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Abstract

Advanced synthetic data generators can model sensitive personal datasets by creating sim-
ulated samples of data with realistic correlation structures and distributions, but with a
greatly reduced risk of identifying individuals. This has huge potential in medicine where
sensitive patient data can be simulated and shared, enabling the development and robust
validation of new AI technologies for diagnosis and disease management. However, even
when massive ground truth datasets are available (such as UK-NHS databases which con-
tain patient records in the order of millions) there is a high risk that biases still exist
which are carried over to the data generators. For example, certain cohorts of patients
may be under-represented due to cultural sensitivities amongst some communities, or due
to institutionalised procedures in data collection. The under-representation of groups is
one of the forms in which bias can manifest itself in machine learning, and it is the one we
investigate in this work.These factors may also lead to structurally missing data or incor-
rect correlations and distributions which will be mirrored in the synthetic data generated
from biased ground truth datasets. In this paper, we explore methods to improve synthetic
data generators by using probabilistic methods to firstly identify the difficult to predict
data samples in ground truth data, and then to boost these types of data when generating
synthetic samples. The paper explores attempts to create synthetic data that contain more
realistic distributions and that lead to predictive models with better performance.
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1. Introduction

The use of synthetic data for the rapid development of AI systems in healthcare represents
a great potential to avoid issues concerning patient privacy that have been highlighted in
the General Data Protection Regulation (Goodman and Flaxman, 2017). This type of data
captures the structure and distributions that are apparent in the real data sets whilst also
preserving patient privacy and avoiding the risks of individual identification. Synthetic data
generation occurs by applying techniques such as building generative models based on real
data (Patki et al., 2016). In this case, models that capture the correct relationships and
distributions are built, either hand-coded based upon expert knowledge or inferred from real
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data using models such as Bayesian networks (BNs) (Young et al., 2009). These can then be
used to generate synthetic data via sampling techniques. However, even using established
techniques such as Bayesian networks for the generation of high-fidelity synthetic patient
data (Tucker et al., 2020), and even when huge datasets are available, there is a high risk
that biases still exist, which are carried over to the data generators. The presence of biases
within data has proved to be a significant problem in applying AI techniques. Indeed, there
is the risk of replicating and even amplifying human biases, particularly those affecting pro-
tected groups (Chodosh, 2018). Algorithmic bias can manifest in several ways with varying
degrees of consequences for the subject group: biases in online recruitment tools (Hamil-
ton, 2018), biases in word association (Hadhazy, 2017), biases in criminal justice decision
making (Angwin et al., 2016) and others (Lee et al., 2019) Problems with biased training
data have also led to accusations of prejudice in machine learning models ((Cossins, 2018),
(Emspak, 2016) ). The reason can be that data selected from a biased sample of the popu-
lation leads to decisions that reflect the biases already in our society. As mentioned above,
bias in machine learning can show up in several forms (Mehrabi et al., 2019). To directly
solve the bias in the world is unrealistic, but what we can do is take measures to weed
out bias from our data or models. In this work, bias is regarded as under-representation
of groups of patients, whatever that reason may be. Similarly, the application of synthetic
data generators on data in which this type of bias is present can lead to the generation
of synthetic data in which specific cohorts of patients may be under-represented due to
cultural sensitivities amongst some communities or standardized procedures in data collec-
tion. These factors may also lead to structurally missing data or incorrect correlations and
distributions mirrored in the synthetic data generated from biased ground truth datasets.
Datasets in medicine are often imbalanced, and the under-representation of certain patient
groups reflects this imbalance. Existing approaches to deal with these imbalances include
de-biasing methods, like Reweighing (Calders et al., 2009), Adversarial Debiasing (Zhang
et al., 2018) and Reject option classification (Herbei and Wegkamp, 2006), and synthetic
data generation approaches, including SMOTE (Chawla et al., 2002) and variants such as
Adaptive Synthetic Sampling (AdaSyn) (He et al., 2008). The de-biasing methods aim to
mitigate the bias prevalent in the training data to create an unbiased model regarding how
it makes decisions based on specific sensitive attributes, whilst SMOTE and AdaSyn aim
to re-balance the data on the class variables. In this paper, we explore a new technique,
BayesBoost, that combines a Bayesian network synthetic data generator with a boosting
approach. The aim is to identify under-represented samples in a ground truth dataset and
then use the synthetic data to over-sample the under-represented cases and achieve a better
overall distribution of overall features. The purpose of our work differs from the aim of the
methods mentioned above since BayesBoost aims to create synthetic data that are more
representative of the ground truth data population.

2. Method

In this section, we firstly define the developed methodology, describing the simulation of
data biases and the BayesBoost approach. We then introduce the two datasets on which
we test the approach. Finally, we describe the empirical analysis.
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2.1. Methodology

The experiment can be broken down into three main sections. First, a data size reduction
approach is proposed to generate as small a dataset as possible whilst maintaining data
quality that is high enough for good model performance, thus reducing the inclusion of
unnecessary data. Second, we move on to the simulation part of our work, which involves
generating synthetic data containing biases. This section allows us to be sure to have data
containing under-represented groups of patients. The third and final section of this work
concerns BayesBoost: the identification and handling of data biases from a given dataset
containing under-represented groups.

Simulation of data biases The first section of our work concerns a data size reduction
approach. Given a dataset DGT we identify binary classes (here representing the occurrence
of disease) to be predicted and select the sample sizes to be extracted. Different percentage
samples of the original dataset are investigated: 50%, 10%, and 1%. A random sample and
a test set of the same size are extracted from DGT for each desired size. After repeating the
procedure n times for each dimension to be sampled, two tables reporting the AUC values
calculated for the ROC and precision-recall curves for each iteration and each dimension
are extracted. The variation in AUC values between the complete dataset and the samples
for each iteration is adopted as a metric to choose the best size to sample. Therefore, the
dimension leading to the minimal AUC values variation is used in the subsequent analyses
of our approach. In fact, the goal is to reduce the size of the dataset while maintaining a
data quality that is high enough for good model performance. Thus, as long as the ability to
classify a target variable doesn’t decrease, the extracted sample keeps most of the dataset’s
intrinsic characteristics. We chose to use the AUC as a metric since it represents a valid
measure of classification performance (Bradley, 1997). After identifying the optimal sample
size for DGT, we move on to the simulation part of our work, which involves generating
synthetic data containing biases. Bayesian networks (BNs) are used to model different
samples of data. BNs are probabilistic models representing a set of stochastic variables with
their respective dependencies and conditional distributions They facilitate the generation of
random samples conditional on some evidence. Therefore, it is possible to generate random
samples conditional on some evidence. This enables us to generate data with hand-coded
biases in order to test our approach. After learning a Bayesian network from DGT, we
identify the numeric attributes we want to under-represent and the respective value beyond
which we want to obtain the under-representation (e.g. if the chosen variable is age and
the chosen value is 60, it means that subjects over 60 years of age will be under-represented
in the sampled synthetic data). For categorical variables we explore two methods: One
is to introduce within the network new conditional probabilities in the Bayesian network
from which the data will be extracted. This approach is preferable if we want to have
control over all levels of the variable. Another possible way is to proceed as with numeric
variables, by choosing a value to under-represent (e.g. gender == F) and let the remaining
percentage of data be composed of data with other values of the variable in question (e.g.
gender == M, gender == I). This approach is preferable when the considered variables
are binary, and therefore, once the value to be under-represented has been chosen, the only
other remaining value is over-represented. Finally, the percentage of data to be under-
represented is identified (e.g. 30% means that a data set will be generated containing 30%
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of subjects having the characteristic chosen as the characteristic to be under-represented).
After choosing these parameters, the data extraction from the Bayesian network is carried
out using logic sampling (Henrion, 1988). This use of evidence to control the synthetic data
generation enables us to produce data with the exact degree of under-sampled cases. In
order to completely separate the biased data from the original synthetic data, a Bayesian
network is learned based on the obtained dataset and, from this, a dataset of the desired
size is extracted. This dataset, which from now on we will refer to as DBias the data set
that, in our simulation, represents the original data set on which to apply the method for
identifying and correcting data biases. The simulation of biases process is summarized in
Figure 1.

Figure 1: Simulation of biases process.
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BayesBoost The third and final section of this work concerns BayesBoost: the developed
approach for the identification and handling of data biases from a given dataset. In order
to identify groups of under-represented data, the idea is to test a classifier, trained on
DBias, in predicting a binary variable on a validation set extracted a priori from data A.
If dataset DBias presents an under-representation of data groups, we expect to highlight
them through a difficulty in classifying them. In particular, we choose to consider all the
subjects that the classifier gets with uncertainty as difficult to classify. In our method, the
uncertainty is a parameter that we consider to be each probability between some interval
(here we choose the interval to be between 0.4 and 0.7, representing an uncertain binary
classification). In literature, there are many measures used to evaluate fairness and/or
bias in data sets, including Statistical Parity Difference, Equal Opportunity Difference and
Average Odds Difference (Mehrabi et al., 2019). Although very useful, these metrics are
model-oriented and oriented towards the identification of positive outcomes. Our approach
does not aim to obtain a model in which different subgroups can have the same chance of
being classified as positive.In fact, we only want to identify all those cases that are difficult
to classify, regardless of whether they are positive or negative outcomes. The data classified
with uncertainty within this interval forms a new dataset called DUnc. Attributes are sorted
based on differences between the distributions of DBias and DUnc, framing the ordered set
of variables named O. In order to generate m rows for each row of DUnc, the idea is to
sample new data from a Bayesian network, learned on dataset DBias, after assuming the
values belonging to the data contained in DUnc as evidence. Therefore, we expect the newly
generated dataset to report subjects having characteristics that have been under-represented
in DBias. At the end of this procedure, we will have a new data set that constitutes the new
synthetic dataset DBoost once added to DBias. It should be specified that the number m
of rows to extract constitutes another parameter of our approach that will undoubtedly be
subject to future optimizations. Three attempts are made: the first involves the extraction
of m data for each row of DUnc to obtain a dataset equal to half the DBias size. The second
involves the extraction of m data to obtain a dataset with dimensions equal to DBias, while
the third involves the extraction of m number of rows for each row of DUnc in such a way
as to obtain a dataset with dimensions equal to twice that of DBias. The full details of this
entire process are documented fully in Algorithm 1.

2.2. Datasets

The developed approach is applied on synthetic datasets based on anonymised real pri-
mary care data (Wang et al., 2019) from the Clinical Practice Research Datalink (CPRD),
a real-world research service supporting retrospective and prospective public health and
clinical studies in the UK. It is jointly sponsored by the Medicines and Healthcare prod-
ucts Regulatory Agency and the National Institute for Health Research, as part of the
Department of Health and Social Care (Wolf et al., 2019). First, the approach is applied
to the CPRD Synthetic cardiovascular disease datasets (CVD) (Clinical Practice Research
Datalink, 2020a), a dataset focusing on cardiovascular disease risk factors. The dataset
covers 499,344 patients and 21 variables, including stroke or heart attack, smoking habits,
region, age, chronic diseases, body mass index, systolic blood pressure and other cardio-
vascular disease risk factors. CVD is a mixed dataset because it contains both numeric
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Algorithm 1: BayesBoost Algorithm: Pipeline for the identification and handling of biases

Input: a dataset containing biases DBias , an independent validation set V , binary class to
predict C, range probabilities p1 and p2

1. Learn a Bayesian network b from DBias and fit the parameters of the Bayesian network
b

2. Train a model on DBias and test it on V to predict values of C

3. Extract all the outcomes that the classifier get with uncertainty. Being p the outcome
probability, we consider as uncertain all the cases where p1 < p < p2

4. Create the dataset DUnc containing all the data from V that correspond to the un-
certain outcomes.

5. For each factor variable, calculate the frequencies (i.e. the proportion of subjects
belonging to each category in DBias and DUnc) and compute the average of the absolute
value of the difference between the frequencies of DBias and DUnc.

6. For each numerical variable, calculate the mean of the absolute value of the difference
between quartiles, medians and means of DBias and DUnc.

7. Define the ordered set of variables O by excluding the one to be predicted and sorting
the variables in descending order based on the difference between the distributions of
DBias and DUnc (the difference is calculated in 5 and 6).

8. Being U i the ith row of DUnc, for each U i:

9. For each variable Oj contained in O, construct the evidence using the value of
the same variable in U i

10. Using the constructed evidence, attempt to extract m samples from b by inferring
the variable to be predicted

11. If m rows are extracted, continue with the next row in DUnc

12. Otherwise, remove variables to use as evidence by starting with the last posi-
tioned within O

13. If a variable oi is not used as evidence, its value in U i is copied within the new
dataset.

14. The result is a new dataset that is added to DBias, producing a new dataset C.
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and factor variables. Finally, the method is applied to the CPRD COVID-19 Synthetic
datasets (Clinical Practice Research Datalink, 2020b), which focuses on patients presenting
to primary care with symptoms indicative of COVID-19 (confirmed/suspected COVID-19)
and control patients with negative COVID-19 test results. The dataset covers 779,546 pa-
tients and 47 variables, including age, age categories, gender, region, covid-19 diagnosis and
covid-19 test results.

2.3. Experiments

Simulation of data biases As stated before, our experiment focuses on two synthetic
data generator models focused on cardiovascular disease and covid-19. In order to simulate
data biases, the idea is to introduce biases in variables that impact classification perfor-
mances. To do that, we analysed the structure of the BNs learnt from each dataset, and
the variables to consider for the biases simulation are identified based on direct relation-
ships with the target variables. The selected variables for each dataset are specified in the
following paragraphs.

CVD Synthetic Data Being CVD Synthetic data a mixed dataset, we can introduce
biases in both numeric and categorical variables. In particular, we present two different
bias protocols for this dataset. When applying bias protocol cvd 1, an under-representation
is introduced for the variables age and body mass index (bmi), with a percentage of under-
representation at 20%. Also, new conditional probabilities are introduced for the variables
gender and chronic disease (ckidney). Bias protocol cvd 2 consider age, systolic blood
pressure (sbp), gender, region and smoking.

Covid-19 Synthetic Data Considering the covid-19 synthetic data, we introduce biases
in factor variables since the dataset shows only one numeric variable (age), which can be
regarded by considering the correspondent factor attribute (age category, catAge). Three
bias protocols are investigated for this dataset: bias protocol covid 1 introduces biases in the
region, bias protocol covid 2 considers age categories, and bias protocol covid 3 introduces
biases in both variables.

BayesBoost After simulating biases, BayesBoost is applied to detect under-represented
groups. Regarding the CVD data, three different variables are predicted: stroke and heart
attacks, atrial fibrillation and type 2 diabetes. The target variable within the COVID-19
data is covid-19 diagnosis. For each attempt, the results of BayesBoost are three synthetic
datasets: BB50, BB100 and BB200, depending on the degree of oversampling used in the
BayesBoost Algorithm. BB50 results from the extraction of m data to boost the original
data with an extra 50% of the size of DBias. BB100 results from the extraction of m data
to boost the dataset by 100%. BB200 is the outcome when extracting m data to boost the
dataset by 200%. In order to assess the efficacy of our approach, we generate synthetic
datasets by applying SMOTE and Adaptive Synthetic Sampling (AdaSyn) to the dataset
in which biases have been deliberately introduced. Then, we compare the two outcomes
to those obtained by BayesBoost. In particular, the resulting five synthetic data sets are
compared in predicting a binary variable by training a Naive Bayes classifier and test the
models on the same independent test set. AUC values are estimated after computing the
ROC and precision-recall curves for each prediction.
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3. Results

We now explore the results from the two different datasets to see how BayesBoost per-
forms. The outcome of this approach is a synthetic dataset which we expect to be more
representative of reality (characteristics of the original dataset, DGT, without added bi-
ases) in terms of underlying distributions and predictive performance. We compare the
AUC values computed on the following datasets: the original dataset DGT; the dataset
containing data biases DBias; BB50, BB100 and BB200, three synthetic datasets obtained by
applying the approach developed to DBias and varying the degree of oversampling; DSmote

the synthetic dataset obtained by applying SMOTE to DBias; DAdasyn the synthetic dataset
obtained applying AdaSyn to DBias. As stated before, this work aims to produce a synthetic
dataset as close to reality as possible. Therefore, the distributions of some of the variables
for which under-representations have been introduced are compared. The datasets produc-
ing the highest AUC values is chosen between BB50, BB100 and BB200, and represented
when comparing distributions as DBoost. Moreover, to highlight the ability of BayesBoost
to identify those groups of data that have been under-represented, distributions are also
reported of the data classified with uncertainty, DUnc. We expect these distributions to
reflect the under-represented cases. The following paragraphs report the most significant
results obtained for each dataset by applying the bias protocols described above.

CVD Synthetic Data Regarding the CVD dataset, the AUC values computed for the
ROC and precision-recall curves resulted from the bias protocol cvd 2 and the different
predictions are reported in Table 1 and Table 2, respectively. Results obtained by applying
the bias protocol cvd 1 are similar to the ones proposed here.

Table 1: The table shows the AUC values calculated for the ROC curves obtained by testing
the models trained on the different datasets.

Target Bias
Protocol

DGT DBias BB50 BB100 BB200 DSmote DAdaSyn

(a) strokeha cvd 2 0.85 0.82 0.83 0.84 0.84 0.82 0.81
(b) af cvd 2 0.87 0.85 0.87 0.87 0.87 0.84 0.84
(c) type2 cvd 2 0.84 0.83 0.83 0.82 0.81 0.82 0.82

The distributions of the results obtained when applying (a) are reported in Figure 2,
Figure 3 and Figure 4, where distributions of the variables age, gender and smoking are
reported. Results obtained from attempts (b) and (c) are similar to the ones reported here.
These figures show the distributions of some of the variables in which under-representations
have been introduced. Comparing the distributions of DUnc and DBias, the main conclusion
is that BayesBoost correctly identifies the under-represented groups. Furthermore, the dis-
tribution of the DBias data shows how BayesBoost overcomes the biases highlighted from
DBias and capture by DUnc , which identifies from DBias which subjects need to be sample
boosted. As can be seen in Figure 2, the distribution of uncertain data mainly identifies
subjects aged over 75, who are the ones who have been under-represented in DBias. Our
approach, SMOTE and AdaSyn, produce data with realistic distributions by increasing all
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Table 2: The table shows the AUC values calculated for the P-R curves obtained by testing
the models trained on the different datasets.

Target Bias
Protocol

DGT DBias BB50 BB100 BB200 DSmote DAdaSyn

(a) strokeha cvd 2 0.33 0.24 0.26 0.28 0.29 0.24 0.23
(b) af cvd 2 0.18 0.13 0.16 0.17 0.17 0.13 0.13
(c) type2 cvd 2 0.24 0.18 0.19 0.19 0.19 0.18 0.18

those data that had been under-represented. Figure 3 shows how, after under-representing
female subjects, the distribution of DUnc highlights a high percentage of females. Fur-
thermore, the result obtained by the BayesBoost approach presents distributions closer to
reality, increasing the number of female subjects who have been under-represented in DBias.
On the contrary, DSmote and DAdaSyn maintain a distribution similar to DBias. Figure 4
shows the distribution of the smoking variable, where level 0 indicates non-smoker patients,
level 1 refers to ex-smokers, level 2 to light smokers, 3 to moderate smokers and 4 to heavy
smokers. Once again, we can see how the DUnc data distribution identifies the data that
have been under-represented in DBias. Moreover, we can see how the DBoost gets closer to
the real data distribution, unlike DSmote and DAdaSyn, which derive from the realistic
data distribution.

Figure 2: Age density distributions of the data obtained by attempt (a).

Covid-19 Synthetic Data This section analyses the outcomes obtained by applying the
bias protocol covid 3 and predicting the covid diagnosis, but similar results are obtained by
applying bias protocols covid 1 and covid 2. The AUC computed for the ROC and precision-
recall curves are reported in Table 3 and Table 4. Comparisons between the distributions
of the obtained outcomes are shown in Figure 5.

Considering Figure 5(a), it is evident that our approach reduces the number of data be-
longing to class 1 to obtain a distribution of data that is as close to reality as possible, while
the other approaches show distributions that are closer to DBias. Considering Figure 5(b)
comparing the distribution of the age category in datasets DBias and DUnc, we can see that
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Figure 3: Gender distributions of the data obtained by attempt (a). The x-axis shows the
values, and the y-axis represents the frequencies.

Figure 4: Smoking distributions of the data obtained by attempt (a). The x-axis shows the
values, and the y-axis represents the frequencies.

Table 3: The table shows the AUC values calculated for the ROC curves obtained by testing
the models trained on the different datasets. The target variable is the covid
diagnosis.

DGT DBias BB50 BB100 BB200 DSmote DAdaSyn

0.7 0.69 0.71 0.72 0.73 0.7 0.7
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Table 4: The table shows the AUC values calculated for the P-R curves obtained by testing
the models trained on the different datasets. The target variable is the covid
diagnosis.

DGT DBias BB50 BB100 BB200 DSmote DAdaSyn

0.21 0.2 0.22 0.23 0.25 0.21 0.2

our approach correctly identifies the data that has been under-represented in DBias. It is
also evident that our approach produces a dataset more similar to reality than the datasets
produced with SMOTE or AdaSyn, which, as we can see, do not introduce improvements to
the distribution of the variable that has been deliberately under-represented. In conclusion,
Figure 5 shows that BayesBoost identifies the under-represented groups in DBias highlight-
ing them in DUnc as groups that need to be sample boosted. The result is an over-sampling
of these groups, leading the resulting dataset DBias to overcome those biases.

(a) (b)

Figure 5: 5 (a) represents the region distribution; (b) represents the age categories distri-
bution. The x-axes show the values, and the y-axes represent the frequencies.

4. Conclusion

BayesBoost is a novel approach that aims to detect and overcome biases within data. Be-
ing able to identify under-represented cohorts of patients represents a powerful technique,
especially when considering synthetic data generators. The use of rare event detection and
correction approaches can be essential for a synthetic dataset service like that used at the
Clinical Practice Research Datalink in the UK. The advantage of having access to synthetic
data is that it can be used instead of real patient data for complex statistical analyses and
machine learning and artificial intelligence (AI) research applications. Indeed, detecting
and correct biases in the ground truth datasets will avoid structurally missing data or
incorrect correlations and distributions to be mirrored in the synthetic data generated from
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biased ground truth datasets. Methods for detecting rare events include synthetic sampling
approaches like SMOTE and AdaSyn. As stated before, these techniques aim to balance
the classification problem. Therefore, they aim to balance the target variable, even if it
results in deviating from the correct distribution of the data. Figure 6 illustrates this point
by plotting the resulting distributions of a target variable for one of our simulations on
covid data where we inject bias and try to infer the original distributions. The results
obtained by applying SMOTE and AdaSyn show the resulting distribution in the new data
balances the classification problem (the target variable is balanced between the two levels),
despite obtaining data distributions that deviate from the original unbiased data, DGT.
On the contrary, the data distributions obtained through BayesBoost resemble the original
distribution DGT. The reason is that, as we can see from the distribution of data DBias and
data DUnc, the target variable does not show variations after introducing biases in the data.
BayesBoost approach does not detect biases for this variable since they are not present
and, consequently, does not attempt to balance that variable. The results obtained through
the application of SMOTE and AdaSyn showed us comparable AUC values, both for the
results obtained on the CVD data and for the covid-19 data. The reported results show
how the datasets resulting from the application of BayesBoost lead to better AUC values
than those obtained with SMOTE and AdaSyn. Moreover, there are cases in which the
classification performance carried out using the DBoost even exceeds the DGT. Additionally,
BayesBoost shows an excellent ability to identify under-represented groups within data and
correct them, as we can see considering the obtained data distributions.

Figure 6: Distribution of the covid diagnosis variable obtained when applying our approach
on the Covid-19 Synthetic data.

5. Further works

There are still a number of issues with BayesBoost that need to be explored. In partic-
ular, the correct parameterization (such as to what extent the under-represented samples
need to be boosted). What is more, the approach has only been applied when classifying
binary variables, but future development will undoubtedly consider multiclass classification
problems. Likewise, it will be possible to investigate new datasets and, in particular, new
diseases.
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