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Recursive State Estimation for Discrete-Time Nonlinear
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Abstract—In this paper, the locally-minimized-variance state estimation
problem is investigated for a class of discrete-time nonlinear systems with
Lipschitz nonlinearities and binary sensors. The output of each binary
sensor takes two possible values (e.g. 0 and 1) in accordance with whether
the sensed variable surpasses a prescribed threshold or not. The purpose
of this paper is to design a state estimation algorithm such that an upper
bound of the estimation error covariance is firstly guaranteed and then
minimized at each sampling instant by properly designing the estimator
gain. The valid information of sensed variables is extracted from binary
measurements, and a novel state estimator is constructed in a recursive
form, which is suitable for online computations. Moreover, a sufficient
condition is established to ensure the exponential boundedness of the
prediction error in the mean square sense. Finally, two examples are
presented to verify the effectiveness of the proposed method.

Index Terms—Recursive state estimation, binary sensors, variance
constraints, difference equations, nonlinear systems.

I. INTRODUCTION

The past several decades have witnessed a surge of research interest
devoted to the estimation/filtering problems from various research
communities including control engineering and signal processing,
see e.g. [1], [8], [13], [14], [35], [39], [41], [42] and the references
therein. Up to now, a large number of effective approaches have
been proposed to deal with state estimation issues. According to
performance indices, the existing estimation schemes can be generally
divided into categories including, but not limited to, Kalman filtering
(KF) algorithms [20], set-membership filtering algorithms [5], [23],
and H∞ filtering algorithms [40]. It has been well recognized that
the celebrated KF algorithm is able to obtain an optimal estimate
in the least mean square sense for linear systems subject to the
Gaussian white noises [6], [12]. As for the frequently encountered
nonlinearities in reality, the extended Kalman filtering (EKF) algo-
rithm has been shown to be a practical way of tackling nonlinear
state estimation problems, see e.g. [19], [21], [22].

In real-world engineering practice, it is often the case that the
underlying systems suffer from fading measurements, parameter
uncertainties, filter gain perturbations, as well as other network-
induced incomplete information [27], [28], [37], [38]. With such kind
of incomplete/imperfect information, traditional KF/EKF methods
might be no longer applicable to the corresponding state estimation
problems, let alone the guarantee of the optimal state estimation in
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the minimum-variance sense. As such, in the past decade, much
research effort has been made to develop the so-called locally-
minimized-variance estimation approach, whose main idea is to
ensure an acceptable upper bound of the estimation error variance and
then minimize such an upper bound by designing proper estimator
parameters.

So far, there has been a rich body of elegant results reported on a
locally-minimized-variance (sometimes called variance-constrained)
estimation/filtering schemes, see e.g. [7], [18], [26], [29]. Among
others, a variance-constrained filter has been designed in [34] for
uncertain stochastic systems with missing measurements. In [11],
a variance-constrained H∞ filtering problem has been investigated
for a class of nonlinear time-varying systems subject to multiple
missing measurements. Moreover, the locally-minimized-variance
state estimation problems have been studied in [16] and [17] for
complex networks with various networked-induced phenomena.

It should be pointed out that, in the majority of the literature
addressing the locally-minimized-variance state estimation problems
for nonlinear systems, the nonlinear functions have been linearized
by resorting to the Taylor series expansion and then expressed in
the form of an uncertain model [21], [24], [45]. Nevertheless, if the
process/measurement noise obeys a Gaussian distribution, such an
uncertain model might be deficient due to the fact that the Gaussian
noise is unbounded, and the resulting upper bound of the estimation
error variances might not be accurate which, in turn, poses great
limitations on the developed locally-minimized-variance estimation
schemes. Therefore, it is of theoretical significance to shed some light
on this issue via a rigorous mathematical analysis, which constitutes
one of the motivations of our current investigation.

Owing to their distinctive advantages of low cost and simple
installation, binary sensors have found extensive applications in a
variety of industrial fields, see e.g. [9], [10], [15] and the references
therein. Briefly speaking, a binary sensor can output two possible
values (e.g. 0 and 1) according to whether or not the sensed variable
surpasses a prescribed threshold, and this implies that the information
provided by binary sensors is rather limited. Such a feature of limited
information brings great challenges to the state estimation problem
with binary sensors, and therefore an increasing research interest has
been stirred to overcome such challenges.

Up to now, binary measurements have been widely utilized in
practice for identification/estimation purposes. For instance, identi-
fication problems have been investigated in [32], [33] for systems
with binary sensors. In [9], [10], target tracking problems with binary
sensor networks have been addressed in the framework of the particle
filtering (PF) method. In [44], a distributed fusion Kalman filtering
problem under binary sensors has been investigated. For a class of
discrete-time nonlinear cyber-physical systems with binary sensors,
a secure PF problem has been studied in [30]. In [2], a maximum A
posteriori probability approach has been applied to address the state
estimation problem with binary measurements. A moving horizon
estimation approach has been proposed in [4] for linear discrete-time
systems with binary sensors, and stability analysis has also been
provided. Moreover, in [43], convex optimization techniques have
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been employed to solve the fusion estimation problem with binary
measurements. Nevertheless, when it comes to the nonlinear state
estimation problem with binary sensors, the corresponding results
under error variance constraints have been very few if not none.

Motivated by the above discussions, in this paper, we endeavor to
design a state estimation scheme for a class of discrete-time nonlinear
systems with binary sensors, that is, to estimate system states by
utilizing binary observations. The primary purpose is to develop a
state estimator such that an upper bound of the estimation error
covariance is first obtained and then minimized at each time instant by
designing an appropriate estimator gain. It is worth mentioning that
such a research topic is nontrivial due to three technical difficulties
identified as follows: 1) how to derive an analytical expression
of the estimation error covariance (or its upper bound) given the
fact that the measurement information provided by binary sensors
is quite limited? 2) how to justify the validity of the linearization
operation exploited in the locally-minimized-variance nonlinear state
estimation schemes via a rigorous mathematical analysis? and 3) how
to establish conditions under which the boundedness of the mean-
square error is guaranteed?

The primary novelties of this paper lie in the following three
aspects.

1) A locally-minimized-variance approach is, for the first time,
introduced to cope with the state estimation problem for
discrete-time nonlinear systems with binary sensors.

2) A sufficient condition is established for the validity of the
proposed linearization process in dealing with the system
nonlinearities.

3) The state estimator gain is given in an explicit form, and a
sufficient condition is provided to guarantee the boundedness
of the prediction error in the mean square sense.

The remainder of this paper is structured as follows. Section II
formulates the locally-minimized-variance nonlinear state estimation
problem with binary sensors and gives some preliminaries. Section III
presents the design scheme of the proposed state estimator and
the corresponding performance analysis. Two examples are given
in Section IV to demonstrate the effectiveness of the proposed
state estimation algorithm. Finally, some conclusions are drawn in
Section V.

Notations: The notations utilized in this paper are fairly standard.
Rn and Rn×m denote, respectively, the n-dimensional Euclidean
space and the set of n × m real matrices. S+

n represents the set of
n×n positive definite matrices. R+ and N denote the sets of positive
real numbers and non-negative integers, respectively. For a matrix A,
AT and A−1 represent, respectively, the transpose and the inverse of
A. For a square matrix A ∈ Rn×n, we define He(A) = A+AT. ‖ · ‖
is the notation of Euclidean norm. ρ(A) stands for the maximum
eigenvalue of the symmetric matrix A. For any real, symmetric
matrices X and Y , the notation X > Y (respectively, X ≥ Y ) means
that X − Y is positive definite (respectively, positive semi-definite).
E{x} is the mathematical expectation of the stochastic variable x.
diag{a1, a2, · · · , an} denotes a block diagonal matrix with the ith
block being ai and all other entries being zero. We let δ be the
Kronecker delta function, which satisfies that δ(a) = 1 if a = 0 and
δ(a) = 0 otherwise.

II. PROBLEM FORMULATION AND PRELIMINARIES

A. System Setup

Consider the following discrete-time nonlinear system:

xk+1 = f(xk) +wk (1)

where xk ∈ Rn is the state vector at time k. The initial state x0

is a zero-mean Gaussian random vector with covariance X0 ≥ 0.

f(·) : Rn → Rn is a known, continuously differentiable nonlinear
function with f(0) = 0 and satisfies the Lipschitz condition, i.e., there
exists a constant l such that for any a, b ∈ Rn, ‖f(a)−f(b)‖ ≤ l‖a−b‖.
The process noise wk ∈ Rn is a random vector with zero mean and
variance Q.

In this paper, binary sensors are adopted to monitor the system.
The measurement equation of the ith sensor is given by

yi,k = Cixk + vi,k, i = 1, 2, . . . , m, (2)

where yi,k ∈ R is the system output taken by sensor i at time k. The
measurement noise vi,k ∈ R is a random variable with zero mean and
variance Ri. The ith sensor processes its measurement according to

y̌i,k =

{

1 yi,k ≥ τi,

0, yi,k < τi,
(3)

where y̌i,k is the output of sensor i at time k, and τi is a given
threshold. Moreover, throughout the paper, we assume that the
stochastic variables wk and vi,k are white and mutually independent.

Remark 1: To further clarify the relationship between yi,k and y̌i,k,
let us take a proximity sensor as an illustration. For a target tracking
system with a proximity (binary) sensor, system output yi,k denotes
the distance between the detected object and the sensor; τ is the
radius of the detectable area. If yi,k < τ , indicating that the object is
within the sensing area, the output signal is thus y̌i,k = 0. Otherwise,
y̌i,k = 1. Generally speaking, any binary sensor can be regarded as a
device that transforms the system output yi,k into binary signal y̌i,k.

B. Preliminaries

The main obstacle to state estimation with binary sensors is that
the sensor output y̌i,k does not directly reflect the exact value of the
system output yi,k. Accordingly, unlike KF or EKF, the innovation
zi,k , yi,k − Cixk cannot be obtained in the case of binary sensors,
which brings difficulties in establishing an explicit relationship be-
tween the system state xk and the binary output y̌i,k. According to [4],
this issue can be tackled by constructing an uncertain measurement
model (UMM) based on the thresholds of the binary sensors. In this
paper, following the line of [4], we adopt the UMM to extract the
system state information from binary signals.

Consider the time instant k∗ at which the binary signal received
from sensor i switches between 0 and 1, i.e., |y̌i,k∗ − y̌i,k∗−1| = 1.
It is clear that the threshold τi must lie within the interval between
yi,k∗−1 and yi,k∗ . Hence, there exists a number β ∈ [0, 1] such that

(1 − β)yi,k∗ + βyi,k∗−1 = τi. (4)

Here, β refers to an uncertainty term, whose existence is ensured
while its exact value remains unknown due to the lack of measure-
ment information about system outputs. Substituting (2) into (4), we
have

Cixk∗ + ηi,k∗ + ϑi,k∗ = τi, (5)

where

ηi,k∗ = βCi(xk∗−1 − xk∗ ), ϑi,k∗ = (1− β)vi,k∗ + βvi,k∗−1.

The UMM (5) reveals the relationship between the system states
and the thresholds of binary sensors, based on which we are able to
deal with the state estimation problem with binary sensors. Note that
(5) holds only for sensors switching from time k∗ − 1 to k∗. Hence,
to select these sensors, we introduce the following matrix

Mk = diag{θ1,k, θ2,k, · · · , θm,k}, (6)

where θi,k = |y̌i,k − y̌i,k−1|.
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Based on the UMM and the preceding discussion, the state
estimator is constructed in the following form

x̂k|k−1 = f(x̂k−1|k−1), (7)

x̂k|k = x̂k|k−1 +KkMk(τ − Cx̂k|k−1). (8)

where x̂k|k−1 is the one-step prediction at time k, x̂k|k is the state
estimate of xk at time k with initial value x̂0|0, Kk ∈ Rn×m is the
estimator gain matrix to be determined, and

τ , [τ1, τ2, · · · , τm]T, C , [CT
1 , CT

2 , · · · , CT
m]T. (9)

The one-step prediction error ek|k−1, the estimation error ek|k, and
their covariances is defined by

ek|k−1 , xk − x̂k|k−1, ek|k , xk − x̂k|k,

Pk|k−1 , E{ek|k−1e
T
k|k−1}, Pk|k , E{ek|ke

T
k|k}.

Note that Pk|k−1 and Pk|k provide quantitative measures of the covari-
ances associated with prediction and estimation errors, respectively.

From (1), (7) and (8), the dynamics of the one-step prediction error
and the estimation error can be obtained as

ek|k−1 = f(xk−1)− f(x̂k−1|k−1) + wk−1, (10)

ek|k = ek|k−1 −KkMk(τ − Cx̂k|k−1). (11)

On the other hand, by using the Taylor series expansion around x̂k|k,
the nonlinear function f(xk) is rewritten by

f(xk) = f(x̂k|k) + Ak(xk − x̂k|k) +E∆k(xk − x̂k|k), (12)

where Ak is the Jacobian matrix of f at x̂k|k, E is a problem-
dependent scaling matrix, and ∆k is a matrix satisfying ∆k∆T

k ≤ I.
Specifically, ∆k is an uncertainty term and there is no specific
value assigned to it, nor a probability distribution associated with it,
although the existence of ∆k−1 can always be ensured. A rigorous
justification for the existence of ∆k will be given in Lemma 2 later.
Then, it follows from (10)–(12) that

ek|k−1 = (Ak−1 +E∆k−1)ek−1|k−1 +wk−1, (13)

ek|k = ek|k−1 −KkMk(τ − Cx̂k|k−1). (14)

Now, we are in a position to present the main objectives of this
paper. Firstly, considering that it is literally impossible to acquire
the exact estimation error covariance due to the existence of binary
mapping, we aim to calculate an upper bound of the estimation error
covariance Pk|k. Secondly, we will design an estimator gain Kk to
minimize such an upper bound at each time instant k. Finally, we
will establish a sufficient condition to verify the boundedness of the
prediction error in the mean square sense.

Remark 2: The proposed state estimator consists of two stages:
prediction (7) and update (8). In the prediction stage, the system
model is utilized to predict the state forward from one time instant
to the next. In the update stage, according to UMM (5), we substitute
the thresholds τi for the system output yi,k, thereby addressing the
difficulty of obtaining yi,k due to binary mapping. Since UMM holds
only for the switching sensors at each time instant, the matrix Mk is
employed to select those sensors. This facilitates the construction of
the state estimator, as illustrated by (7)–(8).

Remark 3: It should be noted that, by definition, system (1)–(3) is
unobservable, since, even if the system is noise-free, the knowledge
of y̌i,k over a finite time interval cannot uniquely determine x0.

Before ending this section, the following lemmas are presented for
convenience of the subsequent analysis.

Lemma 1: [25] Let Y and Z be matrices with appropriate di-
mensions. The inequality He(Y ZT) ≤ εY Y T + ε−1ZZT holds for all
ε > 0.

Lemma 2: Let f : Rn → Rn be a vector-valued function satisfying
the Lipschitz condition and x̂ ∈ Rn be a given vector. Then, there

exists a scaling matrix E such that for any x ∈ Rn, there always
exists a matrix ∆ with the property ∆∆T ≤ I such that f(x) =

f(x̂) + (A+E∆)(x− x̂), where A is the Jacobian matrix of f at x̂.
Proof: See Appendix A.

Lemma 3: Let ε0 be a given scalar. Define Xk , E{xkxT
k }, where

xk is the state of system (1). The sequence of matrices {Xk}∞
k=0 is

bounded by the solutions of the following recursive equation:

X̄k = (1 + ε0)ĀX̄k−1Ā
T + (1 + ε−1

0 )ρ(X̄k−1)EET +Q (15)

with initial condition X̄0 = X0 and Ā = ∂f(x)

∂x

∣

∣

∣

x=0
.

Proof: See Appendix B.
Lemma 4: For matrices β = diag{β̃1, β̃2, . . . , β̃n} and R =

diag{R1, R2, . . . , Rn} with β̃i ∈ [0, 1] and Ri ≥ 0, (i = 1, . . . , n),
inequality (I − β)R(I − β) + βRβ ≤ R holds.

Proof: Evidently.

III. MAIN RESULTS

In this section, we first calculate upper bounds of one-step pre-
diction error covariance and the estimation error covariance. Then,
an estimator gain matrix is designed to minimize the obtained upper
bound of the estimation error covariance. Moreover, an algorithm
is presented to show the proposed state estimator design scheme.
Finally, a sufficient condition is presented to verify the boundedness
of the mean-square error.

A. Upper bounds of error covariances

In light of (13) and (14), it is easy to obtain the one-step prediction
error covariance and estimation error covariance, which are provided
in the following lemma.

Lemma 5: The one-step prediction error covariance Pk|k−1 and
estimation error covariance Pk|k are of the following recursion forms:

Pk|k−1 = (Ak−1 +E∆k−1)Pk−1|k−1(Ak−1 +E∆k−1)
T +Q, (16)

Pk|k = (I −KkMkC)Pk|k−1(I −KkMkC)T + Ek + E
T
k ,

+KkE{Mk(Cxk − τ)(Cxk − τ)TMk}KT
k (17)

where Ak−1 is the Jacobian matrix of f at x̂k−1|k−1 and Ek = (I −
KkMkC)E{ek|k−1(Cxk − τ)TMk}KT

k .
Proof: Equation (16) is directly derived from (13), the defi-

nition of one-step prediction error covariance, and the mutual in-
dependence of ek−1|k−1 and wk−1. By adding the zero-value term
KkMkCxk − KkMkCxk on the right-hand side of (11), we have
ek|k = (I−KkMkC)ek|k−1+KkMk(Cxk−τ). Based on the preceding
equation and the definition of estimation error covariance, we can
obtain (17) immediately.

Remark 4: So far, we have acquired the expressions of the one-
step prediction error covariance and the estimation error covariance.
Nevertheless, it is worth mentioning that, there exist some unknown
terms in (16) and (17), i.e., ∆k−1, E{Mk(Cxk − τ)(Cxk − τ)TMk},
and Ek, which render it difficult to obtain the exact values of the
covariances. Inspired by the variance-constrained state estimation
scheme given in [16], [17], we turn to seek an upper bound of the
estimation error covariance and minimize such an upper bound by
designing an appropriate estimator gain.

Theorem 1: Let εi > 0 (i = 0, 1, 2, 3) be given scalars. Given
system (1) and scaling matrix E, define the operator G : Rn×n ×
Rn×n × R+ → Rn×n by

G(P,A, ε) = (1 + ε)APAT + (1 + ε−1)ρ(P)EET +Q. (18)

Consider the following difference equations

Ξk|k−1 = G(Ξk−1|k−1, Ak−1, ε1), (19)

Ξk|k = δ(tr(Mk))Ξk|k−1 + (1− δ(tr(Mk)))
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× {(1 + ε2)(I −KkMkC)Ξk|k−1(I −KkMkC)T

+ (1 + ε−1
2 )KkMk

× [ρ(CG(X̄k−1, Ā− I, ε3)C
T)I + R]MkK

T
k } (20)

with Ξ0|0 = P0|0 and X̄k−1 being calculated recursively by (15).
The solutions of (19) and (20) are, respectively, upper bounds of the
one-step prediction error covariance and estimation error covariance,
namely, Ξk|k−1 ≥ Pk|k−1 and Ξk|k ≥ Pk|k, ∀k ∈ N.

Proof: The mathematical induction is utilized to prove this
theorem. First, it is obvious that Ξ0|0 = P0|0. Then, assume that
Ξk−1|k−1 ≥ Pk−1|k−1 for k ≥ 1. It follows from (16), Lemma 1, and
∆k−1∆T

k−1 ≤ I that Pk|k−1 ≤ G(Pk−1|k−1, Ak−1, ε1). Therefore, one
easily verify that Ξk−1|k−1 ≥ Pk−1|k−1 implies

Ξk|k−1 ≥ Pk|k−1. (21)

Next, we show Ξk|k ≥ Pk|k. It is concluded from (5) that, for any
sensor that switches from instant k − 1 to k (i.e., θi,k = 1), there
exists β̃i,k ∈ [0, 1] such that

θi,k(Cixk − τi)

= θi,k
[

β̃i,kCi(xk − xk−1)− (1− β̃i,k)vi,k − β̃i,kvi,k−1

]

. (22)

On the other hand, if the ith sensor does not switch, i.e., θi,k = 0,
the equation (22) still holds, as both sides equal 0. Then, it follows
from (6) and (22) that, at any time instant k, there always exists a
matrix βk = diag{β̃1,k, β̃2,k, · · · , β̃m,k} (where β̃i,k ∈ [0, 1] for all
i = 1, 2, . . . ,m) such that

Mk(Cxk − τ) = Mk[βkC(xk − xk−1)− (I − βk)vk − βkvk−1]. (23)

If Mk = 0, it follows from (11) that

Pk|k = Pk|k−1 ≤ Ξk|k−1 = Ξk|k. (24)

If Mk 6= 0, according to (17), (23), Lemma 1 and Lemma 4, we have

Pk|k ≤ (1 + ε2)(I −KkMkC)Pk|k−1(I −KkMkC)T

+ (1 + ε−1
2 )KkMk[βkCE{(xk − xk−1)(xk − xk−1)

T}CTβk

+ R+He(F1 + F2 + F3)]MkK
T
k , (25)

where F1 , βkE{C(xk − xk−1)vT
k }(I − βk), F2 , βkE{C(xk −

xk−1)vT
k−1}βk, and F3 , (I − βk)E{vkvT

k−1}βk are all equal to 0

since (xk − xk−1), vk−1 and vk are mutually independent.
Next, it follows from Lemma 2 and f(0) = 0 that, there exists

a sequence of matrices {∆̄i}∞
i=0 with ∆̄i∆̄T

i ≤ I, ∀i ∈ N such
that f(xk−1) = (Ā + E∆̄k−1)xk−1, where Ā is deterministic as
it is the Jacobian matrix of f at point 0. Then, according to (1),
one has xk − xk−1 = (Ā − I + E∆̄k−1)xk−1 + wk−1. Since xk−1

and wk−1 are mutually independent, it follows from Lemma 1 that
E{(xk − xk−1)(xk − xk−1)T} ≤ G(E{xk−1xT

k−1}, Ā− I, ε3). Because
E{xk−1xT

k−1} ≤ X̄k−1 by Lemma 3, we have

E{(xk − xk−1)(xk − xk−1)
T} ≤ G(X̄k−1, Ā− I, ε3). (26)

Note that βkβk ≤ I. Therefore, it holds that

βkY βk < ρ(Y ), ∀ Y ∈ S
+
m. (27)

From (25)–(27), we conclude that, if Mk 6= 0, then

Pk|k ≤ Ξk|k, (28)

Finally, combining (24) and (28) will complete the proof.
Remark 5: In Theorem 1, Ξk|k−1 and Ξk|k are parameterized by

means of scalars εi, (i = 0, 1, 2, 3). Ideally, the optimal value of εi,
(i = 0, 1, 2, 3) could be chosen by solving the following optimization
problem at each time instant:

min
ε0,ε1,ε2,ε3

tr(Ξk|k), s.t. εi > 0, i = 0, 1, 2, 3.

Unfortunately, this problem is non-convex, making it rather chal-
lenging to derive analytical solutions. An alternative way is to utilize
the evolutionary computation algorithms (e.g. the genetic algorithm
or particle swarm optimization algorithm) to search for heuristically
optimal solutions.

B. Design of the filter gain matrix and an algorithm

In what follows, we shall proceed to design the estimator gain to
minimize the derived upper bound of the estimation error covariance.
In addition, an algorithm will be presented to show the proposed state
estimator design scheme.

Theorem 2: Let Ξk|k−1 and Ξk|k be, respectively, upper bounds of
one-step prediction error covariance and estimation error covariance
given in Theorem 1. Upper bound Ξk|k can be minimized by using
the following estimator parameter

K∗
k = (1 + ε2)Ξk|k−1C

TM̃T
k (M̃kFkM̃

T
k )−1M̃k, (29)

where Fk , (1 + ε2)CΞk|k−1CT + (1 + ε−1
2 )[ρ(CG(X̄k−1, Ā −

I, ε3)CT)I + R] and M̃k is obtained by removing all the zero-rows
in Mk. Moreover, Ξk|k−1 and Ξk|k can be computed recursively by

Ξk|k−1 = G(Ak−1,Ξk−1|k−1, ε1), (30)

Ξk|k = δ(tr(Mk))Ξk|k−1 + (1− δ(tr(Mk)))[(1 + ε2)Ξk|k−1

− (1 + ε2)
2Ξk|k−1C

TM̃T
k (M̃kFkM̃

T
k )−1M̃kCΞk|k−1]

(31)

with the initial condition Ξ0|0 = P0|0.
Proof: First, it follows from Theorem 1 that, if Mk = 0,

then Ξk|k = Ξk|k−1. If Mk 6= 0, we can rewrite (20) as Ξk|k =

(1 + ε2)[Ξk|k−1 − He(KkMkCΞk|k−1)] + KkMkFkMkKT
k . It can be

observed easily that Mk = M̃T
k M̃k and I = M̃kM̃T

k . Therefore,
it holds that Ξk|k = (1 + ε2)[Ξk|k−1 − He(KkM̃T

k M̃kCΞk|k−1)] +

KkM̃T
k M̃kFkM̃T

k M̃kKT
k . The trace of Ξk|k is minimized when its

derivative with respect to the gain matrix Kk is zero. Thus, by letting
∂tr(Ξk|k)

∂Kk
= 0, we derive the gain matrix as in (29). In addition, (29)

further leads to the minimized Ξk|k as: Ξk|k = (1 + ε2)Ξk|k−1 −
(1 + ε2)2Ξk|k−1CTM̃T

k (M̃kFkM̃T
k )−1M̃kCΞk|k−1. In summary, the

minimized Ξk|k can be written as (31), as desired.
After the calculation of estimator gain using Theorem 2, we can

summarize the state estimation scheme as in Algorithm 1.

Algorithm 1 Recursive state estimation algorithm for systems with
binary sensors

Initialization: Initialize the parameters x̂0|0, Ξ0|0, y̌i,0 (i =

1, 2, ...,m) and εi (i = 0, 1, 2, 3). Choose appropriate thresholds
τi, (i = 1, 2, 3, ...,m). Set time instant k = 0.
Step 1: Measurement update
Collect all the sensor signals y̌i,k.
Step 2: Gain calculation
Generate matrix Mk by (6).
Compute Ξk|k−1 by (30).
Calculate X̄k−1 by (15).
Calculate the filter gain K∗

k by (29).
Step 3: Estimation update
Compute Ξk|k by (31).
Compute the updated state estimate x̂k|k by (7) and (8).
Return x̂k|k.
Step 4: Set k = k + 1, then repeat Step 1-Step 3.

C. Performance analysis

In this subsection, we aim to conduct the performance analysis of
the proposed state estimation algorithm. Before proceeding further,
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let us first present the definition of exponential boundedness in the
mean square sense.

Definition 1: [31] A stochastic process ϑk, k ∈ N, is said to be
exponentially bounded in mean square if there exist constants c > 0,
ς > 0, and 0 < γ < 1 such that E{‖ϑk‖2} ≤ cγk + ς holds for all
k ∈ N.

Based on Definition 1, a sufficient condition that ensures the
exponential boundedness of the prediction error in the mean square
sense is given in the following theorem.

Theorem 3: Consider the discrete-time nonlinear systems (1)–(3)
with the designed estimator (7)–(8). Let M = {diag{θ1, ..., θm} :

θi = 0 or 1, i = 1, ...,m}. Define operators T r ,T p : S+
n → S+

n and
U : S+

n × Rn×m × Rm×m → S+
n by

T r(X ) = G(X , Ā, ε0)−Q, T p(P) = G(P, Â, ε1)−Q,

U(P,K,M) = (1 + ε2)(I −KMC)P(I −KMC)T, (32)

where G is defined in (18), and Â ∈ Rn×n is a matrix satisfying
AkXAT

k ≤ ÂX ÂT for any given X > 0. If there exist P , X ∈ S+
n and

K ∈ Rn×m such that

X > T r(X), P > T p(U(P,K,M)), ∀M ∈ M (33)

then the prediction error is exponentially bounded in mean square.
Proof: First, we define operators T̃ p

k (P) = G(P, Ak, ε1)−Q and
T c(P,X ,K,M) = U(P,K,M) + V(X ,K,M), where

V(X ,K,M) = (1 + ε−1
2 )KM[ρ(CG(X , Ā− I, ε3)C

T)I +R]MKT.

(34)

By Theorems 1 and 2, Ξk+1|k can be rearranged as

Ξk+1|k =

{

T̃ p

k (Ξk|k−1) +Q, Mk = 0,

T̃ p

k (T c(Ξk|k−1, X̄k−1,K
∗
k ,Mk)) +Q, Mk 6= 0,

Since AkXAT
k ≤ ÂX ÂT, we can state T̃ p

k (P) ≤ T p(P) by
(18). Moreover, it can be observed that T p(P) ≤ T p(P ′) and
T c(P,X ,K,M) ≤ T c(P ′,X ,K,M) for any P < P ′. This leads to

Ξk+1|k ≤
{

T p(Ξk|k−1) +Q, Mk = 0,

T p(T c(Ξk|k−1, X̄k−1,K
∗
k ,Mk)) +Q, Mk 6= 0.

(35)

From (18), (32) and (34), one can verify that the operators T p,
T r , U and V satisfy the following properties:

• homogeneity (w.r.t. the first variable): ∀ µ ∈ R+,

T p(µP) = µT p(P), T r(µX ) = µT r(X ),

U(µP,K,M) = µU(P,K,M); (36)

• monotonicity (w.r.t. the first variable): given positive definite
matrices P ≤ P ′, X ≤ X ′,

T p(P) ≤ T p(P ′), U(P,K,M) ≤ U(P ′,K,M),

T r(X ) ≤ T r(X ′), V(X ,K,M) ≤ V(X ′,K,M); (37)

• summation inequality: ∀ P1,P2 > 0,

T p(P1 + P2) ≤ T p(P1) + T p(P2). (38)

Note that T r(X) < X indicates that there exist µ ∈ (0, 1) such that
T r(X) < µX. We now consider Lemma 3. For any initial condition
X0, we can choose a sufficient large σ such that both X0 ≤ σX

and Q ≤ σX hold. Then, it can be derived from (15), (36) and
(37) that X̄1 = T r(X0) + Q ≤ T r(σX) + σX < (µ + 1)σX. By
induction, equation (15), and the homogeneity of T r, we can derive
that X̄k < σ

∑

k

i=0
µiX < σ

1−µ
X, which, together with (37), indicates

that V(X̄k, K,M) is uniformly bounded. That is, V(X̄k,K,M) ≤
V((σ/(1−µ))X, K,M), ∀ k ∈ N. Moreover, there must exist a matrix
V̄ = max

M∈M

V((σ/(1 − µ))X,K,M), such that

V(X̄k,K,M) ≤ V̄, ∀ k ∈ N, M ∈ M, (39)

since M is a finite set.
Now, we consider the evolution of Ξk+1|k. Given Ξ1|0, we can

choose a sufficient large σ > 0 such that Ξ1|0 < σP and Q < σP . If
M1 = 0, then it follows from (32) that U(P,K,M1) = (1 + ε2)P >

P . Hence, (33) implies P > T p((1 + ε2)P ) > T p(P ). Therefore,
according to (35)–(37), there is a µ1 ∈ (0, 1) such that

Ξ2|1 ≤ T p(Ξ1|0) +Q < T p(σP ) + σP < µ1σP + σP. (40)

If M1 6= 0, then it follows from Theorem 2 that

T c(Ξ1|0, X̄0,K
∗
1 ,M1) ≤ T c(Ξ1|0, X̄0, K,M1) (41)

for any K 6= K∗
1 . By (35)–(39) and (41), we can choose a sufficient

large σ > 0 such that Ξ1|0 < σP and conclude that there is a µ2 ∈
(0, 1) such that

Ξ2|1 ≤ T p(T c(Ξ1|0, X̄0,K
∗
1 ,M1)) +Q

≤ T p(T c(Ξ1|0, X̄0,K,M1)) +Q

≤ T p(U(Ξ1|0, K,M1)) + T p(V(X̄0, K,M1)) +Q

≤ T p(U(σP,K,M1)) + T p(V̄) +Q

< µ2σP + T p(V̄) +Q. (42)

By letting µ̄ = max{µ1, µ2} and choosing a σ̄ ≥ σ such that
T p(V̄) + Q < σ̄P , we can derive from (40) and (42) that, Ξ2|1 <

(µ̄σ + σ̄)P for any M1 ∈ M. By induction and the homogeneity
property, we have Ξk+1|k <

(

µ̄kσ +
∑

k−1
i=0

µ̄iσ̄
)

P <
(

µ̄kσ + σ̄

1−µ̄

)

P,

which leads us to

E{‖ek+1|k‖2} = tr(Pk+1|k) ≤ tr(Ξk+1|k) < tr(P )σµ̄k +
tr(P )σ̄

1− µ̄
.

(43)

The proof is complete.
Remark 6: It is worth noting that T p(P) > (A+E∆)P(A+E∆)T

and U(P,K,M) > P if M = 0. Therefore, if there exist P ∈ S+
n

and K ∈ Rn×m such that P > T p(U(P,K,M)) for any M, then it
must hold that P > (A + E∆)P (A + E∆)T, implying the quadratic
stability1 of system (1). That is to say, the performance analysis in
Theorem 3 is actually a sufficient condition for the convergence of
steady-state filters.

Remark 7: Up to now, we have addressed the state estimation
problems for a class of discrete-time nonlinear systems with binary
sensors. A new state estimation algorithm has been proposed and the
performance analysis has been conducted to reveal the boundedness
behavior of the prediction error in the mean square sense. The
proposed algorithm has the following advantages: 1) the developed
estimation scheme is cost-effective in the sense that only binary
measurements are transmitted and utilized, which is preferable in
the network with limited communication bandwidth; 2) the proposed
state estimation algorithm is of a recursive form which is suitable
for real-time implementation; and 3) the proposed recursive state
estimation algorithm processes the received data sequentially rather
than a batch. As such, it is not necessary to store the complete data
set nor to reprocess existing data if a new measurement becomes
available, which makes our algorithm more computationally friendly.

IV. EXAMPLES

This section presents two examples. In Example 1, we employ an
unstable system to illustrate the effectiveness of the proposed state
estimation scheme. Then, Example 2 introduces a quadratically stable
system to validate Theorem 3.

Example 1. Consider the discrete-time nonlinear system (1)–(3)
with

f(xk) =

[

x(1)
k + 0.5x(2)

k + 0.4 sinx(1)
k + 0.5 sinx(2)

k

−0.1x(1)
k + 0.85x(2)

k + 0.4 sinx(1)
k

]

,

1The definition of quadratic stability can be found in [36].
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Ci =
[

1 0
]

, i = 1, 2, ...,9,

Ci =
[

0 1
]

, i = 10, 11, ...,18.

The variances of the process and measurement noise are given by
Q = 4I and R = 9I, respectively. The initial state x0 is a Gaussian
random vector with zero mean and covariance E{x0xT

0 } = 25I. The
system (1) is monitored by 18 binary sensors, whose thresholds are
chosen as

τ1 = −30, τ2 = −20, τ3 = −10, τ4 = −5, τ5 = 0, τ6 = 5,

τ7 = 10, τ8 = 20, τ9 = 30, τ10 = −10, τ11 = −7.5, τ12 = −5,

τ13 = −2.5, τ14 = 0, τ15 = 2.5, τ16 = 5, τ17 = 7.5, τ18 = 10.

It is easy to verify that the nonlinear functions f(·) satisfies the
Lipschitz conditions with Lipschitz constant l = 2.3065. Then, by
Lemma 2, the Jacobian Ak and scaling matrix E are calculated as:

Ak =

[

1 + 0.4 cos x̂(1)
k 0.5 + 0.5 cos x̂(2)

k

−0.1 + 0.4 cos x̂
(1)
k 0.85

]

, E =

[

0.8 1

0.8 0

]

.

By employing Theorem 2 and letting ε0 = 0.5, εi = 0.15 (i = 1, 2, 3)
∀ k ∈ N, we can recursively obtain x̂k|k−1, x̂k|k, and the estimator
gain K∗

k .
The simulation results are given in Figs. 1–4. In Figs. 1 and 2,

the trajectories of the true state, together with the state estimates
obtained via Algorithm 1 are displayed. It is clear that the proposed
state estimator can provide satisfactory tracking performance. Fig. 3
depicts the sensors that switch at each time instant. By combining
the state trajectories (in Figs. 1 and 2) and Fig. 3, it is vividly
indicated that the information of system states can be reflected by the
thresholds of the binary sensors that switch at each time instant. In
Fig. 4, the mean-square errors obtained over 1000 independent trials
are given, which further illustrates the feasibility and effectiveness of
the developed state estimation scheme.

Example 2. Consider nonlinear system (1)–(3) with

f(xk) = 0.5xk − 0.1 sinxk, C =
[

C1 C2

]T

=
[

1 0.5
]T

.

The variances of the process and measurement noise are set to be
Q = 1, R = I. The initial state x0 is a Gaussian variable with zero
mean and covariance E{x2

0} = 4. The thresholds of binary sensors are
chosen as τ1 = 1, τ2 = −1. Taking the Taylor expansion of f , we can
derive the Jacobian matrix Ak = 0.5 − 0.1 cos x̂k and scaling matrix
E = 0.2. Furthermore, it can be verified that Ā = df

dx

∣

∣

x=0
= 0.4.

Other parameters are set to be ε0 = 1, ε1 = 1/3, ε2 = 1/8 and
ε3 = 1.

Now, we consider Theorem 3. For any given X > 0, it is clear that
one can let Â = 0.6 so that AkXAT

k < ÂX ÂT for all k. From the
definition of T r, T p and U in (32), we obtain that T r(X ) = 0.4X
and T p(U(P,K,M)) = 0.72(I−KMC)P(I−KMC)T. Note that the
inequality X > T r(X ) holds for any X > 0. In addition, we can let
K = [0.05 0.1] so that P > T p(U(P, K,M)) holds for any P > 0 and
M ∈ M. Therefore, according to Theorem 3, the prediction error is
exponential bounded in mean square.

The simulation results are shown in Fig. 5. Same as Example 1,
the value of mean square error is obtained through 1000 independent
repeated trials since the actual mean-square error versus time cannot
be analytically computed. It is noted that the traces of Ξk+1|k

is always larger than the mean-square error E{‖ek+1|k‖2}, which
implies that Ξk+1|k is indeed an upper bound of Pk+1|k. Moreover,
an exponential bound calculated by the right-hand side of (43) is
also depicted in Fig. 5. One can observe that both trajectories of
E{‖ek+1|k‖2} and tr(Ξk+1|k) are restricted by the exponential bound,
which indicates the validity of Theorem 3.
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V. CONCLUSIONS

In this paper, we have addressed the state estimation problems
for a class of discrete-time nonlinear systems with binary sensors.
A recursive state estimator has been developed and the thresholds of
binary sensors have been utilized to compensate for the missing infor-
mation induced by binary mapping. An optimized estimation scheme
has been put forward, in which an upper bound of the estimation
error covariance has been obtained and then minimized by designing
a proper estimator gain. Moreover, performance analysis has been
carried out by investigating the boundedness of the prediction error in
the mean square sense. Finally, some numerical simulations have been
presented to demonstrate the validity of the proposed state estimation
scheme.

APPENDIX A
PROOF OF LEMMA 2

Proof: Consider a nonlinear Lipschitz function f : Rn → Rn,
denote the ith component of f by fi, and let x̂ ∈ Rn be a given
point. Taking the first-order Taylor series expansion of f gives f(x) =

f(x̂)+A(x− x̂)+R(x− x̂), where A is the Jacobian matrix at x̂ and

R =
1

2













(x− x̂)TF1(x(θ1))

(x− x̂)TF2(x(θ2))

...
(x− x̂)TFn(x(θn))













is the remainder. In the above equation, Fi(x(θi)) is the Hessian ma-
trix at x(θi) and x(θi) = θix+(1−θi)x̂ for some θi ∈ [0, 1]. Since f is
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Lipschitz, it holds trivially that (A+R)T(A+R) ≤ l2I. Furthermore,
we can verify (A+R)(A+R)T ≤ tr[(A+R)T(A+R)]I ≤ nl2I. By
letting ξi and ζi be the ith column of A and R, we can rewrite the
preceding inequality as

∑

n

i=1
(ξi+ζi)(ξi+ζi)T ≤ nl2I. Therefore, for

any i = 1, 2, ..., n, it yields ‖ξi+ζi‖2 = tr [(ξi + ζi)(ξi + ζi)T] ≤ n2l2,

which implies ‖ξi + ζi‖ ≤ nl. Since f is Lipschitz and ζi is the ith
column of the Jacobian matrix, one can verify that there exist γi

(i = 1, 2, 3, . . . , n) such that ‖ζi‖ ≤ γi. From the triangle inequality,
we have ‖ζi‖ ≤ ‖ξi + ζi‖ + ‖ − ξi‖ ≤ nl + γi. That is, for any
i = 1, 2, . . . , n, there always exists a positive number ri = nl+γi such
that ‖ζi‖ ≤ ri. By letting ∆ = 1√

n
·
[

1

r1
ζ1,

1

r2
ζ2, · · · , 1

rn
ζn

]

and
E =

√
n · diag{r1, r2, · · · , rn}, the matrix R can be rewritten

as R = E∆. Moreover, we can observe that ∆∆T ≤ I, as desired.

APPENDIX B
PROOF OF LEMMA 3

Proof: Consider system (1). By taking the Taylor series expan-
sion of f at point 0, it yields that xk = (Ā + E∆̄k−1)xk−1 + wk−1.

Applying mathematical induction, we can readily deduce (15) from
Lemma 1, ∆̄k−1∆̄T

k−1 < I and the independence of xk−1 and wk−1.
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