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Anomaly-Resistant Decentralized State Estimation
Under Minimum Error Entropy With Fiducial
Points for Wide-Area Power Systems

Bogang Qu, Zidong Wang, Bo Shen, Hongli Dong, and Hongjian Liu

Abstract—This paper investigates the anomaly-resistant decen- generations, the widespread use of demand-response devices
tralized state estimation (SE) problem for a class of wide-area as well as access to dynamic loads [1], [2]. In order to

power systems which are divided into several non-overlapping monitor power systems under complex working conditions, a
areas connected through transmission lines. Two classes of

measurements (i.e., local measurements and edge measurementd) W generation of |nfrastructqre, namely, wide area r_nomtormg
are obtained, respectively, from the individual area and the Systems (WAMS), has been increasingly deployed in modern
transmission lines. A decentralized state estimator, whose per- power systems [3]. As a key part of the WAMS, the state
formance is resistant against measurement with anomalies, is estimation (SE) algorithm has been playing a vitally impor-
designed based on the minimum error entropy with fiducial 51t role in raising situation awareness, facilitating real-time

points (MEEF) criterion. Specifically, i) an augmented model, trol and enh . it t and tecti 4
which incorporates the local prediction and local measurement, is control and enhancing security assessment and protection [4]-

developed by resorting to the unscented transformation approach 6].
and the statistical linearization approach; ii) using the augmented So far, the SE algorithms based on the data collected from

model, an MEEF-based cost function is designed that reflect.s the phasor measurement unit (PMU) have spurred tremen-
the local prediction errors of the state and the measurement;

and iii) the local estimate is first obtained by minimizing the dous interest (see e.g. [7], [8]) because of PMU's merits
MEEF-based cost function through a fixed-point iteration and Of providing synchronized, accurate yet timely sensing data.
then updated by using the edge measuring information. Finally, Nevertheless, due primarily to unaffordable implementation
simulation experiments with three scenarios are carried out on ¢osts and the limited communication resources, it is difficult
the IEEE 147bus system to !Ilustrate the validity of the proposed to deploy the PMU widely in the foreseeable future [9], [10]
anomaly-resistant decentralized SE scheme. ' '
. . Therefore, one would need to make use of the measurements
Index Terms—Wide-area power systems, decentralized state from both the advanced PMUs and conventional supervisory
estimation, minimum error entropy, unscented Kalman filter, control and data acquisiton (SCADA) in order to reach
measurements with anomalies. q T .
the tradeoff between communication/implementation cost and
estimation accuracy.

|. INTRODUCTION There have been three typical SE frameworks, namely,

For a few decades, power systems have been undergdiftralized, hierarchical and decentralized frameworks, which

dramatic changes due to the penetration of renewable poWare appeared in the literature [11]-[13]. In the centralized
SE framework, the global estimates can be generated in the
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[16]-[19] for some representative works. For instance, in [3he negative influences of the measurement with anomalies on
a fully distributed static SE algorithm has been designed fire SE performance in the estimator design.
wide-area power systems based on the weighted-least-squata connection with the challenges identified above, the main
(WLS) method. In [18], an efficient distributed SE algorithntontributions are highlighted as follows. 1) For the purpose of
has been developed with the aid of the WLS method, whermaplementing the SE in a decentralized manner, the wide-area
the Gauss-Newton step is achieved without inner iteration.dower system is divided into several non-overlapping areas,
should be noted that the WLS-based SE method is inherentlgrad the state of a given area is first estimated by using local
staticone, and is therefore incapable of capturing the dynamigeasuring information and then updated by using the edge
behaviors most likely caused by sudden load changes or theasurements which are shared with its neighboring areas. 2)
penetration of renewable power generations. To improve the data redundancy, an augmented model which
As with the increasing demand of monitoring dynami#volves both the local prediction and the local measurement

behaviors of large-scale power systems, the so-called decénconstructed by resorting to the unscented transformation
tralized dynamic state estimation (DDSE) problem has cre&@Pproach as well as the statistical linearization approach. 3)
edgreat enthusiasm from researchers leading to the develdgocal MEEF-based UKF is proposed based on the MEEF
ment of three mainstream DDSE-based schemes, namely, GHterion so as to enhance resistance against measurement with
model-decoupling-based scheme [8], [20], consensus-badé@malies.

scheme [21], [22] and maximum-a-posteriori-based schemel he remainder of this paper is outlined as follows. Section
[23]. Briefly speaking, the model-decoupling-based scherfleformulates the decentralized model of power systems. In
is computationally efficient at the cost of sacrificing certai€ction Ill, a brief review of the error entropy criterion and
estimation performance since the neighboring information 8t€ correntropy criterion is first given, and then the MEEF
each synchronous generator is not effectively utilized. F6Fiterion is introduced. Section IV describes the proposed
a given area, although the consensus-based DDSE schém@maly-resistant decentralized SE algorithm. In Section V,
improves the estimation efficiency, it may not be able to fulljimulation studies and detailed discussions are carried out on
utilize the available data since the information of the indirectfp® IEEE 14-bus power system. Finally, some conclusions are
connected areas is largely ignored. The distributed maximuffawn in Section VI. o

a-posteriori-based DSE algorithm, on the other hand, canNotation The notation used here is fairly standard except
achieve an adequate tradeoff between information utilizatigfhere otherwise state®™ represents the-dimensional Eu-
efficiency and state estimation accuracy since the informatiéfflean space. The superscript “T" represents the transpose

of entire power grid can be accessed through finite stepsageration. diag---} represents the block-diagonal matrix.
iteration. E{z} is the expectation of the stochastic variable [A];;

: . i : epresents the element at théh row and thej-th column of
It is worth pointing out that most existing SE algorithms fo ) .
b 9 g 9 £r}|g matrix A. || - || stands for the Euclidean norm of a vector.

power systems have been developed in the minimum me
square-error (MMSE) sense, and the corresponding estimation
performances are therefore prone to contaminated measure-
ment data due to anomalies (e.g. outliers, communicatién Preliminaries

impulses, quantization errors and instrument failures) [24]-|n this paper, an undirected acyclic gragh= V,€) is

[28]. To enhance the resistance against anomalies, some N\l to reveal the connections of different areas of a wide-area
SE schemes have been proposed based on the minimum &5ifer system. Specifically; = {1,2,..., M} represents the
entropy (MEE) criterion and the maximum correntropy (MCget of areas, and € V x V is the set of edges. The edge
criterion, see e.g. [29] for the MEE-based unscented Kalm%’n) € & represents then-th area of the wide-area power
filtter (UKF), [30] for the MC-based extended Kalman filtelsystem and is interconnected with theth area. The set of

and [31] for the novel Cauchy-kernel-based MC filter. Imeighbors of arean € V' plus the node itself are denoted by
many situations, the MEE-based SE scheme outperforms f{ye — {meV:(mn)e&l.

MC-based one, but the shift-invariant of the MEE criterion
introduces a bias to make sure that the estimation error g SPower Svstem Model
to zero [32]. In hopes of combining the merits of both MC™ y

and MEE criteria, the so-called minimum error entropy with Consider a power system which contain§ buses (an

fiducial points (MEEF) criterion has been proposed in [38Xample is shown in Fig. 1), where the dynamic equation of
without having to add a bias after training. the i-th bus with the quasi-steady state is described by [10],

Il. PROBLEM FORMULATION

Based on the above discussions, it can be found that th[egfg]
is a lack of adequate investigation into the SE problem for a Tigr1 = AiTi o + BiTi + w; 5. (1)
wide-area power system with anomaly, and the main purpose ) o
of this paper is therefore to shorten such a gap. In doifiifre zi, € R” represents the state vector of bugi =
so, the technical challenges can be identified as threefold2: - --- V) given by
1) determining how to implement the SE algorithm in a de- N T

. . . . Tio = [‘/z o 01' a'-}

centralized style to decrease the computation/communication ’ ’ ’
cost; 2) determining how to improve data redundancy in theith V; , andé, , representing the voltage magnitude and the
case of a decentralized SE framework where only the localltage phase angle of theth bus, respectivelys; € R?*?2
measurement is available; and 3) determining how to redusea known matrix reflecting how fast the transitions between
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v
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4 Predict the local state (16)-(23) )
Correct the local state based on (7) and
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.
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e N
\ ¥ Edge Measurement (Power Flow Measurement) /| [ Update the local estimates (37)-(38) |
&4 Local Estimator RN ~ / ya

Fig. 1. Schematic view of the proposed decentralized SE fdewarea power systems.

states are;z; is the expected steady stat®; (commonly The active and reactive power flows between the intercon-
selected asB;, = I — A;) is used to account for the trendnected bug and busj measured by the SCADA unit atcan
behavior of the state trajectory; and , € R? is Gaussian be described by
white noise with zero mean and covariarié¢g . 2

Remark 1:In this paper, the power system under consid- Pijo =Vig(9si + 9i3) = VZ"’VJ’”(Q” c0s(0i.s = 0j0)

eration belongs to the widely used quasi-steady paradigm in + by sin(6; — 9;))
which the loads and generators are assumed to operate stably,; , = V2 (bsi + bij) — Vi,an,a(gij sin(0;o — 0j.0)
without sudden changes in a short time interval [34], [35]. For b ‘ .

— bij cos(0i.g — 0;.0)) ®)

the purpose of revealing the quasi-steady paradigm, a famous

dynamic model (1) is used in which the bus magnitudes amhereg,; + jb,; represents the admittance of the shunt branch
phase angles are chosen as the state variables, the mawixnected to bus andg;;+;b;; is the admittance of the series
A; describes how fast the transitions between the states kranch connecting busesand j. Taking the measurement
and B; represents the trend behavior of the state trajectory.noise into account, a compact SCADA-based measurement
should be pointed out that the parametersipfind B; can be model of the power flows is of the following form

identified in an online style and such a method is sufficient for

the characterization of the quasi-steady behavior of the power
systems [35]. where

S

z] o = h’Lj a(‘ri,07 xjﬁ) + vz'sj,a’ (4)

z5 0 = [Pijo Qij,a]Ta

C. SCADA and PMU Measurement Models v;; » IS @ Gaussian white noise on the SCADA unit with zero

In this paper, the mixed SCADA and PMU measurementsean and covariandg? , > 0, andh;; ,(-) is determined by
are used to monitor the power system (an example is sho(®).
in Fig. 1). The voltage magnitude of each bus and the powerLetting thei-th bus be equipped with the PMU, the corre-
flows between two interconnected buses are measured by shending measurement model for the voltage phasor can be
SCADA units, and the voltage phasors of the selected busegressed as
are measured by the PMUSs. It should be pointed out that all »
of the buses are installed with the SCADA units, and selected %o = CpTio + Vi, ()
buses are installed with the PMUs since the implementatiathere C,, is an identity matrix, andv?, is a zero-mean
cost of the PMUs is much higher than that of the SCADASaussian white noise on the PMU Wlth covanaﬂ,él% > 0.
units [10].

The voltage magnitude of théth bus measured by thep pecentralized Model

SCADA unit at time instant- is expressed as In this subsection, we divide the power system (1) into

2 =Cutig + 00, (2 M non-qvgrlapping areas and. assume that the topology of
such a divided system is acyclic. The system model and the
whereC; = [ } andv; . stands for the SCADA measure-corresponding measurement model for each area as well as
ment noise that follows the Gaussian distribution with zerthe edge measurement model for two interconnected areas are
mean and covariancg’, > 0. given as follows:
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1) Local System ModeThe dynamic equation of thex-th  To be specific, for then-th area, the edge measurement model
area(m =1,2,---, M) can be given as can be represented by

Xmﬁ-l—l = Am,oXm,a + Bme + wm,oa me V. (6) Zmn,o :hm"(Xm-,Uv Xn-,d) =+ Umn,os

Similar to the descriptions of (1)X,,. is the state vector meVnevmznneNn ()
of aream at time instants; A,, is the transition matrix of where

aream;, Xm represents the expected steady state for arpa T (X Xos)

B,, = I — A, is related to the trend behavior of the state MRATTILgy SEn,g
trajectory of arean; and the process noise is represented by  »

Wm,o. The detailed descriptions of the variables in (6) are [ (

given as follows:

T T Z
s mn
hmpnq (xmpﬂ’x"qﬂ)) T eR ’

'Umn,a
T LT, S T...T Zyn
Xpo 2 (2D, . 2l - xﬁw,a] € RXm, S (Whng.o) | e RZmn,
A, & diag{Am,, Amy, -+ s A, } € RXm> X Here, 13, ., (Zm,.0:%n,0) TEPresents the power flows be-
By 2 diag{Byn,, By, - m. )€ RXm X Xom tween the interconnected bwsof aream and busg of area
A AT < n measured by SCADA unit, and the corresponding noise
X 2 [T, Ty o xmrm} € R™m, Vpyng (Tmy,,00 Tn, o) follows Gaussian distribution with zero
- T T T T b’ mean and covariance matri > 0. The details of
Wi, o 2 [wmho’ wm270' ce meWU] cR X’n Ng,0

honn (X, oy Xn.,o) are dependent on the partition of the power

where, ford = 1,2,...,Tpm, Tm, ., represents theé-th state of System and the power flow measurements described in (4).

the m-th area at time instant; A,,, is the transition matrix The covariance matr|x of the edge measurement najse,

of the d-th state of them-th area;z,,, represents thel-th S Vinn,o = diag{..., V5 . ...}

expected steady state of areg B,,, = I — A,,, stands Remark 2:n actual power systems, the inducements of the

for the trend behavior of the-th state trajectory of arem; Measurement anomalies (e.g. stealthy attacks, communication

andw,,, , is the process noise of theth state of them-th impulses, instrument fails or packet losses) are numerous

area with zero mean and covariance matfi,, , > 0. The and the features of these anomalies (e.g. the type, occurring

covariance matrix of the process noise for theth areaw,, occasionality/probability, intermittency) are often unknown

is Win.o = diag{Win, .00 Wins.os -+ » Win.. .+ }. The number [71, [36]. As such, it is difficult and even impossible to reveal

of the buses of the:-th area is denoted agr; andX,, = 2r,,,. the measurement anomalies by using specific models, and this
2) Local Measurement ModeThe local measurement of Motivates us to improve the robustness of the estimator by

the m-th area can be expressed as adopting some novel methods.
o = hin(Ximo) +Vmo, meV (") E. Problem Statement
where The aim of this paper is to develop an anomaly-resistant SE
algorithm for power systems such that

Y s T s T s T . . . .
e = [(Fmae)’ o Fe ) G 1) the proposed SE algorithm is deployed in a decentralized
.. (Z%r,g)T . .}T € RZm, manner_by dividing the Iarge—scale interconeected power

o B C )T (o - T system into several non-ov_erlapp!ng areas; _
m,o mu,o Moy, 0 MpMq,0 2) the decentralized state estimate is calculated iteratively
- (wr, )T ]T c RZnm. by using the local measurement and edge measuring

information; and

Here, z;, , (I = 1,2,...,7,) stands for the voltage mag- 3) the resistance of the proposed algorithm against mea-

nitude of thel-th bus in them-th area measured by the surement with anomalies is enhanced by adopting the

SCADA unit at time instant; 27, ,, , represents the power MEEF criterion.

flows between the mterconnectedq bplsand busq (p,q €

{1,2,....7»} andp # q) in the m-th area measured by the |||. M iNiIMuM ERRORENTROPY WITH FIDUCIAL POINTS

SCADA unit at time instant; andz5,  (r € {1,2,...,mn}) CRITERION

is the voltage phasor measurement of thth selected bus

in the m-th area installed with PMU at time instant The

descriptions of every element of the measurement najsg

are similar to that of the measurement veetqr, given above.

The details of the nonlinear functidn, (-) rely on the states of

them-th area (i.e.X,, ) as well as the equations (2)—(5). The®. Error Entropy Criterion

covariance matrix of the measurement noizeeg is Vin,o = Let e be the error between the actual statand the desired

diag{ V5, 5o Vi, e Vinmeer Vi g }. statey, (i.e. e = x — y). The Rényi's quadratic error entropy
3) Edge Measurement Modemce some buses of one areas defined as

are often connected with other areas, the measurements related N )

to these buses are treated as edge measurements in this paper. Hpa(e) = — 10g/P (e)de (9)

In this section, the error entropy criterion and the corren-
tropy criterion are briefly reviewed, and then an error entropy
with fiducial points criterion is developed.
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where p(e) is the probability density function (PDF) of thewhere E is the error variableju € (0,1) is the weight
error variables [37]. Based on the Parzen’s window estimatiocoefficient;s; ands, are the bandwidths of the Gaussian kernel
method, the error PDIs(e) can be estimated by drawiny functions G, (-) and G, (-), respectively;e; (e;) represents

samples{e; }¥ , from e, that is thei-th (j-th) sample drawn fronE; and N is the number of
N samples.
A 1 Remark 3:Due to the unique merits in enhancing robustness
= — G —€;), 10 X : X T
ple) N ; se—ei) (10) against anomalies, the MEE and MC criteria have attracted a

surge of research enthusiasm and some representative results

WhereG§(~) i; the kernel function. and is the kernel band-. have appeared, see e.g. [29]-[31]. For example, a novel MC-
width [38]. Without loss of generality, we choose the Gaussiajyseq filter has been designed in [31] where the inherent

kernel as the kernel function, i.e., shortages of Gaussian kernels have been overcome with the
—(e—e;)? aid of the Cauchy kernel. It is worth pointing out that the
Go(e—e;) = exp T2 ) (1) shift-invariant property of the MEE criterion makes it difficult

L . , to guarantee that the mean of the error PDF tends to zero [40].
Then, the Reényi's quadratic error entropy in (9) can bgg'gych, the MEEF criterion has been proposed in [40] where
approximated as the MC term is used to fix the peak of error PDF at origin

I ~ ] 2(e\d and the MEE term is adopted to minimize the error entropy
r2(e) = —log [ p~(e)de [32], [41]. In this paper, the MEEF criterion will be used in
5 o (IP(e)) (12) the subsequent anomaly-resistant state estimator design.
with IV. ANOMALY-RESISTANT DECENTRALIZED STATE
1 X ESTIMATOR DESIGN
IP(e) = N2 ZZGg(ei —€;) In this section, we aim to study the anomaly-resistant SE
=1 j=1 problem for wide-area power systems in the presence of

representing the information potential of the error{39]. mMeasurement with anomalies. First, a local UKF-based state
Obviously, the MEE criterion is actually equivalent to th&stimation scheme is developed by using the local sensing
maximization of the information potentidlP(e). data, where the MEEF criterion is utilized in the cost function
design to enhance the resistance of the local state estimator
o against the measurement with anomalies. Then, the local esti-
B. Correntropy Criterion ; o L )
mate is updated by exploiting the edge measuring information.

Letting X andY" be stochastic variables, the correntropyhe schematic view of the proposed decentralized SE scheme
between these two variables is defined as is outlined in Fig. 1.

C(X,Y)=E{K (X,Y ://Kx, x,y)dzd
( ) R )} (@ 9)fxy (@ y)dody A. Design of the MEEF-based Local State Estimator

(13) 1) Prediction: For the m-th (m = 1,2,...,M) area,
where K (-,-) denotes the Mercer kernel function anduppose that the local estimaié,n7g_1‘g_1 € RX» and its
fxv(z,y) is the joint PDF. Without loss of generality, wecovariance m:;r[rixP;f;ﬁF1|071 e RXm*xXm gre available at
still choose the Gaussian kernel in (11) as the kernel function— 1. Then, the4r,, + 1 sigma points can be generated via
Note that the distribution offxy (z,y) is usually unknown .

and we have to drawv samples{z;, y;}¥, from fxy (z,y) )fm,a—1|a—1, =0
to estimateC'(X,Y), i.e., Xomo—1]o—1
N T
A 1 + ( (27—7” + )\m)Pm,U—l a—l) 0
CXY) = — 3 Gl —yi). (14) \/ , lo=173
N~ Xim,o—1lo—1 = j=1,...,27, (16)
As such, the so-called MC criterion is actually equivalent to Xm,o—1jo—1
the maximization of the cost function given in (14). o
g (14) . (\/(2Tm + AP )
J=21m+1,....41,

C. Minimum Error Entropy with Fiducial Points Criterion

As discussed in [32], [37], the MEE is shift-invariant and,vhere(\/(ng + Am)Prfzwafl\dfl)j represents thg-th col-
one has to add a bias to guarantee that the estimation e i ' .

goes towards zero. In order to overcome such a shortcomiHgﬁmeogémis%l;aéié%ztszégion%a;gzig’g: i/\é")Pm-r"*l"’*l
an improved approach called the MEEF criterion has been pro- T
posed in [32]. Specifically, the MEEF criterion is established (27,,, + ., ) P¥*

m,o—1jo—1
by combining MEE and MC criteria through a cost function
/ ? ? :(\/(2Tm + )\m)Prflgfafl\dfl) (\/(2Tm + )\m)Prflgfafl\dfl)T’

N N
— K
e D> Golei—e;) (15)  andy,, 2 o2, (27 +km)—27,, Stands for the scalar parameter
i=1j=1 with 0 < «, < 1 @ands,,, > 0.
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Having obtained the sigma points, we now propagate eact?) Update: Based on the statistical linearization approach
sigma point through the state-transition function (6) to gengsroposed in [42], the local measurement function (7) can be
ate a new set of transformed sigma poigfs with the linearized aroundX,, ,,—; as
following form:

,olo—1

Zm,o :Hm,U(Xm,U - Xm,cr|crfl)

an.,a’\a'fl = Amvgxin,ofl\dfl + Bme’ J= 0,1,...,47p. + hm(Xm,zﬂo’—l) + Um,o + €m0 (24)
17)
) with H,, , = (Pre o) (Per, )" being the pseudo
Then, the prediction staté(,, ,,—; and the corresponding measureme_nt matrix, and, , being the statlsnc_al lineariza-
prediction error covarianc ey Can be, respectively, tion error with zero mean and covariance matrix
calculated via 7 -
Vino ZE{€m o€ o}
ATm zz xz T Tx —1 pzz
Xm olo—1 = ngnxj o1 (18) :Pm,a|a—1 - (Pm,a'\a—l) (Pm,a|a—1) Pm,a|o’—1
s - m,o|o— . .
j=0 where the covariance matrice®,” |, P;fo_‘o__l and
pr= _ are calculated via (19), (225 and (23), respectively.
and mola—1 : S\ ;
By integrating local prediction and local measurement into
ATy, . . a compact form, we obtain the following augmented model
T _ 9j =J =J T W, 19 B
m,o|o—1 720 me,U|U—1(Xm,U|U—1) + m,o ( ) gmyg — Hm,a'xm.,a' —+ ém,o (25)
i n N , _ where
Wherexnwlﬁ1 = (Xm,cr|crfl — Xomolo—1), Wi, and o), are .
the weighted coefficients with the following form: P [ XAm,olofl ] c RLm
m,o A )
\ Zm,o Hm.,de,o|a—1 — Zm,o|o—1
m . ~
- 1\ J = 0 7 A I Ly, > A _Xm,a|0'—1 Lom
wgn é 2’7’m +1Am Hm,a’ - |:Hm70:| € R ) em,cr - |:Um,g + Em_’g S R
e, §=1,2,...,47, o N )
227 + Am) with X, 510—1 = Xmo — Xmojo—1 @Nd Ly, = Xy + Ziy,.
The covariance matrix of,, , is
and
pre 0
A , E{em, o o} = | ™7lo1 .
. 727 _7:/\ + (1 - Oc?n + Bm)7 j=0 { m,o m,o} [ 0 Vm,a 4 Vm,a
VAN m m
em - 1 1.9 4 |:STITDL,O'(STI;,G')T v OV T:|
2(27m + Am)’ ST S 0 S (Sm.0)
= Sp.o St 26
with 5, > 0. m,oPm,o (26)

Similarly, the predicted sigma points, which are mappeshereS. . € R*», SV e R%" andS,, , € RE~ are all
through the measurement functiénp,(-) in (7), are given as calculated with the aid of Cholesky decomposition.
_ _ By multiplying S;,} on both sides of (25), we have
2z =h,( ), j=0,1,..., 41, + 1. (20) ’
m,o|o—1 ( m,o|o 1) Yo = Fm,ng,g-l-fm,g (27)
Then, we can obtain the prediction of the local measuremwlliere

zm,o DY the following weighted average operation:

BAo-1 =
Ym,o =m0 Zm,os

AT,
5 i Zi Lc-1 7
o1 =Y wh 2] olo—1- (21) Fro =55 0Hm,o,
- ’ A ~v—1 —
7=0 gm,a’ :Sm,la'em-,a’ (28)
; >3 A J 2 i
By denoting Zm,_a’\qfl = (Zm,o|_o71 — Zm,olo—1), the with
T
measurement prediction error covariance maftjx, ,_, and Yo 2 YLy Whg - yin]T e REm,
the state-measurement prediction error cross-covariance matrix K ’ 7
. A
Pr? ., can be computed, respectively, as Fno2[Fy, Fa, -+ Fhin] € REmxLm
A 1 2 Ly, T Ly,
47, gm,a' - [ m,o m,o e m,o’} € R .

Polo1 = 29%27]71,a|a—1(3~;77@,a\a—1):r +Vmo  (22)  Moreover, it can be seen thE‘e{gmyggﬁg} =1
J=0 Remark 4:1t has been proven in [43] that, for an arbitrary

and nonlinear function, the results obtained from the statisti-
cal linearization are equivalent to those from the unscented
A7m transformation. As such, for the purpose of improving data
Tz _ Jj o ZJ T 23 . .
P olo—1 = Zomxm,g\gfl(zm,g\g,l) . (23) redundancy, an effective way is to construct an augmented
J=0 model (i.e. (25)) to process the local prediction and local

Copyright © 2023 Institute of Electrical and Electronics Engineers (IEEE). Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including
reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works by
sending a request to pubs-permissions@ieee.org. See https://journals.ieeeauthorcenter.ieee.org/become-an-ieee-journal-author/publishing-ethics/guidelines-and-policies/post-publication-policies/ for more information



This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI10.1109/

JAS.2023.123795, IEEE/CAA Journal of Automatica Sinica

FINAL VERSION 7

measurement simultaneously with the aid of unscented transNext, we rewrite®,,, , as
formation approach and statistical linearization approach.

According to the MEEF criterion given in (15), the cost @, , 2 anzd q)iéo] € REm+Zm) X (Xm+Zm) (32)
function of the MEEF-based local estimator can be written as ' e o
with
J Im a’ = G gm o TT ;
Z " (I)m,a' é/\dlag{GQ (grln o)a R GCl( 35,"3)}
L, L 11— ..
m m sz Flj )
o) B DI A NU ) + T2z (@ho)xox, = Ok,
ll] 1 (2217277X‘m;]:17277xm)7
By maximizing the cost function (29), we can obtain the e al—2A ij ij
local estimate ofX,,,. To be specific, taking the partial P 12 2 (( 10,0 Ko X Lo, (Fm-,a)xmxzm)
derivative of J(X,, ) with respect toX,, , and letting the M )
S ' ' (1=1,2,...,X;
derivative be zero, we have ,
. j=Xn+1,X,+2,.... X, +Zy,)
8‘] = 1 ) Tz m m m
P =7 3 (Gal Pl — Pl X)) Bk 2N (G (€57, G (61577)
m o 1—X ..
\ L L t e ((Q” 0)Zm X Xom (F%,g)zmxxm)
m>2
lel(gmo gma') (Z:Xm+1,Xm+2,7Xm+Zma
Y 1_ | J=1,2,. .., Z),
X G<2 (é.m.,a' - gm,o)(Fm,a' - Frjn,cr)) s 1 -\ i i
:AF,,z; anm aé-m - ¢TTL Nea _L2 2 ((Qm,d)z7nxzm - (Fm,o)zmxzm)
1-A (z_Xm+1,Xm+2,...,Xm+Zm;
+ FT Qma ma_FnJ;gFma m,o
L2 2( 75 ) .’ )5 7) j:Xm+17Xm+277Xm+Zm)u
T
_Fm=<’q)m>"§mv" and then reformulate (31) as
=0 (30) 3 L .
(Xm,UIU)t = (Al + A2A3)7 (Ale,zﬂU—l =+ AQym-,U)
where (33)
~ 1-A
(I)m,a' :AHm,U + LQ—CQ(Qm,a’ - Fm,cr) where
m>2 T - T
with A1 2((Sh o) (@5 )y + HE (ST 0)
I o 2 ding{Go, (€h,0): - G (65} X (@5 )e1 ) (S5 ) 7
Lm AT oo 1T
o e dlag{ ZGQ 11n . 7Zn U) AQ é((svljz,a) ! ((I)m,o')tfl + Hz,a(sv‘:z,a) !
X (@5 et ) (S )7
ZGQ mo’ - ma’)} A3 é.["[77170--
Cooli 2 Go (€ _5 ) By resorting to the matrix inversion lemma, (33) can be
e e e rearranged in the following recursive form:
Based on the fixed-point iteration technique [41], the solu- _ A .
tion of (30) can be expressed as (Xmolo)t = Xmolo—1 + Km0 (Zm,a - hm(Xm,a'\a'fl))
(34)

Koto)e =(Fiho @)1 Frn)
X (F£70(®m7g)t71ym,a’) (31)

wheret represents the-th fixed-point iteration and)v(m7,,|,,
stands for the local estimate &f,, ..
Remark 5:Note that, in the fixed- -point iteration, the term

with
Km (P;LLE lo— 1+HmUPma\a' 1+(Pm0'|a 1

_ _ _ -1 _ _ _
+ 1 BV ino) (Pt + oo Rono)

Xm0 in (27) can be replaced bngm olo)t—1 (| e éno = where

Yo = Fro(Ximolo)i-1) with initial value (X, q1,)0 = Py 2S5 ) @5 (55.)

Xon,olo—1- Recallmg the definitions of,, ,, {m, o and @, 4, I arraV AT s vV N1

we can find that the calculation @fb,,.);—1 in (31) actu- Prioio—1 =((Smo) ™) (@570 )e-1(Sm0) ™

ally relies on(X,, ,»):—1, which means that the iterations p;7,10'|0'—1 é((gflU)fl)T(q);fg)til(wa)fl,

between(X,, /o) and (X, ,|,):—1 are actually established T T ’ o
i e oo 2((85. )71 (@3 )i 1(80) 7L

by ((I)m,a')tfl .
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Then, the local estimation covariance dﬁ‘mﬁg‘g can be
expressed as

(I Km UHm O') g

m,oc—1joc—1

+ Km,a(vm,o + Vm,U)K’;{‘l,U

(I - Km,O'Hm,U)T
(35)
For the convenience of the subsequent decentralized stae
estimator design, we transform the local estimatg , and

local estimation error covariandé;folg into the information
forms, i.e.

m, a’\a’

2:

o :Lm,UXm,tﬂcn 5
Lo =(PE7 ) 36) &

7
wheren,, , andL,, , represent the information vector and the
information matrix, respectively.

8:

. . . 9:

B. Design of Decentralized State Estimator 10-
In this subsection, the maximum-a-posteriori state estim&l:
tion method in [23] is extended to update the local estimate
recursively by using the edge sensing information. For area
n € N, the pseudo measurement matrix of the edge mea-
surement;,, » can be expressed as 12:

13:
A T -1 .
Hmn,(r - ( rijz,a’\a'fl) ( rfﬁcﬂafl) (37) 14:
15:
where
AT,
% 16:
mn O'IO' 1 Ze Xom O'IO' 1 Xm,a\a—l)
X (hmn(xzn,g‘g_len,zﬂo’—l) - 2mn,o’|a—1)
with 17
ATm . 18:
émn,d\dfl = ngnhmn(xzn,g‘g_la Xn.,a'\a'fl)'

=0

Then, for arean € V, the estimate and the estimation error
covariance otX,, , are of the foIIowing form

Xm,a|o’ =P, m cr|cr nm ot § mn a’Vnm a’zmn-,0’)7

neN 19:
ﬁfd\d =(Lm,s + Z Hmn,o)71 (38)
neN,

mn,o an’

where

07 A T

Vnm,o —Vmn,o + Hnm UL Hnm 0

— N (Xm.,a’\a’fh Xn,cr|crfl) + Hmn,UXm,o|ofl

—1
Hym,o Ly, oo

A
=Zmn,o

+ Hnm,a'Xn,a\a'—l -

Znm,o

As discussed in [23], for each areac V), the decentralized
SE algorithm will converge at eachafter finite iterations. As 5.
such, an inner loop is added in the update of the local estimate.
In summary, the pseudo code of the proposed anomaly-
resistant decentralized SE for wide-area power systems is
outlined in Algorithm 1.

Algorithm 1 Anomaly-Resistant decentralized SE algorithm
for wide-area power systems.

Initialization: For each arean € V), initialize the parameters
X Jojo and P2%, o and choose the weighted coefficients

8

wi, and@?, (j =0,1,...,47,). In addition, set the kernel
widths¢; and¢; and select the positive scalaf$ andt*.

Recursion:
1. for 0 =1,2,...do

Compute the sigma pomtgma Ho—1 (j=0,1,...,41%)

with known Xm’g,l‘a,l via (16).
Compute the local prediction stat&mo‘a 1 and the cor-
responding covariance matriceB;" P go—1 and

m.olo—1 N terms of (18)-(23).
Linearize the local measurement function (7) around
Xm,o\a 1 via (24)
Construct the augmented model (25) and use the Cholesky
decomposition to calculatg), ,, Sy, , and Sy, in (26).
Computeym,o, Fin,o andém o via (28).
Sett = 0 and let(X,, ,|,): be the estimate at the fixed-point
iterative stept. Denote(X,, »j»)o = Xpm.olo—1 as the initial
iteration value.
while ¢ > (" ort < t* do

Update the iterative step= ¢ + 1.
Compute(X,, »|,): Via (34).
Compute the iteration accuracy

||(Xm,o'\o')t - (Xm,o'\o')tfln
H(Xm,cr\a)tfln

,olo—11

¢=

end while 5

DenoteX,, ;o = (X, 0(0): and updat
Calculatefj,.» and L, , via (36). R
For each arean € MN,,, aream receivesX, ,,_; and
calculatesH ,n,» via (37).

Inner loop:

Seth = 0, for each area € N,,, aream computes

n -
('Umyo—)O :Hmn,O'Xm olos

n T
(Tm,o)o :H’"”l,U m o-\aHmn o

and sends them to area

for h=1,2,...do
Each arean € V updates the edge information once receive
(vnts)n—1 and (Y7, )n—1 from its neighbors, € N, via

hmn(Xm,o\afh Xn,o\afl)
+ Hmn,UXm,a\ofl + HnmyUXn,a\ofl
m
- (Un,a)h*h
7 m
(Vnm,o')h :an,o' + (Tn,a

Aream computes the current state estimate and its covari-
ance

via (35).

mo‘\o’

(an,a)h =Zmn,oc —

)h71~

(Xm,o\a)h :(Lm,a)}jl(nm,a)hv
( :’:a\a)h :(Lm,a)}:l

with
(nm,o')h :ﬁm,o' + Z H'Z;7L,U(Vnm,o');1(2nm,o')h7
nGNm
(Lm,o')h :Lm,o' + Z H'Z;n,a(vnm,o')]:len,ow
nENm

For each area ¢ ./\/m, aream computes
(U:ln,a)h :Hmn,o' (L::L,U)Izl(n:ln,a)}H
(T:’L,a)h :Hmn,a (L:iz,o')lleZ);n,o'
with
(ngz,o)h :(Um,c)h - Hrjrln,a(‘_/nmﬁ);l (gnm,o)h,
(sz,c)h :(Lm,o)h - H;’m,g(vnm,a)}jlﬂmn,a
and sendgvy, ,)r and (Y7, ,)x to arean.
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21:  end for adopted to assess the estimation performance afthastates,
22: end for i.e.

Remark 6:1n this paper, the anomaly-resistant decentralized 1 & N2
SE algorithm is designed for the wide-area power systems. For MSE; = T Z (Iw - xiva)
the purpose of improving computational efficiency, the SE for =1
power system is executed in a decentralized manner where ttere I' represents the number of Monte Carlo simulations
whole power grid is divided into several non-overlapping are@§d 7" = 100.
which are interconnected through transmission lines. In the ) ] .
design of the anomaly-resistant SE algorithm, an augmentdd Scenario 1: Centralized Scheme versus Decentralized
model is established by employing the unscented transf&cheme
mation technique and the statistical linearization technique.In this scenario, the standard UKF-based centralized SE
Then, an MEEF-based cost function is designed based on itheme (labeled as C-UKF) is considered for the purpose of
augmented model where the local prediction errors of statesmparison with our proposed anomaly-resistant UKF-based
and measurements are all reflected. Finally, the local estimdezentralized SE scheme (labeled as RD-UKF). In order to
is obtained by iteratively solving an optimization problem witlsave space, the state trajectories of bus 11 (in area 1) and the
the MEEF-based cost function and such an estimate is thetate trajectories of bus 10 (in area 2) are taken for illustration.
updated by using the edge measurement. The simulation results are given in Figs. 2-3. To be specific,

Remark 7:In comparison with the existing SE schemes forig. 2(a) shows the real curves of the states and the associated
wide-area power systems, the main novelties of this pamsgtimates of bus 11 in area 1, the corresponding MSEs are
lie in the following aspects: 1) the scheme we adopted fdotted in Fig. 2(b). Similarly, the corresponding results for
novel since the state is first estimated in a decentralizeds 10 in area 2 are shown in Fig. 3(a) and 3(b), respectively.
manner by using the local measurement and then updated with
the aid of edge measurements shared with the neighboring
areas; 2) the augmented model we developed is novel since
it not only reflects the local prediction errors of the state and
measurement but also improves the data redundancy; and 3)
the MEEF criterion we adopted in the estimator design is novel
since it is more comprehensive than the MEE and MC criteria
in the sense of enhancing the resistance of the proposed SE 0 10 20 %0 40 506070 80 %0 100
scheme against the anomalies in the measurements. Area 1 (Bus 11)

Area 1 (Bus 11)

=
N

[
N

o
©
T

The actual state
I — — —C-UKF
S ‘ ‘ ‘ ‘ ‘ [= — —RO-UKF

Vi1 and estimation (pu)
-
AN

o
©

AN
>
o

The actual state
| — — —C-UKF
— — —RD-UKF

o
>
>

Oy, and estimation (pu)
&
2
A

V. SIMULATION EXAMPLE [ N
14.8 F A~ A N 5

In this section, the proposed anomaly-resistant decentral- 149 e
ized SE algorithm for wide-area power systems is tested on R /¥ S
the IEEE 14-bus system. The simulation is implemented in (@
MATLAB-R2018b with the aid of the Matpower package [44]. L —— e T
The whole test cases are performed on a PC with Intel Core = _6,\ \;w
CPU i7-7700HQ, 2.80GHz and 16 GB RAM. The IEEE 14- LS AN
bus is modeled as (1) with; = 0.89, B; = 0.11 and S I VN P O SO N N A
W; = 0.012 (i = 1,2,...,14). The value of the expected k] AV O AN
steady stater; can be found in Table I. The installation 12— ;0 T T e e o
positions of the SCADA units and the PMUs remain the same
as they were in [45]. For the SCADA measurement functions e
given in (2) and (4), the corresponding covariance matrices of $ ot A ——
the measurement noises are set tolpg = 1 x 10~ and o ol \/ L
Vi, =1x1073 (i,j € {1,2,...,14},i # j), respectively. %7107/\ IS SR AN VAN PRI VN
For the i-th bus which is equipped with the PMU, the = SN ma N = fee e~ TN N ais
corresponding covariance matrix of the measurement noise is 0 10 20 . 40 0 e 0 80 e 10
setasV?, =1x107C. o

As shown in Fig. 1, the IEI_EE 14-bus system is divided mtﬁg. 2. Scenario 1: Simulation results of bus 11 for area 1: (a)
3 areas and the corresponding local measurements as welkgfmated states. (b) MSE.
the edge measurements are all labeled clearly. Fomttta
(m = 1,2,3) anomaly-resistant decentralized state estimator,It can be found from Figs. 2-3 that: 1) the estimation
the parameters of the unscented transformation are chosema@siracy of the C-UKF is higher than that of the RD-UKF
am = €2, k,, = 0.02 and 3,, = 1. Moreover, the parameterssince the measurement redundancy of the former is higher
of the MEEF criterion are selected as= 0.2, ¢; = 25 and than that of the latter; and 2) the estimation accuracy of our
G2 = 2, respectively. The mean square error (MSE) criterion goposed RD-UKF is acceptable.
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TABLE |: Expected States of IEEE 14-bus System

Bus 1 2 3 4 5 6 7
\oltage (p.u.) 1.060 1.045 1.010 1.018 1.020 1.070 1.062
Phasor (degree] 0.000 -4.983 | -12.725| -10.313 | -8.744 | -14.211 | -13.360
Bus 8 9 10 11 12 13 14
\oltage (p.u.) 1.090 1.056 1.051 1.057 1.055 1.050 1.036
Phasor (degree] -13.360 | -14.939 | -15.097 | -14.791 | -15.076 | -15.156 | -16.034

Area 2 (Bus 10) 1 "

=
IS

The actual state

—_ Similarly, only the states of bus 11 (in area 1) are taken
— for illustration in this scenario. Fig. 4 shows the simulation

T e b results under case 1. Specifically, Fig. 4(a) shows the true
i ] state trajectories and the associated estimates of bus 11 in area
AP L N Y R SN S A S S 1, and the corresponding measurement curves contaminated
with consecutive measurement outliers are plotted in Fig. 4(b).

[

Vi and estimation (pu)

e — : —_— Similarly, for case 2, the corresponding results are plotted in
5. “ - 79 actual state .
g 15 rl \‘\ —— —guuﬁip Flg S.
é Area 1 (Bus 11)
s = 12 [ [ [ The actual state
) 2 | - — — —C-UKF
5s I S IR N IR S BN N = N - ok
0 10 20 30 40 50 60 70 80 90 100 2 i
Time (o) ;:
(a) R
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T T T T T —_ o 5 0.9
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" ‘ ‘ ‘ ‘ ‘ ‘ ‘ T T TCuke L L L ] v L \\ L L L
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5 50 1 Time (o)
g (a)
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'% 107 7 Voltage measurement of Bus 11 (p.u.)
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Fig. 3. Scenario 1: Simulation results of bus 10 for area 2: (a) oor ' \“\/ ‘7 — deal measurement
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B. Scenario 2: Resistance to Measurement Outliers Caused n\ — outlerconam
. - i
by Non-Gaussian Sequences . MY /Q ! \\/M/N\A/ “\W%A ]
p - . N\ 4 \

For the purpose of verifying the resistance of the developed \ ! v " ”W\/
anomaly-resistant decentralized SE scheme to the measure- asp V) ]
ment outliers caused by the non-Gaussian noises, in this o 10 2 w® 40 s e 70 s 90 100
scenario, the following two cases are considered: (Tb) )

Case 1The local measurements of 3 areas and their corigg 4 scenario 2: Simulation results of bus 11 for area 1 under Case
sponding parts in the centralized measurement mog-consecutive measurement outliers caused by non-Gaussian noises.
el are contaminated with consecutive measuremdpj Estimated states. (b) Measurement curves.
outliers. Specifically, froms = 30 to ¢ = 60, a
two-component Gaussian mixture sequence, whichFrom Figs. 4-7, it can be concluded that: 1) the estimation
has zero means and covariance matrice®.bf and performance of the C-UKF degrades severely in the presence
10~27 with weights 0.9 and 0.3, is used to modebf consecutive measurement outliers, while our proposed RD-
the outliers. UKEF is anomaly-resistant to such kind of measurement outlier-

Case 2 In this case, the randomly occurring measuremest and 2) when the randomly occurring measurement outliers
outliers caused by the non-Gaussian sequence aczur, the estimation performance of the C-UKF degrades
considered. The detailed parameters of the noseverely, and the RD-UKF is still anomaly-resistant to these
Gaussian sequence are similar to the one in Casads of measurement outliers.
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C. Scenario 3: Resistance to Bad Measurement Data It can be confirmed from Figs. 6-7 that: 1) when the instan-
taneous bad measurements occur, the estimation performance
'8f%he C-UKF degrades severely, and the proposed RD-UKF
@sanomaly resistant to such kinds of gross errors; and 2)
E estimates of the C-UKF are non- convergent when the
fisecutive bad measurements occur, while the proposed RD-

UKF performs well under such kinds of gross errors.
Case 1 The local measurements of 3 areas and their

corresponding parts in the centralized measurement
model are contaminated with instantaneous errof®. Computational Efficiency

Specifically, whenos = 50, the measurements are : .
corrupted with 20% errors. The average running times (ARTs) of the above three

Case 2 In this case, the local measurements of 3 arescenarios are given in Table II. It can be confirmed from
ble Il that the proposed decentralized SE has much higher
and their corresponding parts in the centralized meg-

mputational efficiency than the centralized one.
surement model are contaminated with consecutive

errors. Specifically, fromr = 30 to o = 60, the TABLE II: Average Computing Time Under Three Scenarios
measurements are corrupted with 20% errors. At Each Iteration

For the sake of saving space, only the states of bus 10

Due to the presence of sensor saturations, gross er
and/or instrument failures, the measurements in power syst
can be contaminated with bad measurements [46]. In or
to assess the resistance of the developed SE algorithms, d
following two cases are considered:

. . . . . X Scenario 1 2 3

(in area 2) are taken for illustration in this scenario. The T Case 2 : )
simulation results under case 1 are plotted in Fig. 6. To Coﬁzz‘éu%i;/e randomly instcaistgntojwﬁzzguﬁve
be specific, the trajectories of the states and the associated 'ttm Non€ - casureme g?sfrl?ﬁeqt gross gross
estimates of bus 10 in area 2 are plotted in Fig. 6(a), and outliers " iiers errors errors
the C(_)rresponds measurement curves .contamlna-te(-j with Conl-J/_}\Xl;l;R(gsL)JKszlE 28/18 2717 28/15 26/15
secutive gross errors are plotted in Fig. 6(b). Similarly, th& -

corresponding results for case 2 are plotted in Fig. 7.
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Fig. 7. Scenario 3: Simulation results of bus 10 for area 2 under
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Measurement curves.

VI. CONCLUSION
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In this paper, the anomaly-resistant decentralized SE prob-

lem has been investigated for wide-area power systems. Fef
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