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Abstract: As of 2023, the world has approximately 100 million refugees, many of whom have been dis-
placed by violent conflicts. Accurately predicting where these people may go can help non-government
organisations  (NGOs)  and  other  support  organisations  to  more  effectively  help  these  refugees.  In  this
paper, we extend the existing flee migration forecasting model which models migration using intelligent
agents with a dynamic network that represents the physical environment. In doing so, we integrate time-
dependent  data  into  four  different  characteristics  from  three  public  data  sources.  We  obtain  data  from
aspects such as the slope, drainage, soil and infrastructure, and use these aspects to systematically mod-
ify the movement preferences of forcibly displaced agents in the flee model. We showcase our approach
by  applying  it  to  the  2012  northern  Mali  conflict.  We  find  that  numerous  routes  previously  deemed
traversable are actually inaccessible for prolonged periods according to sensor data, and a range of off-
road routes are instead traversable for vehicles. We also perform a validation comparison with the origi-
nal modelling approach, and find that our revised representation of travel routes leads to a reduction of
4.5% in the averaged relative difference. Our approach can be reused in other flee conflict contexts, of
which five are present in the EU-funded ITFLOWS project alone. Our work provides the ability to repre-
sent a dynamic physical environment and potentially improves the simulation accuracy in a range of flee
conflict situations.

 
 
1. Introduction

The  climate  change  is  likely  leading  to  increased  risk  of  conflicts,  especially  in  developing  countries,  which
results in more forcibly displaced people (FDP) [1, 2]. Understanding the movements of FDP could help policy mak-
ers and humanitarian organisations to provide better targeted sheltering and facilities [3]. In this regard, several stud-
ies have been performed on simulating refugee movements in a city or community [4−8] or even in the context of a
facility  location  problem [9, 10].  Furthermore,  several  frameworks  have  been developed to  support  the  creation  of
computational refugee models [11−13].

One  of  the  recent  approaches  for  migration  modelling  is  agent-based  modelling  (ABM),  which  relies  on  a
decentralised simulation approach to study social  interactive systems and people movement [3, 5, 14].  ABM has a
distinct  advantage  that  assumptions  (on  the  behaviour  of  individual  people  and  interactions)  can  result  in  realistic
complex  systems  at  the  population  scale.  For  instance,  the  modelling  of  environment-migration  linkages  [15].  In
addition,  ABM can  be  used  in  circumstances  (where  there  is  limited  or  no  training  data)  to  complement  machine
learning approaches (e.g., [16, 17]) in regards to forecasting efficacy. Examples of ABM models in forced migration
include models of events in refugee settlements (e.g. [18]), models of refugees within urban communities (e.g., [19])
as well as models of capturing the values of refugees [20, 21].

Flee [22] is an ABM that models the movement of FDP. Flee agents representing people are spawn on a graph
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of locations and routes, and they move along this graph from their original (conflicts) location to find a suitable desti-
nation (e.g., a refugee camp).The flee has been validated against a range of historical conflicts [3, 23], and enhanced
to  run  efficiently  using  supercomputers  [24, 25].  Note  that  flee  does  not  resolve  several  important  aspects.  For
instance, although flee supports for precipitation and river flood levels [26], it does not comprehensively incorporate
the effects of the climate change and physical environment. This affects the FDP movement behaviour and the cho-
sen  destinations  in  many  conflict  settings.  In  addition,  forecasting  models  for  FDPs  are  not  available  and  do  not
incorporate these effects in a systematic way.

Explicitly  mapping  and  classifying  the  physical  environment  can  be  valuable  as  opposed  to  relying  on  route
planners from open mapping software. This allows for simulating the paths that people will most likely take towards
their  destination,  when  clearly  discernible  roads  are  absent  or  existing  roads  become inaccessible.  In  addition,  this
allows  us  to  incorporate  climate  and  weather  effects  which  particularly  influence  physical  environment  properties
such as wet or submerged terrains, soil quality, and/or available infrastructure.

In this paper, we present a new dynamic physical environment network (DPEN) model that estimates the effort
(or  cost)  required  to  move  between  two  locations  in  a  migration  model.  We  incorporate  data  from  four  essential
aspects of the physical environment (relief, drainage, soil and infrastructure) and model these aspects depending on
seasonal weather and climate patterns. We present how this model representation affects the accessibility of routes in
Mali over time, and demonstrate how this model can be used to introduce seasonal climate and weather effects in a
flee-based migration forecast.

2. Methods

Our main tools consist of the DPEN model and the flee migration model, and the migration model is used to
demonstrate the added value of our DPEN. We will describe our DPEN model in detail below. The flee migration
model has already been presented initially [3], and the modifications have been made for version 2.0 in [19]. We also
present and validate a coupled model, where the DPEN model informs the assumptions (in terms of environmental
accessibility) in flee. We perform our comparison tests using flee 2.0 and compare the DPEN-informed flee model
with the model using a static spatial environment.

Physical environment: Our DPEN consists of two parts: 1) a set of cost rasters for each interconnected pair of
locations per season and 2) a dynamic accessibility network that uses the cost rasters to adjust the weights of routes in
the flee location network over time. A change in the route weight in a flee 2.0 location graph results in a proportional
increase of the travel time and a proportional decrease in the likelihood that such a route will be picked by displaced
people (if alternative routes are available).

The cost raster is used to calculate the accessibility of spatial areas between two locations. It is a spatial grid that
contains values of four distinct  features derived from three data sources.  The grid is  built  using the ArcGIS model
builder (See Figure 1). We provide an overview of these features and their data sources in Table 1. The DPEN mod-
elling process contains four phases:  (i)  classify each area in terms of the surface,  drainage,  slope and infrastructure
(linked to the four input data types in Table 1); (ii) calculate the speed multiplier for each area; (iii) combine the areas
into a raster and convert the speed multiplier to a travel time cost multiplier; and (iv) use the raster to find the cheap-
est route and store the cost of this route for each season in a flee input file. Full details on cost raster construction are
available in ESM of Section B.

The  cost  rasters  change  over  time  due  to  seasonal  weather  patterns  affecting  the  data  on  drainage,  soil  and
infrastructure. In our case, we perform simulations starting in dry season 1 on February 29th 2012, continuing to wet
seasons  2  (April-June)  and  3  from  July-September,  followed  by  dry  season  4  from  October,  until  completion  on
December  25th 2012.  For  each  season,  we  plot  the  least-cost  paths  through  the  cost  rasters  and  use  these  costs  to
define the dynamic link weights in the DPEN.

Flee configuration: Traditionally, people are represented as autonomous and intelligent agents that move over
a largely static location graph network. With the inclusion of our DPEN, we introduce dynamic (seasonal) variations
in this graph. For this work, we give a modified version of flee 2.0, first presented in [19], such that it can support the
results of our DPEN model and seasonal changes in the location network1. In particular, our link weights are dynamic
over  time  and  are  based  on  the  travel  time  costs  (derived  from  cost  raster  calculations),  whereas  the  original  link
weights are static values derived from distances using the bing maps route planner (see ESM Section A for details on
route definitions in flee). We use the default flee 2.0 settings [19]. We demonstrate how the DPEN affects migration
forecasting  using  the  Mali  2012  conflict  setting,  which  has  previously  been  used  in  [3].  Here,  we  use  the  DPEN
model  to  study  the  effects  of  the  physical  environment  on  the  available  travel  routes  in  Mali,  where  a  civil  war
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erupted in the northern part of the country [27, 28] in 2012. In general, this particular conflict has led to hundreds of
thousands of displaced people [29−31].
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Figure 1.  Architectural overview of the DPEN model, as well as the step required to create and apply the cost raster.
A detailed diagram on the initial construction of our approach can be found in ESM Section B, while a detailed tech-
nical specification can be found in ESM Section D.

 
 

Table 1    Summary of data used in the study
Type Feature Data Seasonality

Relief Slope – percentage of incline – non-seasonal
feature JAXA ALOS Global 30m DSM (2021) Negligible effect

Drainage Presence of open water and wetlands /
floodplains – seasonal feature

Sentinel 2 – Indexed satellite images
(NDMI / Wetlands in Water (WiW)) Major effect

Soil
Surface material – loose sand, rocky surfaces and
compacted sand/gravel/grassland– partially
seasonal feature

Sentinel 2 – Esri Land Cover 2020 Minor effect

Infrastructure Presence of roads, bridges, ferries or fordable
river sections –partially seasonal feature

Open Street Map; Esri Land Cover
(2020) Minor effect

 
Validation measures: In addition to the graph comparison, we also use three validation measures to quantify

the  validation  performance  of  our  DPEN-informed  model:  the root  mean  square  error  (RMSE),  normalized  root
mean  square  error  (NRMSE),  and  average  relative  difference  (ARD). To  perform the  validation,  we  compare  our
model predictions in this historical setting with UNHCR data (see [3] for details).

The  RMSE  is  commonly  used  to  quantify  the  model  performance  [32].  It  is  the  square  root  of  the  average
squared errors between the simulated or projected values and the observed values, which allows the comparison of
average errors (Equation 1).

RMS E =

…
1
n

∑n

i=1
e2

i (1)

e
i n

In Equation (1),  represents the model error, or the difference between the observed and the simulated values,
at iteration .  represents the total number of values [32]. We calculate the NRMSE via dividing the average RMSE
values per camp by the maximum number of asylum seekers/ refugees who stay in the camp during the simulation
according to UNHCR data. The result is a value between 0 and 1 for each category. The ARD, developed by the flee-
team for determining the accuracy of the simulations [3], indicates the averaged relative difference between the simu-
lated camp arrival numbers versus validation data by UNHCR. Here, the denominator Ndata,all indicates the total num-
ber of displaced people on a given day according to the validation data (normally thousands to millions of people,
depending on the exact crisis situation on that day). The ARD does not square arrival differences. This follows the
philosophy  that  in  a  humanitarian  context,  each  human  life  should  hold  equal  importance.  We  calculate  the  ARD
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across  two ensembles  of  ten  simulations,  where  one  ensemble  uses  the  original  flee  model  and  the  other  uses  our
DPEN-informed (or coupled) model. The ARD is calculated as follows:

ARD =
Σx∈s

(∣∣nsim,x,t −ndata,x,t

∣∣)
Ndata,all

(2)

x s t nsim,x,t

ndata,x,t

Ndata,all

The number of refugees found in camp  from the set of all camps  at time  is given by  based on the
simulation projections, and by  based on the observed UNHCR data. The total number of refugees reported in
the UNHCR-data is given by  [3]. If the result is 1.0, it indicates that 50% of the simulation is wrong. An out-
put of 0.0 means that the simulation is completely correct.

3. Results

In this section, we present our main results from two different aspects. First, we investigate the network itself,
and assess to which extent the network itself is dynamic, and to which extent the generated travel times match our
observations. Second, we investigate how the flee simulation performs when using our DPEN, and compare its vali-
dation performance relative to a flee simulation that features a conventional (static) location graph.

4. DPEN

To provide an overview of the dynamic nature of the DPEN, we present a comparison of the routes generated
for season 1 with those generated for season 3 in Figure 2.
 
 

0 75 150 300 km

Legend

Locations

Camps

Season 1 routes

Season 3 routes

Figure 2.  Overview of route accessibility differences between a dry and wet season. Routes unavailable in season 3,
but  available  in  season 1 are  indicated in  green while  routes  available  in  season 3 are  indicated in  red.  In  season 1,
where applicable green routes between any two locations are chosen instead of red routes.

 

Here,  the  routes  generally  follow the  major  roads,  unless  large  shortcuts  are  possible,  or  road  connections  or
river crossings are inaccessible. Routes merge on the same path in several cases where major roads are present. For
instance, the route from Ségou towards Bobo-Dioulasso includes a detour to meet-up with the highway towards this
city. This is because the speed multiplier values for the roads are higher than the off-road speed multiplier values. The
route distance differences sometimes amount to hundreds of kilometres and include changes in river crossing acces-
sibility, e.g. due to the lack of fordable areas in seasons 1 and 4. We provide a full list of route changes in ESM of
Section C.

We test  the  accuracy of  travel  times (and thus  the  weighted distance)  and the  plotted paths  for  the  routes  by
using the Google Maps route finder. By using a route planner like Google Maps, only certain routes can be checked
because off-road routes are not included in this route planner. We are able to perform verification for routes where the
travel time stays roughly the same throughout the seasons and where the travel occurs via official roads. We test all
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routes meeting these criteria, and present our comparison results in Table 2. Here, we compare the average calculated
route travel times in our DPEN with those observed using the Google Maps route planner.
  

Table 2    Validation comparison of averaged route travel times calculated using our cost rasters, and those estimated
by the Google Maps route planner

Start point End point Average simulated travel time (all seasons) Observed travel time (Google Maps) Absolute difference

[hours] [hours] [%]

Bamako Segou 3.4 3.5 2.9

Bamako Bobo-Dioulasso 7.8 9.3 16.1

Segou Bobo-Dioulasso 6 6.5 7.7

Segou Mopti 4.8 5.5 12.7

Mopti Bobo-Dioulasso 6.7 7.5 10.7

Douentza Gao 5.7 7.8 26.5

 
The simulated routes follow roughly the same track (for each of the tests) as the route planner in Google Maps.

This indicates that compared to on-road travel, the speed multipliers for off-road travel are within proportions, and the
hierarchy of resistance is accurate. In other words, on-road travel is preferred if this option is available.

The tests for travel time show that on average, the difference in travel time for the routes is ~13% (see Table 2).
This might not represent the actual travel time difference between simulated routes and real-world routes, because not
all routes are included in the comparison. The comparison does show that the speed multiplier is roughly 87% accu-
rate for roads in combination with the maximum speed value. Furthermore, for each of the tested routes, the simu-
lated travel time is lower than the observed travel time. This means that the speed multiplier value and the maximum
speed  are  more  optimistic  than  reality.  Thus,  in  reality,  travel  takes  longer  than  simulated.  We  consider  further
inspection and calibration of these values to be the future work.

To  summarise,  the  routes  do  follow  the  same  track,  which  indicates  an  accurate  ratio  of  speed  multipliers
between road and non-road values.  Note  that  on-road travel  speeds  are  slightly  too  optimistic.  To more  accurately
represent reality, the maximum speed or the speed multipliers for roads used in the simulation should be reduced. For
the off-road travel, the accuracy of the plotted routes, the multipliers and the maximum travel speed remain unknown.

5. Validation Comparison

We present the difference in the RMSE and NRMSE for each camp location in Table 3.
  

Table 3    Detailed  RMSE  and  NRMSE  comparison  by  camp.  Results  are  averages  over  10  simulation  runs.  The
RMSE difference equals to “RMSE new” minus “RMSE original”,  and is given both in an absolute value and as a
percentage of the original RMSE value

RMSE original NRMSE original RMSE new NRMSE new RMSE Difference RMSE Diff [%]

Fassala-Mbera 14211 0.26 13215 0.24 −996 −7.01%

Mentao 1268 0.18 1517 0.22 249 19.64%

Bobo-Dioulasso 632 0.31 613 0.30 −19 −3.01%

Abala 1491 0.13 1749 0.15 258 17.30%

Mangaize 477 0.14 745 0.22 268 56.18%

Niamey 4026 0.62 3721 0.57 −305 −7.58%

Tabareybarey 2696 0.43 2640 0.42 −56 −2.08%

Overall 24801 − 24200 − −601

 
In  general,  we  find  that  the  RMSE  of  our  DPEN-informed  model  is  slightly  lower  than  that  of  the  original

model, although the results differ greatly per camp. As discussed in the visual validation comparison above, we see
increases in the error particularly for three camps in Niger, Mangaize, Abala and Mentao. All three camps are rela-
tively small. These increases could indicate that the routes in Niger (which are not covered by our DPEN) have a bias
or oversimplification that has been exposed by the introduction of the more detailed DPEN model.

A second method for comparing the results is to use the Normalized Root Mean Square Error (NRMSE), which
is calculated by dividing the average RMSE values per camp by the maximum number of refugees who stay in that
camp during the simulation. The result is a value between 0 and 1 for each category. The NRMSE is rounded off to
two decimals in Table 3. The NRMSE difference is identical to the RMSE difference, apart from the rounding differ-
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ence. The NRMSE values provide a clearer picture about the validation performance of each individual camp rela-
tive to others. In particular, we find that our coupled model leads to an improved validation result for camps that per-
form relatively poorly with the original  model.  This leads to a deterioration of results  for  camps that  perform rela-
tively well with the original model.

Because the weights of routes change over time in our coupled model, we also calculate the NRMSE season-
ally per location. All runs start on February 29th 2012 (season 1), continue into the wet seasons (season 2 from April
1st and season 3 from July 1st),  followed by again the dry season (season 4 from October  1st),  until  completion on
December 25th 2012.

For this seasonal analysis, we use the maximum number of refugees per season to normalise the seasonal data,
not the maximum number for the whole run per location. This allows us to compare between seasons for the same
location, as well as between locations in the same season. We present the seasonal RMSE values by the camp in Fig-
ure 3 (top) and the differences between the two models in Figure 3 (bottom). Here, the “Total” field in these figures
indicates the error of predicting the total number of arrivals across all camps (not the average of the errors of the vari-
ous camps).
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Figure 3.  Top: RMSE normalized per season. Bottom: Difference in normalized RMSE scores between our simula-
tions  presented above,  and Flee  2.0  simulations  that  do not  feature  a  physical  environment  model.  In  both  plots  the
error in predicting the total number of arrivals across all camps is indicated by the Total field on the right (this is not an
average of the errors of the various camps) and seasons 1 to 4 are indicated using S1 to S4 symbols.

 
The  overall  NRMSE  values  for  the  four  seasons  are,  respectively,  0.34,  0.37,  0.33  and  0.16  for  the  original

code, and 0.31, 0.39, 0.32 and 0.14 for our new coupled model. We provide a full matrix of NRMSE values in ESM
of Section E. Here, the overall NRMSE is the highest in season 2 in all cases, and the lowest in season 4. We can also
recognize trends seen in earlier analysis, such as the relatively high error trends for Niamey.

To  inspect  these  seasonal  changes  between  the  old  and  new runs,  we  present  the  difference  in  NRMSE per
location per season in Figure 3 (bottom). Here, we see that the DPEN-informed model delivers a clear reduction in
the error in season 1 (except for Bobo-Dioulasso) which spans the first 30 days of the forecast. We then observe an
increased error for Mentao and Mangaize in season 2 (when the partial border restriction in Niger is in place), fol-
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lowed by negligible differences in season 3 and again the error improvement in season 4. According to Table 2, the
DPEN-informed model is more stable in the near-term forecasting context, fluctuating between NRMSE of 0.3-0.35
in the first two seasons. In the original flee runs, this fluctuation is larger, between 0.42 and 0.27.

Considering the low NRMSE for season 4, in our simulations of flee, we see a somewhat lower validation error
towards the end, as more camps are filled up to capacity. Capacities in the original validation setting are set accord-
ing to the highest population value recorded at any point in the time period, and we chose to preserve this configura-
tion in order to ensure a like-for-like comparison. In forecasting scenarios, where camp capacities may not be easily
estimated in advance, the code is likely to deliver a higher error in such distant time periods. At the same time, this
period begins only 280 days of the simulation, and is therefore likely to be of the least importance in a forecasting
context.

The total ARD for the original flee runs is 0.361, while we obtain 0.345 for the DPEN-informed model, which
indicates the improvement of 4.4 percent points. Note that this ARD is slightly different to that in previous publica-
tions (e.g. [3]) due to the use of the flee 2.0 ruleset, as well as an updated location graph. The improvement in ARD is
somewhat  higher  than the  RMSE improvement,  primarily  because the  increased large error  in  the  small  Mangaize
camp is not squared when using this measure.

6. Discussion

In this paper, we have presented a systematic approach to represent the physical environment in migration sim-
ulations by using a DPEN modelling approach. By combining information on four physical environment characteris-
tics from three different data sources with the flee location graph, we are able to create effective representations of the
physical environment, taking into account seasonal effects and producing travel time calculations largely consistent to
those made by commonly used route planners. We have also performed a validation study to compare our improved
code with the baseline flee 2.0 relying on a static routing network environment. We have found that in the majority of
cases, our approach delivers a slightly reduced validation error (2 to 10% lower) when applied to the Mali 2012 con-
flict context.

Keeping in mind that validation data in humanitarian settings is notoriously noisy, incomplete and biased, the
larger contribution of using this DPEN is that it enables the flee code to accurately represent commonly used routes
which are off-road and not  captured by tradition (on-road) route planners provided by e.g.  Google Maps or  Open-
StreetMap. In addition, the use of this DPEN leads to the removal of roads that cannot be travelled during certain sea-
sons, e.g. flooding. These two contributions do come at a price in two areas, namely, the requirement to increase the
complexity of the model and invest effort to introduce the DPEN.

Constructing  a  dynamical  network  representing  the  physical  environment  is  time-intensive,  and  several  data
sources need to be available to make the representation to be sufficiently accurate. Because seasonal effects are repet-
itive  in  nature,  it  is  possible  to  perform  such  work  for  specific  countries  in  advance.  With  advance  preparations,
DPENs  can  be  used  in  emergency  flee  migration  forecasts  without  any  increase  in  development  time  during  that
phase (see [33] for a detailed discussion about these aspects).

Adding realistic routing to migration simulations is  essential  to safeguard their  long-term predictive accuracy.
Implementing DPENs for conflicts is labour-intensive and challenging for an academic group such as ours. Assum-
ing that we are not bestowed with resources to do such work manually, we intend to look into methods to reduce the
effort intensity of developing DPENs, and enable automated model construction in the context of flee simulation. For
instance, as a feature in the FabFlee automation tool [23, 34]. Other future research directions include the definition of
simplified DPEN models that can be applied more quickly in times of crisis, or less sensitive to the local availability
of certain types of data. In addition, DPENs could include economic components (such as formability) to support the
modelling of  internally displaced people.  Lastly,  we identify a  clear  need to include more systematic  estimation of
camp capacities in both the validation and forecasting context. Limitations in the current estimation techniques intro-
duce artefacts in our results in later phases, and further research is needed to develop a more realistic method for esti-
mating camp capacities.

Supplementary Materials:  Electronic Supplementary Material for this paper is available at: https://www.sciltp.com/
journals/ijndi/2024/1/348/s1.
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