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Abstract: The transportation system plays an important role in the open-pit mine. As an effective solu-
tion,  smart  scheduling  has  been  widely  investigated  to  manage  transportation  operations  and  increase
transportation  capabilities.  Some  existing  truck  scheduling  methods  tend  to  treat  the  critical  parameter
(i.e., the moving speed of the truck) as a constant, which is impractical in real-world industrial scenarios.
In this paper, a multi-objective optimization (MOO) algorithm is proposed for truck scheduling by con-
sidering three objectives, i.e.,  minimizing the queuing time, maximizing the productivity, and minimiz-
ing  the  financial  cost.  Specifically,  the  proposed  algorithm  is  employed  to  search  continuously  in  the
solution space, where the truck moving speed and truck payload are chosen as the operational variables.
Moreover, a smart scheduling application integrating the proposed MOO algorithm is developed to assist
the  user  in  selecting  a  suitable  scheduling  plan.  Experimental  results  demonstrate  that  our  proposed
MOO approach is effective in tackling the truck scheduling problem, which could satisfy a wide range of
transportation conditions and provide managers with flexible scheduling options.
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1. Introduction

Minerals  are  important  materials  in  various  industries  such  as  the  semiconductor,  construction,  energy,  and
manufacturing [1−3]. Currently, the mining industry has made contributions to over 4% of the global gross domestic
product, thereby becoming one of the most valuable sources of the economic growth for many countries. It is evident
that the mining industry is closely related to daily life and will continue to shape the global industry, business, and
economy in next decades [4].

Open-pit mining is a highly complex system which takes into account factors such as the environmental condi-
tions, mining operations, and activity organisation [5]. With the growing complexity of mining, it is vital to develop a
digital system to monitor the entire mining operation depending on a variety of sensing equipment. In recent years,
some artificial-intelligence-based methods have been used to simulate complex mining operations by exploiting data
collected from digital mines, and most of these methods have been proposed to solve transport problems [6−10].

Operations  of  an  open-pit  mining  system  involve  mineral  extraction,  transportation,  and  processing.  Among
them, the transportation budgets often account for more than half of the total budget of mining operations due to the
high  cost  of  fuel  and  labor  [11,12]. Therefore,  in  order  to  save  budgets,  it  is  crucial  to  improve  the  transport  effi-
ciency of the open-pit mine. In general, the purpose of the transportation system is to deliver minerals from the open-
pit  mine  to  the  plant  by  employing  truck  fleets.  Under  such  circumstances,  rational  scheduling  of  trucks  is  key  to
increase productivity and save financial costs. Additionally, some other important objectives also need to be consid-
ered such as saving truck queuing time [12] and minimizing ore grade deviation [13].

It is worth noting that the two main objectives (i.e., gaining productivity and saving costs) of the truck schedul-
ing problem are often conflicting. Specifically, productivity would only increase when more trucks are utilized, which
inevitably results in additional costs. To address the problem of conflicting objectives, the well-known multi-objec-
tive  optimization  (MOO)  algorithms  have  been  introduced  into  truck  scheduling  systems  [12−15].  Many  decision
variables (e.g., the truck loading and unloading time, the loading capacity, and the truck moving speed) are treated as
constants in existing MOO-based truck scheduling methods, which makes the system impractical in real-world sce-
narios  [13,16,17].  In  reality,  for  safety  reasons  (such  as  weather  and  traffic  conditions),  these  decision  parameters
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(especially the truck moving speed) should not be fixed values. It is challenging to deal with incomplete data for truck
scheduling. Specifically, most of existing truck scheduling methods have been applied to large-scale mining systems,
which indicates that the collected data is complete and abundant. Nonetheless, small-scale mining systems may suf-
fer  from data deficiency due to the lack of sensing devices.  Currently,  only a few researchers have focused on the
small-scale mining operation scheduling problem. To sum up, there is an urgent need to develop a novel MOO-based
approach that takes both data quality and system flexibility into account for truck scheduling.

Motivated by the above discussions, a new MOO-based truck scheduling method is proposed in this paper for
open-pit  mining to  optimize the truck moving speed and the truck payload in  a  flexible  way.  The proposed MOO
algorithm is  applied to solve a  given truck scheduling problem, and is  validated on a  small-scale  mining database.
The main contributions of this paper can be summarized as follows.

1) A new truck scheduling problem with higher flexibility is presented. Different from the existing studies that
treat many operational parameters as constants, this paper regards the truck speed and payload as decision variables
for optimization, which allows for the operational flexibility for truck drivers.

2) A new MOO-based trucking scheduling model is established for open-pit mining. This is the first work in
this field that fully considers the truck speed, payload and mandatory breaks for the drivers, which could alleviate the
risk of imprecise task scheduling caused by human intervention.

3) An application  tool  is  developed  which  could  assist  users  in  designing  an  appropriate  scheduling  plan  for
specific working conditions.

4) Extensive experiments  are conducted on a real-world small-scale transportation dataset  to  verify the effec-
tiveness of the proposed approach.

The remainder of this paper is organized as follows. Section 2 introduces the background of the open-pit mine
transportation system and the existing research on truck scheduling problems. Section 3 gives the details of the math-
ematical model and the optimization method. Experimental results and analysis are described in Section 4. Finally,
this paper is concluded in Section 5.

2. Related Work

2.1. Truck Scheduling Problem
In an open-pit mine, the issue of truck scheduling is to strategically organize a fleet of trucks and loaders so as

to load and transport minerals efficiently. Traditionally, the scheduling process has been managed by human opera-
tors, and its effectiveness is dependent heavily on the prior experience and knowledge. This kind of scheduling strat-
egy is a long process of trial-and-error, and lacks the explicit theoretical support to assist managers in optimizing their
decisions. With the development of the digital mining technology, more sensors and monitoring devices have been
deployed in the mining systems. A large amount of historical data (sampled by sensors) provides an opportunity to
solve data-driven vehicle scheduling problems in mining systems, which makes it possible for the use of mathemati-
cal  modelling  and  optimization  theories  to  further  improve  the  scheduling  performance.  Consequently,  researchers
have turned to employ the evolutionary optimization methods to solve the complex operational scheduling problem.
The evolutionary optimization method is capable of discovering a globally optimal solution in parameter optimiza-
tion. Early studies have tended to investigate the single-objective optimization approaches, see [10,18−21]. With the
growing complexity of mining systems, the simple single-objective optimization algorithms fail to satisfy the perfor-
mance  requirements  of  the  truck  scheduling  problem because  more  variables  (e.g.,  weather  and  traffic  conditions)
need to be considered. Therefore,  the MOO algorithm becomes a proper candidate solution to tackle such a multi-
objective truck scheduling problem [13,17].

As a branch of evolutionary computation, the MOO algorithm aims to discover a set of optimal decision vari-
ables by minimizing or maximizing the objective functions. Different from the single-objective optimization problem,
the MOO problem needs to optimize multiple conflicting objectives simultaneously. The answer to the MOO prob-
lem is a set of compromised solutions, referred to as non-dominant solutions, and such an answer defines the optimal
trade-off between competing objectives. The non-dominant solutions are also called the Pareto front which is supe-
rior to other solutions. Till now, many efforts have been devoted to obtaining the optimal Pareto front by developing
advanced evolutionary-based algorithms, such as the strength Pareto evolutionary algorithm II (SPEA2) [22], the non-
dominated sorting genetic algorithm II (NSGA-II) [23], and the multi-objective evolutionary algorithm based on the
decomposition (MOEA/D) algorithm [24].

Recently, the MOO algorithms, as a useful tool for decision-making and operational planning, have been suc-
cessfully applied to the open-pit  mine truck scheduling problem. A typical  example is  [17],  where an evolutionary
MOO algorithm has been employed to schedule the truck allocation and travel trajectories by maximizing the pro-
duction and minimizing the fuel cost. As for the truck scheduling problem, the commonly-used objective functions
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are maximizing the production, minimizing the fuel cost, minimizing the queuing time, and minimizing the ore grade
deviation [20,21,25]. Some existing studies have mainly focused on dealing with the truck-shovel allocation problem
in open-pit  mining systems,  see [10,13,17].  In such systems,  there exist  a  number of  loading and unloading points
located at different sites. A fleet of trucks travels on different load-unload trajectories and the MOO algorithm is uti-
lized to find an optimal route.

Although the truck-shovel allocation system has been successfully applied in large-scale mining operations, it is
not feasible in small-scale mining systems for the following reasons. First, the truck-shovel allocation system is gen-
erally suitable for large-scale mining operations with large mining areas, big data collection and processing systems,
various  sensing  equipment,  global  positioning  system  (GPS)  data,  high-speed  network  connection,  and  complex
hardware-software  configuration.  Furthermore,  in  order  to  be  suitable  for  large-scale  mining  operations,  the  truck-
shovel system focuses on complex trajectory planning problems, in which some useful variables need to be treated as
constants such as the truck travelling speed and the mandatory breaks for the drivers. In this respect, there is less flex-
ibility in the large-scale mining system as all operations have to be completed on time. On the contrary, small-scale
mining systems relax the stringent requirements of route planning due to fewer loading points, which makes mining
operations more flexible. For example, when working conditions change, the workers can determine the truck speed
and the break time by using different scheduling plans. Based on the above discussions, this paper aims to design a
flexible scheduling system for a small-scale mine.

2.2. Transportation Process and Data

The data used in this paper are collected from a small-scale open-pit mine in Norway, which contains the base
operating time and the traveling distance of trucks during each payload operation cycle. To provide a clear descrip-
tion of the dataset, the whole transportation process is introduced. The whole transportation operation can be regarded
as a repeatable payload cycle, where the payload period of the truck is a cycle of production loading and transport. As
shown in Figure  1,  a  typical  payload period is  divided into  four  steps:  1)  traveling  from the  dumping point  to  the
loading point of the open-pit mine; 2) queuing at the loading point and then loading the products; 3) traveling from
loading point to the dumping point; and 4) unloading the products at the dumping point. Therefore, the data recorded
in a payload period includes: 1) the travel empty time (the time for the truck to travel from the dumping point to the
loading point); 2) the stopped empty time (the queuing time of the truck at the loading point); 3) the loading time (the
time taken by the truck to load the product at the loading point); 4) the travel loaded time (the time for the truck to
travel from the loading point to the dumping point); 5) the unloading time (the time taken by the truck to unload the products);
6) the travel distance (the distance between the loading point and the dumping point); and 7) the payload tonnes (the
weight of products being loaded).
 
 

Figure 1.  Transportation.
 

There is  a  wheel  loader  and two shovels  at  the  loading point.  The shovel  picks  up the material  from the pit,
transfers it to the loader, and finally loads it on the wheels. Compared to the truck-shovel system that directly uses the
shovel  to  load  the  truck,  the  wheel  loader  has  two  advantages:  1)  the  loading  time  is  relatively  stable  and  2)  the
weight  of  materials  being  loaded  is  controllable.  Note  that  the  information  about  payload  weight  is  shared  by  the
loader operator when the truck is being loaded. The operators could stop the load at any time to control the weight of
the payload. This payload system provides a flexible way to control the payload and it is, therefore, much easier to
manage the time and payload in the truck scheduling system.

Apart from the payload period, the worker shift cycle is also a key factor for the truck scheduling issue. There
are three worker shift operations in a day: the day-shift (7:00 AM - 3:00 PM), afternoon-shift (3:00 PM - 11:00 PM),
and night-shift (11:00 PM - 07:00 AM). During each shift, the workers repeat the payload period and are expected to
have a rest time about 45 minutes. It  should be noted that all  workers take a rest at the same time since the wheel
loader also needs to rest and stop during the entire payload period. It is well-known that working conditions at night
are different from those at daytime and that the day and afternoon shifts are often scheduled at the same operations,
while the night shifts are different. Sometimes, night shifts are not even scheduled. Considering the entire transport
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process, it is clear that all trucks follow the same trajectory. In this context, it is not necessary to consider the route
planning. Therefore, the truck speed and payload weight should be chosen as operational variables.

3. A Multi-Objective Optimization Algorithm for Truck Scheduling Problems

3.1. Decision Variables

tload tunload

In order to obtain optimal transportation efficiency,  we select  five parameters  as decision variables,  including
the loaded speed, empty speed, payload, fleet size, and worker shift. Moreover, two modes (i.e., day and night) are
taken into account in the truck scheduling problem. More details are described in Table 1. Note that the loading time
and the unloading time are also important parameters. We find that they are stable in the payload cycle. Thus, in this
paper, the loading time and unloading time are set as the constants, denoted by  and , respectively.
 
 

Table 1    The decision variables of the truck scheduling problem

Variables
Symbols

Description
day night

Loaded speed (km/h)
sl

≤ ≤ ≤ ≤The average speed of the truck while loaded: 5.57 sl1 36.53, 5.57 sl0 36.53
sl1 sl0

Empty speed (km/h)
se

≤ ≤ ≤ ≤The average speed of the truck while empty: 7.24 se1 40.90, 7.24 se0 35.69
se1 se0

Payload (tonnes)
p

135.3≤p≤211.4The weight of productions being transported in a work cycle: 
p1 p0

Fleet size (integer)
f

≤≤The number of trucks working at the same time: 3 f 5
f1 f0

Worker shift (0 or 1) w w = 0: day + afternoon; w = 1: day + afternoon + night

 

3.2. Problem Formulation

1) Minimizing Queuing Time: In a truck scheduling system, the loading queue at the loading point is the main
reason that  leads to inefficient  use of the trucks.  Therefore,  it  is  necessary to minimize the queuing time of trucks.
First, we should clarify how the loading queue is generated. Generally, when the loading time is longer than the time
interval between adjacent trucks, this arrangement will result in a queue, as shown in Figure 2.
 
 

Loading

time
Queuing

time

Interval Interval

Total travel time

Interval

Figure 2.  Illustration of the emergence of queue.
 

When a group of trucks travel over a period of time, the time intervals between each pair of neighboring trucks
would  be  similar  after  a  few rounds  of  adjustment.  The  queue will  occur  when the  loading time exceeds  the  time
interval. For example, assuming an interval of four minutes and a loading time of five minutes, a truck arrives at the
loading point every four minutes. At the loading point, the former is still loading when the latter arrives, so the latter
has to wait for one minute before starting to load. Based on this fact, the mathematical modelling method is used to
calculate the queuing time. The detailed modelling strategy and the corresponding parameters are given as follows.

teTravel empty time (denoted by ) refers to the time for a truck to travel from the point of unloading to the
point of loading.

tlTravel loaded time (denoted by ) means the time that a truck takes to travel from the loading point to the
unloading point.

ttravelTravel time (denoted by ) is the total time that a truck takes to load products and travel during a work
cycle.
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tintervalTravel time interval (denoted by ) denotes the time between two trucks arriving at the loading point one
after the other.

Motivated by the above discussions, the first objective of this paper is to minimize the queuing time, which is
expressed as follows:

Tq =max(tload − ttravel,0). (1)

2) Maximizing  Production: The  main  goal  of  truck  scheduling  is  to  maximize  the  production.  It  has  been
demonstrated that this objective function is adopted in most existing studies of truck scheduling problems [13,16,17].
Different from some existing studies that only focus on maximizing the production during a specific payload period,
this paper proposes an alternative approach to compute the total amount of the production in a full day. This makes
the problem more complex, since the rest periods of workers and the different productivity (between day and night
shifts) need to be taken into account.

During  a  working  day,  three  workers  operate  in  shifts,  with  the  day  and  afternoon shifts  following  the  same
scheduling strategy while the night shift using a different scheduling strategy. In an 8-hour worker shift, the working
time is divided into many repeatable payload cycles. The definition of payload cycle is introduced in Section 2.2. To
calculate  the  total  products,  the  step-by-step  modelling  method  is  employed  and  the  corresponding  parameters  are
given as follow.

tc = tload + te+ tl+ tunload +Tq

tc1 tc0

First, the payload cycle time describes the time that a truck takes to complete the whole payload cycle, which is
calculated by . Considering the different operations performed during the day and night,
the payload cycle time is also calculated for day and night shifts which are denoted by  and , respectively.

tw = 60×8− tr

tr

c =
õ

tw

tc

û
× f ⌊∗⌋

c1 c0

Then, apart  from the case of rest  periods,  the working time of a worker shift  is  expressed as ,
where  is the resting time. Given the working time and the payload cycle time, it is possible to calculate a so-called
count  to  describe  how  many  payload  cycles  a  truck  fleet  completes  during  an  8-hour  worker  shift.  The  count  is

expressed as , where  is the floor function that returns the greatest integer less than the input value.
Taking into account the difference between day and night shifts, the counts are denoted by  and  for day and night
shifts, respectively.

P = c× pFinally,  the  production  of  each  worker  shift  is  calculated  by .  The  total  production  for  a  day  is
obtained by summing the total production of all three worker shifts.

Therefore, the second objective of this paper is described by

P = Pmax− (c0× p0×w+ c1× p1×2), (2)

Pmax

w = 1

where  is the maximum production. In this setting, both the day shift and the afternoon shift have two identical
operations. Different from both the day shift and the afternoon shift,  the night shift operation can only be executed
when , indicating that the night shift is available.

3) Minimizing Cost: Over half of the total budget of open-pit mining has been spent on the transportation oper-
ation. Thus, saving financial cost is another objective that needs to be considered in the truck scheduling problem. In
the transportation operation, the cost consists of two parts: the fuel cost and driver payment. The fuel consumption per
kilometer is affected by four factors: the road conditions, truck characteristics, speed, and payload. Among them, the
road conditions and truck characteristics are not significant since they are fixed in this transport system. In addition,
the effect of speed is practically insignificant,  as the trucks move slowly. The fuel costs only increase when trucks
move at high speeds (over 64km/h) [26]. Therefore, the only factor that would significantly affect the cost of fuel is
the payload.

L/km p
Cp = 0.0097p+3.65

It has been shown in [27] that the fuel cost of a truck and the payload are linearly correlated. To illuminate this
linear relation, a line plot is provided where each asterisk represents a sample featured by the payload and fuel cost
per kilometer, as shown in Figure 3. The fuel cost ( ) is predicted for a given payload  by fitting the fuel cost
and payload data with a linear regression model, denoted by .
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Figure 3.  Linear relation between payload and fuel cost.
 

Thus, the cost of fuel in US dollars is expressed as follows:

C f =Cp×d×Udiesel+Ce×d×Udiesel, (3)

Ce L/km Udieselwhere  is the fuel cost ( ) of a truck while travelling empty and  denotes the price of the diesel fuel in
US dollars.

The second part of the transportation cost is the salaries of workers. It is known that the shift cycle of worker
consists of two 8-hour day shifts (day and afternoon) and one 8-hour night shift, and thus the salaries of workers can
be estimated by

Cw = Ud ×16× f1+Un×8× f0×w, (4)

Ud Un f1 f0where  and  represent the payment for the worker on day and night shifts, respectively; and  and  are the
fleet sizes of the trucks which are the same as the numbers of the workers.

The third objective of this paper is formulated as follows:

C =C f +Cw. (5)

3.3. MOO Algorithm
It  can  be  seen  that  the  above-mentioned objectives  are  conflicting.  For  example,  maximizing  production  will

naturally  require  more  equipment  and  working  hours,  which  obviously  conflicts  with  minimizing  the  cost.  On  the
other hand, when more trucks operate simultaneously, it increases production but causes more queuing time. In this
context, there are no optimal solutions that achieve all three objectives at the same time. The MOO algorithm, there-
fore, becomes an appropriate way to solve this problem.

Instead  of  directly  looking  for  the  optimal  solutions,  the  MOO  algorithm  attempts  to  find  optimal  trade-off
solutions among all the objectives that are known as the non-dominated solutions or the Pareto optimal solutions. As
many non-dominated solutions can potentially be similar to each other, it is necessary to keep the diversity and reduce
the  similarity  of  all  the  solutions  by  selecting  some  representative  solutions,  known  as  the  Pareto  front.  In  other
words,  the  MOO  algorithm  aims  to  find  a  set  of  diverse  and  optimal  solutions  that  provide  trade-offs  among  all
objectives.

Most  existing  MOO  methods  are  based  on  the  evolutionary  algorithm  due  to  its  fast  convergence  and  high
effectiveness characteristics. These MOO algorithms simulate the process of the natural selection, where better indi-
viduals (from the population of the parent generation) are selected, recombined and added to the subsequent genera-
tion of children. After several iterations, the optimal individuals (solutions) are selected to form a Pareto front. Most
evolutionary-based MOO algorithms aim to develop a selection strategy that  selects  individuals  with higher fitness
and maintains the diversity of the populations.

In this paper, four popular MOO algorithms are employed to solve the formulated truck scheduling problem.
NSGA-II:  The  non-dominated  sorting  genetic  algorithm II  (NSGA-II)  [23]  introduces  the  crowding  distance

calculation within a cuboid region to rank the members of the population, which can maintain good spread of solu-
tions. The NSGA-II is a fast and effective algorithm for solving MOO problems.

SPEA2:  The  strength  Pareto  evolutionary  algorithm II  (SPEA2)  [22]  incorporates  a  nearest  neighbor  density
metric into the calculation of fitness function. Intuitively, the individuals with more neighbors have less chances to be
selected. This strategy guarantees a broader distribution of the selected individuals.

PESA-II:  The  Pareto  envelope-based  selection  algorithm  II  (PESA-II)  [28] combines  the  evolutionary  algo-
rithm with the region-based selection strategy instead of the individual-based selection strategy. The PESA-II consid-
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ers the grid crowding degree during selection. This strategy effectively reduces the probability of selecting the similar
individuals (within the same grid) and ensures good spread along the Pareto front.

MOEA/D:  The multi-objective evolutionary algorithm based on decomposition (MOEA/D) [24] decomposes
an  MOO  problem  into  a  set  of  sub-problems  and  uses  the  evolutionary  algorithm  to  optimize  the  sub-problems
simultaneously. The MOEA/D has not addressed the diversity of the selected solutions specifically.

To handle the truck scheduling problem, the MOO models are established and a group of Pareto fronts are pro-
duced, thereby providing the users the opportunity to choose desirable solutions among the obtained results.

3.4. User Application
Although the MOO model gives users the flexibility to select appropriate operations, there is still one issue that

needs to be addressed. That is, once an MOO model is obtained, the solutions will be fixed. In this context, a fixed
MOO model may eventually become inaccurate because worker salaries and fuel costs change over time. Moreover,
the  distance  between  the  loading  and  unloading  points  may  be  different,  as  the  loading  point  is  not  always  fixed.
Therefore, it is necessary to design a user application that allows the user to update the MOO model by customizing
the worker payment, fuel cost, and travel distance.

A user application is shown in Figure 4 where in the left panel, the users can manually input the distance, the
loading time, the unloading time, the worker payment, and the fuel cost according to the instant situations. By click-
ing the “Load model” button, an MOO model learned with default settings will be loaded and the Pareto fronts will
be shown in the table area. Alternatively, the users can choose an MOO algorithm from the four candidates and click
the “Run MOO” button, such that a new MOO model can be obtained and its solutions are also displayed in the table
area.
 
 

Figure 4.  User application with graphic interface.
 

It  is  worth noting that  many candidate  solutions are  suggested in  the table  area.  In  order  to  assist  the  user  in
decision making, the user application is designed with features that the user can narrow down the possible choices in
several parameters provided by the user application. For example, when the users select the “low speed” option, all
the solutions with a “high speed” (the truck speed is higher than the average speed) will be discarded. Then, by click-
ing the “Show Chart” button, the filtered results will be displayed at the bottom center panel as a bar chart. The first
chart (top) illustrates the ten solutions with the maximum productions (sorted from high to low), and the second one
(bottom) offers the ten minimum-cost solutions (sorted from low to high). These two charts visualize the solutions to
help users determine which solution can be selected.

The final step is to select the desirable solution and assist users to schedule the optimal operation plan which is
the timetable of the job chain. To do this, the users need to input the number of the selected solution (from the table
or chart) in the “Selected Solution No.” area and click the “Show Timetable” button. Then, a sequence of underlying
optimal operations will be displayed in the “Time Stamps” area based on the selected solution. Considering that each
truck driver may have different break time preferences, the user application is also designed in a way that users can
customize  their  desired  resting  clock  time  by  clicking  the “Update  Timetable” button.  Then,  the  application  will
update the timestamp and display the sequence timetable with the recent rest time. Note that the operational plan after
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the resting period is rescheduled accordingly, which ensures that the rescheduled plan does not impact the total pro-
duction,  cost,  and  queuing  time.  Meanwhile,  the  drivers  could  benefit  from  the  application  on  the  flexibility  of
scheduling their resting time.

In summary, the advantages of the user application are concluded in the following four aspects:  1) offering a
straightforward  way  to  update  the  MOO  model;  2)  supporting  visual  illuminations  of  the  candidate  solutions;
3) selecting a solution that satisfies the user requirement; and 4) providing drivers with flexible resting time.

4. Experiment

4.1. Results
A real-world small-scale mine dataset from Norway is prepared for validation in this paper. Detailed informa-

tion about the dataset is presented in Section 2.2. The dataset consists of 245090 payload cycles collected from four
trucks. However, the early data is recorded by the conventional equipment, resulting in the fact that much essential
information is missing. Therefore, after data cleaning, only 2136 payload cycles with relatively complete information
are extracted. Obviously, this dataset is characterized by the fact that most of the data is incomplete. It is worth point-
ing out that despite this deficiency, some useful information can still be extracted such as the speed range of the truck,
the  average  truck  loading/unloading  time,  and  the  payload  range.  This  information  allows  us  to  simulate  transport
operations via mathematical modelling and obtain optimal solutions using the MOO model. The hyper-parameters of
the four MOO algorithms include the number of decision variables, the number of objectives, the population size, and
the number of generations, which are set to be 9, 3,100 and 100, respectively.

Experimental  results  of  the  optimal  truck  scheduling  strategy  are  shown  in Table  2 and  the  corresponding
objective values are shown in Table 3. Normally, the MOO model will produce 100 optimal solutions with different
driving speeds in order to give the user more flexibility to choose the suitable operation. Then, the user can select a
satisfactory operation from these candidates with the help of the user application.
  

Table 2    The selected optimal solutions for the truck scheduling problem

No.
loaded speed (km/h) empty speed (km/h) fleet size payload (ton)

worker shift
day night day night day night day night

1 8.54 - 35.03 - 3 - 209.01 - day

2 26.39 25.73 40.69 35.30 5 5 211.38 211.40 day+night

3 26.02 25.73 39.96 34.54 4 4 211.40 211.39 day+night

4 8.52 - 7.77 - 3 - 189.32 - day

5 24.61 23.84 37.03 28.98 3 4 211.40 211.38 day+night

  
Table 3    The objective values of the selected optimal solutions

No. Average queuing time Production (ton) Cost ($)

1 0 18811.30 1794.41

2 00:01:02 84555.78 5980.06

3 00:00:18 70183.57 4878.82

4 0 11899.05 15498.93

5 0 55385.10 3963.91

 
The flexible resting time strategy is illustrated in Figure 5. Specifically, Figure 5(a) and Figure 5(b) present the

work plan following the suggested maximum and minimum time, respectively. First, it can be observed that the oper-
ations of the two work plans are the same before the break. Then, the operations become different when the resting
time is finished. Moreover, when the break time is maximum (which is 1 hour 3 minutes and 59 seconds), the driver
can have a longer breaking time and finally, complete all the work plan at exactly the end of the worker shift which is
15:00:00. For the minimum resting time, the driver can take a shorter break time, but finally finish all the work plan
and knock off in advance. This application provides more options for drivers to schedule their resting time.
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(a) Maximum resting time (b) Minimum resting time

Figure 5.  Illustration of the resting starting at different clock time.
 

5. Conclusion

In this paper, a novel MOO-based truck scheduling method has been developed to provide a practical platform
for transportation operations in the open-pit mine. In order to guarantee the system flexibility, this paper has treated
the truck speed and payload as operational variables in the scheduling problem. Furthermore, the mandatory rest time
has been taken into account,  which aims to allow drivers to request  a break at  any time without affecting the total
productivity.  Technically,  three  objectives  (which  include  the  queuing  time,  productivity,  and  financial  cost)  have
been optimized simultaneously by using the MOO algorithm. Experiments based on the real-world dataset have vali-
dated the effectiveness of the proposed method. Future research topics would include 1) designing new MOO algo-
rithms by integrating additional information (e.g., truck electrical information) to improve the flexibility of the appli-
cation; and 2) applying the proposed method to other transportation systems in the large-scale open-pit mine.
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