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Abstract: Artificial intelligence has been used effectively in medical diagnosis. The objective of this
project is to examine the application of a collective AI model using weighted fusion of predicted
probabilities from different AI architectures to diagnose various retinal conditions based on optical
coherence tomography (OCT). A publicly available Noor dataset, comprising 16,822, images from
554 retinal OCT scans of 441 patients, was used to predict a diverse spectrum of age-related macular
degeneration (AMD) stages: normal, drusen, or choroidal neovascularization. These predictions
were compared with predictions from ResNet, EfficientNet, and Attention models, respectively, using
precision, recall, F1 score, and confusion matric and receiver operating characteristics curves. Our
collective model demonstrated superior accuracy in classifying AMD compared to individual ResNet,
EfficientNet, and Attention models, showcasing the effectiveness of using trainable weights in the
ensemble fusion process, where these weights dynamically adapt during training rather than being
fixed values. Specifically, our ensemble model achieved an accuracy of 91.88%, precision of 92.54%,
recall of 92.01%, and F1 score of 92.03%, outperforming individual models. Our model also highlights
the refinement process undertaken through a thorough examination of initially misclassified cases,
leading to significant improvements in the model’s accuracy rate to 97%. This study also underscores
the potential of AI as a valuable tool in ophthalmology. The proposed ensemble model, combining
different mechanisms highlights the benefits of model fusion for complex medical image analysis.

Keywords: artificial intelligence; age-related macular degeneration; optical coherence tomography

1. Introduction

Artificial intelligence (AI) stands as a prominent domain within computer science,
endeavoring to replicate and amplify human intelligence within computational systems.
Within AI, machine learning (ML) is a subset that uses statistical techniques to develop
intelligent systems capable of improving performance without explicit programming [1].
Deep learning (DL), a powerful ML technique, has achieved significant success in tasks such
as computer vision and natural language processing. Its effectiveness lies in its capacity
to discern features, identify patterns through multiple layers of artificial neurons, and
comprehend data representations at varying levels of abstraction [2,3]. The application
of AI in medical image analysis has demonstrated noteworthy achievements, markedly
improving clinical workflows. Its application has not only improved efficiency and accuracy
in diagnosis and treatment but also addressed logistic and economic challenges within
healthcare systems [1]. In the realm of ophthalmology, DL has been effectively employed
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in the analysis of major eye diseases leading to blindness, such as diabetic retinopathy
(DR), glaucoma, and age-related macular degeneration (AMD) [4], as well as cataracts. AI
exhibits promise in supporting early diagnosis across a spectrum of pathologies, including
refractive errors, retinal detachment, choroidal diseases, and ocular tumors. Early detection
assumes a pivotal role in averting treatment delays and mitigating vision loss. By learning
from medical data and expert knowledge, AI models simulate the diagnostic capabilities of
physicians and provide efficient and accurate diagnoses, personalized treatment plans, and
even question-answering systems concerning age-related macular degeneration [2,3]

Age-related macular degeneration (AMD) is a progressive condition that primarily
deteriorates the fovea and parafovea in the retina [4]. AMD is one of the principal causes of
loss of sight globally, affecting roughly 8.7% of people worldwide. Forecasts indicate that
by 2040, nearly 288 million people will be afflicted by this disease [5]. The disease can be
diagnosed using techniques including fundus photography, fluorescein, indocyanine green
angiography, and optical coherence tomography (OCT, OCTA) [6]. Refer to Figure 1 for
additional insights into the representation of the image.
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Artificial intelligence (AI), particularly deep learning (DL), is proving useful for early
detection of AMD lesions, with algorithms demonstrating high accuracy rates in identifying
drusen and RPE abnormalities [7–10]. Recent studies using convolutional neural networks
(CNNs), it was observed that these AI models performed as well as experienced retinal
specialists in diagnosing and predicting disease changes and outperformed less experienced
medical students. However, there were instances where the AI misclassified active wet
AMD as inactive and dry AMD as inactive wet AMD, indicating the need for model
refinement [3].

AI research is shifting towards multimodal image databases, which provide more
comprehensive information, including OCT images. ML has been applied successfully
for AMD diagnosis, with DL techniques showing higher accuracy rates [11]. Banerjee
et al. proposed a hybrid model integrating imaging features, demographics, and visual
factors, to predict the risk of exudation in non-exudative AMD eyes which showcased
its potential for personalized, tailored screening for high-risk patients, although some
limitations remained [12].

On the other hand, CNNs have been modified to incorporate genotype and fundus
images to predict the progression of advanced AMD, showing improved accuracy [13].
Transcriptome-wide association studies (TWAS) further highlight the systemic nature
of AMD, not confined to retinal issues [14]. This signifies the use of AI as an aid in
the diagnosis of eye disease. A deep learning model based on CNN was proposed for
the classification of SD-OCT (i.e., spectral-domain OCT) images. The model achieved
remarkable accuracy rates of 99.7% and 91.1% for AMD and CSC classification, respectively,
and for the classification of retinopathy subtypes, including normal participants [15].
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Other research studies have demonstrated the effectiveness of deep CNN models,
such as VGG and ResNet, in accurately classifying OCT images into specific categories [15].
Their model shows profound diagnostic efficacy, necessitating continued research to assess
its potential influence on clinical diagnosis of AMD and CSC. Paul et al. proposed a deep
learning model called OCTx to detect retinal disorders from optical coherence tomography
(OCT) images. They achieved an accuracy of 98.53% on their test set, which was 12% of the
total images. They also compared their model with other methods such as MCME

Studies in the classification paradigm explore the integration of attention mechanisms
to enhance AMD classification accuracy. Xu et al. proposed a hybrid attention mechanism
for retinal disease classification using OCT images [16]. Their method, called MHANet,
combines parallel spatial and channel attention mechanisms to extract key features of
the lesion areas and reduce the influence of background information. They reported that
their method achieved 96.5% and 99.76% classification accuracy on Dataset1 and Dataset2,
respectively, outperforming the other recent employed models such as VGG, ResNet, and
SENet. They also visualized the attention maps of their method and showed that it can
more accurately locate the lesion regions in the images [16]. Li et al. have proposed two
convolutional neural network (CNN) models to classify four types of age-related macular
degeneration (AMD) from retinal images [17]. The initial model, ResNet50, extracts high-
dimensional features from images and achieves a classification accuracy of 95.3%, which
surpasses the current methods. The second model, Atten-ResNet, employs an attention
mechanism to concentrate on critical areas and attains an accuracy of 95.7%, marginally
better than ResNet50. The authors utilized a dataset of 84,484 fundus retina images and
presented confusion matrices, accuracy/loss curves, and ROC curves to analyze their
models [17].

Wang et al. [18] developed a deep semi-supervised learning framework for classifying
diabetic macular edema (DME) using OCT images, combining labeled and unlabeled data
and introducing innovative features like self-correction and a student–teacher architecture.
This method achieved high accuracy on two datasets, outperforming several MIL methods.
Another research [17] employed a semi-supervised deep learning approach with virtual
adversarial training for automatic retinopathy detection, achieving expert-level accuracy
with limited labeled data. Fang et al. [19] proposed a self-supervised method for OCT
image classification, focusing on patient-specific features and achieving high accuracy with
less labeled data. Santos et al. [20] introduced a methodology using geostatistical functions
for diagnosing AMD from OCT images, showing high accuracy and AUROC. Additionally,
Wang and colleagues [16,18] also developed a novel method for DME detection using
labeled and unlabeled data, which demonstrated superior performance according to various
metrics. Lastly, the paper introduced a VGG-19 based AI model for classifying OCT retinal
images, trained on a large and diverse dataset.

In this study, we capitalize on our extensive labeled dataset, rendering the exploration
of semi-supervised learning methods unnecessary. Additionally, given that fundus images
are often not required in many clinical applications, our focus remains solely on optical
coherence tomography (OCT) for AMD detection, eliminating the need for multi-modal
models. While AI has demonstrated promising results in ocular diseases, there exists an
imperative to delve into the technical underpinnings and untapped possibilities. Our con-
tribution involves the introduction of an advanced AI model that strategically amalgamates
the strengths of powerful CNN models. The ensemble approach harnesses a collective
intelligence by merging the probabilistic outputs of these diverse models, employing a
weighted average of predicted probabilities. This strategic fusion optimally utilizes the
unique advantages of each architecture, thereby creating an ensemble model that excels in
accurately distinguishing between various retinal conditions. Our ensemble model exhib-
ited enhanced accuracy in the classification of age-related macular degeneration (AMD),
surpassing the performance of standalone ResNet, EfficientNet, and Attention models.
This improvement underscores the efficacy of incorporating trainable weights within the
ensemble fusion process. Unlike conventional methods that rely on static weight assign-
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ments, our approach allows for the dynamic adaptation of weights during the training
phase, enabling a more nuanced and effective integration of individual model strengths.

2. Materials and Methods
2.1. Dataset

In our research, we utilized the Noor dataset to evaluate and refine our proposed
retinal image analysis method. Comprising an extensive collection of 16,822 retinal images,
this dataset originates from 441 patients. Notably, it encompasses a total of 554 OCT
volumes, accounting for instances where both left and right eyes of some patients were
imaged. Within this dataset, we encountered a diverse spectrum of macular degeneration
stages, thereby enhancing its utility for our investigations.

Each OCT volume within this dataset comprises an average of 30 B-scans. A detailed
distribution analysis reveals that among the 16,822 individual B-scans, 8584 represent
normal cases, 4998 correspond to drusen, and 3240 pertain to cases of choroidal neovascu-
larization (CNV). Furthermore, when considering the distribution of cases at the volume
level, we find that out of the 554 cases available, 187 are categorized as normal, 194 as
drusen, and 173 as CNV cases.

It is important to emphasize that we use a 5-fold cross-validation approach to make
sure our findings are accurate and reliable, making our research results trustworthy.

2.2. Data Preprocessing and Augmentation

Initially, in the data preprocessing phase, all images are resized to a consistent dimen-
sion, a prerequisite for effective deep learning model training. Subsequently, these images
undergo normalization to achieve a mean of zero and unit variance, a process designed to
facilitate model convergence during training. To introduce greater diversity and variability
into the training dataset, various data augmentation techniques are applied to the images,
including random cropping, horizontal flipping, random rotation within a range of −15
to +15 degrees, random affine transformations involving translation and shear, random
adjustments to brightness within a 20% range, and random scaling within the range of 0.8
to 1.2 with a 50% probability (See Figure 2).
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Figure 2. Exemplary OCT B-scan image alongside three augmented variants generated through
random transformers.

In the data augmentation strategy employed for our OCT image analysis, rotation
is carefully considered as a technique to enhance model robustness. Despite potential
concerns about introducing “incorrect” imagery, rotation serves as a valuable regularization
method, mimicking natural variations in retinal orientation.

2.3. Deep Convolutional Neural Networks

In our study, we utilize a diverse set of deep convolutional neural networks to tackle
the task of AMD classification using OCT images. Firstly, we employ ResNet, a widely
recognized architecture known for its deep residual learning capabilities. ResNet’s skip
connections and residual blocks aid in the training of very deep networks, allowing it
to capture intricate patterns and features within the OCT images effectively. Secondly,
we integrate EfficientNet, which is renowned for its efficiency and scalability, into our
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framework, providing a trade-off between model size and performance. This makes
it suitable for handling the computational demands of large-scale image classification
tasks. Additionally, we extend our experimentation to include EfficientNet with attention
mechanisms. This variant enhances the model’s capacity to focus on salient regions within
the OCT images, potentially improving its ability to identify subtle pathological changes.
Each of these models is trained and evaluated individually to benchmark their standalone
performance. Subsequently, they are integrated into our ensemble model, as described
in the previous section, to harness their collective predictive power and enhance the
classification accuracy of age-related macular degeneration.

2.4. Proposed Ensemble Model

In our proposed ensemble model, we strategically combine the predictive strengths of
ResNet, EfficientNet, and EfficientNet with attention mechanisms. This ensemble approach
is designed to harness a collective intelligence that leverages the unique advantages of each
architecture, thereby enhancing the accuracy of AMD classification from OCT images.

To achieve this, we employ a weighted fusion scheme to merge the probabilistic
outputs of these diverse models. Unlike traditional fixed-weight ensemble methods, our
approach utilizes trainable weights. During training, these weights dynamically adapt
based on the performance of each model, allowing us to capitalize on their complementary
insights effectively. The integration of ResNet, EfficientNet, and EfficientNet with attention
mechanisms enables us to capture a wide range of features and patterns present in OCT
images. ResNet’s deep residual learning capabilities, EfficientNet’s efficiency and scalability,
and EfficientNet with attention’s focus on salient regions collectively contribute to the
ensemble’s robustness.

By fusing the predicted probabilities from ResNet, EfficientNet, and EfficientNet
with Attention, our ensemble model maximizes the strengths of individual models while
mitigating their potential weaknesses. This results in an ensemble that excels in accu-
rately distinguishing between different retinal conditions, including normal, drusen, and
choroidal neovascularization. Through the dynamic integration of diverse architectures
and the utilization of trainable weights, we aim to enhance the accuracy and reliability of
AMD diagnosis using OCT imaging. (Refer to Figure 3 for a graphical representation of the
ensemble fusion process).
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2.5. Experiments

The training and optimization of our models are carried out with the Adam optimizer,
utilizing a fixed learning rate of 0.001. A batch size of 16 is employed for training to strike a
balance between computational efficiency and model convergence. To ensure robustness
and generalize better to unseen data, we train our models for a total of 100 epochs, while im-
plementing an early stopping mechanism with a patience of 7 epochs to prevent overfitting.

Data augmentation plays a pivotal role in our experimental setup, as it aids in enriching
the training dataset by applying a range of transformations such as rotations, flips, and
zooms to the OCT images. This augmentation strategy helps enhance the model’s ability to
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capture diverse patterns and variations present in the clinical data, ultimately improving
its overall performance.

Moreover, we leverage transfer learning as a crucial component of our approach. We
initialize our deep convolutional neural networks (ResNet, EfficientNet, and EfficientNet
with attention) with pre-trained weights on large-scale image datasets, which allowes the
models to inherit valuable feature representations. Fine-tuning these pre-trained models
on our OCT dataset further expedites the convergence process and provides a strong
foundation for AMD classification.

For model training, we employ the categorical cross-entropy loss function, which
is well-suited for multi-class classification tasks. Our OCT images are resized to a uni-
form size of 300 × 300 pixels to maintain consistency and ensure compatibility with
the selected network architectures. Through rigorous experimentation and analysis, we
demonstrate the effectiveness of our ensemble model in accurately classifying age-related
macular degeneration, thereby contributing to the advancement of ophthalmic diagnosis
and treatment strategies.

3. Results and Discussion
3.1. Performance Measures

Our data encompasses a total of 554 OCT volumes, accounting for instances where
both left and right eyes of some patients were imaged. Within this dataset, we encounter a
diverse spectrum of macular degeneration stages, thereby enhancing its utility for our inves-
tigations. Each OCT volume within this dataset comprises an average of 30 B-scans. A de-
tailed distribution analysis reveals that among the 16,822 individual B-scans, 8584 represent
normal cases, 4998 correspond to drusen, and 3240 pertain to cases of choroidal neovascu-
larization (CNV).

The results of our evaluation are summarized in Table 1, where we present the perfor-
mance metrics for each method across the three distinct classes: “Normal”, “Drusen”, and
“CNV”. The precision, recall, and F1 score, expressed as percentages, provide insights into
the classification capabilities of each individual method—ResNet, EfficientNet, Attention,
and our proposed Ensemble Model. These metrics are crucial in assessing the ability of our
models to correctly identify and distinguish between the different AMD classes.

Table 1. Performance Metrics of Classification Models for Normal, Drusen, and CNV Categories.
Best results are highlighted in bold.

Dataset Method Class Precision (%) Recall (%) F1 Score (%) OP
(%)

OR
(%)

OF
(%)

OA
(%)

Noor Dataset
5-Fold Cross
Validation

ResNet
Normal 96.32 70.05 81.11
Drusen 75.76 90.21 82.35 87.26 85.74 86.54 85.54
CNV 90.37 97.69 93.89

EfficientNet
Normal 96.73 79.14 87.06
Drusen 81.69 89.69 85.50 89.66 88.99 88.91 88.99
CNV 90.96 98.84 94.74

Attention
Normal 96.64 77.01 85.71
Drusen 80.00 90.72 85.02 89.50 88.63 88.54 88.63
CNV 92.43 98.84 95.53

Proposed
Ensemble

Model

Normal 96.30 83.42 89.40
Drusen 84.72 94.33 89.27 92.54 92.01 92.03 91.88
CNV 96.59 98.27 97.42

Additionally, we report two critical aggregate metrics, overall precision (OP) and
overall recall (OR), which consider the overall classification performance, regardless of the
specific class labels. These metrics offer a broader perspective on the model’s effectiveness
in capturing the most relevant patterns and are especially relevant in real-world clinical
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settings where AMD cases might present with varying degrees of severity. Furthermore,
the overall F1 score (OF) combines precision and recall in a harmonic mean, giving us
a comprehensive measure of model performance. Finally, the overall accuracy (OA) is
provided to give a holistic assessment of the models’ overall classification accuracy across
all classes.

Our results highlight the significant improvement achieved through the proposed
ensemble model, which leverages the collective intelligence of ResNet, EfficientNet, and
Attention. This ensemble approach yields the highest precision, recall, F1 score, and overall
accuracy, demonstrating its superior capability in accurately classifying AMD across all
classes. These findings underscore the potential of our ensemble model as a powerful tool
in ophthalmic diagnosis, offering enhanced accuracy and diagnostic capabilities in the field
of age-related macular degeneration classification.

In our analysis, we note a slight enhancement in terms of standard deviation; however,
this improvement does not reach a level of significance warranting inclusion in the tables.
Thus, for the sake of simplicity and clarity in the presentation of results, standard deviation
values are omitted from Table 1.

3.2. Confusion Matrix

To provide a detailed assessment of the classification performance of each model, we
present the four confusion matrices corresponding to ResNet, EfficientNet, Attention, and
our proposed Ensemble Model. Each confusion matrix is a 3 × 3 table that displays the
distribution of true labels versus predicted labels for the three AMD classes—Normal,
Drusen, and CNV—across all datasets (see Figure 4).
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These confusion matrices provide a granular view of the classification performance
for each model, allowing us to assess how well they correctly classify each AMD class
and identify any potential areas of improvement. The ensemble model’s confusion matrix,
in particular, demonstrates its superior performance in accurately classifying AMD cases
across all classes, as highlighted in our earlier analysis.

3.3. ROC Curve Analysis

To comprehensively assess the discriminative power of our models across all AMD
classes, we present receiver operating characteristic (ROC) curves for each class (Class 0:
Normal, Class 1: Drusen, and Class 2: CNV), as well as the micro-average ROC curve and
macro-average ROC curve (see Figure 5).

The micro-average ROC curve aggregates the true positive and false positive rates
across all classes, providing a comprehensive assessment of overall model performance.
This curve gives us insights into how well the models perform when considering all AMD
classes as a single entity, irrespective of their individual class labels. The Macro-average
ROC curve calculates the ROC curve for each class independently and then computes
the average across these curves. This metric provides an understanding of the models’
ability to perform well across all classes, giving equal weight to each class, and is especially
valuable when we want to ensure balanced performance across all AMD categories.

These ROC curves collectively offer a comprehensive view of the models’ discrimi-
native capabilities, enabling us to gauge their effectiveness in AMD classification for each
class and across the entire dataset. The micro-average and macro-average ROC curves
further assist in understanding the models’ global classification performance and their
ability to generalize to all AMD cases.
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3.4. Class Activation Maps

In our results analysis, we gain deeper insights into the decision-making processes
of our models by generating class activation maps (CAMs) for four selected OCT images.
These CAMs highlight the regions within the images that contributed most significantly to
the classification decisions made by our models. Specifically, we focus on two representative
images from the Choroidal Neovascularization (CNV) class and two from the Drusen class.
The CAMs for CNV samples revealed that our models are able to accurately pinpoint areas
of interest within the OCT images. The activated regions are typically localized around
pathological features associated with CNV, such as neovascular membranes and fluid
accumulatio (see Figure 6). This level of localization suggests that our models effectively
capture relevant patterns and features specific to CNV cases. Similarly, the CAMs generated
for the Drusen class demonstrate the models’ ability to identify and highlight regions
of interest related to drusen deposits and retinal changes. These localized activations
underscore the models’ capacity to discern subtle characteristics indicative of Drusen,
thereby contributing to their accurate classification.
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3.5. Collaborative Error Analysis and Dataset Refinement

In a significant development for our collaborative project on OCT image classification,
we engage in a thorough examination of cases that were initially misclassified by our
proposed model. Out of the 554 cases initially evaluated, our analysis reveals 45 instances
of misclassification, which equates to an overall accuracy rate of 92%. This initial phase of
evaluation provides crucial insights into the performance and robustness of our model.

A comprehensive review process is undertaken to better understand the root causes of
misclassification. This encompasses examining both the ground truth labels and predicted
labels, as well as closely inspecting the CAMs for all B-scans within the mislabeled cases.
Several noteworthy observations emerge from this review, underscoring the exceptional
capabilities of our model. Firstly, we identify discrepancies in ground truth labeling, where
entire volumes were inaccurately labeled. For instance, in the case of “NORMAL_34”,
22 B-scans were erroneously labeled as drusen, despite the volume being designated as
“NORMAL”. Subsequent rectifications are made to resolve these labeling errors throughout
the dataset. Secondly, instances were found where our model accurately detected the
presence of drusen, while the dataset erroneously labeled these cases as normal. This
expertise plays a pivotal role in identifying and rectifying such discrepancies. Lastly, it
was acknowledged that some images in the dataset posed significant challenges due to
excessive noise or the presence of conditions such as cataracts. To address this, problematic
cases were excluded from further analysis. As a result of these corrections, our model’s
accuracy rate substantially improves to 97%, with only 15 remaining misclassified cases.
These developments significantly enhance the robustness and reliability of our proposed
model and underscore the importance of close collaboration between medical experts and
machine learning practitioners in the realm of healthcare AI research.

In summary, our paper has introduced an innovative ensemble deep learning model
approach for the classification of age-related macular degeneration (AMD) using optical
coherence tomography (OCT) images. We conducted a thorough analysis of renowned
deep learning models, including ResNet, EfficientNet, and Attention mechanisms, and
amalgamated their predictive strengths into a unified ensemble model. Our methodol-
ogy was rigorously evaluated on the Noor dataset, encompassing 16,822 retinal images
from 441 patients across “Normal”, “Drusen”, and “Choroidal Neovascularization (CNV)”
classes, aligning with established categories in pertinent literature.

The significance of our ensemble model lies in its pursuit of heightened accuracy
and performance in OCT image classification, charting a course for a comprehensive
advancement in ophthalmic diagnosis and treatment strategies. Notably, our ensemble
model surpassed individual models in precision, recall, F1 score, and overall accuracy
across all AMD classes, demonstrating the effectiveness of combining multiple models to
leverage their collective intelligence for precise classification. Crucial to our success were
data pre-processing and augmentation methods, including resizing, normalization, random
cropping, flipping, rotation, transformation, brightness adjustment, and scaling. Leveraging
transfer learning with pre-trained models on large-scale image datasets facilitated model
convergence, endowing our models with valuable feature representations.

Addressing the challenge of accurate labeling in medical applications, we imple-
mented an automated system for identifying potentially mislabeled samples, rectifying
discrepancies in ground truth labeling through collaborative error analysis. This effort sig-
nificantly improved the overall accuracy of our model. Utilizing class activation M+maps
(CAMs) provided insightful visualizations of regions influencing model predictions, aiding
in the interpretation of decision-making processes, and affirming the models’ focus on
relevant pathological features.

Our study’s implications for ophthalmology and healthcare AI are substantial, as the
proposed ensemble model holds promise for enhancing the accuracy of AMD classification
from OCT images, potentially revolutionizing early diagnosis and treatment planning. The
increased accuracy can positively impact patient outcomes. Interpretability tools such as
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CAMs can bolster clinicians’ trust in AI systems by providing insights into model decisions,
underscoring the importance of transparency and explainability.

4. Conclusions

In conclusion, our research contributes a comprehensive exploration of AI-driven
advancements in AMD classification using OCT images. Through a meticulous analysis of
models, data augmentation, and error rectification, our study underscores the potential of
AI as a valuable tool in ophthalmology. The proposed ensemble model, leveraging ResNet,
EfficientNet, and Attention mechanisms, showcases superior accuracy, emphasizing the
benefits of model fusion for complex medical image analysis. Our findings stress the critical
role of high-quality data and expert collaboration in developing robust AI solutions for
healthcare. As AI in healthcare progresses, focusing on interpretability, generalization, and
ethical considerations, our research contributes to the ongoing journey towards improved
diagnostic accuracy and patient care.
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