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ABSTRACT 

 

Sound propagation in an acoustic waveguide is examined using a hybrid numerical technique.  

Here, the waveguide is assumed to be infinite in length with an arbitrary but uniform cross-

section.  Placed centrally within the guide is a short component section with an irregular, non-

uniform, shape.  The hybrid method utilises a wave based modal solution for a uniform section 

of the guide and, using either a mode matching or point collocation approach, matches this to a 

standard finite element based solution for the component section.  Thus, one needs only to 

generate a transverse finite element mesh in uniform sections of the waveguide and this 

significantly reduces the number of degrees of freedom required.  Moreover, utilising a wave 

based solution removes the need to numerically enforce a non-reflecting boundary condition at 

infinity using a necessarily finite mesh, which is often encountered in studies that use only the 

standard finite element method.  Accordingly, the component transmission loss may readily be 

computed and predictions are presented here for three examples: an expansion chamber, a 

converging-diverging duct and a circular cylinder.  Good agreement with analytic models is 

observed, and transmission loss predictions are also presented for multi-mode incident and 

transmitted sound fields. 
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I.  INTRODUCTION 

 

The study of non-uniform obstructions in an otherwise uniform waveguide is of fundamental 

interest and it is not surprising that this subject has received extensive attention in literature.  

Applications are many, including underwater sound propagation, the transmission of elastic and 

electromagnetic waves, and sound propagation in ducts or pipes.  It is common in these 

applications for relatively long uniform sections to be present, which are punctuated by relatively 

short area changes and/or non-uniform obstacles.  This article is concerned with the application 

of a general numerical method suitable for examining sound propagation in uniform acoustic 

waveguides of arbitrary cross-section that contain one or more non-uniform obstacles, or area-

changes, placed centrally within the guide. 

 

The method presented here will focus on sound propagation in ductwork and so is applicable to 

rectangular ventilation ducts but also to circular and oval ductwork.  The key challenge here is to 

model accurately the scattering of sound waves from non-uniform area discontinuities in 

relatively large ductwork.  Of course, the study of sound scattering from area discontinuities goes 

back to Rayleigh, although traditionally it has been possible only to examine relatively simple 

non-uniform geometries with modest dimensions.  More recent examples include Miles
1
, and 

Selamet and Easwaran
2
, who examined plane wave propagation in variable area ducts; and 

Boström
3
 who used analytic techniques to study scattering by spherical and spheroidal obstacles 

in a duct.  Boström examined ducts of arbitrary cross-section but noted that tractable solutions 

were possible only for a limited range of geometries.  The study of sound scattering from 

obstacles has also received extensive attention in the location of so-called trapped modes, see for 
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example Refs. 4-7.  Trapped modes are acoustic resonances near obstacles in ducts and have 

been found to exist for a number of geometries including parallel plates, rectangular 

obstructions, cylinders, and ball-type valves.  The study of trapped modes is, however, largely 

based on analytic work and, whilst some relatively complicated obstructions have been 

examined, these techniques are not readily applicable to more complex non-uniform area 

changes and/or ducts of arbitrary cross-section.   

 

The study of sound propagation over a fully arbitrary area change will inevitably require 

numerical methods that can cope with irregular geometries and/or step changes in boundary 

conditions.  Suitable numerical methods include the standard finite element method (FEM) and 

the boundary element method (BEM).  For example, Tang and Lau
8
, and later Lau and Tang

9
, 

used the standard FEM to study tapered and convergent-divergent sections in rectangular ducts, 

although both studies required a large number of degrees of freedom in order to obtain a 

converged solution.  Jeong et al.
10

 reviewed the application of the BEM in rectangular ductwork 

and demonstrated that by discretising the duct into multiple domains one may generate an 

efficient BEM algorithm that may be applied to larger ductwork.  However, area changes were 

not examined by Jeong et al.
10

 and it is evident that, even for relatively low frequencies, a large 

number of degrees of freedom were still required.   In principle, numerical methods may be 

applied to a wide range of sound propagation problems; however, a problem that plagues 

numerical methods is the computational time required to obtain solutions, especially if one 

wishes to cover a representative frequency range for large ducts such as those commonly found 

in ventilation systems.  Here, the FEM normally finds favour over the BEM because 

discretisation delivers a banded symmetric matrix
10,11

, although even the FEM requires a large 
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number of degrees of freedom to study relatively simple problems.  For example, Lau and Tang
9
 

used a very fine mesh to study a converging-diverging duct, which has the potential to severely 

limit the upper frequency of the analysis as the size of the problem becomes unmanageable.  A 

further, and arguably more fundamental, problem with numerical methods is the specification of 

the terminating (downstream) axial boundary condition.  When studying infinite waveguides, 

this boundary condition should be anechoic, but problems arise when attempting to specify a 

boundary condition at infinity using a necessarily finite grid.  Of course, for plane wave 

propagation one may easily represent an anechoic termination by setting the impedance of the 

downstream boundary to be equal to the characteristic impedance of the fluid in the duct, and 

this has been applied by many authors (see Refs. 9-12).  However, for larger ventilation ducts, 

higher order modes may propagate at relatively low frequencies and this plane wave boundary 

condition is no longer appropriate.  To overcome this Lau and Tang
9
 specify absorptive walls in 

the downstream section of their duct so that higher order modes are numerically damped down 

before reaching the (plane wave) terminating condition.  Other methods may also be used, for 

example a “perfectly matched layer” or a high-order local non-reflecting boundary condition, see 

Givoli
13

.  These various non-reflecting boundary conditions have been shown to work well under 

certain conditions; however, these methods can be computationally expensive and may only ever 

provide an approximation to the desired terminating boundary condition. 

 

An alternative numerically efficient approach is to retain a modal analysis for the uniform 

section and to match, or join, this analysis to a standard finite element representation for the 

component section.  In this way, complex non-uniform sections may be studied as efficiently as 

possible, and so it is not surprising that this type of “hybrid” approach has been applied to a wide 
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range of problems in the literature.  For example, in the study of elastic waveguides, Mal and 

Chang
14

 used a hybrid method to enforce continuity conditions over discrete nodal locations that 

are common to the boundary between the uniform and non-uniform regions. Liu et al.
15

 also 

studied elastic waveguides but matched a finite element representation of an interior region to a 

Green’s function integral representation of the exterior region.  Other examples include Refs. 16-

18, whereby the continuity conditions over the interface between two regions in electromagnetic 

waveguide are enforced using mode matching (MM).  In acoustics, the application of the method 

is arguably less widespread and examples tend to favour exterior problems.  For example, 

Kagawa et al.
19

 used the FEM to analyse an interior problem and then applied MM to “join” this 

solution to a Green’s function representation of the exterior acoustic far-field.  Astley and 

Cummings
20

 also used MM but they analysed sound radiation from a vibrating ventilation duct 

wall, using finite elements to discretise the exterior acoustic near field before coupling this to an 

eigenexpansion of the acoustic far field.  A similar approach was also adopted by Imhof
21

, who 

studied both acoustic and elastic waveguides.  A review of the application of a hybrid method to 

acoustic problems is discussed by Astley
22

, and here a close relationship between the finite 

element Dirichlet-to-Neumann (FE-DtN) and hybrid methods is demonstrated, provided one uses 

MM to enforce continuity conditions between the uniform and non-uniform sections.  

Furthermore, Astley
22

 applied this hybrid method to the study of interior as well as exterior 

acoustic problems, and for the interior problem sound propagation is modelled in a simple 

diverging duct, although results were reported only for the exterior problem.  Results for a 

similar interior problem were, however, reported in an earlier paper by Astley and Eversman
23

, 

who analysed sound attenuation in a cosine tapered converging duct with mean flow and a 

locally reacting liner. 
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Clearly, a hybrid numerical method is well suited to analysing sound propagation in interior 

problems such as ventilation ducts.  Accordingly, this article will focus on applying the method 

of Astley
22

 to the analysis of uniform ducts of arbitrary cross-section that include relatively 

complex component sections.  Of interest here will be the relative convergence and accuracy of 

the method when compared to analytic results.  This paper will also compare two different 

methods of enforcing the continuity conditions between the uniform and non-uniform sections, 

namely the MM method of Astley
22

 and a point collocation (PC) approach similar to the one 

described by Kirby and Lawrie.
24

  Accordingly, this article beings by outlining the governing 

equations for the problem, before describing the MM and PC methods; results are then presented 

for sound propagation in a duct containing an expansion chamber, a converging-diverging duct, 

and a cylinder. 
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II.  THEORY 

 

The duct geometry to be analysed consists of three separate regions, as shown in Fig. 1.  The 

inlet duct is denoted region R1, and this is assumed to have a uniform but arbitrary cross-section.  

The inlet duct abuts onto a general arbitrarily shaped “component” section, which is denoted 

region R2.  Finally, the component section abuts onto the outlet duct, region R3, which is assumed 

to have a uniform, but arbitrary, cross-section.  In principle each region may be bounded by 

acoustically soft walls and/or wave bearing walls; moreover, each section may contain more than 

one (equivalent) fluid, for example, a porous material.  Separating the three regions are two 

planes, A and B, which lie perpendicular to regions R1 and R3, respectively.  Here, the convective 

effects of mean flow may readily be added to the analysis, although the component section is 

likely to generate free shear layers downstream of an area discontinuity.  Hydrodynamic modes 

may then be present and it is likely that this will introduce further numerical complications when 

matching over plane B downstream of an area discontinuity.  Furthermore, accommodating non-

uniform geometries in the component section will also require a detailed knowledge of the flow 

patterns.  As these issues are likely to complicate the analysis and detract from the main focus of 

this paper, mean flow is omitted from the analysis that follows. 

 

Sound propagation in region q ( 3or  ,2 ,1=q ) of the duct shown in Fig. 1 is governed by the 

acoustic wave equation 
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where qc  is the speed of sound, qp′  is the acoustic pressure, and t is time.  The solution of this 

equation proceeds by using a method that is the most appropriate for the geometry in each 

region.  Accordingly, the uniform geometry of regions R1 and R3 encourage a modal analysis and 

so the acoustic pressure is expanded as an infinite sum over the eigenmodes in each region.  For 

the duct component, provision is made for a complicated non-uniform shape.  Here, the wave 

equation is solved using the finite element method. 

 

For regions R1 and R3, expansion of the sound pressure field, assuming a time dependence of t
e

ωi  

(where 1i −=  and ω  is the radian frequency), yields 
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Here, Fn, An, Bj, and Cj are the modal amplitudes, qq ck ω= , λ  is the (dimensionless) 

wavenumber in region R1, and γ  is the (dimensionless) wavenumber in region R3.  The 

quantities ),( zynΦ  and ),( zyjΨ  are the transverse duct eigenfunctions in regions R1 and R3, 

respectively.  In the analysis that follows it is assumed that regions R1 and R3 have an arbitrary 

cross-section and so the eigenvalues and eigenvectors in regions R1 and R3 are found using the 

FEM.
25

  The incident sound pressure field in region R1 is assumed to be multi-modal, which 
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requires knowledge of the modal amplitudes in the incident sound field.  Here, equal modal 

energy density (EMED) is assumed for all propagating modes, as this is thought to best represent 

the sound field emanating from a fan in a ventilation system (see Kirby and Lawrie
24

).  This 

choice may, however, readily be changed to include other relationships between the modal 

amplitude such as those discussed by Kirby and Lawrie, or by utilising Green’s functions to 

replicate a point source.  For EMED, this yields 
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where 0p  is a reference pressure chosen here, arbitrarily, to be equal to unity.  The number of 

modes propagating in region R1 is denoted by Fn  (for modes that are “cut-off”, 0=F ) and 

∫
Γ

Φ=

A

dydzzyI nn

2
),( , where AΓ  denotes the surface of R2 that lies on plane A. 

 

For region R2 the acoustic pressure is approximated by 
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where jN  is a global trial (or shape) function for the finite element mesh, 
j

p2  is the value of the 

acoustic pressure at node j, and n2 is the number of nodes (or degrees of freedom) in region R2.  

Expressing Eq. (5) in vector form yields 
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A weighted residual statement of the wave equation may now be formulated and, after 

application of Green’s theorem, this yields 
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Here, 2Ω  and 2Γ  denote the volume and the outer surface of region R2, respectively, and 2n is 

the outward unit normal vector for the surface of region 2.  In order to simplify the presentation 

of the method, Eq. (7) assumes that a single homogenous fluid is present in region R2; however, 

more than one fluid may readily be added simply by changing the wavenumber and writing a 

separate equation for each fluid.  It is convenient here to separate planes A and B from the 

surface integral on the right hand side of Eq. (7) and to write 
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where AΓ  and BΓ  denote the surface of R2 that lies on planes A and B, respectively, and eΓ  is the 

surface of region R2 that does not lie on AΓ  and BΓ .  Here, qn  is the outward unit normal vector 

over surface q. 

  The analysis proceeds by enforcing continuity of acoustic pressure and axial velocity over 

surfaces AΓ  and BΓ .  Two different approaches to enforce these continuity conditions are 

examined here: the MM method of Astley
22

, and the PC method of Kirby and Lawrie
24

.  For the 
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MM method the number of modes utilised in regions R1 and R3 does not necessarily have to 

equal the number of nodes on AΓ  and BΓ , whereas the number of collocation points should equal 

the number of nodes on AΓ  and BΓ .  Therefore, one would expect MM to be the more efficient 

of the two methods, although for interior problems it is likely that the number of nodes on AΓ  

and BΓ  will be significantly smaller than the total number of nodes used to mesh region R2.  

Hence, for interior problems the potential reduction in problem size afforded by the MM method 

is likely to be limited when compared to the PC method.  However, Astley
22

 notes that, provided 

one uses an appropriate weighting function, the MM method is capable of delivering a 

symmetric stiffness matrix, which is not the case for PC.  Thus, the MM method will be faster 

than the PC method; however the point collocation method is retained here in order to provide an 

alternative method that may prove useful, at least as a benchmark for the MM method. 

 

The application of the continuity conditions and the solution of the problem will be covered in 

the next two sections.  On solving the problem, the sound transmission loss (TL) of the 

component section is readily calculated from the ratio of the transmitted to incident sound 

powers, which yields 
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where ∫
Γ

Ψ=

B

dydzzyH mm

2
),( , Bn  is the number of modes cut on in region R3, and qρ  is the 

density of the fluid is region q. 
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A. Mode matching 

The MM method relies on weighting the appropriate continuity conditions and then integrating 

over AΓ  and BΓ .  Accordingly, making use of Eqs. (2) and (3) allows continuity of pressure and 

velocity over AΓ  to be written as 
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Similarly, over BΓ  
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Here, L is the axial distance between AΓ  and BΓ , and qq ρρβ 2= .  To obtain a solution, it is 

necessary to ascribe boundary conditions to the outer surface of the problem domain.  Here, 

complex boundary conditions such as acoustically soft or wave-bearing walls may be applied; 

however, in order to validate the method against analytic results the analysis that follows will 

assume that all outer duct surfaces are acoustically hard.  Thus, for eΓ , 02 =⋅′∇ ep n , and for 

regions R1 and R3 the problem reduces to computing the eigenvalues and eigenvectors in a hard 

walled duct of arbitrary cross section.  In addition, a non-reflecting boundary condition is 

specified in region R3 by setting Cj equal to zero.  The velocity matching conditions, given by 
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Eqs. (11) and (13), may now substituted into Eq. (8), which yields (after dropping the 

summations for clarity) 
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The MM method of Astley
22

 proceeds by weighting each pressure condition using the incident 

velocity in the axial direction in region R1 (or region R3) and then integrating over AΓ  (or BΓ ).  

Thus, for AΓ  Eq. (10) yields 
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and for BΓ , Eq. (12) yields 

 

{ } { }BBmmnBnmm

BB

dikBdik 23333 pN












ΓΨ=












ΓΨΨ ∫∫
ΓΓ

γβγβ . (16) 

 

Here, the summation signs have again been dropped for clarity, and on use of Eq. (6), vectors 

A2p  and B2p  hold values of the finite element solution in region R2 at the nodal locations on the 

surfaces AΓ  and BΓ , respectively.  Finally, before solving it is necessary first to truncate the 

infinite sums, and here 1m  and 3m  will denote the number of modes assumed to be present in 

regions R1 and R3, respectively.  It is then convenient to re-write the problem in matrix form, 

where 
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In addition,  
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Equations (7), (15), and (16) may now be written in matrix form: 
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To combine all three equations, matrix G  is decomposed into separate elements to give 
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where matrix mnG  has order nm nn × .  Here, 1n  and 3n  denote the number of nodes on AΓ  and 

BΓ , respectively (where 11 nm ≤  and 33 nm ≤ ); 2n  is the number of nodes in region R2; and en  is 

the number of nodes that lie in region 2 but do not lie on AΓ  and BΓ  (so that 312 nnnne −−= ).  

The values for pressure at those nodes in region R2 that do not lie on AΓ  and BΓ  are held in 

matrix e2p .  The problem may now be written as 

 

 























=













































−

−

0

0

0

Q

M

B

p

p

p

A

MR000

RGGG0

0GGG0

0GGGQ

000QM

T

B

e

A

T

e

eeee

e

T ~

~
1

2

2

2

2

33331

31

13111

1

. (28) 

 

Equation (28) consists of )( 321 mnmnT ++=  simultaneous equations, which are solved to give 

the unknown modal amplitudes and pressures.  The values for B  may then be substituted into 

Eq. (9) in order to calculate the TL of the component section.  Note that, provided the nodes in 

the finite element mesh are numbered correctly, Eq. (28) delivers a banded matrix that is also 

symmetrical (a result of the weighting function chosen when enforcing the pressure conditions).  

A further advantage of this MM approach is that one may choose 11 nm <<  (and/or 33 nm << ) so 

that the size of the problem is reduced, although for interior problems it is unlikely that this will 

significantly reduce the value for Tn , since normally 312  , nnn >> . 

 

B. Point collocation 

In this section, matching conditions are enforced using the PC method described by Kirby and 

Lawrie
24

.  This involves matching over discrete points on AΓ  and BΓ .  Here, the points chosen in 
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adjacent regions must be identical, and so the number and location of the nodes generated in the 

eigensolution for the uniform duct sections must coincide with the location and number of the 

nodes generated in the finite element discretisation process for AΓ  and BΓ .  This also requires 

that the number of modes used in the expansion of the sound pressure fields in regions R1 and R3 

must also equal the number of collocation points on AΓ  and BΓ , respectively.  Moreover, 

satisfying the velocity matching conditions at discrete points, rather than in the integral sense, 

means that the surface integrals in Eq. (8) are not carried out in the normal way; instead they are 

removed from Eq. (8) and enforced separately.  Thus, after applying the boundary conditions 

listed in the MM approach, the velocity matching conditions may be written as 
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Here, vectors Φ  and Ψ  hold values of the duct eigenfunctions at nodal locations equivalent to 

those chosen for the finite element mesh in region R2, but in regions R1 and R3, respectively.  

Similarly, the pressure matching conditions give 
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A requirement of the collocation approach is that all of the eigensolutions obtained for regions R1 

and R3 are used when enforcing Eqs. (29)-(32).  These eigensolutions deliver a set of eigenmodes 

for which only about 20% are accurate; however, this does not cause any difficulties provided 

one uses a sufficient number of accurate eigenmodes to obtain a converged solution for the 

sound pressure field at each node.  This issue is discussed in detail by Kirby and Lawrie
24

 but 

will also be reviewed here in the following section, in which PC predictions will be compared 

with MM predictions (that may use only “accurate” eigensolutions).  The problem may finally be 

written as 
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Equation (33) consists of )( 321 nnnnT ++=  simultaneous equations, which are solved to give the 

unknown modal amplitudes and pressures.  Note that Eq. (33) delivers a banded matrix, but this 

matrix is not symmetric.  Note also that, when solving Eq. (33), it is necessary to multiply each 

of the terms that appear in Eqs. (31) and (32) by a scaling factor in order to enforce these 

equations in the final matrix (in the examples that follow 10101×  is used). 
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III.  RESULTS AND DISCUSSION 

 

The methodology outlined in the previous section is validated here by comparison, where 

possible, with analytic predictions.  Accordingly, this section begins by comparing predictions 

against analytic solutions for a simple expansion chamber and then proceeds to examine a 

converging-diverging duct.  Finally, predictions are presented for a cylinder with a circular 

cross-section.  In each case, a regular (circular or rectangular) geometry is chosen for regions R1 

and R3, and a symmetric component section is also chosen.  This allows for a reduction in the 

problem to two dimensions, which facilitates comparison with analytic theory and also results 

presented in the literature.  In addition, where air is present, the speed of sound is taken to be 

m/s 2244.3430 =c ; 031 ckk ω== , and 131 == ββ .  For the finite element discretisation, a 

mesh consisting of either eight noded quadrilateral or six noded triangular isoparametric 

elements is used.  Furthermore, it is normally accepted that at least seven to ten nodes per 

wavelength are required in order to achieve reasonable accuracy when using the FEM.  

Accordingly, for all the results that follow, at least seven nodes per wavelength have been used 

in the axial and radial directions. 

 

A. Expansion chamber 

The acoustic performance of an empty expansion chamber is well understood, and so provides a 

convenient example with which to begin validation of both methods.  It is assumed here that the 

expansion chamber contains only air and has a circular cross-section of radius r2; the inlet/outlet 

ducts are also assumed to be circular, both with radius r1.  After drawing a line of symmetry, the 

problem may be represented, as shown in Figs. 2(a) and 2(b).  Here, two separate figures have 
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been drawn in order to show that the position of planes A and B is arbitrary, provided that they 

pass through the inlet and outlet pipes.  Clearly, one may extend region R2 well into the inlet and 

outlet ducts, although this will be computationally more expensive since extra elements are 

required.  In view of the arbitrary position of planes A and B, predictions are presented here for 

different locations and the convergence of each model is investigated in order first to arrive at an 

optimum approach.  Accordingly, a representative expansion chamber is chosen here, with 

cm 371 =r , cm 2.762 =r  and cm 315=L .  In Fig. 3, TL predictions are presented for the MM 

(with 11 nm = , and 33 nm = ) and PC methods, with and without mesh extensions.  Here, the mesh 

extensions in the inlet and outlet ducts are assumed to be one element deep (in the x direction), 

but may contain more than one element in the radial direction, see Fig. 2(b).  Note that, for a 

simple area discontinuity, a modal expansion of the sound pressure field away from the 

discontinuity must deliver the same solution as that obtained using additional finite elements.  

Accordingly, there is nothing to be gained from adding additional elements to the mesh 

extensions, at least for the simple area discontinuities such as those found in this example. 

 

In Fig. 3, TL predictions using MM and PC are shown at frequencies of 300 and 3240 Hz.  Here, 

problems with convergence are clearly evident in the PC approach, but only when no mesh 

extensions are in place (note that the MM solutions with and without extensions are identical to 

at least 10 decimal places).  The discrepancy between the two methods is likely to be caused by 

difficulties in enforcing the matching conditions at individual nodes over AΓ  and BΓ  when no 

extensions are present in the collocation method.  At this corner, acoustic scattering will be 

pronounced and it is likely that a relatively large number of evanescent modes will be required 

when using a Fourier series to represent the pressure and velocity fields in R1 and R3.  This is 
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likely to cause relatively slow rates of convergence, as seen for the PC method in Fig. 3 when no 

mesh extensions are present.  This trend has also been observed at other frequencies and for 

other chamber geometries (not shown here).  In contrast, a more convergent system of equations 

is apparent when using mesh extensions since those evanescent modes at the silencer edge do not 

influence the sound pressure field away from the edge.  It is noticeable, however, that if one uses 

average values by integrating over the cross-section, these problems disappear and the MM 

approach is seen to converge very quickly, even when no mesh extensions are present.  Clearly, 

the MM approach is the more convergent of the two methods, at least in terms of computing 

component TL. 

 

In view of the improved efficiency of the MM method all future results reported here will be 

obtained using this method.  It is of interest then to examine the potential savings that may be 

realised by setting 11 nm < , and 33 nm < .  In Table I, TL values obtained using the MM method 

are compared for the expansion chamber at frequencies of 300 and 3240 Hz.  Here, the value of 

)( 31 mm =  is systematically increased up to 311 nnm ==  for a relatively dense finite element 

mesh ( 27352 =n ).  It is evident in Table I that at low frequencies convergence is very fast and 

one needs only to include one or perhaps two modes in the calculations.  It is not surprising, 

however, that as the frequency is increased more modes are necessary and at 3240 Hz at least 

seven modes are required in order to achieve comparable levels of accuracy.  Therefore, when 

using this hybrid approach it would appear to be sensible, at least at higher frequencies, to 

properly examine solution convergence before reducing values of 1m  and 3m .  Alternatively, 

given that 1m  is normally a lot less than 2n , the potential savings from setting 11 nm <  are likely 

to be small, and so it is convenient simply to set 11 nm =  and 33 nm =  when solving the problem.  
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In view of this, all the TL computations that follow are computed with 11 nm =  and 33 nm = , and 

convergence is examined by modifying 2n . 

 

Transmission loss predictions for the expansion chamber are presented in Fig. 4.  These 

predictions are compared with a plane wave analytic solution and an analytic MM solution that 

includes higher order modes.  For purposes of comparison, the TL is plotted against a modified 

Helmholtz number ck , where 01  8317.32 cfrkc π= , so that a value of 1=ck  represents the value 

at which higher order modes are “cut-on” in regions R1 and R3.  For this expansion chamber, 

1=ck  equates to a frequency of 5657 Hz and a wavelength of 164.1 r=λ  m.  In Fig. 4 the hybrid 

method overlays the analytic MM solution over virtually the entire frequency range, and very 

good agreement with the plane wave model is also observed at lower frequencies, as one would 

expect.  Moreover, the results plotted here have been obtained with a relatively modest number 

of degrees of freedom, especially at lower frequencies ( 75=Tn  up to 1.0=ck , rising to 

1127=Tn  at 1=ck ).  Of course, one would not consider using this technique to design 

expansion chambers, as analytic techniques would be much faster; however, the results for the 

expansion chamber clearly demonstrate the efficacy of the hybrid method for interior problems 

and this will now be investigated further by examining non-uniform geometries. 

 

B. Converging-Diverging duct 

A simple non-uniform geometry that is often found in the ductwork is the converging-diverging 

duct.  For example, Selamet and Easwaran
2
 studied the so-called Herschel-Venturi tube, which 

has a circular cross-section and is used in flow measurements; Lau and Tang
9
 studied 

constrictions that are often found in a rectangular ventilation duct.  To accommodate both 
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rectangular and circular geometries a representative convergent-divergent duct geometry is 

shown in Fig. 5.  This assumes that a line of symmetry may be drawn through both geometries, 

remembering that for the circular geometry the solution must be integrated over the circular 

cross-section in the normal way.  A well-known analytic solution exists for the circular Herschel-

Venturi tube
2
, which permits direct comparison with the current method.  Accordingly, in Fig. 6 

the hybrid method is compared with analytic predictions for values of the modified Helmholtz 

number ck  up to unity.  Here, two of the geometries studied by Selamet and Easwaran
2
 are 

examined, and for each example cm 859.42 1 =r  and 2rL = ; the other dimensions are (a) 

12 5.0 rr = , cm 554.6=cL , and cm 534.18=dL  and (b) 12 25.0 rr = , cm 831.9=cL , and 

cm 8.27=dL .  In addition, when ,2.0≤ck  243=Tn ; ,5.02.0 ≤< ck  655=Tn ; and 

,15.0 ≤< ck  1021=Tn .  Here, 1=ck  equates to an upper frequency limit of 8614 Hz, and 

164.1 r=λ  m.  Good agreement between the numerical and analytic solutions is observed in Fig. 

6 for values up to 1=ck , further validating the approach. 

 

Lau and Tang
9
 examined a converging-diverging restriction in a rectangular ventilation duct, 

which is much larger than the Herschel-Venturi tube studied by Selamet and Easwaran
2
.  

Accordingly, to cover a relevant frequency range, say up to 1 kHz, it is necessary to go to a much 

higher modified Helmholtz number and this requires the inclusion of higher order modes in the 

inlet and outlet ducts.  A significant advantage of the hybrid method is that specifying a non-

reflecting boundary is trivial when higher order modes are present, and it is also straightforward 

to quantify the true sound power propagating in region R3.  In Fig. 7, TL predictions for three of 

the rectangular convergent-divergent sections studied by Lau and Tang are plotted against a 
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modified Helmholtz number,  2 01 cfrkr =  (so that higher order modes in R3 cut on at 

∞= 1,2,..n ,rnk ).  Here, when ,1≤rk  179=Tn ; ,21 ≤< rk  429=Tn ; and ,32 ≤< rk  667=Tn .  

Also, a value of 3=rk  equates to an upper frequency limit of 1030 Hz and 167.0 r=λ  m.  Note 

that 1r  now represents the half width of the rectangular section in regions R1 and R3, and that 

only those modes symmetric about the centre line of the duct are considered in the analysis.  The 

TL values presented in Fig. 7 generally compare well with Lau and Tang’s predictions
9
 up to 

1=rk , although for case (c) some discrepancies are evident as 1→rk .  TL values for 1>rk  are, 

however, very different from those reported by Lau and Tang and it is noticeable that negative 

values no longer appear.  This is because the hybrid approach includes all modes in the TL 

calculations, rather than examining individual modes.  The TL predictions in Fig. 7 assume that 

plane wave propagation is present in the inlet duct; however, for 1>rk  multi-mode sound 

propagation is also possible in the inlet duct, especially if the noise source is a fan.  Thus, in Fig. 

8 TL predictions are presented for an incident sound field containing EMED,
24

 with the same 

value for nT as used in Fig. 7.  It is evident in Fig. 8 that the TL of the converging-diverging 

section changes significantly if the incident sound field contains higher order modes.  For these 

examples, the TL appears to depend strongly on the respective geometries and frequency of 

excitation and so no characteristic trends are evident.  These results do show, however, that a 

system is likely to behave very differently if driven by a sound source that contains higher order 

modes. 

 

In addition to predicting TL, Lau and Tang
9
 also plotted the sound pressure distribution.  This 

provides a further opportunity for validating the hybrid method and so in Fig. 9 three different 

plots of absolute sound pressure level are presented, which have been chosen to match the 
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Helmholtz number and contraction geometries presented in Fig. 6 of Ref. 9.  A careful 

comparison with Lau and Tang’s results indicates generally good agreement, although it is 

noticeable that for 1=rk  a more resonant response is observed in Fig. 9.  Here, it is possible that 

any discrepancies between the two sets of results are caused by reflections from Lau and Tang’s 

downstream boundary contaminating the pressure field when higher order modes are present.  

 

C. Cylinder 

A classical problem in duct acoustics is sound propagation over a cylinder placed on the 

centreline of a rectangular duct, see for example Duan et al.
7
.  A circular cylinder is examined 

here, which has the geometry shown in Fig. 10.  The MM analysis carried out in the previous 

two sections sought to minimise, as far as possible, the number of degrees of freedom required 

and so planes A and B were located at duct discontinuities.  However, when more complicated 

geometries are present, it is important to ensure that significant distortion within the finite 

elements used to discretise region R2 is avoided in order to minimise numerical errors.  One 

must, therefore, be careful when locating planes A and B, and here these planes are moved a 

distance eL  from the surface of the cylinder in order to minimise element distortion close to the 

cylinder.  The convergence of the TL is then investigated in the same way as before, noting that 

it is essential to use eight noded quadrilateral and/or six noded triangular isoparametric elements 

in order to accurately reproduce the geometry of a semi-circle.  The convergence of the TL for 

12 0.8 rr =  is reviewed in Table II for different values of eL .  Here, the effect of moving planes A 

and B away from the cylinder can be seen in the rate at which the solution converges, although if 

the value of eL  is relatively small then numerical errors appear to inhibit convergence.  From 

Table II, a value of 25.0 rLe =  is generally seen to provide an optimum balance between 
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competing requirements and it is this value for eL  that is used in the TL calculations that follow.  

It should be noted, however, that Table II represents a worst case scenario for those cylinders 

studied here; at lower frequencies (and for plane wave excitation) convergence is normally much 

faster and there is little difference between the TL values when eL  is altered.  Nevertheless, it is 

good practice here to carefully investigate convergence for all complex geometries, noting that 

the rate of convergence will depend on the length of the mesh extension, the geometry of the 

mesh chosen, and the frequency of excitation.  After establishing convergence over a range of 

frequencies, the TL for a circular cylinder with 1112 0.8 and ,0.6 ,4.0 rrrr =  is shown in Fig. 11 for 

multi-mode (EMED) forcing, with 79=Tn  for 1≤rk ; 251=Tn  for 21 ≤< rk ; and 687=Tn  

for 32 ≤< rk .  Here, a value of 3=rk  equates to an upper frequency limit of 1030 Hz and 

167.0 r=λ  m.  In Fig. 11 it is evident that for 1<rk  the TL of the cylinder is relatively small, 

even when 80% of the duct is blocked, although the TL still exhibits the dome like behaviour 

seen for the converging-diverging ducts.  However, when higher order modes propagate, the TL 

is seen to increase significantly and those modes that cut on at 2=rk  and 3=rk  strongly 

influence the sound TL.  

 

In the previous two sections, the TL predictions were partially validated by comparing the hybrid 

method against analytic predictions.  An alternative method for validating the predictions is to 

examine the relative error in the energy balance over the cylinder.  Therefore, if the normalised 

reflected and transmitted sound power are denoted by RefW  and TransW , respectively, then the 

percentage error E∆  in the sound power is given by TransRef1100 WWE −−×=∆ , provided that 

RefW  and TransW  are normalised against the incident sound power.  Values for E∆  may then be 
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computed over the entire frequency range for each cylinder.  Here, for 1<rk , % 10 12−<∆E ; for 

21 <≤ rk , % 001.0<∆E ; and for 32 <≤ rk , % 03.0<∆E .  These values are representative of 

each cylinder studied and also apply (and in most cases are much lower for 1>rk ) to the 

expansion chamber and converging diverging ducts studied previously.  Accordingly, the values 

quoted for E∆  are sufficiently small to provide confidence in the accuracy of the hybrid method 

and in the results presented here. 

 

 

IV.  CONCLUSIONS 

 

A hybrid numerical method that combines a wave based modal solution with a standard finite 

element solution has been reviewed here.  The main advantage of this method is that it avoids the 

need to mesh long uniform sections of ductwork, but at the same time retains the flexibility of 

the FEM so that relatively short but geometrically complex component sections may be modelled 

accurately.  Two different approaches in enforcing the continuity conditions over the interface 

between the uniform and non-uniform sections of the ductwork are analysed: MM and PC.  It is 

observed that the TL predictions obtained using the MM method converge faster than those 

obtained using PC.  Moreover, to ensure good rates of convergence, the PC method requires 

continuity conditions to be enforced away from duct discontinuities in order to avoid corner 

nodes.  Both the PC and MM methods retain a banded matrix, although only the MM technique 

will deliver a symmetrical matrix (provided one chooses an appropriate weighting function when 

enforcing continuity of pressure).  Accordingly, the MM version of the hybrid method is capable 

of retaining all of the benefits of the traditional FEM.  Furthermore, the hybrid method delivers a 
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very straightforward way of calculating the component TL, which includes a computationally 

efficient specification of a non-reflecting boundary condition as well as accommodating higher 

order modes in the inlet and outlet ducts.  This then allows sound propagation to be analysed at 

frequencies above the cut-on frequency of the first higher order mode in the outlet duct as well as 

allowing the introduction of a multi-modal incident sound field. 

 

The hybrid method is validated here by comparing numerical predictions against analytic 

solutions, as well as other results reported in the literature, and good agreement is observed in 

each case.  In order to facilitate the validation of the method, the examples chosen here have 

been deliberately restricted to relatively simple two-dimensional geometries and so this remains 

to be demonstrated for more complex three-dimensional component geometries that include 

inlet/outlet ducts of arbitrary cross-section.  Of course, for fully three-dimensional models one 

may expect the number of degrees of freedom required to achieve a converged solution to grow 

rapidly, but this is true for any numerical model and for most fully three-dimensional shapes one 

is left with little alternative.  The results presented here have been restricted to one component 

section only, although it is relatively straightforward to add further components since the modal 

solution in the outlet duct may readily be used as the incident sound pressure field for another 

component section further downstream.  In this way one can build up a number of (multi-mode) 

transfer matrices and so examine the interaction between different components in, say, a 

ventilation system without worrying about the distance between each component.   Thus, the 

hybrid method has the potential to provide an efficient method with which to study sound 

propagation over complex non-uniform components in a duct and also to study multiple 

components in order to build up a picture of how sound interacts throughout a ducting system. 
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Table I.  Convergence of mode matching approach for 

expansion chamber with plane wave forcing. 

 TL (dB) TL (dB) 

)( 31 mm =  F=300 Hz F=3240 Hz 

1 6.983130 5.859270 

2 6.978823 7.057272 

3 6.977517 7.237816 

4 6.976890 7.299525 

5 6.976516 7.328743 

6 6.976292 7.343553 

7 6.976051 7.357351 

8 6.975850 7.368384 

9 6.975679 7.377397 

10 6.975526 7.385279 

11 6.975378 7.392681 

12 6.975201 7.401415 

131 =n  6.975171 7.402905 

 



Kirby, JASA 

 33 

 

 

 

 

 

 

 

 

 

 

Table II. 

Convergence of mode matching approach  

for cylinder with EMED forcing. 

 TL (dB) at F=1000 Hz ( 914.2=rk ) for 12 8.0 rr =  

Tn  2rLe =  25.0 rLe =  225.0 rLe =  21.0 rLe =  

53 24.0202 25.3502 29.3648 30.6231 

79 21.8790 29.1131 36.8324 33.7745 

115 16.1962 21.4286 24.2204 27.3093 

151 16.3297 21.6613 22.2208 23.1645 

251 19.4340 21.8583 22.4775 23.2662 

345 20.4249 21.3426 21.5664 21.7407 

519 20.8249 21.3660 21.5725 21.7412 

687 21.0402 21.2821 21.3552 21.4128 

855 21.1031 21.2574 21.2896 21.3145 

1099 21.1654 21.2598 21.2906 21.3146 

1607 21.2065 21.2511 21.2663 21.2780 

2523 21.2290 21.2454 21.2503 21.2541 
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Figure 1.  Geometry of duct. 
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Figure 2. (a)  Mesh for expansion chamber; (b) Extended mesh for expansion chamber. 
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Figure 3.  Convergence of TL for expansion chamber: OO, MM, 300 Hz; ◊◊, 

MM, 3240 Hz;  ∆  ∆  , PC no mesh extension, 300Hz;  □  □  , PC no mesh 

extension, 3240Hz;  - - - - - -, PC mesh extensions (overlays MM for 300 Hz and at higher values 

of nT for 3240 Hz). 
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Figure 4.  TL predictions for expansion chamber: , hybrid method (MM);      , 

analytic mode matching (overlays hybrid method);   -    -   , plane wave. 
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Figure 5.  Geometry of converging-diverging duct. 
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Figure 6.  TL predictions for Selamet and Easwaran’s converging-diverging duct
2
: , 

hybrid method (MM);  - - - - - -, analytic method
2
 (overlays hybrid method).  (a) 12 5.0 rr = , 

cm 554.6=cL , cm 534.18=dL ; (b) 12 25.0 rr = , cm 831.9=cL , cm 8.27=dL .   
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Figure 7.  Hybrid method (MM) predictions for Lau and Tang’s converging-diverging duct
9
, 

with plane wave excitation.  For each plot, m 5.01 =r , 12 2.0 rr = , and 12rL = . (a) , 

m 2309.0== dc LL ; (b);      , m 4.0== dc LL ; (c)   -    -   , m 6928.0== dc LL . 
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Figure 8.  Hybrid method (MM) predictions for Lau and Tang’s converging-diverging duct
9
, 

with multi-mode (EMED) excitation.  For each plot, m 5.01 =r , 12 2.0 rr = , and 12rL = . (a) 

, m 2309.0== dc LL ; (b);      , m 4.0== dc LL ; (c)   -    -   , 

m 6928.0== dc LL . 
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Figure 9.  Magnitude of sound pressure for Lau and Tang’s converging-diverging duct
9
, with 

plane wave excitation.  For each plot, m 5.01 =r , 12 2.0 rr = , and 12rL = . (a) π3=rk , 

m 2309.0== dc LL ; (b) 1=rk , m 2309.0== dc LL ; (c) π4=rk , m 6928.0== dc LL . 
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Figure 10.  Geometry of circular cylinder. 
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Figure 11.  Hybrid method (MM) predictions for circular cylinder with multi-mode (EMED) 

excitation.  For each plot, m 5.01 =r  and 25.0 rLe = . (a) , 12 8.0 rr = ; (b);      , 

12 6.0 rr = ; (c)   -    -   , 12 4.0 rr = . 

 


