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Abstract
We study the Ising spin glass model on scale-free networkergéed by the static model using the

replica method. Based on the replica-symmetric solutiom,derive the phase diagram consisting of the
paramagnetic (P), ferromagnetic (F), and spin glass (S@$eshas well as the Almeida-Thouless line as
functions of the degree exponextthe mean degrek, and the fraction of ferromagnetic interactionsto
reflect the inhomogeneity of vertices, we modify the magaitonm and the spin glass order parameter
q with vertex-weights. The transition temperatg(7,) between the P-F (P-SG) phases and the critical
behaviors of the order parameters are found analyticallyeM? < A\ < 3, 7. andT are infinite, and the
system is in the F phase or the mixed phase-for 1/2, while it is in the SG phase at= 1/2. m andq
decay as power-laws with increasing temperature with r@iffe\-dependent exponents. Whar> 3, the

T. andT, are finite and related to the percolation threshold. The&atiexponents associated withandg

depend onm\ for 3 < A < 5 (3 < A\ < 4) at the P-F (P-SG) boundary.

PACS numbers: 89.75.Hc, 75.10.Nr



. INTRODUCTION

Recently, considerable effort has been devoted to unaelisig. complex systems by means
of networks [1, 2] 3| 14]. An emerging phenomenon in real-dr@dmplex networks is a scale-
free (SF) behavior in the degree distributidfy(k) ~ k=%, where the degrek is the number of
edges connected to a given vertex anig the degree exponeni [5]. Due to the heterogeneity of
degree, many physical problems on SF networks exhibitndisteatures from those in Euclidean
space. For example, the critical behavior of the ferromtgigng model on SF networks exhibits
an anomalous behavior depending on the degree exponéni?,(8,9,010]. While the critical
behaviors are of the mean field type for> 5, they exhibit an anomalous scaling for< A <
5. Moreover, the magnetizatiom;, decreases with increasing temperatureras- 7-/(3-%
for 2 < A < 3, and so onl[7]/8]. The Ising spin system on the complex netsydoksides
being of theoretical interest, can be used to describe warieal world phenomena. For example,
the two Ising spin states may represent two different opisim a society. Depending on the
interaction strength between neighbors, the overall aysten be in a single or mixed opinion
states, corresponding to the ferromagnetic or paramaxypletise, respectively.

In complex systems, such a description with only ferromégneteractions may not be suf-
ficient in certain circumstances. In social systems, fomgda, the relationship between two
individuals can be friendly or unfriendly. In biologicalstems, two genes can respond to an ex-
ternal perturbation coherently or incoherently in micragrassay. For such cases, the spin glass
model is then more relevant to account for such competirggactions. Recently, the spin glass
problem has been studied on the small world network proplog&datts and Strogatz [11] through
both the replica method and the cavity method [12]. Since &warks are ubiquitous in nature,
here we study the spin glass model on SF networks.

The spin glass problem in the Euclidean space has been dtiadti@ long time by various
methods|[13, 14, 15, 16]. Most of the studies for spin glabsgs concentrated on regular lattices
or the infinite-range interaction model on fully-connectgdphs, for example, the Sherrington-
Kirkpatrick (SK) model [17]. To achieve our goal here, weldal the study of thedilute Ising
spin glass model with infinite-range interactions, firsfgened by Viana and Bray (VB) [18, 19,
20,121,122 23], because the model is equivalent to the Ighgglass problem on the random
graph proposed by Erdés and Rényi (ER) |24, 25]. The ERaandgraph may be constructed as

follows. The number of verticed’ is fixed and assumed to be sufficiently large. Each veitex



(1=1,2,...,N) is assigned a weight, which is given ag; = 1/N, independent of the index
for the ER model. Two verticesand; are selected with probabilitigs andp;, respectively, and
if ¢ # j, they are connected with an edge unless the pair is alreadyected, which we call the
fermionic constraint. This process is repeatéfi /2 times. In such networks, the probability that
a given pair of verticesi, j) (i # j) is not connected by an edge, denotedLby f;;, is given by

(1 — 2pip;)NE/? ~ exp(—N Kp;p;), while the connection probability is

Jij=1— exp(—NKpZ-pj). (1)

Sincep;p; = 1/N? for the ER graph, the fraction of bonds present becofijes: K/N and the
average number of connected edged’i& /2. So K is the mean degree, and corresponds ¢
Ref. [18].
The SF network can be constructed through a generalizatiive @bove to the case where the
vertex-weights are given by »
-

pi = CN—(,U)7 (2)

where is a control parameter in the ran@e 1), and(y(p) = Z;.Vzlj—ﬂ ~ NUH/(1 = p).
Then the resulting network is a SF network with a power-lagrée distributionP;(k) ~ k=%,
with A = 1 + 1/u. The model is called the static model, where the name ‘statiginates
from the fact that the number of vertices is fixed from the begig [26]. This model has the
advantage that many of its theoretical quantities can beulzdked analyticallyl[27]. Note that
sinceN Kp;p; ~ N*~1/(ij)* for finite K, when0 < . < 1/2 (A > 3),

fij ~ Nsz'pja (3)

however, wher /2 < u < 1 (2 < A < 3), fi; does not necessarily take the form of ER.(3), but it
is given as
1 when ij < N*71/nr,

Jij = N (4)
NKp;p; when ij > N?~Vk,

This is due to the fermionic constraint that at most one edgebe attached to a given pair of
vertices. The mean degree of a vertex N Kp;, and the mean degree of the networlig27].

In this work, we study the Ising spin glass model defined orstagc model. In Sec.ll, we in-
troduce the Hamiltonian of the spin glass system on thecstatidel and derive the free energy by

using the replica method. We also introduce physical gtiastuch as the magnetization, and the
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spin glass order parameters in a modified form. In Sec.llipresent the replica-symmetric solu-
tions by using the SK-type approximation, from which thegghdiagram including the Almeida-
Thouless line and the critical behavior of the spin glaseophrameters are derived. In Sec.lV,
we use the perturbative approach to derive the phase diagmdrthe critical behaviors of the or-
der parameters, and compare them with those obtained fretf8Khmethod. The final section is

devoted to the conclusions and discussion.

II. THE SPIN GLASSMODEL

We consider the Ising-type Hamiltonian,

H - — Z JijSiSj (Si = :|:1), (5)

(4,5)eG
defined on a graphy realized by the static modell;; is nonzero only when the verticesind j

are connected ity. The network ensemble average for a given physical quaAtigytaken as
(A)k =) P(G)A(G), (6)
G

where Pk (G) is the probability ofGG in the ensemble and - -) x the average over different graph

configurations. For the static model we consider here, itvisrgthat

Pe@ =11 fs TI O -5 (7)

(i.5)eG  (i,))¢G
with f;; = 1 — exp(—NKp;p;), p; being given in EqL2).
In the spin glass problem, the coupling strendtlis } are also quenched random variables. We
assume in this paper that eaghis given as+.J or —.J with probabilityr and1 — r, respectively,

so that the coupling strength distribution is given as

P{ih) = TT [ro =) + (=)o + 7)) (®)

(i,5)eG
The case of = 1 (r = 1/2) is pure ferromagnetic (fully frustrated) one, and we cdesi in the
range ofl /2 < r < 1 throughout this work. The average of a quantityith respect ta>,. ({J;; })
is denoted agA),. Thus the free energy is evaluated-a8F = ((In Z),)x with Z being the

partition function for a given distribution df/;;} on a particular grapty.



In this paper, the replica method is used to evaluate the émergy, i.e.,—(GF =

lim,,o[((Z"),)x — 1]/n. To proceed, we evaluate theth power of the partition function,

(20 = Trm{{exo(s 3 1Y) )

(1,9)eG a=1

= T TT{0 = i)+ o305 Y- ) }

1<J

= Tr{sey exp [Z In {1 + fij << exp(BJi; Z s7'85) — 1>r) H ; 9)
— pory

1<)
where the trace Tl-, is taken over all replicated sping = £1, a = 1,...,n is the replica
index, ands = 1/7. We mention that the disorder averages ag(G) and P, ({.J;;}) can be
done simultaneously since both types of disorders are egmtigmtly assigned to each edge of the

fully-connected graph of orde¥. The part inside the exponential in Hq.(9) can be writterhan t

form,
Zln{l+fij<<exp(6Jijisf‘s?‘) — 1>r>} ZNKprJ<exp 6JZJZS — 1>T+R
i<j a=1 i<y

(10)

where R stands for the remainder which are of higher ordekin It is shown in APPENDIX
A that for finite K, Eq.[I0) isO(N) while R is at mostO(1) for A > 3 andO(N**1n N) for
2 < )\ < 3, so that it can be neglected in the free energy calculation.

OnceR in Eq.(T0) can be neglected, we can proceed as in VB [18]. Biguke relation,
< exp(BJ; Z sf‘s?‘)>r = < H [COSh(ﬁJij)(l + 5’5 tanh(ﬁJ,-j))} >T, (11)
a=1 e
in Eq.(I0) and applying the Hubbard-Stratonovich identity.[9) is reduced to the form

{2k = / dqexp{—Nnff(q)}. (12)

The intensive free energf{q}(= F'/Nn) in the thermodynamic limitly — oo) then becomes

KT KT KT 1
nff{at = QIquﬁ- 22 Gap + 23 Zqiﬁ*y+"'_NZlnTr{s?}eXpXiv

a<fB a<f<y

(13)
where

X; = NKTlp,ans + NKTop; Y qapsi's] + NKTsp, Y qapysisis] +--+, (14)

a<f a<f<y



and
Ty(T) = (cosh™ 3J;; tanh! B.J;;), 20+ (=11 —r)]tank! BJ (1=1,2,...). (15)

Trsey is the trace over the replicated spins at vertend theN — oo limit is to be implicitly

understood to the expressigi;nzi. The elements of a s}, qa, ¢us: ¢asy, €tC., defined as

= Zpi<8?>i’ Gop = Zm(s?sf%, Qopy = sz Lo sl s])i, etc. (16)

are the order parameters of the spin glass system, calletidgeetization, the spin glass order
parameter, and so on. The average is evaluated thradigh= Trigey Aexp X; /Tr{s?} exp X;.
Note that unlike the case of the ER random graph, the ordanpeters are summed with weight
{p:} in Eq.(I6) due to the inhomogeneity of the SF networks. FeiER case however; = 1/N
and it becomes that, = 3°.(s%)i/N, Gug = 3.,(5757)i/N, Gapy = S.:(s%5757);/N, and so on
[1€]. To distinguish, we use bar notation for the unweigtdases.

Here we consider the replica symmetry (RS) in which spiné wifferent replica index are
indistinguishable, and we invoke two methods to deterntiegohase boundaries of the ferromag-
netic (F), paramagnetic (P) and spin glass (SG) phases angniperature dependences of the
order parameters. The first is the approach similar in 4pi8K in which higher-order terms than
dap in Egs.[IB) and(14) are neglected. In this method, the r@imgtwo order parameters as well
as the Almeida-Thouless line can be obtained for all tentpera. The second is the perturbative
approach used in VB. In this case, we expand the terim @f exp X; in Eq.{(I3) up to appro-
priate orders, and the order parametgrsy,s, g3, andg,s,s are explicitly calculated. Through
the perturbative approach, we can find that the contribatlmnhigher order terms such as;,
are negligible compared with those by andq,s near the phase transition points. Thus, the two
methods produce identical results for the phase boundanigéghe same critical behaviors near

the transition points for the two order parametersandq,.

1. THE SHERRINGTON-KIRKPATRICK APPROACH

A. Thereplica symmetric free energy

We first study the RS solution [17] and obtain the phase baueslaf P, F and SG. For sim-
plicity, the RS magnetization and the RS spin glass ordearpater are denoted as= ¢,) and



q(= qa), respectively, and the free energy expression(ER.(13)icated at the order gf Then

the RS free energy is rewritten as

KT KToyn(n—1 1
nBf(m,q) = anm2+ 22%q2—NZmzi (17)
with
a2 _
Z; = Triey oxp {NKTlp,-m 3 st NKTgpiqw}. (18)
By using the Hubbard-Stratonovich identif§;, can be rewritten as
Z, = exp{—gNKTﬂaiq} /DZ[Q cosh n;(2)]", (19)
where [Dz .- = \/%_W = dz e /2. andn;(z) = NKTp;m + 2o/NKTsp;q. Then in the
limit of n — 0, the RS free energy becomes
1 1 1 1 &
6f(m, q) = §KT17TL2 + iKqu - ZKT2q2 — /DZN Z 111[2 cosh 7h<2)] (20)
i=1

By applying(df/0m) = 0 and(0f/0q) = 0 to the free energy, EQ.(RO), we obtain the coupled

self-consistent equations for andq to be

N
m = /Dz Zpi tanh(NKTip;m + 2o/ NKTsyp;q), (21)
i=1
and

N
q= /DZ sz tanhz(NKTlpim + 24/ NKTQ])ZCD (22)
i=1

In Egs.[21) and{22), we can see thatannot be zero unless bathandq are zero, whilen can

be zero even whe# # 0 which defines the SG phase.

B. Thephaseboundaries

The P-F (P-SG) phase boundary is given as the temperatar€uitie temperaturé, (the spin
glass phase transition temperatil wherem (g) starts to be nonzero. We first consider the case
of A > 3. Whenm andq are small, the free energy, Hgq.l20), is written as

_ 1 2 2 1 2\ 2
Bf(m,q) = iKTl(l — NK'T, ;pi)m - ZKT2(1 — NK'T, ;pi>q

+ higher order terms. (23)
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FIG. 1: The phase diagram in th&’/ K,, 7'/ J) plane for\ = 4.5(> 3) with r = 1/2 (a) and\ = 4.5(> 3)
with » = 2/3 (b), and the same in thg, T'/.J) plane for\ < 3 with » = 1/2 (c) and\ = 2.5(< 3) with
r = 2/3 (d). Note thatk),, = 0 for 2 < A < 3 in the thermodynamic limit.

It is known that ag¥ increases, the static model undergoes the percolatiositianat

B 1 (A =D(A=3)
SN (A-22
Since N >, p? = ((K*)x — (k)k)/(k)% with (k) = K and(k?)x denoting the first and the
second moments of the degree for a given mean degraespectively, Eq.{24) is equivalent to
the condition(k?) - = 2(k)  [27,128,29]. Thus one obtains that

K, (24)

T(1,) = K,/K forP-F, and (25)
Ty(T,) = K,/K forP-SG (26)

whereT(T) = (2r — 1) tanh(J/T) andTy(T) = tanh®(J/T). Note that whenk /K, < 1,
there is no solution of EqE.(R5) arld26), implying that thetem is always in the P state. This is
because the network has an infinite component onlysfor K,. Whenr =1/2, T; = 0 and the
phase diagram is rather simple. The P-F transition doesauoirpand the system is either in P or
SG phase whose boundary is given by Eg.(26). [BIG.1(a) istthegdiagram in thekK /K, T’/ J)
plane for the fully frustrated case & 1/2) for A > 3. When1/2 < r < 1, both the F phase
(m # 0,q # 0) and the SG phasgn = 0,q # 0) appear. FIGI1(b) is the phase diagram for a
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partially frustrated case with= 2/3 and\ = 4.5, which is a prototypical case @f2 < r < 1 and
A > 3. ForK/K, < 1, only the P phase appears, but #6y K, > 1, several phases exist. There
exists a multicritical point K™/ K,,, 7%/ J), where the P-SG-F phases merge, which is determined

to be

<%’ T7> - <(27‘ i 1)?’ tanh_1(12r — 1)) 7
by settingT, (7%) = T»(T") = K,/ K*. ForK,, < K < K*, the P phase goes into the SG phase,
while it goes into the F phase féf > K* as temperature is lowered. As— 1, the multicritical
point converges t0l, 0), indicating that only the P-F phase transition occursr As 1/2, it shifts
to (o0, ), indicating that only the P-SG phase transition occurs ewshn FIG[1(a).

Besides the P, F, and SG phases, the mixed (M) phase is pregech is defined as the re-
entrant SG phase with nonzero macroscopic ferromagnedierolocated below the F phase as
temperature is lowered [15,/116]. The SG-M phase boundargterchined as the vertical straight
line from the multicritical point tdl’/J = 0 [3C]. The F-M phase boundary is determined by the
so-called Almeida-Thouless (AT) line [31],

(KTy) ! = / Dz i Np? secH(NKT pym + 21/NKTapiq), (28)

=1

which is obtained easily by multiplying vertex-weights b@tAT line formula of the SK modein
andq above are the solutions of E4s)21) aind (22). We deterfisetisfying Eq(ZIB) numerically.
The F-M boundary in FIGI1(b) exhibits a fat-tail behavionplying that the M phase persists for
large K. This AT line is the phase boundary between the replica syimerghase and the replica-
symmetry-broken one. Thus, HQ.I28) indicates the regioera/the replica-symmetric solution
derived in the following sections is valid. We also check R8G boundary from Eq.(28), which
is the same as E@.(26).

Next we consider the cage< A < 3. In this rangeK, ~ N-GV/-1  gasN — oo
and consequently, and7, — oo. Thus the whol€ X, T'/J) plane is covered with the ordered
states. FIGI1(c) is the phase diagram for the fully frusttatase{ = 1/2) for A < 3. The P phase
appears only foi = 0, and the SG phase is located in the region- 0. FIG[(d) deals with the
case ofl/2 < r < 1 and\ < 3. The P phase appears onlyfgt= 0, but for K > 0 the F and
M phases appear and the F-M boundary is given by the AT lingfZBY). Asr — 1, the M phase
disappears and only the F phase appears in the regiinef).

We also consider the phase diagram in thel’/.J) plane for given\ and K in FIG[A. The

phase diagram is schematically similar to the one for the Sitleh In the original paper of

9
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FIG. 2: The phase diagram in tlie 7'/.J) plane forK = 5 with A = 4.5(> 3.0) (a) and\ = 2.5(< 3.0)
(b).

the SK modell[17], a new coupling constaftof the F interactions was introduced and the ra-
tio Jy/J plays a similar role of the parameterhere. Accordingly, the phase diagram in the
(r, T/ J) plane here corresponds to the one inthg/J, 7'/.J) plane in the work of the SK model.
FIG[2(a) shows the phase diagram for> 3. The formulae of the phase boundaries of P-SG
and P-F are easily derived from E§sl(25) ahd (26). The P-S&&ehboundary is constant as
1/tanh~'y/K,/K, independent of the parameteand the P-F phase boundary is determined as
T/J =1/tanh™(K,/K (2r — 1)). The multicritical point is determined as

(TT7> _ (x/Kp/2K+ L — 1¢W> (29)

The SG-M phase boundary is given by the vertical line as leefohe F-M boundary is obtained

from Eq.[Z8), finding numerically that the region of the M phashrinks as\ increases, and
eventually it remains on the line spanning from the mutticai point to7" = 0 for a givenk,
while it exhibits a fat-tail behavior in the direction of tharameters'.

We plot the phase diagram in tite 7'/.J) plane forA < 3 with a givenK (> 1) in FIG[2(b).
Note that as\ — 3 for a givenK, r* approaches 1/2, whil&*/J diverges to infinity. Thus, for
2 < A\ < 3, the SG phase can exist only whegs- 1/2. For1/2 < r < 1, the F and M phases exist
and the F-M boundary is given by the AT line (Eql(28)).

C. TheSG order parameter

In the SG phasén = 0, ¢ # 0), the SG order parameteiis determined by
N
q = /DZ Zpl tanh2(z\/ NKszzq) (30)
=1

10



Note that EQ[{30) is independent obut valid for1/2 < r < r*, r* being the value of at the
multicritical point.
In this section, we determine the critical behaviorafear the SG transition. The right hand

side of EqI(3D) involves a sum of the type

S) = 3 3 F(Npy/(1 = ) (31)

=1
with y = (1 — u)KTeqz? and F(z) = ztanh® \/z. Wheny is small inS(y), a singular term
y*~! competes with other regular terms. General expressiorssifally expansions are derived in
APPENDIX B. When Eq[{BI7) is used and the Gaussian integraticer z is performed, E|{30)

becomes
. _)‘_1>\—1 _§ /,\—2_)‘_1 / )\ 2
q/(1—p)= N 277 T(A 2)D()\)Q —3_)\62 +2 - Q +0(Q") (32)
where
> dz 232 tanh? x for 2 <\ <3,
D) = Jo daw & tan (33)
— [0 dz 2%~ (2 — tanh®z) for 3 < A <4,

and@’ = (1 — p)KTaq = (A — 2)KTaq/()\ — 1). Equating the right hand side of Hq.[32) with
Q' /(1 — u)?KTs, one sees tha)** ~ KTy ~ T 2for2 < A <3, (1/K, —1/KT3) ~ Q73
for3 < A < 4,and(1/K, — 1/KT2) ~ @ for A\ > 4. Here K, is given by Eql(Z¥) and
the A-dependent positive coefficients are neglected. Therefsd — oo (2 < A < 3) or
e=T,—T)/T, — 0 (X > 3), qbehaves as

T-20-2)/B=2 for 2 < )\ <3,

g~ e/ for 3<\<d, (34)
€g for A\ > 4.

When\ = 3, use of Eq[(BB) yields
q~T?exp(=2T°/KJ*) as T — oo, (35)
while, when\ = 4,
q~é€/In 6;1 as €; — 0. (36)

For general temperatureg,can be obtained numerically from Hg.[30). The behavioy ébr

various\ are shown in FIGI3.
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IV. THE PERTURBATIVE APPROACH

In this section, we use the perturbative approach to ewalthe free energy and to obtain
the order parameter behaviors near the transitions. Fqlisity, we use the notations defined
through@Q, = KT1qn, Qo = KT20s, Qupy = KT3q0sy Qapys = KTuqapys, and so on.
Let R represent a subset of the replica indi¢és2, ..., n}. Then it is convenient to denote the
set{Qa,Qus, - - -} as{Qr}. We also writeog = [] .y s* = £1. With these notations, EQ.{{14)
becomesX; = )  Np;Qror Where the sum is over all subsets{df 2,...,n} except the null

set, and

eXi — H eNpiQRUR — H cosh szQR H(l -+ TRO'R) (37)
R R R

with 7g = tanh Np,Qr. Our perturbative approach is to expdrg (1 + 7ror ) and keep only the
terms up to given order. In the ER limit— oo, we anticipate that, ~ ei/z, Tap ~ €, €1C. from
VB [18], wheree. = (T, — T)/T. is the reduced temperature.

Using the properties thafrog = 0, Troror: = 0 for R # R’ and so on, the first few terms
relevant to our discussion below are

1
2KT12QZ 2KT ZQ 2KT Z Qagy + QKT D @

a<fB<y<é

N Zzln cosh(NpiQr) — Z [ZTaTﬁTaﬁ + Z To T3 Ty Tafy

i a<f a<fB<y

+ Z (TaT8TByTary + T8TyTapTay + TyTaTasTey) + Z TaBTByTay
a<fB<y a<fB<y

+ Y T ToTags + Y (TasTes + TayTas + TasToy ) Tags
a<f<y<o a<f<y<é

nff =

12



+ Z Ta,BT,BA/Tfy&Taé] . (38)

a<fB<y<é

The result of APPENDIX B with#'(z) = In cosh x gives

1 _ asz Qg
N O ncosh(NpiQr) = AN@QY ™ + 50k — 5@k + O(QR), (39)
where
% Jo° dz z7* Incoshx for 2 <\ <3,
AN =8 8285 5 dw o (Incoshz — La?) for 3<\<5, (40)
% Jo” dx x‘A(lncosh:c — 22+ %xﬁ‘) for 5<\<7,
and

a=M\=2[A=1D"TN=1-1)]. (41)
The last sums in Eq.(B8) can be represented as integrals as
% Z TRTR -+ = (A —1) /1 dz 2~ tanh 2Q% tanh 2Q%, - - - (42)

with Q% = (A — 2)Qr/(\ — 1).

A. Thereplica symmetric free energy

We derive the RS solution of the order parameters up to theHfauder with the notations of

Qo =M, Qup = Q, Qupy = Q3 andQ.3,6 = Q4, respectively. Then the terms in Hql42) take
the form of

By nsmsng = (A—1) / dz 2~ tanh™ zM’ tanh™ 2Q’ tanh™ 2Q; tanh™ 20},  (43)
1

whereM' = (1 —pu)M = (A —2)M/(A—1),n4,...,ny are integers, and other primed quantities
are similarly defined.

The RS free energy (M, Q, @3, Q4) in the limit of n — 0 is then written as
by

b2 bg b4 ay ay Ay ay
_ D22 B2 V4 G4, G4 g Q400 G4 o
Bf 7 4Q + 6Q3 8Q4+12 24Q +36Q3 48Q4

SAW [ - 20 o - o] (44)

1 1 1
+§B2,1,0,0 — §[33,0,1,o +3B320,0 + Boso0] + 1[34,0,071 +3Bo.2,0.1 + Bo,10.0);
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whereb, = (K'T;)™' — ay for i = 1,2,3 and 4. Note that /a, is nothing butk,, for A > 3 given
in Eq.(Z4), while it is negative fok < A < 3.

The RS solutions o/, @, @3 and(@), are obtained by solving the self-consistent equations,

OfJOM = 0f /0Q = 0f/0Qs = 0f /0Q4 = 0. (45)

When), @, Qs and@, are small3,, ... ,, are small. Their leading order behaviors are calculated
in APPENDIX C.

The phase boundary of the P-F transition is determined asaime obtained in the SK ap-
proach. Wherz < X < 3, sinceA()) is nonzero and positive, the transition temperatlire
becomes infinity so that the system is always in the F phasawhel /2. Forr = 1/2, however,

b, = oo, andM? has to be zero. Then the system is in the SF phase.

B. TheP-Ftranstion and theorder parameters

We first consider the P-F transition. In the F phase, all the forder parameters remain
nonzero. The behaviors of each order parameter within mgadider are discussed below and
listed in TABLE I.

() When2 < X\ < 3, the leading order terms in free energy are

Bf ~ —AM)MML 4 %M2 + (%A(A) —Ca— %cg,o + 264,0 Fo )
order parameters 2 <\ <3 3<A<A4 4<A<H S<AKG A>6
M ~ T—1/(3=X) ~ el/O3) ~ e/ O3) ~ el ~ el
m o T—(A=2)/(3-2) N Ei/(/\_?’) N 6(1:/(,\—3) - 6(1:/2 - 6(1:/2
Q ~ T—E=N/B=N) 6((:A—2)/(A—3) -~ 63/@—3) ~ €l ~ €l
q ~ T—(A=2)/(3=X) 6((:A—2)/(A—3) ~ 6z/(k—i%) ~ €l ~ €l
Qs ~ T-(T=20)/B=X) 6((:A—2)/(A—3) 6((:A—2)/(A—3) -~ 63/2 -~ 63/2
a3 ~ T-(A=2)/B=)) 6((:A—2)/(A—3) 6((:A—2)/(A—3) -~ 63/2 -~ 63/2
O4 o T-(10-30/3-0) | A=2/O=3) ) (A=2)/(A-3) ~ N2/ ~ 2
a4 ~T-O-2)/B-3) PA2/0=3) ) (A=2)/(-3) ~ N2/ ~ 2

TABLE I: The A-dependent critical behaviors of the four order paramedgid their scaled quantities

(Eq.[41)) under the P-F transition. Hete= (T, — T') /T, is the reduced temperature.
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by o 1 a1 by o 1 ao1 bao
“202 - a0 B0 oA - 4
1 Q 3 (NQ3™ + 6 Q3+ 1 (M@ 3 Q;
1 1 1
+§Cz,1MA_2Q — §C3,1M)‘_2Q3 + 164,1M/\_2Q4 (46)

from TABLE Il with C,, ,, given in EqQ.[CB).

By applying Eql(4b) to the free energy, we obtain the selfsistent equations for the four
order parameters. Note that from the definitiorbof (K'T;)~! — a,, we find thaty, ~ T
asT — oo. All other coefficients such ad(\) and{C,,} are independent df’. From
df/OM = 0, we obtain that-(\ — 1)A(A\)M*~2 + by M = 0, leading to that\/ ~ [(\ —
DAN)/b1]YB=N] ~ T-YG=Y_ Fromaf/0Q = 0, we obtain that A(\) —2Cy0 + - -) (A —
12 + Co 1 M2 — by, = 0. Since the second term is more dominant than the first,
we obtain that) ~ Co M*72/by ~ T~-(=N/G=Y_ Fortunately, the coefficient @@*~* is

not needed to determine the leading order behavidgp.oBimilarly, we obtain that); ~
T-T=20/6G=X andQ, ~ T-19=30/6=Y " Subsequently, we obtain ~ ¢ ~ g3 ~ qs ~

T-(A=2/B=N 'where
m = M/KTl, q= Q/KTz, g3 = Qg/KTg, and qqs = Q4/KT4 (47)

It is noteworthy that the behavior of is different from that of the unweighted magnetiza-
tion, m ~ T-Y/G-N wherem = (1/N) ", (s;) as previously studied in Ref.[7, 8]. This is

becausen ~ M to the leading order.
(i) When \ > 3, the transition temperatufg is determined by
bl(TC) =0, i.e., CI,QKTl(TC) =1 (48)

which is the same as EQ.{25). Wh&r< \ < 4, the leading order terms ifif are

b b 1
Bf ~ §M2 —AAMM - fcf + §C271M’\_2Q
b 1 b 1
+ESQ§ - gCS,lM)\_ZQi% - §4Q‘21 + 164,1M)‘_2Q4- (49)

Note thatA(\) < 0 for 3 < A < 5. The most leading term i, /2)M? and the transition
temperaturdl,. is determined by, = 0. Just belowl, b; < 0 and|b;| ~ O(e.), where
¢ = (T, — T)/T.. Fromdf/OM = 0, we obtain that-(A — 1) A\ M*~2 + b, M = 0,
leading to thatV/ ~ /™. Fromaf/0Q = 0, we obtain that,; M*~2 — b,Q = 0.

Sinceb, is constant neaf’,, we obtain that) ~ M*2 ~ ¢A=2/A=3) " Similarly, it is
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obtained that); ~ M*2 ~ ¢,A=2/0=3) andQy ~ M*~2 ~ ¢,A=2/(A=3) Unlike the case
of2<A<3,m~DM,q~Q,q ~ Q3,andg, ~ Q4. Such relations hold for all > 3.

(i) When4 < X\ < 5, the free energy is written as
8f ~ 2 —apoart - g2 Baeg
2 4 2
b 1 b 1
+€Q§ — gCS,lM)\_QQi% — g“@i + 164,1M)‘_2Q4- (50)
Following the same step as useddinc \ < 4, we obtain that\/ ~ e/, Q ~ M2 ~
O and Qs ~ Qg ~ M2 s (X203
(iv) When5 < X < 6, the free energy is written as

—M
2 +12 Q + MQ

+ Qs—— M?Qs ——Q4+ C41MA *Qu. (51)

Bf =~

Following the same steps as before, we obtain Mat- />, Q ~ e, Q3 ~ /%, and
Q4 ~ XD,

(v) When\ > 6, the free energy is written as

b b b b
Bf ~ ElMZ + %M‘* - ZZQQ + %MZQ + —3Q§ —~ %M?’Qs — ?Qi + EM4Q4- (52)

Using the same step as before, it is obtained tiat /2, Q ~ €., Q3 ~ e >andQ, ~ €

It is interesting to note that asincreases, the order parameters progressively acquicdatbsical

/2

mean field behaviof),, ~ e.’~ starting from the lower order ones.

C. TheP-SG transition and the order parameters

Here we consider the P-SG transition. In the SG phaseand (); are always zero for all
temperatures. Thus, the free energy becomes simpler cethpath that in the F phase. Using
the same method as used in the P-F transition, we obtain 8@ f®ansition temperature and the
order parameter§ and(), in various region of\, which is listed in TABLE II.

For more details, we first determine the P-SG phase bounddmgn2 < \ < 3, sinceA(\),
the coefficient of9*~! is nonzero for all’, the spin glass transition temperatdtgs infinity, and

no P phase exists for all. When\ > 3, the transition poinf, is determined by the formula
bg(Tg) = 0, i.e., CLQKTQ(Tg) = 1, or KTQ(Tg) = Kp (53)
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which is the same as derived in the SK method. In the SG phasertier parameter behaves as

follows:

(i) When2 < \ < 3, the leading order terms off read off from TABLE Il with M = Q3 =0

are
Bf ~ (5/1()\) gcs,o + 164,0 + )Q ZQ
1 _ b _
+Z<A(>\) - S0+ 3@ 2Q4). (54)

By applyingdf/0Q = 0f/0Q, = 0, we obtain that) ~ 7-2/6=Y andQ4 ~ Q*~2/T* ~
T-(6=20/6G=2  Using the relation) = KTyq and@, = KT,q;, we obtain thaty ~

qu ~ T720-2/6B=N_ The result of is the same as the one derived through the SK method,
Eq.(33). Note that the coefficient ¢§*~' in the perturbative approach is in the form of

infinite series while the same is obtained in a closed formgi{d).

(i) When3 < X < 4, the free energy is

Bf = —%@2 +[AN)/2 = Ca.0/3 + Cio/4QY" — %@i + ZCQ,IQH@- (55)

We note that the coefficiens ~ —e, with ¢, = (T, — T)/T,. Then we obtair) ~ ¢,/
Similarly, fromaf/0Q, = 0, we obtain@, ~ Q*~2 ~ 5>/~ with b, being constant.

(i) When X > 4, we have

_@QZ _ 4

Pf == 3

Q- Q4 Ju Qs (56)

By following the same step above, we obtain tQat- ¢, andQ, ~ ef].

order parameters 2 < A < 3 3< <4 A>A4
Q ~ T2/BX) ~ €/ 2=8) ~ el
q ~ T—200=2)/(3=) -~ E;/(A—?)) -~ E;
Q4 ~ T—(8=20)/(3B-X) N 69_2)/@_3) .y 63
" T—2(2-3)/(3-) 69_2)/@_3) - 63

TABLE II: The A-dependent behaviors of the two order parameters and tte&ds quantities in EQ.{#7)
under the P-SG transition, whetg= (T, — T') /1.
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V. CONCLUSIONS

We have studied the spin glass phase transition on SF netwlmdugh the static model. The
model contains generic vertex-weights in it, and edges &atviwo vertices are connected with
the probability given in Eqgs.[11) andl(2). The static modedl#as one to study the spin glass
problem using the replica method by generalizing the dilsiteg spin glass model with infinite-
range interactions. Here we obtained the replica-symmabtutions through the two methods, the
Sherrington-Kirkpatrick approach and the perturbatiygrapch. We also found the phase diagram
consisting of the paramagnetic (P), ferromagnetic (F) gfaiss (SG), and mixed (M) phases in the
space of temperatufg, the mean degreg, the fraction of the ferromagnetic interactionsand
the degree exponent The AT line was also obtained numerically. The phase dragsashown
in the (K, T) and(r,T") planes, which are presented in Figs. 1 and 2, respectivéig. cfitical
temperature$, and’, for the P-F and P-SG phase transitions are simply relatdutpercolation
thresholdk, in Egs.[Z5) and(26). We obtain the same results in the tweooagpes. Thug, and
T, are infinite wher2 < A < 3. The magnetization and the spin glass order parameter atii@to
to account for the inhomogeneity of vertex degreesnas- >, p;(s2); andq = 3, pi(s&s?),
wherep; is the weight of vertex. Such quantities depend on the degree exponen¥hen
2 < X < 3, due to the fact thal, = oo andT, = oo, m andq decay as power-laws for large
T as shown in TABLES | and Il, which is different from the patterof m andg, defined with
pi = 1/N. When\ > 3, the order parameters exhibit continuous phase transitenossT..
and7,, and the associated exponents depend,omhich are listed in TABLES | and Il. Ag)s,
Q4, . .. are of higher orders, the SK approach in Sec. Ill, and thaigdeative one in Sec. 1V give
the identical results fom andq to the leading order. We find the critical exponents for tHeG?/
transition are non-classical in the ran§e< A < 4, corresponding t@ < A < 5 for the P/F
one [7]. We have not presented our results at integer valugsroSection IV for simplicity. At
the borderline cases of, the logarithmic corrections as given in E4S.IB8),1(C3) @0d) should
be considered explicitly. We mention that the finite-siZecfis an important issue especially for
2 < A < 3 which we leave for a further study.

It is noteworthy that the method we developed here can beemptd other problems in equi-
librium statistical physics on SF networks. A novelty inglaipproach is that one needs not rely
on the local treelike structure of SF networks ugayl in [[Z]. The result of the phase diagram

and the behavior of the order parameters may be helpful ienstehding emerging patterns in
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various systems with competing interactions such as soclaiblogical systems. For example, in
the region2 < A\ < 3 where most real-world SF networks belong, it is known thatstructural
characteristic of the network is so dominant that homogeslganteracting systems are in the
ordered state for all temperatures. Our result shows thatalso the case even when there are
competing interactions. Also f& < A\ < 3, the fact that a slight dominance of cooperative inter-
actions ¢ = 1/2) drives the system into the ferromagnetically ordered emtlixed state suggests
that most social and biological systems would be driven héomajority state (ferromagnetic or
mixed state) at equilibrium. While the current study is megful as a first step of understanding
thermodynamic property of the systems with competing adeons, further studies have to be
followed towards real-world systems where the signs ofradgons may be correlated with the
degrees of vertices, or the interaction signs may chande tiite as in the prisoner’s dilemma
problem.

While preparing this manuscript, we have learned of a repegprint by Mooij and Kap-
pen [33], which addressed the same issue. They used the 8gpiheximation to obtain a crite-
rion for T,, and applied it to the\ = oo and A = 3 cases numerically. Our work gives analytic
results for7, as well as physical ones such as the phase diagram and thadrelai the order

parameters, which depend on the degree exponent.
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APPENDIX A: EVALUATION OF THE REMAINDER
In this APPENDIX A, we show that

Z In(1 + fi;Si5) = Z NKpip;Sij + R (A1)
i<j i<j
with R < O(N**InN)for2 < A <3, R < O((InN)?) for A = 3andR < O(1) for A > 3.
HereS;; = (exp(8Ji; > _n_y 5i's§) — 1), is a quantity independent of the system sizeTo do so,
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we expand the logarithm on the left hand side of EQlL(A1) tdenitias

n+1

Z ln(l + fij z] Z Nszp]Sm + Z fzy Nszpj SZ] + Z Z ZJLSZ (AZ)

1<j i<j 1<j 1<j
and show that the positive quantities defined by
=) (NKpip; — £i1)Sii] (A3)
i<j
and

R,=|>_ frsy (A4)

1<j

(n > 2) are all bounded above V) quantities.
First let us consider?’. SincesS;; are independent oV, we replaceS;; by their maximum
valueS,,.x = max;; |S;;| to get

Smax

R < Suax 3 Gi(NKpip;) < “22) Gi(NKpip;) — Gi(NEp})], (A5)

i<j ij
where
Gilz)=z—1+e" (AB6)

Here we have added= j terms for; > 2 on the right hand side of EG.(A5) for convenience. Since
G1(z) is monotone increasing far > 0, the summands in EQ.{A5) decrease asd; increase.
We utilize the fact that, for a monotone decreasing contisuanctionF'(z), a finite sum is

bounded above by an integral as
Z F(i / (z)dx + F(1). (A7)

Applying Eq.[AT) twice to EqL{Ab) and using = i~ /{x (1), we have
Soax - [N [N NK NK _
S {/1 /1 GI(CN(,M “M)dxdy + 2/ G ( i ) x~M)dz}. (A8)

The double integral in the bracket of Hg.{A8) is, by changeaofables,

Il = ()\ _ 1)2(N6)\—1)2 /GNM /EN” G(;(Uu;)]\) dud'Ua (Ag)

with A = 1 + 1/p ande = VK N2+ /(1) ~ O(N~1/2). Note that in EQIAB) the upper limit

of the integrals ig N* ~ O(NG-Y/23-1) and the front factor scales & N3~*). We consider

the three cases of separately.
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(i) When2 < X < 3, sinceG,(x) ~ r asx — oo and~ x? asz — 0, the lower (upper) limit
of the double integral in Eq.{A9) can be expended tod) {o give a finite value and hence

I < (A — 12Nt / / Gl (u) 2 dudv ~ O(N*), (A10)

(i) When \ = 3, the upper limit of the double integral (1) and the integrand near the lower
limit behaves as- (uv)~!. We use) < G(z) < z?/2 for z > 0 to get

L < (N H2(In N)? ~ O((In N)?). (A11)

N —

(iif) When \ > 3, proceeding as in the case of (ii), we find

€2 \2
I < %()\ - 1)2<AN_ 3) ~ O(1). (A12)

The single integral in the bracket of Hg.{A8) is, by changeasfables,

INH
I =2\—1)N&! / Ghlu) du, (A13)

5 u?

with § = KN+ /(2(n) ~ O(N*1). Note that in EqIIAT3) the upper limit of the integrals is
SN ~ O(NG-V/-1)) and the front factor scales &y N*~*). We proceed exactly the same as
in the case of the double integral and find that

() When2 < A <3, I <2(\— )N [* gy~ O(N3),
(i) When\ =3, I, < N&*'InN ~ O(ln N).
(i) When\ >3, I, < 3=IN§? ~ O(N-(A=3/G-1),

Collecting these, we see th&t is bounded above as

O(N3) if2<X<3,
R << O((InN)?) if A= 3, (Al4)
O(1) if A > 3.

Next we consider,, with n > 2. Similarly to Eq.[A%), we have

Sn
Ry < S D5 <220 fi— 1), (A15)
Y]

1<j
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Applying Eq.[AT) twice to EqATS),
NK

<[ [ i S

whereGy(x) = 1 — e~*. At this point, we use the piecewise linear upper boundgz) b

oy ddy + 2 / Go(—am)de},  (A16)

- r for0O<az <1,
Gy = (A17)
1 forzx > 1.
SinceGy(x) < Go(z) for z > 0, we can write EqI{AT6) as
n eNH SNH
R, < SmaX{(A 1)?(NeM 1) / / dudv+2()\ 1)N5A‘1/ (o))" SO dud,
5 U
(A18)

wheree andj are defined above. Now the integrations in EQ.{A18) are eitang Focusing only
on theN-dependences, we find that

p

O(N3**InN) for2 < \ < 3,

O((InN)?) for A =3 andn = 2,

(1) for A =3 andn > 3,

(N?™) forA>3and2 <n < \-—1,
(

(N

S)

(A19)

S)

@, (1 )2N2 ") forA>3andn =\—1,
@

A=D) for A > 3andn > A — 1.

\

Putting these together, we finally have

. O(N**InN) for2 < X < 3,
, Ry
RI<R+) — < O((InN)?)  forA=3, (A20)
" O(1) for A > 3.

APPENDIX B: EVALUATION OF FINITE SUM IN GENERAL FORM
In this APPENDIX B, we derive a general expansion formulatfe sum
1 N
S(y) =+ 2 FWpiy/ (1= 1) (81)
=1

for smally(> 0) andN — oo with p; = i™#/(y and\ = 1+ 1/u > 2 as before. We také'(z)

to be a positive monotone increasing function which diveigjewer than:'/* asz — oo and has
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an expansiotf'(z) = >~ f,x". Converting the sum into an integral as in APPENDIX%y)
becomes, in th&V — oo limit,

F(x)

A

S(y) = (A — ! / TE@) g, (B2)

We first letA # integer andn, < A < mq + 1 for some integerm,. Then we define

mo—1

Fla)=F(z)= ) faa" (83)
n=0
and divideF(x) into two parts
mo—1
F(z)= Y faz"+ F(x), (B4)
n=0

Plugging Eql(BY) into EJ.(B2), the first finite sum can be gméged term by term to give

Sy) = (A—1)n§$y"+(x—1)y*-l[/j F(x)dx—/oy F;f)dx} (B5)

A

Here we use the fact that(z) ~ 2 asz — 0 and hence

_ [*F(x)
converges. The last term can now be integrated term by teing thee expression of. The result
is .
_ _ =1 o fn n
S) = (A= DIY " = (A =1) Y " (87)

n=0
Note that/” depends om, the integer part ok. When\ = mo+1 (integer), we sek = mg+1—¢

in the above formula and let— 0. In this way, the singular term obtains a logarithmic factor

The resultis -
S(y) = moZy™ — mofmey™ Iny —mg H_ L (B8)
n—1mg
n=0(7#mo)
where . =
= [T F(x) F(x) = frmex™
7 /1 e+ /0 e (B9)

A special casd’'(z) = 1 — exp(—z) has been treated in [27].
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APPENDIX C: THE LEADING ORDER ANALYSISOF B,,; ny.n3,n4

B, ns.ns.ny 1S defined in EqA3) witd/’ = (A—2)M/(A—1)and@’ = (A—2)Q/(A—1) and
so on. To see how the leading order behavioBgf,, .. ., is determined, consider for simplicity
the integral

Boyns00 = (A—1) / dz z~*tanh™ zM' tanh" 2Q’ (C1)
1

with the conditionl > M’ > @'.
When\ is sufficiently large, the leading ordersid’ and@’ are given by the first terms of the

expansion ofanh x = x + - - - and we have

oo

Brims00 =~ (A= 1)M™Q™ dz Zmtnz=X
1

= Upy i, MM Q™. (C2)
Eq.(C2) witha; given in Eq4IL) holds as long as> n; + ns + 1, but the integral in EJ{T2)
diverges when\ < n; +ns + 1 indicating appearance of the non-analytic term as the hegteirm.
When\ = n; + ny + 1, the next leading order in EE.{IC2) cancels the divergeneg,in,, to
give
A—2

(-1
Bumoo~(A=1)(5=3) " M™Q"(1/M). (C3)

Whenny, +1 < A < n; +ny + 1, one scales — z/M’ in Eq.(C1) to find

Biins00 = (A— l)M')‘_l{/ dz z~* tanh™ z tanh"(2Q /M)
0

M/
— / dz 2~ tanh™ ztanh"2(zQ/M)}. (C4)
0
The second term i© ()™ +2+1-A) smaller than the first whose leading contribution is

B ns0,0 (A—l)M'A_l(Q/M)"Q/ dzz""* tanh™ 2z
0

_ Cn17n2M)\_1_n2Qn27 (CS)
whereC, ,, defined as
— ()‘ — 2))\_1 * —A+p n
Cn,p = m ; dz x tanh Z, (CG)

convergesfop+1 < A<n+p+ 1.
When\ = n, + 1, similarly to Eq.[CB),

A—2

(A-1)
Bumoo®A=1)(3=7) Qm(M/Q). (€7)
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Whenl < X\ < ny + 1, one scales — z/@Q’ in Eq.(C1) to write it as

Brimoo = A —1)Q™! / dz 2~ tanh™ ztanh™ (2Q/M). (C8)

Q
Since@ < M < 1, tanh(zM/Q) ~ 1 for all = except near the origin where the contribution to

the integral is negligible. Thus we have

B0~ (A —1)Q*! / dz 2 tanh™ z = C,,, 0Q* . (C9)
0

The leading order terms &, ,,, », », for various\’s are listed in TABLE Ill. For simplicity,
we do not show the. = integer cases in TABLE lll. For the border line cases\afividing the
regions of\ with different expressions, a logarithm correction appeargiven in Eq[{B8) of{T3)

or (C1), while for other integer values af the expressions are continuous.
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