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How should one construct a portfolio from multiple mean-reverting assets? Should one

add an asset to a portfolio even if the asset has zero mean reversion? We consider a
position management problem for an agent trading multiple mean-reverting assets. We

solve an optimal control problem for an agent with power utility, and present an explicit

solution for several important special cases and a semi-explicit solution for the general
case. The near-explicit nature of the solution allows us to study the effects of parameter

mis-specification, and derive a number of properties of the optimal solution.
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1. Introduction

One of the basic patterns of statistical arbitrage is mean reversion trading. Typi-

cally, one constructs a synthetic asset from one or several traded assets in such a way

that its price dynamics is mean-reverting. We shall be calling this mean-reverting

synthetic asset a spread. Generally, trading a mean reverting asset consists of buying

the spread when it is below its mean level and selling when it is above. The main

question is how the position should be optimally managed with the movement of

the spread, the trader’s risk aversion, and the time horizon. When there are sev-

eral mean-reverting assets available, the trader should additionally solve a dynamic
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portfolio optimization problem in order to decide the best way to combine positions

in these assets.

A number of papers addressed this problem by specifying a stochastic differ-

ential equation (SDE) for spread dynamics and finding the optimal strategy that

optimizes the expected utility over the terminal wealth. The simplest example of

mean-reverting dynamics in continuous time is the Ornstein–Uhlenbeck process,

the continuous version of the AR(1) discrete process. For a single spread utility

maximization trading strategy see Boguslavskaya & Boguslavsky (2004). Another

approach based on maximization of Sharpe ratio is described in Lipton & Prado

(2020). For a more complicated example of mean-reverting dynamics we refer to

paper Altay et al. (2018), where the spread is modelled by a Markov modulated

Ornstein–Uhlenbeck process, and to papers Fouque & Hu (2019a,b) where the au-

thors consider fractional stochastic processes. The models with uncertainty in the

mean reversion level were discussed in Lee & Papanicolaou (2016). For alternative

spread models, see Liu & Longstaff (2003) with Brownian bridge models and Zervos

& Johnson (2013) for CER/CIR processes. A comprehensive review of mean rever-

sion trading can be found in Leung & Lin (2015). For the methodology of statistical

arbitrage we refer to Avellaneda & Lee (2010). In Li & Papanicolaou (2019), the au-

thors assume different mean-reversion dynamics for multiple spread processes. They

solve a portfolio optimization problem for several geometric Brownian motions with

multiple co-integration terms in drifts.

Usually a portfolio allocator has access to multiple investing opportunities. Opti-

mal sizing and timing of positions in each of these opportunities may be affected by

positions in other assets and performance of those assets. To develop intuition about

optimal dynamic allocation strategy, we generalize Boguslavskaya & Boguslavsky

(2004) to the case of multiple correlated Ornstein-Uhlenbeck and Brownian Motion

processes. We solve the problem of the maximization of power utility over terminal

wealth for a finite horizon agent. Power utilities are a sufficiently broad family of

utility functions, containing log-utility as a special case and linear utility as a limit

case.

For the general problem, the optimal strategy is found in a quasi–analytical form

as a solution to a matrix Riccati ordinary differential equation. For several important

special cases it is possible to solve this equation explicitly. We also propose an

efficient approach to analyse effects of parameter mis-specification. Although the

proposed model is very simple, one can observe non-trivial qualitative properties

of the optimal strategy. The availability of a quasi–analytical solution allows us

to study how the trading strategy is affected by the correlation between spreads,

and demonstrate the trade-offs between ”harvesting” each spread separately and

hedging positions in correlated spreads.

The rest of this paper is organized as follows: in Section 2 we give a brief overview

of optimal strategy properties. In Section 3 we specify our formal asset and trad-

ing model and formulate a stochastic optimal control problem. Section 4 contains

explicit formulas for the optimal control and the value function. Section 5 reminds
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main insights for the one-dimensional case. Optimal solution analysis is presented

in Section 6. In Section 7, we present an ODE based framework to analyse the effect

of parameter mis-specification and calculate the moments of the terminal wealth’s

distribution. We then apply this framework to analyse the sensitivity of the optimal

strategy and of the value function to reversion rates mis-specification.

Implementation source code in Python and numerical implementation hints are

available at https://github.com/DmitryMuravey/TradingMultipleMeanReversion.

2. Main results

The main contributions of this paper to the portfolio allocation field are the deriva-

tion of a quasi-analytical solution to the problem of portfolio allocation between

multiple mean-reverting and Brownian motion assets, an explicit solution to this

problem for a number of important special cases, and a number of qualitative obser-

vations on the behaviour of the quasi-analytical solution in the general case. Some

of these observations may be contrary to the conventional wisdom of portfolio allo-

cators.

2.1. Myopic and hedging demands

It is well known that in multiple asset portfolio allocation problems the position

in each asset is driven by the myopic demand for the asset and by the hedging

component, see Merton (1990). It is not surprising that we observe this in our

particular problem as well, with the optimal strategy using positions in assets with

slower mean reversion to hedge positions in faster mean reverting assets. However,

the strength of the hedging demand in our problems leads to several less-intuitive

solution properties.

2.2. Low asset correlations are not beneficial

While asset managers are often trying to benefit from diversification by composing

their portfolios from assets with low pairwise correlations, in our model, with all

other parameters fixed, higher absolute values of correlations between mean revert-

ing asset driving processes are preferable to lower absolute values, as long as they

stay strictly below 1. See Section 6.5 for more details.

2.3. Stronger mean-reversion is not always beneficial

One could expect that a higher reversion speed is beneficial to the trader. While

this is true in the case of a single mean-reverting asset, this is not always so in

the multi-dimensional case. An asset with a lower reversion rate and a non-zero

correlation with higher reversion rate assets, may be used primarily as a hedge for

positions in these assets. Hedge efficiency may be declining with the increases in the

lower reversion rate. Assets with zero reversion and zero expected returns can play

https://github.com/DmitryMuravey/TradingMultipleMeanReversion
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an important role in portfolio construction as sources of diversification. See Section

6.4 for more details.

2.4. Parameter mis-specification cost is asymmetric

The optimal strategy has a strong dependence on assumed reversion rates. It turns

out that this dependence is quite asymmetric. We find that it is safer to underesti-

mate reversion rates than to overestimate them. The value function is more sensitive

to errors in reversion rate ratios between assets than to joint correlated errors in

rate estimates. See Section 7.

3. The model

3.1. The assets

We are assuming that we have multiple tradable assets available with futures price

processes Xi
t , i = 1, ..., n. Each of these processes can take positive or negative

values, so they are best thought of as futures contracts on spreads between security

prices or long-short portfolios of futures contracts. We are not modeling margin

requirements, so positions are limited only by the risk aversion of the trading agents.

The agent possesses initial wealth W0. This wealth is assumed to be deposited on

a margin account for the duration of trading and is earning no interest.

3.2. Price processes

Assume the canonical multivariate filtered probability space (Ω, F , F, P) with

filtration (Ft)t≥0 to satisfy the usual conditions; see e.g. Karatzas & Shreve

(1991). The simplest dynamic for a single mean-reverting tradable asset is a one-

dimensional Ornstein-Uhlenbeck process dXt = −kXtdt+σdBt. Similarly, a collec-

tion
[
X1
t , X

2
t , . . . , X

n
t

]>
of n Ornstein-Uhlenbeck processes can be defined over this

space as a multidimensional Ornstein–Uhlenbeck process:

dXt = −κXtdt+ σdBt (3.1)

Here Bt =
[
B1
t , B

2
t , . . . , B

n
t

]>
is an n-dimensional Wiener process with correlation

matrix Θ ∈ Rn×n (i.e. dBtdB
>
t = Θdt), and κ ∈ Rn×n+ and σ ∈ Rn×n+ are diagonal

matrices with non-negative elements that contain reversion rates and driving process

volatilities for each asset:

κ = diag(κ1, κ2, . . . , κn),

σ = diag(σ1, σ2, . . . , σn),
Θ =


1 ρ12 . . . ρ1n
ρ21 1 . . . ρ2n
...

...
. . .

...

ρn1 ρn2 . . . 1

 . (3.2)

The diagonality of matrices κ and σ means that all dependency between the assets

comes from the correlations between the driving Brownian motions. We are assum-

ing that all elements of the diagonal matrix κ are non-negative. Note that all our
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results hold for the larger class of matrices κ with non-negative eigenvalues, but this

is outside of this paper scope. Positive values of κi correspond to mean-reverting

processes, and κi = 0 correspond to assets exhibiting zero mean reversion and sim-

ply following correlated Brownian motions. However, we assume that elements of

vector κ are not all zero to avoid a trivial problem. Correlation matrix Θ should be

symmetric and positive semi-definite with unit diagonal elements, ρii = 1, ρij = ρji.

We shall assume that Θ has full rank to avoid obvious arbitrages.

Without loss of generality, we can also assume that long-term means of each

spread process are equal to zero. The general case can be reduced to equation (3.1)

by the substitution [Xt − θ]→ Xt, where θ is a vector of long term means. Equation

3.1 can be solved explicitly in terms of Itô integral:

Xt = e−κtX0 +

∫ t

0

e−κ(t−s)σdBs. (3.3)

Here eA is a matrix exponential:

eA =

∞∑
k=0

1

k!
Ak, A0 = I. (3.4)

3.3. Wealth process

The problem can be treated in the general Merton portfolio optimisation framework,

see Merton (1990). We are assuming that the agent starts with wealth W0, fully

deposited to the margin account at inception at an interest rate of zero. As the agent

trades and makes profits/losses, the profits and losses are realized continuously and

deposited to the same account at the same zero interest rate. We are not modelling

margin requirements and are assuming that Wt is always sufficient to cover them.

Let vector αt

αt =
[
α1
t , α

2
t , . . . , α

n
t

]>
(3.5)

be a trader’s position at time t, i.e. the number of units of each asset held. This is

the control in our optimization problem. Assuming no transaction costs, for a given

control process αt, the wealth process Wα
t is given by

dWα
t = α>t dXt =

n∑
i=1

αitdX
i
t (3.6)

or in integral form

Wα
T = Wα

t +

∫ T

t

α>u dXu = Wα
t +

n∑
i=1

∫ T

t

αiudX
i
u. (3.7)

3.4. Normalization

Without loss of generality, we can normalize all price processes to unit noises: σ = I.

For the general case, the following parameterization should be used:

Xt → σ−1Xt, αt → σαt. (3.8)
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3.5. Value function

The value function J(Wα
t ,Xt, t) : R+ × Rn × [0, T ] → R is the supremum over

all admissible controls of the expectation of the terminal utility conditional on the

information available at time t,

J(w,x, t) = sup
αt∈A

E [U(Wα
T )|Wα

t = w, Xt = x] , (3.9)

where the set of admissible controls A is defined as

A =

{
α : [0, T ]× Ω→ Rn |αt ∈ Ft,

∫ >
0

(Wα
t )

2
n∑
i=1

(
αitX

i
t

)2
dt <∞, a.s

}
.(3.10)

We consider a power utility function with the parameter γ < 1

U = U(Wα
T ) =

1

γ
(Wα

T )
γ
. (3.11)

The relative risk aversion is measured by 1 − γ. It is convenient to use another

measure δ, which is also known as the distortion rate (see Zariphopoulou (2001))

δ =
1

1− γ
, 0 < δ <∞ (3.12)

so the smaller δ is, the less risk averse the agent. The case γ = 0 corresponds to the

logarithmic utility function and the investor with γ → 1 is a risk seeking investor.

Note that while we assumed that the margin account is earning no interest,

our results do not require a zero internal discount rate for the trading agent. Our

utility function depends only on terminal wealth WT and not on wealth at any

intermediate moments 0 < t < T . If the agent is discounting future wealth at a

fixed interest rate r, utility U is multiplied by a constant e−rTγ and so is the value

function J . Multiplication of the value function by a constant has no impact on the

optimal strategy. Thus, we can assume that r = 0 for the rest of this paper.

4. Main result

4.1. The Hamilton–Jacobi–Belman equation

Our aim is to find the optimal control α∗(Wα
t ,Xt, t) and the value function

J(Wα
t ,Xt, t) as the functions of wealth Wα

t , prices Xt and time t. The Hamilton–

Jacobi–Bellman equation is

sup
α

((∂/∂t+ L) J) = 0. (4.1)

Here L is the infinitesimal generator of the wealth process Wα
t :

L =
α>Θα

2

∂2

∂w2
+α>Θ∇ ∂

∂w
−α>κx ∂

∂w

+
∇>Θ∇

2
− x>κ∇ (4.2)
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and the first order optimality condition on the control α∗ is

α∗(w,x, t) =
Jw
Jww

Θ−1κx− ∇Jw
Jww

. (4.3)

The operator ∇ denotes a vector differential operator

∇ =

[
∂

∂x1
,
∂

∂x2
, . . . ,

∂

∂xn

]>
(4.4)

for which we define the following operations for any vectors a ∈ R1×n and matrices

A ∈ Rn×n:

a>∇ =

n∑
i=1

ai
∂

∂xi
, ∇>A∇ =

n∑
i=1

n∑
j=1

Aij
∂2

∂xi∂xj
. (4.5)

Note that the first summand in the right-hand side of 4.3 is the myopic demand

term corresponding to a static optimization problem while the second term hedges

from changes in the investment opportunity set. For a log utility investor (γ = 0

or, equivalently, δ = 1) the second term vanishes (see Merton (1990).)

Substituting this condition into Eq. 4.1 for the value function, we obtain a

non-linear PDE, which can be linearized by the distortion transformation (see Za-

riphopoulou (2001)):

J(w,x, t) =
wγ

γ
f1/δ(x, t). (4.6)

Here the function f(x, t) is a solution to the Cauchy problem for the parabolic PDE:

1

2
∇Θ∇f − x>κ∇f − δ − 1

2
x>κ∇f − δ − 1

2
∇>fκx

+
δ(δ − 1)

2
x>κΘ−1κxf +

∂f

∂t
= 0. (4.7)

f(x, T ) = 1.

The main equation 4.7 can be reduced to the matrix Riccati ODE. The value

function J and the optimal control α∗ have quasi-analytic representations via so-

lutions to this ODE.

Theorem 4.1. The value function (3.9) admits the following representation

J(w,x, t) =
wγ

γ
· exp

{∫ T−t

0

Tr (A(u)Θ)

δ
du+

x>A(T − t)x
δ

}
(4.8)

where Tr denotes trace operator and the function A : R+ → Rn×n×R+ is a matrix

function of inverse time τ = T − t:

A(τ) =

∣∣∣∣∣∣∣∣∣
A11(τ) A12(τ) . . . A1n(τ)

A21(τ) A22(τ) . . . A2n(τ)
...

...
. . .

...

An1(τ) An2(τ) . . . Ann(τ)

∣∣∣∣∣∣∣∣∣ (4.9)
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which is defined as a solution to the following matrix Ricatti equation:

A′(τ) = RΘ,κ,δA, (4.10)

A(0) = 0.

with RΘ,κ,δ denoting the nonlinear operator

RΘ,κ,δA =

(
A> +A

)
Θ
(
A> +A

)
2

−
[
δ − 1

2
κ+ κ

](
A> +A

)
− δ − 1

2

(
A> +A

)
κ+

δ(δ − 1)

2
κΘ−1κ. (4.11)

Proof. Using an ansatz similar to Brendle (2006) and Li & Papanicolaou (2019),

we obtain the representation (4.8).

The optimal strategy α∗ has the following representation:

α∗(w,x, t) = w
[
−δΘ−1κ+A+A>

]
x. (4.12)

Introducing a new matrix D as

D(τ) = δΘ−1κ−
(
A(τ) +A>(τ)

)
we get the following formula for the optimal strategy α∗:

α∗(w,x, t) = −wD(τ)x. (4.13)

Matrix D can be found directly from another Riccati ODE (see Appendix B for

details):

D′(τ) = −D>ΘD + δκΘ−1κ,

D(0) = δΘ−1κ.
(4.14)

If one needs to find only the optimal control, it is sufficient to solve Eq. (4.14). To

find the value function we need to solve a more complex system (4.10).

The optimality of the candidate control α∗ can be verified using the same ar-

guments as in Li & Papanicolaou (2019); see also Davis & Lleo (2008, 2014).

5. Analysis. Review of the one-dimensional case

5.1. The problem

Before we analyse the multidimensional case, let us present a short review of the

one-dimensional case, for more details see Boguslavskaya & Boguslavsky (2004).

It is obtained from our problem by setting n = 1 in all formulas from Section

(3.2). To be more precise, we consider mean-reverting asset Xt which follows an

Ornstein–Uhlenbeck process with zero mean and unit variance:

dXt = −κXtdt+ dBt (5.1)
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and the wealth process Wα
t generated by the trading strategy α:

dWα
t = αtdXt. (5.2)

We are looking for the maximizer α∗ of the expected utility over the terminal wealth

Wα
T :

α∗ = argmax
α

[Et [U(Wα
T )]] . (5.3)

5.2. The structure of the optimal strategy

The optimal control α∗ can be expressed as

α∗(w, x, t) = −wDκ(T − t)x, (5.4)

where the function Dκ(τ) is a solution to the following Riccati equation:

D′κ = −D2
κ + δk2,

Dκ(0) = δκ.
(5.5)

This one-dimensional problem (5.5) can be solved explicitly via the substitution

τ(Dκ) = D−1κ . The function Dκ(τ) is a shifted and scaled sigmoid function of the

inverse time τ = T − t :

Dκ(τ) = κ
√
δ

√
δ coshκ

√
δτ + sinhκ

√
δτ√

δ sinhκ
√
δτ + coshκ

√
δτ
. (5.6)

It is worth to mention that for γ < 0 the function Dκ can be represented as

Dκ(τ) = κ
√
δ tanh

(
κ
√
δτ + ϕ

)
, tanhϕ =

√
δ. (5.7)

The behavior of the function Dκ(T − t) depends on the value of risk aversion

γ: a trading agent with a negative gamma (less risk averse than a log-utility agent)

becomes less aggressive as time approaches terminal time, while traders with posi-

tive gamma become more aggressive (see Figure 1). For the log-utility agent (γ = 0,

red line on Figure 1), the optimal strategy is static, i.e. Dκ(τ) ≡ const.

5.3. Value function structure

The value function J(w, x, t) can be split into three multiplicative terms:

J(w, x, t) =
wγ

γ︸︷︷︸
a

· exp

{
−
∫ T−t

0

D(u)− δκ
2δ

du

}
︸ ︷︷ ︸

b

· exp

{
−x

2(D(T − t)− δκ)

2δ

}
︸ ︷︷ ︸

c

(5.8)

which can be interpreted as follows:

a present wealth utility. This is the only term that depends on present wealth w.

Value function is proportional to present wealth utility.
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(T

−
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κ=1, T=5
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γ= −0.1
γ= −2.0
γ= −16.0

Fig. 1: Position size multiplier D(T − t) for different values of risk aversion. A

trading agent with a negative gamma (less risk averse than a log-utility agent)

becomes less aggressive as time approaches the time horizon, while trading agents

with positive gamma are not just more aggressive at all times but also become more

aggressive as the time horizon approaches.

b time value (utility of future expected opportunities). This term is an integral of

a time function over the remaining time period; it depends neither on current

wealth, nor on current asset price.

c intrinsic value (utility of the immediate investment opportunity set.) This term’s

logarithm is proportional to the squared current asset price and, in particular,

vanishes for current price at 0.

5.4. Wealth process structure

The stochastic process Wα
t generated by the optimal strategy α∗ can be represented

as (for more details see Appendix C)

log

(
Wα
t

Wα
s

)
=

∫ t

s

Dκ(T − u)− δκ2X2
u

2
du︸ ︷︷ ︸

a

+
X2
sDκ(T − s)−X2

tDκ(T − t)
2︸ ︷︷ ︸
b

.(5.9)

So the log return of wealth between times s and t is the sum of

a profit/loss from dynamic trading in the time period [s, t]; this term does not

depend on the current price Xs

b profit/loss between s and t on position open at time s.
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5.5. Monte Carlo analysis of parameter mis-specifications

The higher mean reversion speed κ makes the trader more aggressive. Authors of

Boguslavskaya & Boguslavsky (2004) also make the following observations based on

Monte Carlo simulations:

The influence of mean reversion coefficient mis-specification is asymmetric.

Trading with a conservatively estimated κ greatly reduces utility uncertainty.

The overestimation of κ leads to excessively aggressive positions. It is much

safer to underestimate κ than to overestimate it.

6. Analysis. Multidimensional case.

The main difference between multidimensional and one dimensional cases is that

changes in some spreads may affect positions in other spreads via changes in risk

exposures. Generally, one might expect two possible motivations to take a position

in each of the assets: to extract value from its reversion or to hedge positions in

other assets.

In the multidimensional case, the time decay function D is a matrix. The main

difficulty is that there are no known techniques to explicitly solve generic matrix

Riccati equations. However, we were able to obtain explicit solutions for a number

of important special cases, including the case of multiple assets with identical re-

version rates and hedging a mean reverting asset with multiple correlated Brownian

motions. We also make a number of observations for the general case and discuss the

structure of the optimal strategy and the impact of correlation on value functions.

To simplify the notation, we shall be assuming below that the price process is

at its long term mean X0 ≡ θ.

6.1. Explicitly solvable cases.

6.1.1. Non-correlated assets

Assume that the asset processes are driven by non-correlated Wiener processes, Θ =

I. We can expect that the optimal strategy is simply a vector of one dimensional

optimal strategies for each asset. That is, a candidate optimal control is

α∗ = −wD(τ)x, D(τ) = diag (Dκ1
(τ), Dκ2

(τ) . . . , Dκn
(τ)) , τ = T − t. (6.1)

For the definition of Dκ see section 5. One can directly confirm that this control is

indeed optimal by checking that it solves the system (4.14).

In this case, there are no interactions between the assets. The position in the

i-th asset depends only on time t, current wealth and i-th asset parameters.

6.1.2. Common reversion rate

Another case that allows an explicit solution is when the correlations are non-trivial,

but the reversion rate κ is the same for all assets κ = κI. Recall SDE for the price
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process

dXt = −κXtdt+ dBt, dBtdB
>
t = Θdt. (6.2)

We show that for this case the explicit solution can also be constructed.

Indeed, with a single common reversion rate, any non-zero linear combination

Yt = L−1Xt of Ornstein–Uhlenbeck processes is also an Ornstein–Uhlenbeck pro-

cess:

dYt = −κYtdt+ dB̃t, dB̃tdB̃t
>

= L−1Θ(L−1)>dt. (6.3)

Here B̃t is an n-dimensional Wiener process with correlation matrix

L−1Θ(L−1)>. (6.4)

Assuming the invertibility of L, one can find an optimal control αY for this new

process Yt and then transform it to an optimal control for Xt. The transformation

is based on the following equality

dWα
t = α>Y dYt = α>XdXt, αX(Wα

t ,Xt, t) = (L−1)>αY (Wα
t ,L

−1Xt, t). (6.5)

The transformation matrix L is constructed as a Cholesky decomposition of corre-

lation matrix Θ:

L>L = LL> = Θ, (L−1)>L−1 = L>(L−1)> = Θ−1. (6.6)

Applying this transformation, we obtain the following equation for the optimal

control:

α∗ = −wDκ(T − t)Θ−1x. (6.7)

Thus, the optimal trading rule can be interpreted as the construction of linearly

independent factor portfolios, and then trading them as in the case of non-correlated

assets. This is similar to the portfolio signal construction approach of Kelly et al.

(2020).

In this case, there are also no interactions between the assets. The value function

J(w,0, t) does not depend on asset correlations:

J(w,0, t) =
wγ

γ
exp

{
n

∫ T−t

0

δκ−Dκ(u)

2δ
du

}
. (6.8)

6.1.3. Hedging a mean reverting asset via correlated Brownian Motions

Let us consider a case where the set of tradable assets consists of a single mean-

reverting asset and one or several correlated Brownian motions. We can also consider

this case as the limiting case for sets of tradable assets, where one asset’s mean

reversion rate κ is very large in relation to all other assets’ reversion rates.

Theorem 6.1. Consider the following matrix of reversion rates:

κ = diag(κ, 0, 0, . . . , 0). (6.9)
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One can check by a direct calculation that the solution to the Riccati equation (4.14)

has the following form:

D(t) =

∣∣∣∣∣∣∣∣∣
D11 0 . . . 0

D21 0 . . . 0
...

...
. . .

...

Dn1 0 . . . 0

∣∣∣∣∣∣∣∣∣ (6.10)

Dj1 = δκ
(
Θ−1

)
j1

. The term D11(τ) can be derived from the following Riccati

ODE:

D′11(τ) = −D2
11 + 2δ(ζ − 1)κD11 + κ2δζ (δ(1− ζ) + 1) ,

D′11(0) = δζκ.
(6.11)

This ODE can be solved explicitly to yield the following formula for D:

D11(τ) =


κλ δ coshλκτ+λ sinhλκτ

δ sinhλκτ+λ coshλκτ + δκ(ζ − 1), γ < 1/ζ,
κδ

1+κδτ + κδ(ζ − 1), γ = 1/ζ,

κλ δ cosλκτ−λ sinλκτ
δ sinλκτ+λ cosλκτ + δκ(ζ − 1), 1/ζ < γ < 1.

(6.12)

Here ζ =
(
Θ−1

)
11

, λ =
√
|δ(δ − 1)ζ − δ2|.

Thus, in this case we trade the mean-reverting asset and hedge it via correlated

Brownian motions. Both the mean-reverting asset position and the hedging positions

are larger for large correlations. Availability of correlated hedging assets allow us

to take larger positions for given risk aversion and wealth.

6.2. The structure of the optimal strategy

To illustrate the structure of the optimal strategy, we expand the product D(τ)x

in formula (4.13) for optimal control α∗:∣∣∣∣∣∣∣∣∣
α∗1
α∗2
...

α∗n

∣∣∣∣∣∣∣∣∣ = −w

∣∣∣∣∣∣∣∣∣
D11(τ)x1 +D12(τ)x2 + . . .D1n(τ)xn
D21(τ)x1 +D22(τ)x2 + . . .D2n(τ)xn

...

Dn1(τ)x1 +Dn2(τ)x2 + . . .Dnn(τ)xn

∣∣∣∣∣∣∣∣∣ . (6.13)

The summand Diixi is a position size multiplier for the mean reversion trading of

the i− th asset, while Dijxj is a quantity of the i− th asset required to hedge the

position in the j − th asset. In the case of non-correlated assets, each Dij = 0, for

i 6= j. The quantities Dij and Dji satisfy the following relations :

Dij + δΘ−1ij κj = Dji + δΘ−1ij κi. (6.14)

or, in the matrix form

D −D> = δ
[
κ,Θ−1

]
= δ

(
κΘ−1 −Θ−1κ

)
, (6.15)

here [·, ·] denotes a commutator. Note that the difference between Dij and Dji does

not depend on time t.
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6.3. Wealth dynamics

Similarly to the one-dimensional case, the wealth process Wα
t can be found in the

explicit form

Theorem 6.2. The wealth process Wα
t associated with the optimal control α∗t is

given by the following formulas

log
(
Wα

t

Wα
s

)
=

a︷ ︸︸ ︷∫ t

s

Tr ΘD(T − u)− δX>u κΘ−1κXu

2
du+

+
X>s D(T − s)Xs −X>t D(T − t)Xt

2︸ ︷︷ ︸
b

+
1

2

∫ t

s

X>u

[
D −D>

]
dXu︸ ︷︷ ︸

c

.

(6.16)

One term of equation (6.16) that is missing in the one-dimensional case is c.

This summand corresponds to hedging efficiency. It is easy to see that for cases

Θ = I or κ = κI this term vanishes. As we mentioned before, the case κ = κI can

be reduced to the case Θ = I.

6.4. Example. 2-dimensional model.

To illustrate interactions between reversion speed and correlation, let us consider

a two-dimensional example in more details. We shall use the following parameters

for this illustration: the numbers of assets shall be n = 2, noise magnitude σ = I,

long term mean and initial point θ = X0 = 0, risk aversion γ = −4 and time

horizon T = 3. We consider an optimal strategy for a portfolio of two correlated

Ornstein–Uhlenbeck processes with κ1 = 1 and different values of κ2 and correlation

ρ:

n = 2, γ = −4, σ = I, κ = diag(1, κ2), θ = X0 = 0, Θ =

[
1 ρ

ρ 1

]
. (6.17)

Figure 2 shows the value function J as a function of log(κ2/κ1) (κ1 = 1) for

several different values of ρ. Here, we are varying the lower of two asset mean-

reversion rates. It turns out that for sufficiently high correlation ρ, the value function

has a proper minimum as a function of κ2 and it becomes decreasing in κ2 as the

correlation gets closer to 1. This means that in these cases, one would prefer to have

a lower value for the second asset’s mean-reversion rate to a slightly higher value

(but not to a much higher value κ2 >> κ1.) Therefore, with more that one asset,

a higher reversion rate is not always good for extracting value from trading, quite

unlike the one-dimensional case.

6.5. Impact of correlation

We have seen in the previous section that the value function can be non-monotonic

in mean-reversion rates. Let us show that it is always increasing with the correlation,

if all other parameters are fixed.
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J
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ρ=0.99

Fig. 2: 2D example. Value function for a range of values for κ2 and correlation ρ.

The horizontal axis is the log-ratio of two mean reversion speeds. When these speeds

are equal, the value function does not depend on the correlation. For a sufficiently

high absolute value of correlation, the value function has a proper minimum in the

log-ratio, so the trader would prefer either a lower or a higher mean-reversion rate

for the slower reverting asset, to an intermediate rate. For high correlations, the

trader prefers very low or no mean reversion at all in the slower reverting asset to

the two equal mean reversion rates.

Suppose now that we start our trading process with no immediate trading oppor-

tunities (i.e. x = 0). We consider J(w,0, t) as the function of correlation coefficients

ρmn. In the standard Markowitz portfolio optimization problem, one can construct

more profitable portfolios when correlations are lower. In our setting, we can prove

that the value function has a local minimum at zero correlations Θ = I. Correlations

between driving processes enable cross-hedging between positions in different assets

and these increase the value function. We have already seen a similar beneficial effect

of higher correlations in section 6.1.3 for a special case of a single mean-reverting

asset hedged with Brownian motions and the following theorem demonstrates that

this effect holds in the general case as well.

Theorem 6.3. In the absence of immediate trading opportunities (x = 0) the value

function J(w,0, t) as a function of pairwise correlation coefficients ρmn has a local

minimum at Θ = I.
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Proof. Recall the representation of the value function:

J(w,0, t) =
wγ

γ
exp

{
1

δ

∫ T−t

0

Tr (F (u)) du

}
(6.18)

where matrix F is equal

F =
1

2
(A+A>)Θ. (6.19)

Let us define a new matrix Γ :

Γ = Θ−1κΘ (6.20)

Note that Γ is a result of a similarity transformation of the matrix κ and

limΘ→I Γ = κ. For the matrix F we have the following ODE:

F ′ = 2F 2 − δ (κF + FΓ) +
δ(δ − 1)

2
κΓ,

F (0) = 0.

(6.21)

Let ρmn be an arbitrary correlation coefficient at the position mn (i.e. mn = (ij),

Θij = Θji = ρmn) and let us consider the following partial derivatives:

∂J(w,0, t)

∂ρmn
=
J(w,0, t)

δ

∫ T−t

0

Tr

(
∂F (u)

∂ρmn

)
du, (6.22)

∂2J(w,0, t)

∂ρmn∂ρpq
=
J(w,0, t)

δ

∫ T−t

0

Tr

(
∂2F (u)

∂ρmn∂ρpq

)
du, (6.23)

∂2J(w,0, t)

∂ρ2mn
=
J(w,0, t)

δ

∫ T−t

0

Tr

(
∂2F (u)

∂ρ2mn

)
du. (6.24)

We shall prove the following properties for any mn and pq:

lim
Θ→I

∂J(w,0, t)

∂ρmn
= 0, (6.25)

lim
Θ→I

∂2J(w,0, t)

∂ρmn∂ρpq
= 0, (6.26)

sign lim
Θ→I

∂2J(w,0, t)

∂ρ2mn
= signγ, (κi 6= κj), (6.27)

lim
Θ→I

∂2J(w,0, t)

∂ρ2mn
= 0, (κi = κj). (6.28)

From equation (6.25), the point Θ = I is an extrema point. Equation (6.26) implies

that the Gessian matrix at Θ = I is a diagonal matrix. Using Silvester’s criterion

we prove that the Gessian matrix is a positive definite at the point Θ = I, for more

details see Appendix D.
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7. Wealth distribution moments and analysis of parameter

mis-specification

7.1. Closed form formulas

In practice, one does not know the true values for model parameters, so it is impor-

tant to understand value function sensitivities to errors in parameters estimation.

In this section, we present an ODE based framework for the analysis of parameter

mis-specification sensitivity. We provide semi-explicit formulas for the value func-

tion corresponding to misspecified parameters. Let κ̂, σ̂, Θ̂ be estimates of reversion

rates, volatility and correlation. We consider the control α̂ as a function of these

estimates

α̂ = wσ̂−1
[
−δΘ̂

−1
κ̂+

(
Â
>

+ Â
)]
σ̂−1x. (7.1)

Here the matrix Â is a solution to the following ODE

Â
′
(τ) = RΘ̂,κ̂,δÂ,

Â(0) = 0,
(7.2)

where the differential operator R is defined in (4.11). The wealth process Ŵt gen-

erated by the strategy α̂ is a solution to the following SDE

dŴt = α̂>t dXt. (7.3)

Theorem 7.1. Let Pε(w,x, t) be the following expectation of a function of terminal

wealth ŴT defined by (7.3):

Pε(w,x, t) = E

[
Ŵ ε
T

ε

∣∣∣ Ŵt = w, Xt = x

]
. (7.4)

The expectation Pε(w,x, t) can be explicitly found in the following form

Pε(w,x, t) =
wε

ε
exp

{∫ T−t

0

Tr (ΘQ(u)) du+ x>σ−1Q(T − t)σ−1x

}
, (7.5)

where the matrix Q is a solution to Riccati equation

Q′ = BQ,

Q(0) = 0.
(7.6)

The nonlinear operator B is given by

BQ =

(
Q+Q>

)
Θ
(
Q+Q>

)
2

+

+
(
εβ>Θ− κ

)(
Q+Q>

)
+
ε(ε− 1)

2
β>Θβ − εβ>κ (7.7)

and the matrix β is defined as

β = σσ̂−1
[
−δΘ̂

−1
κ̂+

(
Â+ Â

>)]
σ̂−1σ, (7.8)
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here the matrix Â is a solution to the equation (7.2).

When ε = γ, we obtain the expected utility corresponding to the misspecified

parameters. The values ε = 1 or ε = 2 correspond to the first two moments of WT ,

so we can calculate the Sharpe ratio

Sh[α̂] =
P1(w,x, t)√

2P2(w,x, t)− P 2
1 (w,x, t)

. (7.9)

It is worth to mention that the effects on a misspecified long term mean level θ

can be also analyzed in the same way. In this case, we have to add the extra term

exp
{
x>V

}
to the equation (7.5). Here V is an n×1 vector function of inverse time

T − t.
As an alternative, one can analyse the effect of parameter mis-specification by

using Monte-Carlo methods. However, from our point of view, the proposed ODE

approach is computationally much more efficient than Monte-Carlo simulations.

7.2. Impact of misspecified parameters

We illustrate the method presented above with the analysis of misspecified rever-

sion rates κ and correlations Θ. For simplicity, we consider the case of just two

assets. The results are presented on figures 3 and 4. We measure the effect of mis-

specification by the difference between the value functions corresponding to true

and misspecified parameters (color and value of z-axis respectively.)

7.2.1. Misspecified reversion rates

Similarly to the one-dimensional case, the influence of mean reversion coefficient

mis-specification is asymmetric. Depending on the value of the correlation, it is

more important to correctly estimate the ratio between reversion rates than to

estimate the exact value of each mean-reversion rate. It is not surprising given that

the optimal strategy hedges the faster mean-reverting asset with the slower one and

the hedging accuracy depends on the ratio between reversion speeds.

7.2.2. Misspecified correlation

According to the numerical results, the sensitivity to errors in estimation ρ∗ of

correlation coefficient is increasing for the large absolute values of true correlation

coefficient ρ. The influence of correlation coefficient mis-specification is symmetric,

i.e. the performance depends on the absolute value of the difference |ρ− ρ∗|.

8. Conclusion

We have obtained quasi-analytical solutions for the problem of optimal trading in

multiple correlated Ornstein-Uhlenbeck and Brownian processes. In a general case,

the problem boils down to a Ricatti equation. We were able to solve that equation
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Fig. 3: Misspecified reversion rates. Heatmap plot and 3D plot. The influence of

mean reversion coefficient mis-specification is asymmetric. Depending on the value

of correlation, it is more important to correctly estimate the ratio between reversion

rates than to estimate the exact value of each mean-reversion rate.

for several special cases, including the case of non-correlated assets, the case of

correlated assets with identical mean-reversion speeds, and the case of a single

mean reverting asset in addition to multiple Brownian motions.

While our model is quite simple, it is sufficient to demonstrate that the optimal

trading strategy has a number of non-trivial properties, with the value function
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Fig. 4: Misspecified correlations. Heatmap plot and 3D plot for κ1 = 0.1. The

sensitivity to errors in the estimate ρ∗ of the correlation coefficient is increasing for

the large absolute values of true correlation coefficient ρ. The influence of correlation

coefficient mis-specification is symmetric.

increasing with cross-asset correlations and also sometimes decreasing with some of

the reversion rates. We also show that zero mean reversion assets with zero drifts

can be quite valuable sources of portfolio diversification.

We also propose a semi-analytical solution for the effect of parameter mis-

specification, demonstrate its properties on several examples, and derive a semi-

analytical formula for the optimal strategy Sharpe ratio.
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Appendix A. Reducing the HJB equation to a linear PDE

A.1. Distortion transformation

The first order optimality condition on the control α∗ yields the following linear

system of equations in α∗:

Jww
2

[
(α∗)>Θ + Θα∗

]
= κxJw −Θ∇Jw,

JwwΘα∗ = κxJw −Θ∇Jw.
(A.1)

The solution to this system is

α∗ =
1

Jww

[
Θ−1 + κx−∇

]
Jw. (A.2)

Using again the first order optimality condition, we get

(α∗)>κxJw − (α∗)>Θ∇Jw = (α∗)>Θα∗Jww. (A.3)

Substituting it into the HJB equation we arrive at the following terminal value

problem:

Jt −
1

2
(α∗)

>
Θα∗Jwwx

>κ∇J +
1

2
∇>Θ∇J =0,

J(w,x, T ) =
wγ

γ
.

(A.4)

Substituting the solution for the optimal control α∗ yields a non-linear PDE

Jt−
1

2

J2
w

Jww
(κx)

>
Θ−1κx+

1

2

Jw
Jww

[
(κx)

>∇Jw + ∇>Jw (κx)
]

− 1

2

1

Jww
∇>JwΘ∇Jw − x>κ∇J +

1

2
∇>Θ∇J = 0.

(A.5)

We then apply the so-called distortion transformation

J =
wγ

γ
f1/δ(x, t), δ =

1

1− γ
. (A.6)

The exact formulas for the partial derivatives of the value function J are

Jt =
1

δ

J

f

∂f

∂t
, Jw =

γ

w
J, Jww =

γ(γ − 1)

w2
J

∇J =
1

δ

J

f
∇f, ∇Jw =

γ

w

1

δ

J

f
∇f

(A.7)
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Substituting these expressions into the non-linear HJB PDE we obtain

1

2
∇>Θ∇J =

1

2

1

δ

J

f
∇>Θ∇f +

1

2

1

δ

(
1

δ
− 1

)
J

f2
∇>fΘ∇f.

−1

2

1

Jww
∇>JwΘ∇Jw = −1

2

γ2

w2

1

δ2
J2

f2
w2

γ(γ − 1)J
∇>fΘ∇f

=
1

2

γ

δ

J

f2
∇>fΘ∇f (A.8)

= −1

2

1

δ

(
1

δ
− 1

)
J

f2
∇>fΘ∇f

−1

2

J2
w

Jww
= −1

2

γ2

w2
J2 w2

γ(γ − 1)J
(A.9)

=
1

2

γ

1− γ
J

=
1

2

1

δ
δ(δ − 1)J

1

2

Jw
Jww

[
(κx)

>∇Jw + ∇>Jw (κx)
]

=
1

2

γJ

w

w2

γ(γ − 1)J

[
(κx)

>
(
γ

w

1

δ

J

f
∇f

)

+

(
γ

w

1

δ

J

f
∇f

)>
(κx)

]

=
1

2

1

δ

γ

γ − 1

J

f

[
x>κ∇f + ∇>fκx

]
(A.10)

=
1− δ

2

1

δ

J

f

[
x>κ∇f + ∇>fκx

]
= −δ − 1

2

1

δ

J

f

[
x>κ∇f + ∇>fκx

]

This yields the following linear equation for the function f

1

2
∇Θ∇f − x>κ∇f − δ − 1

2
x>κ∇f − δ − 1

2
∇>f (κx)

+
1

2
δ(δ − 1) (κx)

>
Θ−1 (κx) f +

∂f

∂t
= 0.

(A.11)

The optimal control α∗ is then

α∗(w,x, t) = w

[
−δΘ−1κx+

∇f

f

]
. (A.12)
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Appendix B. Derivation of the Riccati equation for matrix D(
A+A>

)′
=
(
A> +A

)
Θ
(
A> +A

)
− [(δ − 1)κ+ κ]

(
A> +A

)
−
(
A> +A

)
((δ − 1)κ+ κ) + δ(δ − 1)κΘ−1κ

=
(
A> +A

)
Θ
(
A> +A

)
− (δκ)

(
A> +A

)
−
(
A> +A

)
(δκ) + δ(δ − 1)κΘ−1κ (B.1)

=
(
δκΘ−1 −D>

)
Θ
(
δΘ−1κ−D

)
−δκ

(
δΘ−1κ−D

)
−
(
δκΘ−1 −D>

)
δκ+ δ(δ − 1)κΘ−1κ

= D>ΘD − δκΘ−1κ.

Appendix C. The solution to the wealth SDE

The wealth process under the optimal control is

dWt = −WtX
>
t D

>dXt. (C.1)

We can represent the process Wt in a stochastic exponent form:

Wt = W0eλ
>Yt , dYt = udt+ ηdXt. (C.2)

and apply Itô’s lemma

dWt = Wt

[
λ>dYt +

1

2
λ>dYtdY

>
t λ

]
. (C.3)

Note that

λ>u = −1

2
λ>ηΘη>λ (C.4)

λ>η = −X>t D
> (C.5)

η>λ = −DXt (C.6)

λ>u = −1

2
X>t D

>ΘDXt (C.7)

λ>dYt = λ>udt+ ληdYt. (C.8)

λ>dYt = −1

2
X>t D

>ΘDXtdt−X>t D
>dXt. (C.9)

Therefore,∫ t

0

λ>dYs = −1

2

∫ t

0

X>s D(T − s)>ΘD(T − s)Xsds−
∫ t

0

X>s D(T − s)>dXs.

(C.10)

Since the matrix D is a solution to the following Riccati ODE

− dD

dt
= D>ΘD − δκΘ−1κ, (C.11)
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we get

Wt = W0 exp

{
−δ

2

∫ t

0

X>s κΘ−1κXsds−
1

2

[
X>t D(T − t)Xt −X>0D(T )X0

]}
· exp

{
1

2

∫ t

0

TrΘD(T − s)ds+
1

2

∫ t

0

X>s

[
D −D>

]
dXs

}
(C.12)

Appendix D. Proof of Theorem 6.3

To prove Theorem 6.3, it is sufficient to demonstrate the following properties of F :

lim
Θ→I

(
∂F

∂ρmn

)
ij

= 0, (ij) /∈ mn, (D.1)

lim
Θ→I

Tr
∂F

∂ρmn
= 0, (D.2)

lim
Θ→I

Tr
∂2F

∂ρmn∂ρpq
≡ 0, (D.3)

lim
Θ→I

Tr
∂2F

∂ρ2mn
> 0, γ > 0, κi 6= κj , (D.4)

lim
Θ→I

Tr
∂2F

∂ρ2mn
< 0, γ < 0, κi 6= κj , (D.5)

lim
Θ→I

Tr
∂2F

∂ρ2mn
≡ 0, γ = 0 or κi = κj . (D.6)

D.1. Proof of formulas (D.1) and (D.2)

Consider the partial derivative of F with respect to the correlation ρmn:

(
∂F

∂ρmn

)′
=

∂

∂ρmn

(
2FF − δ (κF + FΓ) +

δ(δ − 1)

2
κΓ

)
= 2

(
∂F

∂ρmn
F + F

∂F

∂ρmn

)
− δ

(
κ
∂F

∂ρmn
+

∂F

∂ρmn
Γ + F

∂Γ

∂ρmn

)
(D.7)

+
δ(δ − 1)

2
κ

∂Γ

∂ρmn
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As Θ tends to I, we get

λ′ = 2 (λΨ + Ψλ)− δ

κλ+ λκ+ Ψ

under LemmaAppendix F.1, F.3︷ ︸︸ ︷
[κImn − Imnκ]


+
δ(δ − 1)

2
κ [κImn − Imnκ]︸ ︷︷ ︸
under LemmaAppendix F.1, F.3

(D.8)

λ′ij = 2λij (Ψii + Ψjj − δ [κi + κj ])− δ
n∑
s=1

n∑
k=1

(
ΨisκskI

mn
kj −ΨisI

mn
sk κkj

)
+
δ(δ − 1)

2

n∑
s=1

n∑
k=1

[
κisκskI

mn
kj − κisI

mn
sk κkj .

]
(D.9)

λ′ij = λij (2Ψii + 2Ψjj − δ [κi + κj ])− δΨiiI
mn
ij [κi − κj ]

+
δ(δ − 1)

2
κiI

mn
ij [κi − κj ] . (D.10)

λ′ij = λij (2Ψii + 2Ψjj − δ [κi + κj ])− δImnij [κi − κj ]
[
Ψii +

1− δ
2

κi

]
.(D.11)

λij(0) = 0. (D.12)

We have Imnij = 0 for (ij) 6= mn, hence λij ≡ 0. Moreover, for diagonal elements

(ii) 6= mn, ∀i = 1..n, therefore Trλ ≡ 0.

D.2. Proof of formula (D.3)

(
∂2F

∂ρmn∂ρpq

)′
=

∂

∂ρmn∂ρpq

(
2FF − δ (κF + FΓ) +

δ(δ − 1)

2
κΓ

)
(D.13)

= 2

(
∂2F

∂ρmn∂ρpq
F +

∂F

∂ρmn

∂F

∂ρpq
+

∂F

∂ρpq

∂F

∂ρmn
+ F

∂2F

∂ρmn∂ρpq

)
− δ

(
κ

∂2F

∂ρmn∂ρpq
+

∂2F

∂ρmn∂ρpq
Γ +

∂F

∂ρmn

∂Γ

∂ρpq
+

∂F

∂ρpq

∂Γ

∂ρmn

+ F
∂2Γ

∂ρmn∂ρpq

)
+
δ(δ − 1)

2
κ

∂2Γ

∂ρmn∂ρpq
.

Let us define

η = lim
Θ→I

∂2F

∂ρmn∂ρpq
, λ̃ = lim

Θ→I

∂F

∂ρpq
, (D.14)
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therefore

η′ = 2 [ηΨ + Ψη]− δ
[
κη + ηκ+ λ (κIpq − Ipqκ) + λ̃ (κImn − Imnκ) + ΨQ

]
+
δ(δ − 1)

2
κQ (D.15)

η′ii = 4ηiiΨii − 2δκiηii − δΨiiQii (D.16)

− δ

n∑
s=1

n∑
k=1

[
λisκskI

pq
ki − λisI

pq
skκki + λ̃isκskI

mn
ki − λ̃isI

mn
sk κki

]
+
δ(δ − 1)

2
κiQii

η′ii = 2ηii [2Ψii − δκii]− δ
n∑
s=1

[
λisκsI

pq
si − λisI

pq
si κi + λ̃isκsI

mn
si − λ̃isI

mn
si κi

]
(D.17)

η′ii = 2ηii [2Ψii − δκii] , ηii(0) = 0 (D.18)

ηii ≡ 0 (D.19)

Trη ≡ 0. (D.20)

D.3. Proof of formulas (D.4)-(D.6)

From the definition of ϕ, we obtain the following ODE:

ϕ′ = 2 [ϕΨ + Ψϕ]− δ [κϕ+ϕκ+ 2λ (κImn − Imnκ) + ΨP ] +
δ(δ − 1)

2
κP

ϕ(0) = 0. (D.21)

or in the element-wise notation

ϕ′ii = 2ϕii [2Ψii − δκii]− 2δλijI
mn
ij (κj − κi)− δΨiiP ii +

δ(δ − 1)

2
κiP ii(D.22)

ϕ′ii = ϕii [4Ψii − 2δκii] + 2δλijI
mn
ij (κi − κj)− δP ii

(
Ψii +

1− δ
2

κi

)
(D.23)

ϕ′ii = ϕii [4Ψii − 2δκii] + 2δImnij (κi − κj)

[
λij − κi

(1−
√
δ)

2

e2κi

√
δτ + 1

e2κi

√
δτ + ω

]
(D.24)

ϕ(0) = 0. (D.25)

It is easy to check that for κi = κj

ϕii = ϕjj = 0. (D.26)

Eq. D.26 also holds for the special case γ = 0 (δ = 1). Indeed, for this case λij =

λji = 0. It turns out that the right hand side of the last equation for ϕij is equal

to zero, so ϕii = ϕjj = 0.

We proceed with the case i /∈ mn. Each element P ii equals 0, i.e. ϕii(τ) ≡ 0.

Therefore, the trace of the matrix ϕ contains only two non-zero terms with multi-

index mn. For simplicity of notation, we denote it as i and j, i.e mn = (ij). The
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summands ϕii and ϕjj can be found via the following ODEs

ϕ′ii −ϕii [4Ψii − 2δκi] = 2δ(κi − κj)

[
λij − κi

(1−
√
δ)

2

e2κi

√
δτ + 1

e2κi

√
δτ + ω

]
(D.27)

ϕ′jj −ϕjj [4Ψjj − 2δκj ] = 2δ(κj − κi)

[
λji − κj

(1−
√
δ)

2

e2κj

√
δτ + 1

e2κj

√
δτ + ω

]
(D.28)

ϕii(0) = ϕjj(0) = 0. (D.29)

Lemma Appendix E.3 concludes the proof.

Appendix E. Properties of F in the zero correlation case

This appendix demonstrates several properties of matrix F for the zero correlation

case that were used in proofs above. Let us define matrices Ψ, λ and ϕ as

Ψ = lim
Θ→I

F , λ = lim
Θ→I

∂F

∂ρmn
, ϕ = lim

Θ→I

∂2F

∂ρ2mn
. (E.1)

Lemma Appendix E.1. The matrix Ψ is a diagonal matrix with the following

entries

Ψ = diag (Ψ(κ1, τ),Ψ(κ1, τ), . . . ,Ψ(κn, τ)) . (E.2)

Here the function Ψ(κ, τ) can be defined as a solution to the following one-

dimensional Riccati equation

dΨ

dτ
= 2Ψ2 − 2δκΨ +

δ(δ − 1)

2
κ2, Ψ(0) = 0, (E.3)

which can be solved explicitly:

Ψ(κ, τ) =
κ
√
δ(
√
δ − 1)

2

e2κ
√
δτ − 1

e2κ
√
δτ + ω

, ω =
1−
√
δ

1 +
√
δ
. (E.4)

The function Ψ has the following properties:

∫
Ψ(κ, τ)dτ =

δ +
√
δ

2
κτ − 1

2
ln
(

e2κ
√
δτ + ω

)
+ C, (E.5)

Ψ(κ, τ) +
1− δ

2
κ =

κ(1−
√
δ)

2

e2κ
√
δτ + 1

e2κ
√
δτ + ω

. (E.6)
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Proof.

dΨ

dτ
= 2Ψ2 − 2δκΨ +

δ(δ − 1)

2
κ2, (E.7)

dτ =
dΨ

2Ψ2 − 2δκΨ + δ(δ − 1)κ2/2
(E.8)∫

dτ =

∫
dΨ

2Ψ2 − 2δκΨ + δ(δ − 1)κ2/2
(E.9)

τ + c =
1

2
√
δκ

[
ln

(
δκ− 2Ψ√

δκ
+ 1

)
− ln

(
1− δκ− 2Ψ√

δκ

)]
(E.10)

τ + c =
1

2
√
δκ

ln

(
δκ− 2Ψ +

√
δκ

−δκ+ 2Ψ +
√
δκ

)
(E.11)

2
√
δκτ + ln

(
δκ+

√
δκ

−δκ+
√
δκ

)
= ln

(
δκ− 2Ψ +

√
δκ

−δκ+ 2Ψ +
√
δκ

)
(E.12)

2
√
δκτ = ln

(
δκ− 2Ψ +

√
δκ

−δκ+ 2Ψ +
√
δκ

)
− ln

(
1 +
√
δ

1−
√
δ

)
(E.13)

e2
√
δκτ =

(
δκ− 2Ψ +

√
δκ
)

(1−
√
δ)(

−δκ+ 2Ψ +
√
δκ
)

(1 +
√
δ)

(E.14)

e2
√
δκτ =

2Ψ(
√
δ − 1) +

√
δκ(1− δ)

2Ψ(
√
δ + 1) +

√
δκ(1− δ)

(E.15)

Hence for Ψ we have

Ψ =
1

2

√
δκ(1− δ)

(
1− e2

√
δκτ
)

e2
√
δκτ
(

1 +
√
δ
)

+ 1−
√
δ

(E.16)

Ψ = −
√
δκ

2

(1−
√
δ)
(

1− e−2
√
δκτ
)

1 + 1−
√
δ

1+
√
δ
e−2
√
δκτ

(E.17)

Ψ =
κ
√
δ(
√
δ − 1)

2

e2κ
√
δτ − 1

e2κ
√
δτ + ω

, ω =
1−
√
δ

1 +
√
δ
. (E.18)

Lemma Appendix E.2. Each element λij of the matrix λ can be represented as

λij = κi

√
δ(1−

√
δ)

2(e2κi

√
δτ + ω)(e2κj

√
δτ + ω)

×

×

[
κj − κi
κj + κi

(
e(κj+κi)

√
δτ − 1

)(
e(κj+κi)

√
δτ + ω

)
(E.19)

+ e2κi

√
δτ
(

e(κj−κi)
√
δτ − 1

)(
e(κj−κi)

√
δτ + ω

)]
.



December 24, 2021 22:10 output

32 E. Boguslavskaya, M. Boguslavsky, D. Muravey

Proof. Differentiating the matrix equation 6.19 with respect to time t and taking

the limit Θ→ I, we get the following element-wise ODEs for the λij:

λ′ij = λij (2Ψii + 2Ψjj − δ [κi + κj ])− δ [κi − κj ]
[
Ψii +

1− δ
2

κi

]
λij(0) = 0. (E.20)

The corresponding homogeneous ODE can be solved explicitly:

eκi

√
δτ+κj

√
δτ

(e2κi

√
δτ + ω)(e2κj

√
δτ + ω)

. (E.21)

Thus, the solution to the non-homogeneous problem is

λij = −δ [κi − κj ]
κi(1−

√
δ)

2

eκi

√
δτ+κj

√
δτ

(e2κi

√
δτ + ω)(e2κj

√
δτ + ω)

×
∫ τ

0

(e2κi

√
δζ + 1)(e2κj

√
δζ + ω)

eκi

√
δζ+κj

√
δζ

dζ (E.22)

= −δ [κi − κj ]
κi(1−

√
δ)

2

eκi

√
δτ+κj

√
δτ

(e2κi

√
δτ + ω)(e2κj

√
δτ + ω)

×
∫ τ

0

[
e(κi+κj)

√
δζ + ωe(κi−κj)

√
δζ + e(κj−κi)

√
δζ + ωe−(κi+κj)

√
δζ
]
dζ;

= δ [κj − κi]
κi(1−

√
δ)

2

e(κi+κj)
√
δτ

(e2κi

√
δτ + ω)(e2κj

√
δτ + ω)

×

[
e(κi+κj)

√
δτ − ωe−(κi+κj)

√
δτ + ω − 1

(κi + κj)
√
δ

+
e(κj−κi)

√
δτ − ωe−(κj−κi)

√
δτ + ω − 1

(κj − κi)
√
δ

]

= κi

√
δ(1−

√
δ)

2(e2κi

√
δτ + ω)(e2κj

√
δτ + ω)

×

×

[
κj − κi
κj + κi

(
e(κj+κi)

√
δτ − 1

)(
e(κj+κi)

√
δτ + ω

)
+ e2κi

√
δτ
(

e(κj−κi)
√
δτ − 1

)(
e(κj−κi)

√
δτ + ω

)]
Lemma Appendix E.3. Any diagonal element ϕii of the matrix ϕ is a solution

to the following ODE

ϕ′ii = −2κi
√
δ

e2κi

√
δτ − ω

e2κi

√
δτ + ω

ϕii + δ(1−
√
δ)κi(κi − κj)× (E.23)

×
[
− e2κi

√
δτ + 1

e2κi

√
δτ + ω

+
√
δ
κj − κi
κj + κi

e(κj+κi)
√
δτ − 1

e2κi

√
δτ + ω

e(κj+κi)
√
δτ + ω

e2κj

√
δτ + ω

+
√
δe2κi

√
δτ e(κj−κi)

√
δτ − 1

e2κi

√
δτ + ω

e(κj−κi)
√
δτ + ω

e2κj

√
δτ + ω

]
ϕii(0) = 0
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Moreover, the following inequalities hold for any κi > 0, κj > 0, T > 0 and δ > 0:

∫ T

0

[
ϕii(u) +ϕjj(u)

]
du > 0, δ > 1, κi 6= κj∫ T

0

[
ϕii(u) +ϕjj(u)

]
du ≡ 0, δ = 1 or κi = κj (E.24)∫ T

0

[
ϕii(u) +ϕjj(u)

]
du < 0, 0 < δ < 1 κi 6= κj

Proof. Can be checked by direct calculations.

Appendix F. Properties of correlation matrices

In this section we use two special types of square symmetric matrices, Imn and

Iuu. They are defined as follows: matrix Imn has zero entries, except elements with

multiindex (mn); these elements are equal to 1:

Imnij = 0,∀(ij) 6= (mn), Imnij = 1, (ij) = (mn), or (ji) = (mn). (F.1)

Matrix Imn is a traceless matrix, TrImn = 0. The matrix Iuu also has zero entries,

except only one element on (u, u). This element is equal to 1.

The following lemma describes several properties of the correlation matrix Θ

and of the similarity transform Γ = Θ−1κΘ of the matrix κ.

Lemma Appendix F.1. Correlation matrix Θ and its similarity transform Γ

satisfy the following equations:

∂Θ−1

∂ρmn
= −Θ−1

∂Θ

∂ρmn
Θ−1 (F.2)

lim
Θ→I

∂Γ

∂ρmn
= κImn − Imnκ. (F.3)

lim
Θ→I

∂2Γ

∂ρmn∂ρpq
= Q, Qii = 0,∀i = 1..n. (F.4)

lim
Θ→I

∂2Γ

∂ρ2mn
= P , P ii = 2I(ij ∈ mn) [κi − κj ] . (F.5)
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F.1. Proof of formula (F.2).

ΘΘ−1 = I (F.6)

∂

∂ρmn

(
ΘΘ−1

)
=

∂I

∂ρmn
(F.7)

Θ
∂Θ−1

∂ρmn
= − ∂Θ

∂ρmn
Θ−1 (F.8)

Θ
∂Θ−1

∂ρmn
= − ∂Θ

∂ρmn
Θ−1 (F.9)

∂Θ−1

∂ρmn
= −Θ−1

∂Θ

∂ρmn
Θ−1 (F.10)

F.2. Proof of formula (F.3)

lim
Θ→I

∂Γ

∂ρmn
= lim

Θ→I

∂
(
Θ−1κΘ

)
∂ρmn

= lim
Θ→I

∂Θ−1

∂ρmn
κΘ + lim

Θ→I
Θ−1κ

∂Θ

∂ρmn

= lim
Θ→I

∂Θ−1

∂ρmn
κI + Iκ lim

Θ→I

∂Θ

∂ρmn
(F.11)

= − lim
Θ→I

∂Θ

∂ρmn
κ+ κ lim

Θ→I

∂Θ

∂ρmn
= −Imnκ+ κImn

= κImn − Imnκ.
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F.3. Proof of formula (F.4)

∂2Γ

∂ρmn∂ρpq
=

∂2

∂ρmn∂ρpq
Θ−1κΘ (F.12)

=
∂2Θ−1

∂ρmn∂ρpq
κΘ +

∂Θ−1

∂ρmn
κ
∂Θ

∂ρpq
+
∂Θ−1

∂ρpq
κ
∂Θ

∂ρmn
+ Θ−1κ

∂2Θ

∂ρmn∂ρpq

= − ∂

∂ρpq

[
Θ−1

∂Θ

∂ρmn
Θ−1

]
κΘ−Θ−1

∂Θ

∂ρmn
Θ−1κ

∂Θ

∂ρpq

− Θ−1
∂Θ

∂ρpq
Θ−1κ

∂Θ

∂ρmn

= −∂Θ−1

∂ρpq

∂Θ

∂ρmn
Θ−1κΘ−Θ−1

∂Θ

∂ρmn

∂Θ−1

∂ρpq
κΘ

− Θ−1
∂Θ

∂ρmn
Θ−1κ

∂Θ

∂ρpq
−Θ−1

∂Θ

∂ρpq
Θ−1κ

∂Θ

∂ρmn

= Θ−1
∂Θ

∂ρpq
Θ−1

∂Θ

∂ρmn
Θ−1κΘ + Θ−1

∂Θ

∂ρmn
Θ−1

∂Θ

∂ρpq
Θ−1κΘ

− Θ−1
∂Θ

∂ρmn
Θ−1κ

∂Θ

∂ρpq
−Θ−1

∂Θ

∂ρpq
Θ−1κ

∂Θ

∂ρmn

Q = IpqImnκ+ ImnIpqκ− ImnκIpq − IpqκImn (F.13)

Qii =

n∑
s=1

n∑
k=1

[Ipqis I
mn
sk κsi + Imnis I

pq
skκsi − I

mn
is κskI

pq
ki − I

pq
isκskI

mn
ki ] .(F.14)

Qii =

n∑
s=1

[Ipqis I
mn
si κii + Imnis I

pq
siκii − I

mn
is κssI

pq
si − I

pq
isκssI

mn
si ] (F.15)

Qii = 0. (F.16)

Here we used Imnis = 0 if Ipqsi = 1 for each s = 1..n and vice versa.

F.4. Proof of formula (F.5)

P ii = 2

n∑
s=1

[Imnis I
mn
si κii − I

mn
is κssI

mn
si ] (F.17)

P ii = 2I(ij ∈ mn) [κi − κj ] (F.18)
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