̈(t′),ϖn+1 +ϖn

)
dt′

≤ϵa
2

∫ tm

0

∥∥θ̈(t′)∥∥2
L2(Ω)

dt′ +
∆t

2ϵa

m−1∑
n=0

∥∥ϖn+1 +ϖn
∥∥2
L2(Ω)

≤ϵa
2

∥∥∥θ̈∥∥∥2
L2(0,T ;L2(Ω))

+
∆t

2ϵa
4N max

0≤n≤N

∥∥ϖn
∥∥2
L2(Ω)

≤C ∥ü∥2L2(0,T ;Hs(Eh))

ϵa
2
h2r +

2T

ϵa
max

0≤n≤N

∥∥ϖn
∥∥2
L2(Ω)

,

for any positive ϵa and r = min(k + 1, s).

• ∆t
m−1∑
n=0

(
A(en+1(u̇) + en(u̇)),ϖ

n+1 +ϖn
)

In a similar way, we have

∆t

m−1∑
n=0

(
A(en+1(u̇) + en(u̇)),ϖ

n+1 +ϖn
)
≤ ∆t

N−1∑
n=0

ϵb
2

∥∥A(en+1(u̇)+en(u̇))
∥∥2
L2(Ω)

+
2T

ϵb
max

0≤n≤N

∥∥ϖn
∥∥2
L2(Ω)

,

for any positive ϵb. After noting that∥∥A(en+1(u̇) + en(u̇))
∥∥2
L2(Ω)

≤ C ∥en+1(u̇) + en(u̇)∥2H2(Ω) ,

(2.23) allows us to derive

∆t

m−1∑
n=0

(
A(en+1(u̇) + en(u̇)),ϖ

n+1 +ϖn
)
≤ C∥u∥2W 3

∞(0,T ;H2(Ω))T
3−2αϵb∆t4 +

2T

ϵb
max

0≤n≤N

∥∥ϖn
∥∥2
L2(Ω)

.

• ∆t
m−1∑
n=0

(
E1(tn),ϖ

n+1 +ϖn
)

Recalling Lemma 1 and the time discretization error (3.9) gives

∆t

m−1∑
n=0

(
E1(tn),ϖ

n+1 +ϖn
)
≤ ϵc

8
∆t4∥u(4)∥2L2(t1,T ;L2(Ω)) + CTϵc∆t4−2α +

2T

ϵc
max

0≤n≤N

∥∥ϖn
∥∥2
L2(Ω)

≤ CTϵc∆t4−2α +
2T

ϵc
max

0≤n≤N

∥∥ϖn
∥∥2
L2(Ω)

by Cauchy-Schwarz inequalities and Young’s inequality, for any positive ϵc. If ü(0) ∈ ker(A), it holds
∥u∥H4(0,T ;H2(Ω)) < ∞ to yield

∆t

m−1∑
n=0

(
E1(tn),ϖ

n+1 +ϖn
)
≤ C∥u∥2H4(0,T ;H2(Ω))Tϵc∆t4 +

2T

ϵc
max

0≤n≤N

∥∥ϖn
∥∥2
L2(Ω)

.
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• ∆t
m−1∑
n=0

a
(
χn+1 + χn,E2(tn)

)
and ∆t

m−1∑
n=0

a
(
χn+1 + χn,E3(tn)

)
Following similar arguments but using the continuity of the DG bilinear form rather than Cauchy-Schwarz inequality,
we get

∆t

m−1∑
n=0

a
(
χn+1 + χn,E2(tn)

)
≤ ϵd
8K2

∆t4∥θ(3)∥2L2(0,T ;V ) +
2T

ϵd
max

0≤n≤N

∥∥χn
∥∥2
V
,

for any positive ϵd. Note that the DG elliptic error estimates such as (2.6) provide spatial error estimates of θ and its
time derivatives. For example, (2.6) implies

∥∥θ(3)(t)∥∥
V
≤ C

∣∣∣∣∣∣u(3)(t)
∣∣∣∣∣∣

H1(Eh)
for any t. Also, we have

∆t

m−1∑
n=0

a
(
χn+1 + χn,E3(tn)

)
≤C

ϵd
8K2

∆t4∥u(3)∥2L2(0,T ;H1(Eh))
+

2T

ϵd
max

0≤n≤N

∥∥χn
∥∥2
V
.

Collecting up all the above results, we can derive a bound for (3.24) as

2ρ
∥∥ϖm

∥∥2
L2(Ω)

+ 2κφ0

∥∥χm
∥∥2
V
+

κφα∆t2−α

Γ(3− α)

m−1∑
n=0

∥∥ϖn+1 +ϖn
∥∥2
V
+ 2Jγ0,γ1

0 (ϖm,ϖm)

≤C

(
ρϵah

2r + φαT
3−2αϵb∆t4 + ρTϵc∆t4−2α + φ0ϵd∆t4

)
+

(
4ρT

ϵa
+

2φαT

ϵb
+

2ρT

ϵc

)
max

0≤n≤N

∥∥ϖn
∥∥2
L2(Ω)

+
8φ0T

ϵd
max

0≤n≤N

∥∥χn
∥∥2
V
− ∆t2−α

Γ(3− α)

m−1∑
n=0

a

(
n∑

i=0

Bn+1,iϖ
i +

n−1∑
i=0

Bn,iϖ
i,ϖn+1 +ϖn

)
, (3.25)

where C is a positive constant independent of ∆t, h and the discrete solutions. We can observe that the bound in (3.25) except
the last term is independent of m. As shown in the proof of Theorem 2, the use of mathematical induction and the maximum
argument leads to

2ρ max
0≤n≤N

∥∥ϖn
∥∥2
L2(Ω)

+ 2κφ0 max
0≤n≤N

∥∥χn
∥∥2
V
+

κφα∆t2−α

2Γ(3− α)

N−1∑
n=0

∥∥ϖn+1 +ϖn
∥∥2
V
+ 2 max

0≤n≤N
Jγ0,γ1

0 (ϖn,ϖn)

≤4C

(
ρϵah

2r + φαT
3−2αϵb∆t4 + ρTϵc∆t4−2α + φ0ϵd∆t4

+ 2T

(
2ρ

ϵa
+

φα

ϵb
+

ρ

ϵc

)
max

0≤n≤N

∥∥ϖn
∥∥2
L2(Ω)

+
8φ0T

ϵd
max

0≤n≤N

∥∥χn
∥∥2
V

)
. (3.26)

At last, by the setting of coefficients of Young’s inequalities,
ϵa = 48CT, ϵb = 24φαCT, ϵc = 24CT, ϵd = 32CT/κ,

we have

ρ max
0≤n≤N

∥∥ϖn
∥∥2
L2(Ω)

+ κφ0 max
0≤n≤N

∥∥χn
∥∥2
V
+

κφα∆t2−α

2Γ(3− α)

N−1∑
n=0

∥∥ϖn+1 +ϖn
∥∥2
V
+ 2 max

0≤n≤N
Jγ0,γ1

0 (ϖn,ϖn)

≤CT 4−2α(h2r +∆t4 +∆t4−2α), (3.27)
for some positive C which is independent of h, ∆t, T and the discrete solutions but depends on the strong solution, the data
terms, the spatial domain and the material properties. Moreover, if we suppose ü(0) ∈ ker(A), the ∆t4−2α terms in the bounds
will disappear and (3.27) becomes

ρ max
0≤n≤N

∥∥ϖn
∥∥2
L2(Ω)

+ κφ0 max
0≤n≤N

∥∥χn
∥∥2
V
+

κφα∆t2−α

2Γ(3− α)

N−1∑
n=0

∥∥ϖn+1 +ϖn
∥∥2
V
+ 2 max

0≤n≤N
Jγ0,γ1

0 (ϖn,ϖn)

≤CT 4−2α(h2r +∆t4). (3.28)
This completes the proof.

In Lemma 2, under the assumption of H4 regularity in time, it is clear to see that the constant of the bound C depends
on ∥u∥H4(0,T ;Hs(Eh)). On the other hand, if the solution has only H3 regularity in time, Lemma 1 plays an important role to
present sub-optimal orders of time discretization errors. Once H4 regularity of the solution is possessed in time, the smoothness
of f is no longer required. Only the condition of the continuous linear form is needed for the stability of discrete formulations.

By Lemma 2, we can prove the following a priori error estimates.
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Theorem 3. Assume that u, f and initial conditions are given satisfying Lemma 2, and (W n
h)

N
n=0 and (Un

h)
N
n=0 are the fully

discrete solution. Then we can observe optimal orders of L2 error estimates as well as energy error estimates with respect to
h. Although we have sub-optimal 2 − α order accuracy in time, some additional conditions such as ü(0) ∈ ker(A) or H4

regularity in time lead us to obtain second-order accuracy. Thus, we obtain
max

0≤n≤N

∥∥u̇(tn)−W n
h

∥∥
L2(Ω)

≤ CT 2−α
(
hr +∆t2−α

)
, max

0≤n≤N

∥∥u(tn)−Un
h

∥∥
V
≤ CT 2−α

(
hr−1 +∆t2−α

)
,

and with higher regularity in time,
max

0≤n≤N

∥∥u̇(tn)−W n
h

∥∥
L2(Ω)

≤ CT 2−α
(
hr +∆t2

)
, max

0≤n≤N

∥∥u(tn)−Un
h

∥∥
V
≤ CT 2−α

(
hr−1 +∆t2

)
,

where r = min(k + 1, s) and C is a positive constant independent of h and ∆t.

Moreover, we can derive energy norm error estimates for the velocity as well as L2 norm error estimates for the displacement:
max

0≤n≤N

∥∥u̇(tn)−W n
h

∥∥
V
≤ CT 2−α

(
hr−1 +∆t2−α

)
, max

0≤n≤N

∥∥u(tn)−Un
h

∥∥
L2(Ω)

≤ CT 2−α
(
hr +∆t2−α

)
,

and if u is H4 regular in time
max

0≤n≤N

∥∥u̇(tn)−W n
h

∥∥
V
≤ CT 2−α

(
hr−1 +∆t2

)
, max

0≤n≤N

∥∥u(tn)−Un
h

∥∥
L2(Ω)

≤ CT 2−α
(
hr +∆t2

)
.

Proof. Let us consider
∥∥u̇(tn)−W n

h

∥∥
L2(Ω)

for any n = 0, . . . , N . Using the triangular inequality, we have∥∥u̇(tn)−W n
h

∥∥
L2(Ω)

=
∥∥θ̇(tn)−ϖn

∥∥
L2(Ω)

≤
∥∥θ̇(tn)∥∥L2(Ω)

+
∥∥ϖn

∥∥
L2(Ω)

.

By (2.6) and Lemma 2, this immediately gives∥∥u̇(tn)−W n
h

∥∥
L2(Ω)

≤ CT 2−α(hr +∆t2−α),

and since n is arbitrary,
max

0≤n≤N

∥∥u̇(tn)−W n
h

∥∥
L2(Ω)

≤ CT 2−α
(
hr +∆t2−α

)
.

With higher regularity in time, we have
max

0≤n≤N

∥∥u̇(tn)−W n
h

∥∥
L2(Ω)

≤ CT 2−α
(
hr +∆t2

)
.

In this manner, we take into account the energy norm error for the displacement. By the triangular inequality, the elliptic energy
error estimates (2.6) and Lemma (2), we can obtain∥∥u(tn)−Un

h

∥∥
V
≤
∥∥θ(tn)∥∥V +

∥∥χn
∥∥
V
≤ CT 2−α(hr−1 +∆t2−α),

hence
max

0≤n≤N

∥∥u(tn)−Un
h

∥∥
V
≤ CT 2−α(hr−1 +∆t2−α).

In addition, if the strong solution has H4 regularity in time, it holds
max

0≤n≤N

∥∥u(tn)−Un
h

∥∥
V
≤ CT 2−α(hr−1 +∆t2).

On the other hand, to show energy error estimates of the velocity, we need the inverse inequality (1.3). Then, after noting
that ∥∥v∥∥2

V
=
∑
E∈Eh

∫
E

Dε(v) : ε(v) dE + Jγ0,γ1

0 (v,v) ≤ C|||v|||2H1(Eh)
+ Jγ0,γ1

0 (v,v)

⇒
∥∥v∥∥

V
≤ 2C|||v|||H1(Eh)

+ 2
√
Jγ0,γ1

0 (v,v),

the inverse inequality implies∥∥u̇(tn)−W n
h

∥∥
V
≤
∥∥θ̇(tn)∥∥V +

∥∥ϖn
∥∥
V
≤
∥∥θ̇(tn)∥∥V + C|||ϖn|||H1(Eh)

+ 2
√
Jγ0,γ1

0 (ϖn,ϖn)

≤
∥∥θ̇(tn)∥∥2V + Ch−1

∥∥ϖn
∥∥
L2(Ω)

+ 2
√
Jγ0,γ1

0 (ϖn,ϖn).

Then, by employing (2.6) and Lemma 2, we can obtain the energy norm error bounds for the velocity.

In the case of L2 error estimation of the displacement, Poincaré inequality (1.2) gives,∥∥u(tn)−Un
h

∥∥
L2(Ω)

≤
∥∥θ(tn)∥∥L2(Ω)

+
∥∥χn

∥∥
L2(Ω)

≤
∥∥θ(tn)∥∥L2(Ω)

+ C
∥∥χn

∥∥
V
.

Therefore, we can complete the proof using (2.6) and Lemma 2.
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Remark. In the context of the stability analysis, the jump penalty term of the discrete velocity in (2.24) may not directly
contribute. However, it plays a crucial role in achieving energy error bounds for the velocity. This additional jump penalty term
allows us to handle the spatial discontinuity of the error between the numerical velocity and the elliptic projection of the exact
solution over the edges. It ensures the energy norm error estimates of the numerical velocity, which are essential for accurate
and reliable numerical solutions.

4 Numerical experiments

Using the open-source finite element method library FEniCS of version 2019.1.0 (https://fenicsproject.org), we con-
duct numerical simulations to validate our error analysis. We consider two cases to demonstrate the influence of the regularity
of solutions in time:

1. Example 1: This case involves a solution that is not of class H4 in time, showcasing the performance of our method
with less regular solutions.

2. Example 2: Here, we consider a smoother case with a solution having higher regularity in time.

Additionally, we provide Example 3 to demonstrate the practical applicability of our method using real-material data. The
numerical simulations presented in this manuscript were implemented with code available on author Jang’s Git repository
(https://github.com/Yongseok7717/visco_frac_dg). We believe in the importance of open and reproducible research,
and thus, we encourage readers to access and explore our code for a better understanding of our proposed approach.

Let enu := u(tn) − Un
h and enw := u̇(tn) −W n

h be the numerical errors of displacement and velocity, respectively. On
account of the dependency of the DG energy norm on the penalty parameters, γ0 and γ1, we consider the broken H1 norm of
errors instead. Thanks to Korn’s inequality, the (broken) H1 norm error estimates follow the same convergence rates as the DG
energy error estimates. Therefore, by Theorem 3, for a solution with H3 regularity in time and sufficient smoothness of f and
initial conditions, the error estimates are as follows: ∀n,

• Displacement errors: |||enu|||H1(Eh)
= O(hr−1 +∆t2−α) and

∥∥enu∥∥L2(Ω)
= O(hr +∆t2−α).

• Velocity errors: |||enw|||H1(Eh)
= O(hr−1 +∆t2−α) and

∥∥enw∥∥L2(Ω)
= O(hr +∆t2−α).

Here, r is the spatial convergence rate, α is the fractional order of the time derivative, and h and ∆t are the mesh sizes in space
and time, respectively. A higher regularity of the solution will lead to the second order accuracy in time as the optimal result of
the Crank-Nicolson Scheme. The numerical convergent rate can be computed by the differences between two errors divided by
mesh differences in the logarithm. For example, the spatial order of convergence dh is obtained by

dh =
log(error of h1)− log(error of h2)

log(h1)− log(h2)
,

for different mesh sizes h1 and h2, when the temporal errors are negligible. In this manner, we can derive a numerical order of
convergence in time dt as well. This allows us to quantify how the error decreases as we refine the mesh or change the time
step size, providing valuable insights into the accuracy and efficiency of our numerical method.
Remark. For the stability of our numerical scheme, we should take sufficiently large penalty parameters, since the coercivity,
the continuity, the DG elliptic error estimates and the bounds for interior penalty rely on the penalty parameters. We refer
to [13] for the failure of DG simulations when the penalty parameters are not large enough. In our following numerical
experiments, we define γ0 = 20 and γ1 = 1 in 2D problems.

Example 1. Let us consider an exact solution to the primal model problem in the strong form defined by

u(t, x, y) = (0.5t2 + 0.4t2.5)

[
sin(πx) sin(πy)
x(1− x)y(1− y)

]
on [0, 1]× Ω,

with Ω = (0, 1)2 and its boundary splitting in ΓN := {(x, y) ∈ ∂Ω | x = 0} and ΓD := ∂Ω\ΓN . We set α = 1/2, ρ = 1,
φ0 = 0, φ1 = 1/Γ(1/2) andDε = ε so that u solves

ü(t)−∇ · 0I1/2t ε̇(t) = f(t), (4.1)

for some f that can be readily determined analytically (easy to compute fractional integrals of polynomials. e.g. 1/2 order
integral of tk is Γ(k + 1)/Γ(k + 3/2)tk+1/2). Also, the traction gN (t) can be obtained from the exact solution. Here, we can
observe that

u ∈ C3(0, T ;C∞(Ω)), u(0) = u̇(0) = 0 and ü(0) /∈ ker(A).
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Note that u(4) is not integrable in time hence the numerical errors of Example 1 will follow 1.5 order of accuracy in time,
i.e. suboptimal convergence in time. This example is equivalent to [11, Example 5.1], where the model problem has reduced to
a parabolic type evolution problem of fractional order viscoelasticity. We refer to the reference for the suboptimal numerical
results by the continuous finite element method imposed by purely homogeneous Dirichlet boundary conditions. In contrast,
our simulation utilizes DGFEM for spatial discretization and imposes a mixed boundary condition of a non-homogeneous
Neumann boundary and a homogeneous Dirichlet boundary.

Tables 1 and 2 indicate numerical errors at the final time in H1 norm and L2 norm with fixed fine timesteps for linear and
quadratic polynomial bases, respectively. Those errors exhibit optimal orders of convergence with respect to the spatial mesh
h, i.e. dh ≈ k in H1 norm and dh ≈ k + 1 in L2 norm for both displacement and velocity, where k = 1 or 2. However, due to
the weak singularity, the second-order schemes in Example 1 cannot fully exploit their second-order accuracy in time, resulting
in suboptimal convergent rates in time as shown in Table 3, where dt ≈ 1.5 regardless of variables and norms.

Table 1: Example 1; numerical errors and spatial orders of convergence when k = 1 and ∆t = 1/512.

H1 norm error L2 norm error

h
∣∣∣∣∣∣eNu ∣∣∣∣∣∣H1(Eh)

Rate
∣∣∣∣∣∣eNw ∣∣∣∣∣∣H1(Eh)

Rate
∥∥eNu ∥∥L2(Ω)

Rate
∥∥eNw ∥∥L2(Ω)

Rate
1/2 1.3147e+00 2.8811e+00 1.6518e-01 3.8249e-01
1/4 7.4445e-01 0.82 1.6378e+00 0.81 5.2814e-02 1.65 1.2549e-01 1.61
1/8 3.8444e-01 0.95 8.4734e-01 0.95 1.4469e-02 1.87 3.4810e-02 1.85

1/16 1.9377e-01 0.99 4.2730e-01 0.99 3.7269e-03 1.97 9.0123e-03 1.95
1/32 9.7095e-02 1.00 2.1416e-01 1.00 9.4061e-04 1.99 2.2769e-03 1.98

Table 2: Example 1; numerical errors and spatial orders of convergence when k = 2 and ∆t = 1/512.
H1 norm error L2 norm error

h
∣∣∣∣∣∣eNu ∣∣∣∣∣∣H1(Eh)

Rate
∣∣∣∣∣∣eNw ∣∣∣∣∣∣H1(Eh)

Rate
∥∥eNu ∥∥L2(Ω)

Rate
∥∥eNw ∥∥L2(Ω)

Rate
1/2 3.9823e-01 8.7083e-01 2.6754e-02 6.0143e-02
1/4 1.1133e-01 1.84 2.4333e-01 1.84 3.6105e-03 2.89 7.9411e-03 2.92
1/8 2.8963e-02 1.94 6.3316e-02 1.94 4.6371e-04 2.96 1.0064e-03 2.98

1/16 7.3409e-03 1.98 1.6054e-022 1.98 5.8663e-05 2.98 1.2665e-04 2.99
1/32 1.8446e-03 1.99 4.0350e-03 1.99 7.5356e-06 2.96 1.6114e-05 2.97

Table 3: Example 1; numerical errors and temporal orders of convergence when k = 3 and h = 1/64.
H1 norm error L2 norm error

∆t
∣∣∣∣∣∣eNu ∣∣∣∣∣∣H1(Eh)

Rate
∣∣∣∣∣∣eNw ∣∣∣∣∣∣H1(Eh)

Rate
∥∥eNu ∥∥L2(Ω)

Rate
∥∥eNw ∥∥L2(Ω)

Rate
1/8 6.7401e-04 6.3975e-04 1.4615e-04 1.3384e-04

1/16 2.7884e-04 1.27 2.9409e-04 1.12 6.0717e-05 1.27 6.4152e-05 1.10
1/32 1.0582e-04 1.40 9.1038e-05 1.69 2.3073e-05 1.40 1.9915e-05 1.69
1/64 3.8465e-05 1.46 2.7789e-05 1.71 8.3728e-06 1.46 5.9461e-06 1.74

1/128 1.3947e-05 1.46 1.0314e-05 1.43 2.9817e-06 1.49 1.8027e-06 1.72

In the next example, we solve the fractional order viscoelasticity problem for smoother solutions than Example 1 so that error
estimates will follow optimal convergence rates not only of h but also of ∆t.
Example 2. Let us define

u(t, x, y) = t4.5
[

sin(πx) sin(πy)
x(1− x)y(1− y)

]
on [0, 1]× Ω,

with the same parameters and domains setting in Example 1 but φ0 = 1 so that we suppose u solves

ü(t)−∇ · ε(t)−∇ · 0I1/2t ε̇(t) = f(t), (4.2)

where data terms are obtained from the exact solution u. Clearly, the strong solution satisfies the regularity in time and space
for the optimal error estimation theorem such that

u ∈ C4(0, T ;C∞(Ω)), and u(0) = u̇(0) = ü(0) = 0.
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By following the error estimates theorem for smooth solutions, on account of the regularity of solutions, the loss of accuracy
in time discretization will disappear in Example 2. The numerical errors will follow O(hk +∆t2) in H1 norm and O(hk+1 +
∆t2) in L2 norm for both displacement and velocity, respectively. Therefore, we can observe the optimal orders of convergence
with respect to h such that dh ≈ 1 or 2 with linear polynomial bases and dh ≈ 2 or 3 with quadratic polynomial bases,
depending on the choice of norms, in Tables 4 and 5. On the other hand, Table 6 illustrates the second order accuracy in time
of our numerical scheme for fixed h with cubic polynomial bases.

Table 4: Example 2; numerical errors and spatial orders of convergence when k = 1 and ∆t = 1/512.
H1 norm error L2 norm error

h
∣∣∣∣∣∣eNu ∣∣∣∣∣∣H1(Eh)

Rate
∣∣∣∣∣∣eNw ∣∣∣∣∣∣H1(Eh)

Rate
∥∥eNu ∥∥L2(Ω)

Rate
∥∥eNw ∥∥L2(Ω)

Rate
1/2 1.4802e+00 6.6002e+00 1.7595e-01 8.1404e-01
1/4 8.3331e-01 0.83 3.7310e+00 0.82 5.4569e-02 1.69 2.5799e-01 1.66
1/8 4.2932e-01 0.96 1.9255e+00 0.95 1.4649e-02 1.90 7.0264e-02 1.88

1/16 2.1627e-01 0.99 9.7035e-01 0.99 3.7427e-03 1.97 1.8056e-02 1.96
1/32 1.0835e-01 1.00 4.8620e-01 1.00 9.4141e-04 1.99 4.5539e-03 1.99

Table 5: Example 2; numerical errors and spatial orders of convergence when k = 2 and ∆t = 1/512.
H1 norm error L2 norm error

h
∣∣∣∣∣∣eNu ∣∣∣∣∣∣H1(Eh)

Rate
∣∣∣∣∣∣eNw ∣∣∣∣∣∣H1(Eh)

Rate
∥∥eNu ∥∥L2(Ω)

Rate
∥∥eNw ∥∥L2(Ω)

Rate
1/2 4.4695e-01 1.9979e+00 2.9012e-02 1.3276e-01
1/4 1.2494e-01 1.84 5.5857e-01 1.84 4.0018e-03 2.86 1.8044e-02 2.88
1/8 3.2497e-02 1.94 1.4530e-01 1.94 5.2061e-04 2.94 2.3277e-03 2.95

1/16 8.2348e-03 1.98 3.6826e-02 1.98 6.6068e-05 2.98 2.9492e-04 2.98
1/32 2.0690e-03 1.99 9.2531e-03 1.99 8.4004e-06 2.98 3.7547e-05 2.97

Table 6: Example 2; numerical errors and temporal orders of convergence when k = 3 and h = 1/64.
H1 norm error L2 norm error

∆t
∣∣∣∣∣∣eNu ∣∣∣∣∣∣H1(Eh)

Rate
∣∣∣∣∣∣eNw ∣∣∣∣∣∣H1(Eh)

Rate
∥∥eNu ∥∥L2(Ω)

Rate
∥∥eNw ∥∥L2(Ω)

Rate
1/8 2.3658e-02 9.6445e-02 6.1306e-03 1.9759e-02

1/16 5.6874e-03 2.01 2.4780e-02 1.96 1.4761e-03 2.05 5.1026e-03 1.95
1/32 1.3851e-03 2.04 6.2993e-03 1.98 3.5974e-04 2.04 1.2997e-03 1.97
1/64 3.4020e-04 2.03 1.5921e-03 1.98 8.8378e-05 2.03 3.2885e-04 1.98

1/128 8.4070e-05 2.02 4.0123e-04 1.99 2.1827e-05 2.02 8.2883e-05 1.99

Example 3. According to the real material data of butyl rubber, butyl 70821, from [1, 18], we illustrate fractional or-
der viscoelasticity behaviour of the butyl rubber in 2D. For example, we have the parameters of the material such that
ρ = 920 kgm−3†, α = 0.449, φ0 = 0.685MNm−2, φ1 = 1.37MNm−2, µ = 0.228 and λ = 0.456. We suppose
Ω = (0, 2)× (0, 1), T = 0.25, ΓD = {(x, y) ∈ ∂Ω | x = 2} and ΓN = ∂Ω\ΓD. We impose zero initial conditions, zero body
force, and homogeneous boundary conditions on the ΓD (the right edge) and the Neumann boundary of the top and bottom
edges. For the left edge, we define the traction g(x, t) by

g(x, t) =

[
A(H(t)−H(t− ϵ)

0

]
on x ∈ Γleft := {0} × [0, 1],

where A = 1MNm−2, small ϵ > 0 and H is the Heaviside step function. To impose non-zero traction only at the beginning of
the simulation, we assume ∆t > ϵ.

In this numerical simulation, we want to solve

ρü(t)− φ0∇ ·Dε(t)− φα∇ · 0I1−α
t Dε̇(t) = 0, (4.3)

†https://www.aqua-calc.com/page/density-table/substance/rubber-coma-and-blank-butyl
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with the given boundary conditions and initial conditions, whereDε is computed by

(Dε)ij = Dijklεkl = 2µεij + λδijεkk.

By the zero body force and initial conditions, the numerical solution will satisfy at least suboptimal order of accuracy in time,
i.e. O(∆t2−α). In this numerical simulation, the non-zero traction force on Γleft appears only at the first time iteration and
then there is no more loading in the system, i.e. zero body force, homogeneous Dirichlet boundary condition and homogeneous
Neumann boundary condition.

To compare mechanical responses between elasticity and viscoelasticity, we solve a linear elastic model by setting φ1 = 0,
for simplicity. Hence, the constitutive equation of the linear elasticity model is given by

σelastic(t) = φ0Dε(t).

For space and time discretization, we define the piecewise quadratic DG finite element space of 60×30 uniform mesh resulting
in right-angled triangles and the timestep ∆t = 1/1000.

In Figure 1, the physical properties of wave propagation are observed well with respect to elastic and viscoelastic problems.
The left figures of Figure 1 exhibit characteristics of elastic waves, while the solution of the viscoelastic model shows large
attenuation. For more details on the attenuation in the unified elastic-viscoelastic model, we refer to [31].

5 Conclusion

In conclusion, this research presents a rigorous analysis of the discontinuous Galerkin finite element method for addressing
complex challenges in fractional order viscoelasticity. We have developed a fully discrete numerical approach that ensures
stability and provides reliable numerical solutions, incorporating the Crank-Nicolson time-stepping scheme. Theoretical error
estimates have been derived, revealing optimal convergence rates in both space and time for sufficiently smooth solutions.
Conversely, solutions lacking high regularity exhibit suboptimal convergence in time. Our extensive numerical experiments
affirm the efficiency and effectiveness of the proposed DGFEM method. These numerical findings solidify theoretical error
estimates, confirming the numerical reliability of our approach.

The proposed approach has proven to be a robust and efficient numerical tool, capable of accurately predicting viscoelastic
behaviour, even for solutions with nonsmooth features and weak singularities. The ability to handle non-homogeneous Neu-
mann boundary conditions adds to its versatility and practicality, making it suitable for a wide range of real-world applications.
The method’s adaptability to different boundary conditions and solution regularities makes it important in various engineering
and scientific domains. Higher order methods for time discretization are of our future work with fast computations of the
fractional order integral/differentiation for practical use.
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