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Abstract. Digital human has been increasingly used in industry, for example in Metaverse which has been a
popular topic in recent years. The existingmethod of obtaining digital humanmodels are either expensive or lack
of accuracy. In this paper, we discuss a novel method to reconstruct a 3D humanmodel from 2D images captured
by a monocular camera. The input of our method only requires a set of rotated human body images that can
accept slight movement. First, we apply a deep learning method to predict an initial 3D human bodymodel from
multi-view human body images. Then the total detailed digital human model will be computed and optimized.
The typical method requires the human body and cameras fixed to obtain a visual hull from a significant number
of camera images. This could be extremely expensive and inconvenient when such an application is developed for
online users. Compared to the structural lighting measurement system, our predict-optimized framework only
requires several input images captured by personal equipment to provide enough accuracy and online use
resolution results.
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1 Introduction

Digital humans, which are computer-generated 3D repre-
sentations of real people, are crucial in creating immersive
experiences in a number of recent technological develop-
ments, e.g., virtual and augmented reality, and Metaverse
which has been gaining a lot of attentions in recent years.
They provide a sense of realism and interactivity that is
difficult to achieve with traditional computer-generated
graphics. As a result, there has been a significant increase in
the development of new applications of digital humans in
various industries, including manufacturing, gaming,
entertainment, education, and healthcare. However, the
existing measurement methods of obtaining digital human
models are either too expensive or lack accuracy, which
presents a challenge for developers looking to create quality
and realistic digital humans. The cost of creating a digital
human model by using active scanners can be prohibitively
expensive, especially for smaller companies and indie
developers. This is because the process involves a lot of time
and resources, including specialized equipment, software,
and skilled personnel, and has special requirements for
target people such as standing still for a long time [1–3].
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Additionally, the accuracy of the model can be compro-
mised if the data used to create it is incomplete or of poor
quality.

To address these challenges, researchers and developers
are exploring new ways to create high-quality and
affordable digital human models. A promising approach
is to use deep learning algorithms to generate realistic
human models from a small amount of data. Recently,
there are a lot of learning-based work produced. Consider-
ing object or scene representation in 3D learning, those
works can be simply categorized as explicit representation-
based and implicit representation-based.

1.1 Explicit representation-based models

Polygon mesh statistical human body models [4–8] have
been widely used in 3D human reconstruction as an explicit
representation model. A polygon mesh is a data structure
that represents a polyhedron by defining its surface as a
collection of vertices and faces. This representation is useful
for conveying topological information about the object’s
surface and provides a high-quality description of 3D
geometric structures. Additionally, polygon meshes are
memory-efficient and can be easily textured, making them
a versatile tool for various applications in computer
graphics and visualization. In [9–15], those single image-
based work estimates a naked human body model from a
monsAttribution License (https://creativecommons.org/licenses/by/4.0),
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monocular camera picture. Although those works produced
some fine results, they still need further process to dress
clothes up. To solve this problem, some other work [16–23]
directly learns a mesh human body model with clothes
offset from images. The resulted clothed 3D human models
inherit the skeleton and surface covering weights of the
based body model, facilitating their animation. However, a
significant challenge lies in modelling clothing articles such
as skirts and dresses, which exhibit substantial deviations
from the body surface. The conventional approach of using
body-to-cloth offsets is inadequate in such cases.

1.2 Implicit representation-based models

In contrast to meshes, deep implicit functions [24–26] could
represent highly detailed 3D shapes with arbitrary topology
andarenot subject to resolution limitations.Recent research
bySaito et al. [27,28] has employeddeep implicit functions to
reconstruct 3D human shapes from RGB images, achieving
high levels of geometric detail and accurate alignment with
image pixels. However, this approach suffers from a lack of
regularization, resulting invariousartifacts suchasbrokenor
missing limbs, incomplete details, and geometric noises. To
address this issue, some researchers [29–31] have incorpo-
rated additional features, such as coarse-occupancy predic-
tion and depth information from RGB-D cameras, to
enhance the accuracy and robustness of the shape estima-
tion. In addition, some [32,33] have proposed efficient
volumetric sampling schemes to speed up the inference
process.Nevertheless, amajor limitationofall thesemethods
is that the resulting 3D human shapes cannot be reposed, as
implicit shapes do not possess a consistent mesh topology, a
skeleton, or skinning weights that are typically found in
statistical models.

In summary of these related work, the learning-based
human body reconstruction method provided a significant
result with only a few inputs. Although training neural
networks may require large, labelled 3D digital human
datasets and cost large computation resources and time, it
is very convenient and efficient for end users. Consumers
may only need to upload a small amount of data and wait
for the returned result from the cloud service. But most
learning-based works focus on recovering full human body
from one image with the powerful prediction ability of
neural network. This data-driven prediction method may
achieve a great result in pose estimation tasks [34–36], but
also lead to an ambiguity problem caused by a lack of
unseen body information from only one image. It is hard to
guess detailed back information from front body image,
despite a strong pre-trained network. Hence, we address
our problem of finding a balance and a connection between
typical measurement method and the popular learning-
based method to generate a digital human from inputs.

In this paper, we present our prediction-measurement
pipeline to reconstruct a detailed human bodymodel from a
set of self-rotated target human images captured by a single
monocular camera. We estimate an initial human body
model from image sequences by a trained neural network
and further vertex alignment to optimize it from image to
image.Our research focuses oncreating ahumanbodymodel
that is easily modifiable. To achieve this, we have chosen to
utilize a parametric representation of an explicit bodymodel
knownas SMPL (SkinnedMulti-PersonLinear) [37]. Recent
work [9–23] has shown that the SMPL model possesses
excellentexpansibilitywithhigh-qualityopen-sourceresour-
ces, which can assist in achieving good results for 3D
reconstruction projects. This model allows us to generate
body shapes that can be easily modified and adapted to
different needs. We begin by collecting data on the SMPL
pose and shape parameters, as well as the intrinsic camera
parameters from input images.This information is thenused
to prepare for further optimization.

To create the initial bodymodel, we will use the average
pose and shape parameters from the SMPL model. This
initial model will serve as a baseline for further modifica-
tions and adjustments. This involves projecting the initial
SMPL model with the shape and pose of the target image
and then minimizing the distance between the projected
points and the silhouette of the target image. By doing so,
we are able to obtain shape and pose information for every
image. This method enables us to create a human body
model that is easily adaptable to different needs and
requirements. We can modify and adjust the model based
on new input data, allowing us to create more accurate and
realistic representations of the human body. Overall, our
research aims to create a model that can be used in a wide
range of applications, from computer graphics to medical
simulations.

2 Methods

In order to make sure our predicted initial human body
model is allowed to modify, we used a parametric
representation of the explicit body model SMPL [37],
which will be introduced in Section 2.1. Similar to [35], we
collect the estimate results of SMPL pose and shape
parameters and intrinsic camera parameters from input
images for the preparation of further vertex aligned
optimization. And we will build the initial body model
with an average pose and shape parameters in the SMPL
model, which will be discussed in Section 2.2. Section 2.3
will detail our optimization method. Since we obtain shape
and pose information of every image, we project the initial
SMPL model with shape and pose of target image and
minimize the distance between projected points to
silhouette of target image.
2.1 SMPL parameterized human body model

The SMPL model [37] is a powerful method for
characterizing the human body in terms of both body
shape and motion posture. It achieves this through the use
of two sets of statistical parameters: body shape param-
eters and pose parameters.

The body shape parameters, denoted as b, are used to
describe an individual’s physique. This 10-dimensional
vector allows for the quantification of a person’s body shape
along various dimensions such as height, weight, and overall
bodyproportions.Eachdimensionofb canbe thought of as a
specific indicatorofaperson’sphysical characteristics,which
collectively describe their overall body shape.
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On the other hand, the pose parameters, denoted as u,
are used to describe the motion posture of the human body.
This set of parameters comprises 24� 3 dimensions, with
24 representing the number of joints and 3 representing the
axis-angle representation used to describe rotations. This
allows for a detailed and comprehensive description of the
human body’s motion posture.

To characterize the human body using these param-
eters, the SMPL model utilizes a base template or mean
template Tm, which serves as a reference shape. The shape
parameters are then linearly superimposed on this base
template to produce the final 3D mesh, with the bias for
each shape parameter being calculated using the Bs (b)
function learned from data. This allows for the generation
of meshes that accurately reflect the desired body shape.

Bs bð Þ ¼
Xjbj
n¼1

bnSn; ð1Þ

where S is learned through data and has dimensions of
(6890, 3, 10).

Similarly, the effect of different pose parameters is
determined using the Bp(u) function, which is calculated
relative to the T-pose state to account for changes in
posture. This enables the creation of meshes that
accurately reflect the desired motion posture.

Bp uð Þ ¼
X9K
n¼1

Rn uð Þ �Rnu
�ð ÞPn: ð2Þ

Each pose parameter is represented by a rotation
matrix R, so there are 9K dimensions. P (i.e., the weight
matrix) is learned through data and has dimensions of
(6890, 3, 207), where 207 is obtained from 23� 9.

Finally, the SMPLmodel accounts for skin deformation
caused by joint motion through a skinning process. This
involves a weighted linear combination of skin nodes that
change with the joint, with the weights determined based
on the distance of the endpoint from the joint. Closer
endpoints are more strongly influenced by joint rotation or
translation, resulting in a more realistic and accurate
representation of the human body’s motion. Here the
template is defined as:

T b; uð Þ ¼ Tm þBs bð Þ þBp uð Þ: ð3Þ
Since SMPL body template is a representation of a

naked human body, we add an offset S as a detailed cloth
supplement:

T b; u;Sð Þ ¼ Tm þBs bð Þ þBp uð Þ þ S: ð4Þ
A pose and shape driven detailed SMPL model is

further defined as:

M b; u;Sð Þ ¼ W T b; u;Sð Þ þ J bð Þ; u;Wð Þ; ð5Þ
whereW is the Linear Blend Skinning (LBS) function, J(b)
is the locations of 24 skeleton joints;W is the learned blend
weights.
2.2 Images information extraction

In this part, we extract information from input images with
several deep learning technologies.We collect SMPLmodel
shape and pose parameters with a network of PARE [35]
whose main method is to propose a novel deep learning-
based approach for estimating 3D human body shape and
pose from a single 2D image. The method is centred around
a part attention regressor, which divides the human body
into various parts and focuses on each one independently to
generate accurate 3D body estimations.

The key components of PARE’s methodology include:

–
 Part Attention: The network utilizes an attention mecha-
nism to focus on specific body parts, enabling it to handle
occlusions and varying poses. This mechanism helps the
network learn and emphasize individual part features,
leading to more precise 3D shape and pose estimations.
–
 Multi-stage Estimation: PARE employs a multi-stage
estimation process, using an initial coarse estimation
followed by multiple refinement stages. This hierarchical
approach allows the network to progressively refine its
predictions, leading to higher accuracy.
–
 Joint 2D-3D Representation Learning: PARE learns a
joint embedding space of 2D and 3D features, enabling it
to leverage both 2D and 3D information during the
estimation process. This joint learning process allows the
model to handle a wide range of poses and improve
overall accuracy.
–
 Part-based Loss Function: The model uses a part-based
loss function, which encourages the network to focus on
each body part individually. This loss function helps the
network to handle complex poses and occlusions, aswell as
achieve better generalization across various body shapes.

In summary, the PARE method leverages a part
attention mechanism, multi-stage estimation, joint 2D-3D
representation learning, and a part-based loss function to
achieve the accurate 3D human body shape and pose
estimations from a single 2D image.

We simply initialize an SMPL body model with average
estimated shape and pose parameters of input images, and
further detailed offset optimization will be discussed in the
next section.
2.3 Full detailed body model optimization

Given that we have acquired the human body pose and
camera position data for all input images, we can obtain the
projection results of the initialized model concerning angles
and poses. By comparing the derived contour images with
those of the input images, we can optimize the vertex
parameters of the SMPLmodel. For the ith input image, the
associated contour of the human body model is denoted as
Si, while the contour of the human body in the input image
is represented as S

0
i. In accordance with a differentiable

renderer approach [38], we employ an Intersection-over-
Union error metric for the optimization process.

Lsil ¼ 1

f

Xf
1

1� jjSi⊗S
0
ijj1

jjSi⊕S
0
i � SiࣹS

0
ijj1

 !
; ð6Þ



Fig. 1. From left to right, input images, initial SMPL model,
optimized SMPL-offset model.

Fig. 2. Detailed optimized SMPL-offset model.
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where ⊗ is an element wise product and ⊗ is a sum
operator.

We also add a Laplacian mesh regularizer [39] to ensure
the deformation process smoothly. The regularizer is
defined as:

Llp ¼
XN
1

jjL við Þ � L vi b; 0ð Þð Þjj2; ð7Þ

where L is a Laplace operator, v is the vertices set.
Similar to [18], we penalize the difference between the

optimized detailed body model vertices and the standard
SMPL template body model vertices to avoid large
differential error.

Ldif ¼
XN
i¼1

jjvi b;Sð Þ � vi b; 0ð Þjj2: ð8Þ

Our joint optimized formula is defined as:

L ¼ Lsil þ wlpLlp þ wdifLdif ; ð9Þ
where wlp and wdif are the balance weights.

By minimizing the loss function L, we modify the
vertices of SMPL model and finally collect a detailed body
model with cloth information offset. Since SMPL is a pose
and shape parametric drivenmodel, the result model can be
further animated, which is suitable for more applications.

3 Results

3.1 People-snapshot dataset test

We test our method in People-snapshot dataset [40],
Figure 1 shows the results of every step. The input images
are captured by a stable camera, and photographed person
is self-rotated with a fixed pose. We do not need
photographed person keep this pose strictly, a slight
change is acceptable. In our method, we extract some
frames from the video of dataset, our test used f=100
frames to reconstruct body model.

The mid image in Figure 1 shows the initial SMPL
model reconstructed from information extracted from
input images in step one. We take an estimated average
pose and shape parameter of images applying to the SMPL
template. The main computing cost here is information
extraction with deep neural network, also the accuracy is
determined by the efficiency of the state-of-the-art
network. However, we have also found that the SMPL
parameter prediction network incorrectly computed the
gender of the target individual. This error in prediction, in
the subsequent detailed reconstruction steps, will be
corrected to adjust the model’s vertex offsets.

Our approach takes about 100 s for optimizing every
frame. We remove the pose parameter in the result, and a
standardT-poseSMPLmodel is showing in the rightpanel of
Figure 1. And we provide some rotated results in Figure 2.
Our result can be further modified and rendered. Compared
with the initial model, we successfully recovered some hair,
face and cloth details in the SMPL model with offset.

3.2 Detailed normal map refinement

As the results generated by our method still have
shortcomings in terms of detail representation. We tried
a normal map aligned method to refine more details in our
result. Traditionally, more refined details have been
captured using Shape from Shading (SfS) [18]. However,
for monocular clothing capture in unconstrained environ-
ments, we have empirically found it challenging to reliably
extract such refined details using SfS due to the complexity
of garment albedo, wide variations in lighting conditions,
and self-shadowing effects. Recently, the success of
learning-based approaches [27,28] in estimating accurate
surface normal for human appearance using neural
networks has been observed. These estimated surface
normal provide robust and direct indications for incorpo-
rating wrinkles into our clothing capture results to achieve
better alignment with the original images. Our results
shown in Figure 3 and a more generalized test of a daily
indoor work environment images shown in Figure 4.
4 Discussions

In this paper, we proposed a vertices-pixels aligned method
and jointly use deep learning method and key idea of
traditional computer 3D graphics to achieve a fine level
digital human geometry reconstruction from images. Our
method relies on several deep learning-based methods such
as pose and shape estimates from single images. Although
significant progress has been made in deep learning-based
methods for 3Dhumanbody reconstruction from2D images,
several challenges and limitations still need to be addressed.

4.1 Handling of complex clothing and occlusions

Most current methods rely on the SMPL model, which
primarily represents the human body with minimal
clothing. Incorporating complex clothing, accessories,



Fig. 3. Detail-refined with normal map result. Compared with
Figures 1 and 2, our reconstructed details such as hair, face and
clothes have been significantly improved by normal map
refinement.

Fig. 4. Daily scene test result. In Figure 3 we show our
reconstructed result from a target person standing in front of a
green screen. We also test our method in a simple and daily
environment. And the result reveals our method is adaptable.
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and occlusions remains a significant challenge. Future
research could explore the integration of garment-specific
models, leveraging semantic information, or employing
unsupervised learning techniques to improve the recon-
struction of clothed human bodies.

4.2 Robustness to lighting and shadows

Deep learning models may struggle to generalize to varying
lighting conditions and shadows, which can significantly
impact on the accuracy of 3D reconstruction. Developing
methods that are more robust to these factors, such as
incorporating illumination-invariant features, is an essen-
tial direction for future work.

4.3 Utilization of multi-view and temporal information

The majority of current methods focus on single-view
images. Exploiting multi-view or temporal information
from videos could potentially improve the accuracy and
robustness of 3D human body reconstruction. This would
require the development of novel network architectures
and loss functions that can effectively leverage such
additional data.

4.4 Evaluation metrics and benchmarks

Evaluating the performance of 3D human body recon-
struction methods is non-trivial due to the lack of ground
truth data and the subjectivity of visual quality. Develop-
ing standardized evaluation metrics and benchmarks,
including datasets with accurate ground truth 3D
annotations, is crucial for enabling a fair comparison of
methods and guiding future research.

4.5 Real-time performance and computational
efficiency

Many deep learning-based methods for 3D human body
reconstruction require significant computational resources,
limiting their applicability in real-time scenarios or on
resource-constrained devices. Future research should focus
on developing efficient algorithms and network architec-
tures that can deliver high-quality reconstructions with
minimal computational overhead.

In summary, while deep learning has shown tremendous
potential in the domain of 3D human body reconstruction
from images, there is still ample room for improvement and
exploration. Addressing the challenges and limitations
discussed in this section will pave the way for more
accurate, robust, and efficient 3D human body reconstruc-
tion techniques, ultimately benefiting a wide range of
applications, from entertainment and virtual reality to
healthcare and sports analytics.

Our method is limited by the accuracy and precision of
some of the deep learning techniques used. Although we
have employed multi-angle image optimization to mini-
mize the inherent ambiguity of the prior prediction model
method as much as possible, we still need to spend a
considerable amount of computational power and time to
optimize our loss function. Therefore, in order to achieve
faster and higher-precision human body model reconstruc-
tion, more work needs to be done to optimize the method.
One approach is to train a deep learning network with
multi-angle view priors, allowing the network to learn more
3D human body knowledge. Another approach is to
improve the speed of the multi-view optimization process.
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5 Conclusions

In this paper, we discussed a vertices-pixels aligned method
jointly using deep learning method and the key idea of
traditional computer 3D graphics to achieve a fine level of
digital human geometry reconstruction from images. Our
method relies on several deep learning-based methods such
as pose and shape estimate from single images. Compared
with related deep learning-based methods, our method
eliminates the inherent ambiguity of predicting the
complete body model from a single image. With the
assistance of deep learning techniques such as pose
estimation and human parameter model prediction, we
have improved computational speed and reduced experi-
mental conditions compared to traditional optical mea-
surement techniques for obtaining human models. Despite
some shortcomings in our work, we have successfully
demonstrated the possibility and potential of combining
deep learning with traditional techniques.
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