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Abstract 

With the growing penetration of renewable energy and the increasing adoption of electric vehicles, the reliable and secure 
operation of the power grid is facing significant challenges. The inherent randomness and uncertainty associated with renewable 
energy generation and electric vehicle charging are major factors contributing to grid instability. To address this issue, this paper 
proposes the utilization of energy storage systems for actively regulating active and reactive power to mitigate grid supply-
demand imbalances. Reinforcement learning algorithms are employed to schedule the active and reactive power of the energy 
storage system, and sensitivity and economic analyses are conducted. The results demonstrate that the integration of energy 
storage systems into the grid can effectively mitigate the uncertainties and randomness associated with electric vehicle charging 
and renewable energy generation. The real-time scheduling strategy outputted by the reinforcement learning algorithm reduces 
computation time, while the economic and sensitivity analyses confirm the profitability and robustness of the energy storage 
system. 

1 Introduction 

In response to the global efforts to reduce carbon emissions, 
countries worldwide are increasing their investments in 
renewable energy sources. As of 2022, the global installed 
capacity for wind power has reached 840 GW, while the total 
installed capacity for photovoltaic (PV) power has reached 1.1 
TW. Notably, by the end of 2019, China alone had achieved 
an installed capacity of 200 GW for both photovoltaic and 
wind power [1]. Driven by supportive national policies, the 
integration of uncontrollable renewable energy sources into 
the power grid is steadily increasing. This growing trend is 
accompanied by an increase in electric vehicle sales, which 
introduces greater demand uncertainty on the load side of the 
grid [2]. To address the challenges posed by the high 
penetration of renewable energy and electric vehicle loads in 
the grid, the installation of large-scale energy storage batteries 
is an effective solution. These batteries can help mitigate the 
uncertainty and randomness associated with these variable 
energy sources and provide stability and flexibility to the grid. 
By incorporating a large-scale energy storage system into the 
power grid, the uncertainty of load and the intermittency of 
renewable energy can be effectively addressed through 
optimal scheduling. To tackle the intermittent nature of 
renewable power generation and the uncertain load of the 
electricity network, a virtual energy hub is proposed. This hub 
integrates electric buses, electric vehicle parking lots, 
photovoltaic power generation systems, and energy storage 
systems, creating a dynamic and interconnected system that 
optimizes energy flow and utilization. Ref. [3] introduces a 
virtual energy hub as a solution to address the intermittent 

nature of renewable energy generation and the uncertain load 
in the electricity network. This hub integrates various 
components such as electric buses, electric vehicle parking lots, 
photovoltaic power generation systems, and energy storage 
systems. By optimizing the coordination and utilization of 
these elements, the virtual energy hub aims to enhance the 
stability and efficiency of the overall energy system. The 
virtual energy hub has been proven effective in energy 
management, reducing operating costs through extensive 
testing in various scenarios. Its optimization algorithms and 
control mechanisms ensure efficient utilization of energy 
resources, maximizing cost-effectiveness and energy 
efficiency. The community energy management system 
proposed in [4], which utilizes multi-intelligence 
strengthening learning, has demonstrated excellent 
performance in handling the intermittency of renewable 
energy and optimizing system economy. Through detailed 
case analyses, it has been determined that the proposed method 
effectively addresses the challenges posed by renewable 
energy integration. However, it is worth noting that as the 
penetration rate of renewable energy increases, there is a 
possibility of transmission equipment overload during peak 
generation periods. Ref. [5] presents two schemes for 
addressing the challenges posed by the increasing penetration 
of renewable energy and the random charging load of electric 
vehicles. The investment costs of these schemes are compared, 
and relevant suggestions are provided. Additionally, the paper 
explores the impact of electricity pricing strategies on reducing 
the randomness of electric vehicle charging behavior. 
Ref. [6] focuses on the combined scheduling of electric vehicle 
pricing and power management in charging stations. The study 
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demonstrates operational enhancements and efficiency 
improvements through turnover comparisons and detailed 
power management analysis. 
In conclusion, installing large-scale energy storage batteries in 
the grid is a favorable solution given the rising penetration of 
renewable energy and electric vehicle charging loads. The 
remaining sections of this paper are organized as follows: 
Section 2 introduces the research problem model, the energy 
storage battery degradation model, and the economic and 
sensitivity analysis indicators. Section 3 provides an example 
analysis of the proposed method. Finally, Section 4 
summarizes the findings and conclusions of this study. 

2. Methodology

2.1 Model framework based on Markov decision process 
A schematic diagram of the Markov decision process is shown 
in Fig. 1, which contains two parts: the environment (ENV) 
and the agent. Agent output the corresponding policy based on 
the status, reward and Isdone output of ENV. This is repeated 
until all simulation moments are completed [7]. 
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Fig.1 Schematic diagram of Markov decision process 
Fig. 2 illustrates the connection of the battery energy storage 
system (BESS), photovoltaic (PV) power plant, and electric 
vehicle charging station (EVCS) to node 9. A reinforcement 
learning agent is employed to generate scheduling strategies 
for controlling the active and reactive power output of the 
BESS. The agent makes decisions based on environmental 
state information, which encompasses grid voltage, 
photovoltaic power generation, and electric vehicle charging 
load. 
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Fig. 2 Battery energy storage system to mitigate the 
uncertainty of renewable energy and electric vehicle charging 
station structure framework. 

2.2 Methods and models 

2.2.1Profit maximization modelling of BESS 
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Equation (1) is the objective function, which represents the 
profit of the battery energy storage system in the whole 
simulation cycle. Here tR  represents the profit of the battery 
energy storage system at time t , which can be determined by 
Equation (2). In Equation (2), B

tP  and EV
tP  represent the 

BESS output power and EVCS load, respectively. t  and t  
represent the electricity market price and the electric vehicle 
charging price respectively. B

tC  and t  represent the 
degradation cost of the BESS and simulation step size, 
respectively. 
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Equations (3-5) are the constraints of the problem. Equation (3) 
is the network voltage constraint, where ,k tV  represents the 

voltage at time t  of the k  node. bU  and bL  are the upper 
and lower voltage boundaries, respectively. Equation (4) is the 
constraint condition of the state of charge of the battery energy 
storage system. tSOC  indicates the state of charge of the 

battery energy storage system at time t . maxSOC  and 

minSOC  represent the maximum and minimum SOC of the 
BESS, respectively. Equation (5) represents the SOC updating 
process of BESS. ch  and dis  represent charging efficiency 

and discharge efficiency respectively. BESSE  represents the 
capacity of the battery energy storage system. 

2.2.2 BESS degradation model 
The rain-flow counting method is employed in this study to 
compute the battery degradation cost. This method simplifies 
the complex load process into several simple load cycles, 
which are then used to estimate the fatigue life. Specifically, 
the rain-flow counting method is utilized to determine the 
cycle number, cycle depth, and cycle average state of charge 
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(SOC) of the battery energy storage system (BESS) within one 
simulation cycle. 
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Equation (6) calculates the equivalent number of full cycles 
under the c  cycle condition. NDC is normalized discharge 
capacity. When the capacity of the battery energy storage 
system degrades to the NDC value, it is considered that the 
battery needs to be replaced. In Equation (7), cSOC  and 

,mean cSOC  are respectively the cycle depth and cycle average 
calculated by the rain-flow counting method. Equation (8) is 
the degradation cost of energy storage battery in a complete 
simulation cycle. Where priceC  is the unit price of the battery 
energy storage system. Equation (9) is the degradation 
coefficient of the battery energy storage system, which is 
obtained by dividing the degradation cost by the absolute value 
of the charging and discharging power. Equation (10) is the 
degradation cost of one simulation step of the battery energy 
storage system. The degradation cost of a simulation step of 
the battery energy storage system can be obtained by 
calculating Equations (6-10). 

2.2.3 Transform the research problem into a Markov decision 
process 
Since the reinforcement learning algorithm based on Markov 
decision process can not directly solve the mathematical model 
of the problem studied, it is necessary to transform the problem 
into Markov decision process. 

max min, , , , , ,PV EV
t t t t t t t ts SOC P P V V  (11) 

Equation (11) presents the system state output by the 
environment. Where max

tV  and min
tV  represent the highest 

and lowest voltages of all nodes in the power network. 
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Equation (12) is the indication of whether the battery energy 
storage system violates the constraints. When the executed 
scheduling strategies violates the constraint, Isdone is 
triggered to end the training. Where B

tP  and B
tQ  represent 

the active and reactive power output of the battery energy 
storage system respectively. BS  indicates the maximum 
apparent power of the battery energy storage system. 
Equation (13) is a rewrite of Equation (2) in order to make the 
objective function more suitable for reinforcement learning 
algorithm training. By comparing Equations (2) and (13), it 
can be found that when Isdone is not triggered, a reward will 
be added, and when Isdone is triggered, it will be punished 
once and the current round of training will end. In Equation 
(13), r  and pr  are the extra reward obtained by completing
one simulation step and the penalty for violating the constraint, 
respectively. After transformation, Equations (11-13) can be 
solved by reinforcement learning algorithm. 
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2.2.4 Reinforcement learning algorithm and its sensitivity 
analysis and economic analysis index 
In this paper, the TD3 algorithm of reinforcement learning 
algorithm will be used to solve the model. TD3 algorithm is a 
reinforcement learning algorithm based on Actor-Critic model. 
The action space of the algorithm is continuous, so the 
scheduling strategy formulated is more delicate. 
Reinforcement learning algorithm has the function of offline 
training and online execution, so it can realize real-time output 
scheduling strategy. In the online execution stage, there may 
be a violation of constraints, and corresponding 
countermeasures will be made when there is a violation of 
constraints. 
Fig. 3 shows the response plan for constraint violation in the 
real-time scheduling stage. The main steps are as follows: 
1) The scheduling strategies B

tP  and B
tQ  output by the 

TD3 algorithm are loaded, and then the power flow is 
calculated. 

2) Determine whether the condition of Equation (12) is
satisfied. If it is satisfied, output the result directly;
otherwise, proceed to the following steps.
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3) When the SOC of BESS violates the constraint, the SOC
is adjusted to the critical value (upper and lower boundary)
by adjusting B

tP . 
4) When the voltage violates the constraint, the voltage is

restored to normal by adjusting B
tQ . 

5) After steps 3) and 4), we can ensure that the SOC of BESS
and grid voltage are within the appropriate range. In order

to ensure that constraint 
2 2 2B B B

t tP Q S  is 

satisfied, backup power is introduced if necessary. The 
backup power supply can be used to measure the 
robustness of the algorithm. 
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Equations (14-16) can be used to measure the sensitivity of the 
algorithm. Equation (14) is the absolute value of the 
summation of the use of standby reactive power multiplied by 
the unit time. where back

tQ  represents the amount of standby 
reactive power used at moment t . Equation (15) is the 
adjusted amount of active power, where out

tP  and B
tP  

represent the active power output after the adjustment of Fig. 
3 and the active power output by the reinforcement learning 
scheduling strategy, respectively. Equation (16) is the adjusted 
amount of reactive power, where out

tQ  and B
tQ  represent the 

reactive power output after the adjustment of Fig. 3 and the 
reactive power output by the reinforcement learning 
scheduling strategy, respectively. 
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In order to describe whether the battery energy storage system 
is profitable or not, this paper uses levelized cost of storage 
(LCOS), weighted average cost of capital (WACC), net 
present value (NPV) and internal rate of return (IRR) metrics 
to describe it. In Equation (17) oI is the investment cost. 

where y
BESSC  and y

BESSE  are the O&M cost and total 
discharge of the battery storage system in year y , respectively. 
The IRR index can be obtained by calculating Equations (18-
19), which can measure the risk resistance of the project. 
The simulation model of the battery energy storage system, the 
response strategy for the violation of constraints, the 
sensitivity analysis index and the economic analysis index 
have been introduced in the previous section, and the next will 
be the example analysis of the method. 

3 Results 

3.1 Example of algorithm 
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Fig. 4 PV and EVCS prediction curves and real-time curves 
Fig. 4 illustrates the prediction and real-time curves of the 
photovoltaic (PV) power plant and electric vehicle charging 
station (EVCS). These curves are used for both the offline 
training and online execution phases of the reinforcement 
learning algorithm. The system parameters for the examples 
are presented in Table 1. Fig. 5 displays the real-time and retail 
electricity prices in the electricity market. The retail price of 
electricity in this figure includes both the price for demand 
response participation and the price for non-demand response 
participation. Furthermore, Fig. 6 shows the EVCS load 
corresponding to different retail electricity prices. A 
comparison between Figures 5 and 6 reveal that the load is low 
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when the electricity price is high and high when the electricity 
price is low. 
Table 1 System Parameters 

Parameters Value 
O&M 2920 £/MW-yr 
NDC 80% 

PV installed capacity 4 MW
BESS installed capacity 6 MWh

BESS maximum discharge 
power 4 MVA 

t 15 min 
Battery unit price 150 £/kWh 

Charging and discharging 
efficiency 95% 

Electricity market real-time price of electricity
Not participating in demand response retail pricing
Participate in demand response retail pricing
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Fig. 5 Electricity market real-time price and retail electricity 
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Fig. 6 EVCS load corresponding to different retail electricity 
prices 

3.2 Simulation and analysis of examples 

Fig. 7 EVCS participates in demand response TD3 algorithm 
scheduling results 
Fig. 7 shows the results of TD3 dispatch when EVCS 
participates in demand response, and from Fig. 7(b-c), it can 
be found that both the grid voltage and the SOC of BESS can 
be limited to a reasonable range. Fig. 7(d) shows the output 
power of EVCS, BESS and PV together. From the figure, it 
can be found that the power curve shifts after the BESS is 
installed. Observing Fig. 7(a), it is found that the active power 
output from BESS is charged when the real-time electricity 
price in the electricity market is low and discharged when the 
price is high. Fig. 8 shows the results for EVCS without 
demand response. The price of electricity without demand 
response is unchanged, so BESS discharges when EVCS load 
is high and charges when EVCS load is low. 

Fig. 8 EVCS does not participate in demand response TD3 
algorithm scheduling results 
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Fig. 9 Active and reactive power adjustment amount 
The maximum EV load error in this paper is set at MAPE of 
18.55%, and the square root of the PV prediction error divided 
by the maximum value of the installed capacity parameter of 
PV is 10.4%. The prediction errors in Fig. 9 (a-b) increase 
gradually from left to right and from bottom to top. Fig. 9 
corresponds to Equation (15) and (16), respectively, where cP
and cQ  increase as the prediction error increases. Since no 
standby reactive power is used in the adjustment process, 
equation (14) is always zero. This indicates that the strategy of 
reinforcement learning scheduling does not need to use 
standby reactive power after processing in Fig. 3. Since there 
is reactive power adjustment, the voltage can be easily 
stabilized within the set range. This makes the active 
scheduling strategy tend to be a more economical one, and the 
economics of BESS is presented next. 

Table 2 BESS profit and cost for TD3 algorithm scheduling 
Demand 

Response/£ 
Charging 

cost 
Degradation 

costs O&M Profits 

Participate 368.22 190.27 42 147.83 
Non-

participation 306.48 144.32 42 150.04 

Table 2 depicts the cost and profit of the BESS scheduled by 
the TD3 algorithm. The table shows that the profit of 
participating in demand response is slightly lower than the 
profit of not participating in demand response, because EVCS 
participating in demand response charge when the electricity 
price is low thus reducing the dependence on BESS. After 
Equations (17-19), the values of IRR index were obtained as 
11.78% and 12.29% for EVCS participating in demand 
response and not participating in demand response, 
respectively. 

4 Conclusion 

This paper focuses on the utilization of reinforcement learning 
algorithms to schedule battery energy storage systems (BESS) 
in order to address the uncertainty and stochastic nature of 
photovoltaic (PV) generation and electric vehicle charging 
station (EVCS) loads in the grid. The BESS is carefully 
modeled, and an economic and sensitivity analysis is 
conducted. The findings suggest that by employing the TD3 
algorithm scheduling and the proposed coping strategies, the 
BESS can achieve profitability and robustness in the grid. 
Considering active and reactive power scheduling is helpful to 

stabilize voltage and improve robustness, especially the effect 
of reactive power on voltage. The internal rate of return (IRR) 
index for the BESS, scheduled by the TD3 algorithm, is 
determined to be 11.78% and 12.29% for EVCS participating 
and non-participating demand response, respectively. 
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