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Anomaly-Resistant Decentralized State Estimation
Under Minimum Error Entropy With Fiducial

Points for Wide-Area Power Systems
Bogang Qu, Zidong Wang, Bo Shen, Hongli Dong, and Hongjian Liu

Abstract—This paper investigates the anomaly-resistant decen-
tralized state estimation (SE) problem for a class of wide-area
power systems which are divided into several non-overlapping
areas connected through transmission lines. Two classes of
measurements (i.e., local measurements and edge measurements)
are obtained, respectively, from the individual area and the
transmission lines. A decentralized state estimator, whose per-
formance is resistant against measurement with anomalies, is
designed based on the minimum error entropy with fiducial
points (MEEF) criterion. Specifically, i) an augmented model,
which incorporates the local prediction and local measurement, is
developed by resorting to the unscented transformation approach
and the statistical linearization approach; ii) using the augmented
model, an MEEF-based cost function is designed that reflects
the local prediction errors of the state and the measurement;
and iii) the local estimate is first obtained by minimizing the
MEEF-based cost function through a fixed-point iteration and
then updated by using the edge measuring information. Finally,
simulation experiments with three scenarios are carried out on
the IEEE 14-bus system to illustrate the validity of the proposed
anomaly-resistant decentralized SE scheme.

Index Terms—Wide-area power systems, decentralized state
estimation, minimum error entropy, unscented Kalman filter,
measurements with anomalies.

I. I NTRODUCTION

For a few decades, power systems have been undergoing
dramatic changes due to the penetration of renewable power
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generations, the widespread use of demand-response devices
as well as access to dynamic loads [1], [2]. In order to
monitor power systems under complex working conditions, a
new generation of infrastructure, namely, wide area monitoring
systems (WAMS), has been increasingly deployed in modern
power systems [3]. As a key part of the WAMS, the state
estimation (SE) algorithm has been playing a vitally impor-
tant role in raising situation awareness, facilitating real-time
control and enhancing security assessment and protection [4]–
[6].

So far, the SE algorithms based on the data collected from
the phasor measurement unit (PMU) have spurred tremen-
dous interest (see e.g. [7], [8]) because of PMU’s merits
of providing synchronized, accurate yet timely sensing data.
Nevertheless, due primarily to unaffordable implementation
costs and the limited communication resources, it is difficult
to deploy the PMU widely in the foreseeable future [9], [10].
Therefore, one would need to make use of the measurements
from both the advanced PMUs and conventional supervisory
control and data acquisition (SCADA) in order to reach
the tradeoff between communication/implementation cost and
estimation accuracy.

There have been three typical SE frameworks, namely,
centralized, hierarchical and decentralized frameworks, which
have appeared in the literature [11]–[13]. In the centralized
SE framework, the global estimates can be generated in the
estimation center by utilizing the measurement data from the
entire power grid [14], [15]. Such a centralized framework
might suffer from computation costs and/or communication
burdens, and this is especially true when the power grid is s-
caled up [16], [17]. The hierarchical SE framework, on the oth-
er hand, disperses the computation/communication burdens by
dividing the power grids into several areas and then generating
the local estimates of each area which are finally fused in the
estimation center [9], [10]. Note that hierarchical frameworks
are very much dependent on the efficiency and reliability of the
SE schemes (executed at the estimation center), which might
not be always guaranteed for large-scale power systems [17],
[18]. Compared to its centralized and hierarchical counterparts,
the decentralized SE framework aims to further save limited
computation/communication resources by dividing the power
grid into several areas and conducting state estimation in each
individual area based on the information from the local area
as well as the edges which are shared with its neighboring
areas.

In the past decades, the decentralized SE problem for power
systems has attracted increasing research interest, see [3],
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[16]–[19] for some representative works. For instance, in [3],
a fully distributed static SE algorithm has been designed for
wide-area power systems based on the weighted-least-square
(WLS) method. In [18], an efficient distributed SE algorithm
has been developed with the aid of the WLS method, where
the Gauss-Newton step is achieved without inner iteration. It
should be noted that the WLS-based SE method is inherently a
staticone, and is therefore incapable of capturing the dynamic
behaviors most likely caused by sudden load changes or the
penetration of renewable power generations.

As with the increasing demand of monitoring dynamic
behaviors of large-scale power systems, the so-called decen-
tralized dynamic state estimation (DDSE) problem has creat-
edgreat enthusiasm from researchers leading to the develop-
ment of three mainstream DDSE-based schemes, namely, the
model-decoupling-based scheme [8], [20], consensus-based
scheme [21], [22] and maximum-a-posteriori-based scheme
[23]. Briefly speaking, the model-decoupling-based scheme
is computationally efficient at the cost of sacrificing certain
estimation performance since the neighboring information of
each synchronous generator is not effectively utilized. For
a given area, although the consensus-based DDSE scheme
improves the estimation efficiency, it may not be able to fully
utilize the available data since the information of the indirectly
connected areas is largely ignored. The distributed maximum-
a-posteriori-based DSE algorithm, on the other hand, can
achieve an adequate tradeoff between information utilization
efficiency and state estimation accuracy since the information
of entire power grid can be accessed through finite steps of
iteration.

It is worth pointing out that most existing SE algorithms for
power systems have been developed in the minimum mean-
square-error (MMSE) sense, and the corresponding estimation
performances are therefore prone to contaminated measure-
ment data due to anomalies (e.g. outliers, communication
impulses, quantization errors and instrument failures) [24]–
[28]. To enhance the resistance against anomalies, some novel
SE schemes have been proposed based on the minimum error
entropy (MEE) criterion and the maximum correntropy (MC)
criterion, see e.g. [29] for the MEE-based unscented Kalman
filter (UKF), [30] for the MC-based extended Kalman filter
and [31] for the novel Cauchy-kernel-based MC filter. In
many situations, the MEE-based SE scheme outperforms the
MC-based one, but the shift-invariant of the MEE criterion
introduces a bias to make sure that the estimation error goes
to zero [32]. In hopes of combining the merits of both MC
and MEE criteria, the so-called minimum error entropy with
fiducial points (MEEF) criterion has been proposed in [32]
without having to add a bias after training.

Based on the above discussions, it can be found that there
is a lack of adequate investigation into the SE problem for a
wide-area power system with anomaly, and the main purpose
of this paper is therefore to shorten such a gap. In doing
so, the technical challenges can be identified as threefold:
1) determining how to implement the SE algorithm in a de-
centralized style to decrease the computation/communication
cost; 2) determining how to improve data redundancy in the
case of a decentralized SE framework where only the local
measurement is available; and 3) determining how to reduce

the negative influences of the measurement with anomalies on
the SE performance in the estimator design.

In connection with the challenges identified above, the main
contributions are highlighted as follows. 1) For the purpose of
implementing the SE in a decentralized manner, the wide-area
power system is divided into several non-overlapping areas,
and the state of a given area is first estimated by using local
measuring information and then updated by using the edge
measurements which are shared with its neighboring areas. 2)
To improve the data redundancy, an augmented model which
involves both the local prediction and the local measurement
is constructed by resorting to the unscented transformation
approach as well as the statistical linearization approach. 3)
A local MEEF-based UKF is proposed based on the MEEF
criterion so as to enhance resistance against measurement with
anomalies.

The remainder of this paper is outlined as follows. Section
II formulates the decentralized model of power systems. In
Section III, a brief review of the error entropy criterion and
the correntropy criterion is first given, and then the MEEF
criterion is introduced. Section IV describes the proposed
anomaly-resistant decentralized SE algorithm. In Section V,
simulation studies and detailed discussions are carried out on
the IEEE 14-bus power system. Finally, some conclusions are
drawn in Section VI.

Notation The notation used here is fairly standard except
where otherwise stated.Rn represents then-dimensional Eu-
clidean space. The superscript “T” represents the transpose
operation. diag{· · · } represents the block-diagonal matrix.
E{x} is the expectation of the stochastic variablex. [A]ij
represents the element at thei-th row and thej-th column of
the matrixA. ‖ · ‖ stands for the Euclidean norm of a vector.

II. PROBLEM FORMULATION

A. Preliminaries

In this paper, an undirected acyclic graphG = (V , E) is
used to reveal the connections of different areas of a wide-area
power system. Specifically,V = {1, 2, . . . ,M} represents the
set of areas, andE ∈ V × V is the set of edges. The edge
(m,n) ∈ E represents them-th area of the wide-area power
system and is interconnected with then-th area. The set of
neighbors of aream ∈ V plus the node itself are denoted by
Nm = {m ∈ V : (m,n) ∈ E}.

B. Power System Model

Consider a power system which containsN buses (an
example is shown in Fig. 1), where the dynamic equation of
the i-th bus with the quasi-steady state is described by [10],
[33]

xi,σ+1 = Aixi,σ +Bix̄i + wi,σ. (1)

Here, xi,σ ∈ R
2 represents the state vector of busi (i =

1, 2, . . . , N) given by

xi,σ ,
[

Vi,σ θi,σ.
]T

with Vi,σ andθi,σ representing the voltage magnitude and the
voltage phase angle of thei-th bus, respectively;Ai ∈ R

2×2

is a known matrix reflecting how fast the transitions between
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Power system model with N buses (1)

PMU & SCADA measurement model (2)

Local system model (6)

Local measurement model (7)

Edge measurement model (8)

Predict the local state (16)-(23) 

Correct the local state based on (7) and 

the MEEF criterion (24)-(36)

Update the local estimates (37)-(38)

Divide the system into M areas and 

consider the m-th area

Use the edge measurement (8) 

Local EstimatorLocal Estimator

Use the local measurement (7)

Fig. 1. Schematic view of the proposed decentralized SE for wide-area power systems.

states are;̄xi is the expected steady state;Bi (commonly
selected asBi = I − Ai) is used to account for the trend
behavior of the state trajectory; andwi,σ ∈ R

2 is Gaussian
white noise with zero mean and covarianceWi,σ.

Remark 1:In this paper, the power system under consid-
eration belongs to the widely used quasi-steady paradigm in
which the loads and generators are assumed to operate stably
without sudden changes in a short time interval [34], [35]. For
the purpose of revealing the quasi-steady paradigm, a famous
dynamic model (1) is used in which the bus magnitudes and
phase angles are chosen as the state variables, the matrix
Ai describes how fast the transitions between the states are
andBi represents the trend behavior of the state trajectory. It
should be pointed out that the parameters ofAi andBi can be
identified in an online style and such a method is sufficient for
the characterization of the quasi-steady behavior of the power
systems [35].

C. SCADA and PMU Measurement Models

In this paper, the mixed SCADA and PMU measurements
are used to monitor the power system (an example is shown
in Fig. 1). The voltage magnitude of each bus and the power
flows between two interconnected buses are measured by the
SCADA units, and the voltage phasors of the selected buses
are measured by the PMUs. It should be pointed out that all
of the buses are installed with the SCADA units, and selected
buses are installed with the PMUs since the implementation
cost of the PMUs is much higher than that of the SCADA
units [10].

The voltage magnitude of thei-th bus measured by the
SCADA unit at time instantσ is expressed as

zsi,σ = Csxi,σ + vsi,σ (2)

whereCs =
[

1 0
]

, andvsi,σ stands for the SCADA measure-
ment noise that follows the Gaussian distribution with zero
mean and covarianceV s

i,σ > 0.

The active and reactive power flows between the intercon-
nected busi and busj measured by the SCADA unit atσ can
be described by

Pij,σ =V 2
i,σ(gsi + gij)− Vi,σVj,σ

(

gij cos(θi,σ − θj,σ)

+ bij sin(θi − θj)
)

,

Qij,σ =− V 2
i,σ(bsi + bij)− Vi,σVj,σ

(

gij sin(θi,σ − θj,σ)

− bij cos(θi,σ − θj,σ)
)

(3)

wheregsi+ jbsi represents the admittance of the shunt branch
connected to busi, andgij+jbij is the admittance of the series
branch connecting busesi and j. Taking the measurement
noise into account, a compact SCADA-based measurement
model of the power flows is of the following form

zsij,σ = hs
ij,σ(xi,σ , xj,σ) + vsij,σ (4)

where

zsij,σ ,
[

Pij,σ Qij,σ

]T
,

vsij,σ is a Gaussian white noise on the SCADA unit with zero
mean and covarianceV s

ij,σ > 0, andhs
ij,σ(·) is determined by

(3).
Letting thei-th bus be equipped with the PMU, the corre-

sponding measurement model for the voltage phasor can be
expressed as

z
p
i,σ = Cpxi,σ + v

p
i,σ (5)

where Cp is an identity matrix, andvpi,σ is a zero-mean
Gaussian white noise on the PMU with covarianceV

p
i,σ > 0.

D. Decentralized Model

In this subsection, we divide the power system (1) into
M non-overlapping areas and assume that the topology of
such a divided system is acyclic. The system model and the
corresponding measurement model for each area as well as
the edge measurement model for two interconnected areas are
given as follows:
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1) Local System Model. The dynamic equation of them-th
area(m = 1, 2, · · · ,M) can be given as

Xm,σ+1 = Ām,σXm,σ + B̄mX̄m + w̄m,σ, m ∈ V . (6)

Similar to the descriptions of (1),Xm,σ is the state vector
of aream at time instantσ; Ām is the transition matrix of
aream; X̄m represents the expected steady state for aream;
B̄m = I − Ām is related to the trend behavior of the state
trajectory of aream; and the process noise is represented by
w̄m,σ. The detailed descriptions of the variables in (6) are
given as follows:

Xm,σ ,
[

xT
m1,σ

xT
m2,σ

· · · xT
mτm ,σ

]T
∈ R

Xm ,

Ām , diag{Am1
, Am2

, · · · , Amτm
} ∈ R

Xm×Xm ,

B̄m , diag{Bm1
, Bm2

, · · · , Bmτm
} ∈ R

Xm×Xm ,

X̄m ,
[

x̄T
m1

x̄T
m2

· · · x̄T
mτm

]T
∈ R

Xm ,

w̄m,σ ,
[

wT
m1,σ

wT
m2,σ

· · · wT
mτm ,σ

]T
∈ R

Xm

where, ford = 1, 2, . . . , τm, xmd,σ represents thed-th state of
the m-th area at time instantσ; Amd

is the transition matrix
of the d-th state of them-th area;x̄md

represents thed-th
expected steady state of aream; Bmd

= I − Amd
stands

for the trend behavior of thed-th state trajectory of aream;
andwmd,σ is the process noise of thed-th state of them-th
area with zero mean and covariance matrixWmd,σ > 0. The
covariance matrix of the process noise for them-th areaw̄m,σ

is Wm,σ = diag{Wm1,σ,Wm2,σ, · · · ,Wmτm ,σ}. The number
of the buses of them-th area is denoted asτm andXm = 2τm.

2) Local Measurement Model. The local measurement of
them-th area can be expressed as

zm,σ = hm(Xm,σ) + vm,σ, m ∈ V (7)

where

zm,σ ,
[

(zsm1,σ
)T · · · (zsmτm ,σ)

T · · · (zsmpmq,σ
)T

· · · (zpmr,σ
)T · · ·

]T
∈ R

Zm ,

vm,σ ,
[

(vsm1,σ
)T · · · (vsmτm ,σ)

T · · · (vsmpmq,σ
)T

· · · (vpmr ,σ
)T · · ·

]T
∈ R

Zm .

Here, zsml,σ
(l = 1, 2, . . . , τm) stands for the voltage mag-

nitude of the l-th bus in them-th area measured by the
SCADA unit at time instantσ; zsmpmq,σ

represents the power
flows between the interconnected busp and busq (p, q ∈
{1, 2, . . . , τm} and p 6= q) in the m-th area measured by the
SCADA unit at time instantσ; andzpmr,σ

(r ∈ {1, 2, . . . , πm})
is the voltage phasor measurement of ther-th selected bus
in the m-th area installed with PMU at time instantσ. The
descriptions of every element of the measurement noisevm,σ

are similar to that of the measurement vectorzm,σ given above.
The details of the nonlinear functionhm(·) rely on the states of
them-th area (i.e.,Xm,σ) as well as the equations (2)–(5). The
covariance matrix of the measurement noisevm,σ is Vm,σ =
diag{V s

m1,σ
, · · · , V s

mτm ,σ, · · · , V
s
mpmq,σ

, · · · , V p
mr ,σ

, · · · }.
3) Edge Measurement Model. Since some buses of one area

are often connected with other areas, the measurements related
to these buses are treated as edge measurements in this paper.

To be specific, for them-th area, the edge measurement model
can be represented by

zmn,σ =hmn(Xm,σ, Xn,σ) + vmn,σ,

m ∈ V , n ∈ V ,m 6= n, n ∈ Nm (8)

where

hmn(Xm,σ, Xn,σ)

,

[

· · ·
(

hs
mpnq

(xmp,σ, xnq,σ)
)T

· · ·

]T

∈ R
Zmn ,

vmn,σ

,
[

· · · (vsmpnq,σ
)T · · ·

]T
∈ R

Zmn .

Here, hs
mpnq

(xmp,σ, xnq,σ) represents the power flows be-
tween the interconnected busp of aream and busq of area
n measured by SCADA unit, and the corresponding noise
vsmpnq

(xmp,σ, xnq,σ) follows Gaussian distribution with zero
mean and covariance matrixV s

mpnq,σ
> 0. The details of

hmn(Xm,σ, Xn,σ) are dependent on the partition of the power
system and the power flow measurements described in (4).
The covariance matrix of the edge measurement noisevmn,σ

is Vmn,σ = diag{. . . , V s
mpnq,σ

, . . .}.
Remark 2:In actual power systems, the inducements of the

measurement anomalies (e.g. stealthy attacks, communication
impulses, instrument fails or packet losses) are numerous
and the features of these anomalies (e.g. the type, occurring
occasionality/probability, intermittency) are often unknown
[7], [36]. As such, it is difficult and even impossible to reveal
the measurement anomalies by using specific models, and this
motivates us to improve the robustness of the estimator by
adopting some novel methods.

E. Problem Statement

The aim of this paper is to develop an anomaly-resistant SE
algorithm for power systems such that

1) the proposed SE algorithm is deployed in a decentralized
manner by dividing the large-scale interconnected power
system into several non-overlapping areas;

2) the decentralized state estimate is calculated iteratively
by using the local measurement and edge measuring
information; and

3) the resistance of the proposed algorithm against mea-
surement with anomalies is enhanced by adopting the
MEEF criterion.

III. M INIMUM ERROR ENTROPY WITH FIDUCIAL POINTS

CRITERION

In this section, the error entropy criterion and the corren-
tropy criterion are briefly reviewed, and then an error entropy
with fiducial points criterion is developed.

A. Error Entropy Criterion

Let e be the error between the actual statex and the desired
statey, (i.e. e = x − y). The Rényi’s quadratic error entropy
is defined as

HR,2(e) , − log

∫

p2(e)de (9)
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wherep(e) is the probability density function (PDF) of the
error variablee [37]. Based on the Parzen’s window estimation
method, the error PDFp(e) can be estimated by drawingN
samples{ei}Ni=1 from e, that is

p̂(e) =
1

N

N
∑

i=1

Gς(e − ei), (10)

whereGς(·) is the kernel function andς is the kernel band-
width [38]. Without loss of generality, we choose the Gaussian
kernel as the kernel function, i.e.,

Gς(e− ei) = exp

(

−(e− ei)
2

2ς2

)

. (11)

Then, the Rényi’s quadratic error entropy in (9) can be
approximated as

HR,2(e) ≈− log

∫

p̂2(e)de

,− log
(

IP (e)
)

(12)

with

IP (e) ,
1

N2

N
∑

i=1

N
∑

j=1

Gς(ei − ej)

representing the information potential of the errore [39].
Obviously, the MEE criterion is actually equivalent to the
maximization of the information potentialIP (e).

B. Correntropy Criterion

Letting X and Y be stochastic variables, the correntropy
between these two variables is defined as

C(X,Y ) = E{Kς(X,Y )} =

∫ ∫

Kς(x, y)fXY (x, y)dxdy

(13)

where Kς(·, ·) denotes the Mercer kernel function and
fXY (x, y) is the joint PDF. Without loss of generality, we
still choose the Gaussian kernel in (11) as the kernel function.
Note that the distribution offXY (x, y) is usually unknown
and we have to drawN samples{xi, yi}Ni=1 from fXY (x, y)
to estimateC(X,Y ), i.e.,

Ĉ(X,Y ) =
1

N

N
∑

i=1

Gς(xi − yi). (14)

As such, the so-called MC criterion is actually equivalent to
the maximization of the cost function given in (14).

C. Minimum Error Entropy with Fiducial Points Criterion

As discussed in [32], [37], the MEE is shift-invariant and
one has to add a bias to guarantee that the estimation error
goes towards zero. In order to overcome such a shortcoming,
an improved approach called the MEEF criterion has been pro-
posed in [32]. Specifically, the MEEF criterion is established
by combining MEE and MC criteria through a cost function

J(E) =
µ

N

N
∑

i=1

Gς1(ei) +
1− µ

N2

N
∑

i=1

N
∑

j=1

Gς2(ei − ej) (15)

where E is the error variable;µ ∈ (0, 1) is the weight
coefficient;ς1 andς2 are the bandwidths of the Gaussian kernel
functionsGς1(·) and Gς2(·), respectively;ei (ej) represents
the i-th (j-th) sample drawn fromE; andN is the number of
samples.

Remark 3:Due to the unique merits in enhancing robustness
against anomalies, the MEE and MC criteria have attracted a
surge of research enthusiasm and some representative results
have appeared, see e.g. [29]–[31]. For example, a novel MC-
based filter has been designed in [31] where the inherent
shortages of Gaussian kernels have been overcome with the
aid of the Cauchy kernel. It is worth pointing out that the
shift-invariant property of the MEE criterion makes it difficult
to guarantee that the mean of the error PDF tends to zero [40].
As such, the MEEF criterion has been proposed in [40] where
the MC term is used to fix the peak of error PDF at origin
and the MEE term is adopted to minimize the error entropy
[32], [41]. In this paper, the MEEF criterion will be used in
the subsequent anomaly-resistant state estimator design.

IV. A NOMALY-RESISTANT DECENTRALIZED STATE

ESTIMATOR DESIGN

In this section, we aim to study the anomaly-resistant SE
problem for wide-area power systems in the presence of
measurement with anomalies. First, a local UKF-based state
estimation scheme is developed by using the local sensing
data, where the MEEF criterion is utilized in the cost function
design to enhance the resistance of the local state estimator
against the measurement with anomalies. Then, the local esti-
mate is updated by exploiting the edge measuring information.
The schematic view of the proposed decentralized SE scheme
is outlined in Fig. 1.

A. Design of the MEEF-based Local State Estimator

1) Prediction: For the m-th (m = 1, 2, . . . ,M) area,
suppose that the local estimatêXm,σ−1|σ−1 ∈ R

Xm and its
covariance matrixP xx

m,σ−1|σ−1 ∈ R
Xm×Xm are available at

σ − 1. Then, the4τm + 1 sigma points can be generated via

χ
j

m,σ−1|σ−1 =



























































X̂m,σ−1|σ−1, j = 0

X̂m,σ−1|σ−1

+
(

√

(2τm + λm)P xx
m,σ−1|σ−1

)

j
,

j = 1, . . . , 2τm

X̂m,σ−1|σ−1

−
(

√

(2τm + λm)P xx
m,σ−1|σ−1

)

j
,

j = 2τm + 1, . . . , 4τm

(16)

where
(

√

(2τm + λm)P xx
m,σ−1|σ−1

)

j
represents thej-th col-

umn of the square root of the matrix(2τm +λm)P xx
m,σ−1|σ−1

in the sense of Cholesky decomposition, i.e.,

(2τm + λm)P xx
m,σ−1|σ−1

=
(

√

(2τm + λm)P xx
m,σ−1|σ−1

)(

√

(2τm + λm)P xx
m,σ−1|σ−1

)T
,

andλm , α2
m(2τm+κm)−2τm stands for the scalar parameter

with 0 ≤ αm ≤ 1 andκm ≥ 0.
C o p y r i g h t  ©  2 0 2 3  I n s t i t u t e  o f  E l e c t r i c a l  a n d  E l e c t r o n i c s  E n g i n e e r s  ( I E E E ) .  P e r s o n a l  u s e  o f  t h i s  m a t e r i a l  i s  p e r m i t t e d .  P e r m i s s i o n  f r o m  I E E E  m u s t  b e  o b t a i n e d  f o r  
a l l  o t h e r  u s e s ,  i n  a n y  c u r r e n t  o r  f u t u r e  m e d i a ,  i n c l u d i n g  r e p r i n t i n g / r e p u b l i s h i n g  t h i s  m a t e r i a l  f o r  a d v e r t i s i n g  o r  p r o m o t i o n a l  p u r p o s e s ,  c r e a t i n g  n e w  c o l l e c t i v e  
w o r k s ,  f o r  r e s a l e  o r  r e d i s t r i b u t i o n  t o  s e r v e r s  o r  l i s t s ,  o r  r e u s e  o f  a n y  c o p y r i g h t e d  c o m p o n e n t  o f  t h i s  w o r k  i n  o t h e r  w o r k s  b y  s e n d i n g  a  r e q u e s t  t o  p u b s -
p e r m i s s i o n s @ i e e e . o r g .  S e e  h t t p s : / / j o u r n a l s . i e e e a u t h o r c e n t e r . i e e e . o r g / b e c o m e - a n - i e e e - j o u r n a l - a u t h o r / p u b l i s h i n g - e t h i c s / g u i d e l i n e s - a n d - p o l i c i e s / p o s t - p u b l i c a t i o n -
p o l i c i e s /  f o r  m o r e  i n f o r m a t i o n 
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Having obtained the sigma points, we now propagate each
sigma point through the state-transition function (6) to gener-
ate a new set of transformed sigma pointsχ

j

m,σ|σ−1 with the
following form:

χ
j

m,σ|σ−1 = Ām,σχ
j

m,σ−1|σ−1 + B̄mX̄m, j = 0, 1, . . . , 4τm.

(17)

Then, the prediction statêXm,σ|σ−1 and the corresponding
prediction error covarianceP xx

m,σ|σ−1 can be, respectively,
calculated via

X̂m,σ|σ−1 =

4τm
∑

j=0

ωj
mχ

j

m,σ|σ−1 (18)

and

P xx
m,σ|σ−1 =

4τm
∑

j=0

θjmχ̃
j

m,σ|σ−1(χ̃
j

m,σ|σ−1)
T +Wm,σ (19)

where χ̃j

m,σ|σ−1 , (χj

m,σ|σ−1 − X̂m,σ|σ−1), ωj
m and θjm are

the weighted coefficients with the following form:

ωj
m ,















λm

2τm + λm

, j = 0

1

2(2τm + λm)
, j = 1, 2, . . . , 4τm

and

θjm ,















λm

2τm + λm

+ (1− α2
m + βm), j = 0

1

2(2τm + λm)
, j = 1, 2, . . . , 4τm

with βm > 0.
Similarly, the predicted sigma points, which are mapped

through the measurement functionhm(·) in (7), are given as

Zj

m,σ|σ−1 = hm(χj

m,σ|σ−1), j = 0, 1, . . . , 4τm + 1. (20)

Then, we can obtain the prediction of the local measurement
zm,σ by the following weighted average operation:

ẑm,σ|σ−1 =

4τm
∑

j=0

ωj
mZj

m,σ|σ−1. (21)

By denoting Z̃j

m,σ|σ−1 , (Zj

m,σ|σ−1 − ẑm,σ|σ−1), the
measurement prediction error covariance matrixP zz

m,σ|σ−1 and
the state-measurement prediction error cross-covariance matrix
P xz
m,σ|σ−1 can be computed, respectively, as

P zz
m,σ|σ−1 =

4τm
∑

j=0

θjmZ̃j

m,σ|σ−1(Z̃
j

m,σ|σ−1)
T + Vm,σ (22)

and

P xz
m,σ|σ−1 =

4τm
∑

j=0

θjmχ̃
j

m,σ|σ−1(Z̃
j

m,σ|σ−1)
T . (23)

2) Update: Based on the statistical linearization approach
proposed in [42], the local measurement function (7) can be
linearized aroundX̂m,σ|σ−1 as

zm,σ =Hm,σ(Xm,σ − X̂m,σ|σ−1)

+ hm(X̂m,σ|σ−1) + vm,σ + ǫm,σ (24)

with Hm,σ , (P xz
m,σ|σ−1)

T (P xx
m,σ|σ−1)

−1 being the pseudo
measurement matrix, andǫm,σ being the statistical lineariza-
tion error with zero mean and covariance matrix

V̄m,σ ,E{ǫm,σǫ
T
m,σ}

=P zz
m,σ|σ−1 − (P xz

m,σ|σ−1)
T (P xx

m,σ|σ−1)
−1P xz

m,σ|σ−1

where the covariance matricesP xx
m,σ|σ−1, P zz

m,σ|σ−1 and
P xz
m,σ|σ−1 are calculated via (19), (22) and (23), respectively.
By integrating local prediction and local measurement into

a compact form, we obtain the following augmented model

z̄m,σ = H̄m,σxm,σ + ēm,σ (25)

where

z̄m,σ ,

[

X̂m,σ|σ−1

zm,σ +Hm,σX̂m,σ|σ−1 − ẑm,σ|σ−1

]

∈ R
Lm ,

H̄m,σ ,

[

I

Hm,σ

]

∈ R
Lm , ēm,σ ,

[

−X̃m,σ|σ−1

vm,σ + ǫm,σ

]

∈ R
Lm

with X̃m,σ|σ−1 , Xm,σ − X̂m,σ|σ−1 andLm = Xm + Zm.
The covariance matrix of̄em,σ is

E{ēm,σē
T
m,σ} =

[

P xx
m,σ|σ−1 0

0 Vm,σ + V̄m,σ

]

=

[

SP
m,σ(S

P
m,σ)

T 0
0 SV

m,σ(S
V
m,σ)

T

]

= Sm,σS
T
m,σ (26)

whereSP
m,σ ∈ R

Xm , SV
m,σ ∈ R

Zm andSm,σ ∈ R
Lm are all

calculated with the aid of Cholesky decomposition.
By multiplying S−1

m,σ on both sides of (25), we have

ym,σ = Fm,σXm,σ + ξm,σ (27)

where

ym,σ ,S−1
m,σz̄m,σ,

Fm,σ ,S−1
m,σH̄m,σ,

ξm,σ ,S−1
m,σēm,σ (28)

with

ym,σ ,
[

y1m,σ y2m,σ · · · yLm
m,σ

]T
∈ R

Lm ,

Fm,σ ,
[

F 1
m,σ F 2

m,σ · · · FLm
m,σ

]T
∈ R

Lm×Lm ,

ξm,σ ,
[

ξ1m,σ ξ2m,σ · · · ξLm
m,σ

]T
∈ R

Lm .

Moreover, it can be seen thatE{ξm,σξ
T
m,σ} = I.

Remark 4:It has been proven in [43] that, for an arbitrary
nonlinear function, the results obtained from the statisti-
cal linearization are equivalent to those from the unscented
transformation. As such, for the purpose of improving data
redundancy, an effective way is to construct an augmented
model (i.e. (25)) to process the local prediction and local
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measurement simultaneously with the aid of unscented trans-
formation approach and statistical linearization approach.

According to the MEEF criterion given in (15), the cost
function of the MEEF-based local estimator can be written as

J(xm,σ) =
λ

Lm

Lm
∑

i=1

Gς1(ξ
i
m,σ)

+
1− λ

Lm

Lm
∑

i=1

Lm
∑

j=1

Gς2(ξ
i
m,σ − ξjm,σ). (29)

By maximizing the cost function (29), we can obtain the
local estimate ofXm,σ. To be specific, taking the partial
derivative ofJ(Xm,σ) with respect toXm,σ and letting the
derivative be zero, we have

∂J(Xm,σ)

∂Xm,σ

=
λ

Lm

Lm
∑

i=1

(

Gς1(ξ
i
m,σ)F

i
m,σ(y

i
m,σ − F iT

m,σXm,σ)
)

+
1− λ

Lm

Lm
∑

i=1

Lm
∑

j=1

(

(ξim,σ − ξjm,σ)

×Gς2(ξ
i
m,σ − ξjm,σ)(F

i
m,σ − F j

m,σ)
)

=λFT
m,σΠm,σξm,σ

+
1− λ

L2
mς22

(FT
m,σΩm,σξm,σ − FT

m,σΓm,σξm,σ)

=FT
m,σΦm,σξm,σ

=0 (30)

where

Φm,σ ,λΠm,σ +
1− λ

L2
mς22

(Ωm,σ − Γm,σ)

with

Πm,σ , diag
{

Gς1(ξ
1
m,σ), . . . , Gς1(ξ

Lm

m,σ)
}

,

Ωm,σ , diag
{

Lm
∑

i=1

Gς2(ξ
1
m,σ − ξim,σ),

. . . ,

Lm
∑

i=1

Gς2(ξ
Lm

m,σ − ξim,σ)
}

,

[Γm,σ]ij , Gς2(ξ
i
m,σ − ξjm,σ).

Based on the fixed-point iteration technique [41], the solu-
tion of (30) can be expressed as

(X̌m,σ|σ)t =
(

FT
m,σ(Φm,σ)t−1Fm,σ

)−1

×
(

FT
m,σ(Φm,σ)t−1ym,σ

)

(31)

where t represents thet-th fixed-point iteration andX̌m,σ|σ

stands for the local estimate ofXm,σ.
Remark 5:Note that, in the fixed-point iteration, the term

Xm,σ in (27) can be replaced by(X̌m,σ|σ)t−1 (i.e. ξm,σ =
ym,σ − Fm,σ(X̌m,σ|σ)t−1) with initial value (X̌m,σ|σ)0 =

X̂m,σ|σ−1. Recalling the definitions of̄em,σ, ξm,σ andΦm,σ,
we can find that the calculation of(Φm,σ)t−1 in (31) actu-
ally relies on(X̌m,σ|σ)t−1, which means that the iterations
between(X̌m,σ|σ)t and (X̌m,σ|σ)t−1 are actually established
by (Φm,σ)t−1.

Next, we rewriteΦm,σ as

Φm,σ ,

[

Φxx
m,σ Φzx

m,σ

Φxz
m,σ Φzz

m,σ

]

∈ R
(Xm+Zm)×(Xm+Zm) (32)

with

Φxx
m,σ ,λdiag

{

Gς1(ξ
1
m,σ), . . . , Gς1(ξ

Xm

m,σ)
}

+
1− λ

L2
mς22

(

(Ωij
m,σ)Xm×Xm

− (Γij
m,σ)Xm×Xm

)

(i = 1, 2, . . . ,Xm; j = 1, 2, . . . ,Xm),

Φzx
m,σ ,

1− λ

L2
mς22

(

(Ωij
m,σ)Xm×Zm

− (Γij
m,σ)Xm×Zm

)

(i = 1, 2, . . . ,Xm;

j = Xm + 1,Xm + 2, . . . ,Xm + Zm),

Φxz
m,σ ,λdiag

{

Gς1(ξ
Xm+1
m,σ ), . . . , Gς1(ξ

Xm+Zm

m,σ )
}

+
1− λ

L2
mς22

(

(Ωij
m,σ)Zm×Xm

− (Γij
m,σ)Zm×Xm

)

(i = Xm + 1,Xm + 2, . . . ,Xm + Zm;

j = 1, 2, . . . ,Zm),

Φzz
m,σ ,

1− λ

L2
mς22

(

(Ωij
m,σ)Zm×Zm

− (Γij
m,σ)Zm×Zm

)

(i = Xm + 1,Xm + 2, . . . ,Xm + Zm;

j = Xm + 1,Xm + 2, . . . ,Xm + Zm),

and then reformulate (31) as

(X̌m,σ|σ)t = (∆1 +∆2∆3)
−1(∆1X̂m,σ|σ−1 +∆2ym,σ)

(33)

where

∆1 ,

(

(SP
m,σ)

−1T (Φxx
m,σ)t−1 +HT

m,σ(S
V
m,σ)

−1T

× (Φxz
m,σ)t−1

)

(SP
m,σ)

−1,

∆2 ,

(

(SP
m,σ)

−1T (Φzx
m,σ)t−1 +HT

m,σ(S
V
m,σ)

−1T

× (Φzz
m,σ)t−1

)

(SV
m,σ)

−1,

∆3 ,Hm,σ.

By resorting to the matrix inversion lemma, (33) can be
rearranged in the following recursive form:

(X̌m,σ|σ)t = X̂m,σ|σ−1 +Km,σ

(

zm,σ − hm(X̂m,σ|σ−1)
)

(34)

with

Km,σ =
(

P̄ xx
m,σ|σ−1 + H̄m,σP̄

xz
m,σ|σ−1 + (P̄ xz

m,σ|σ−1

+ H̄T
m,σR̄m,σ)H̄m,σ

)−1

(P̄ zx
m,σ|σ−1 + H̄m,σR̄m,σ)

where

P̄ xx
m,σ|σ−1 ,

(

(SP
m,σ)

−1
)T

(Φxx
m,σ)t−1(S

P
m,σ)

−1,

P̄ xz
m,σ|σ−1 ,

(

(SV
m,σ)

−1
)T

(Φxz
m,σ)t−1(S

V
m,σ)

−1,

P̄ zx
m,σ|σ−1 ,

(

(SP
m,σ)

−1
)T

(Φzx
m,σ)t−1(S

P
m,σ)

−1,

R̄m,σ ,
(

(SV
m,σ)

−1
)T

(Φzz
m,σ)t−1(S

V
m,σ)

−1.
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Then, the local estimation covariance of̌Xm,σ|σ can be
expressed as

P̌ xx
m,σ|σ =(I −Km,σH̄m,σ)P

xx
m,σ−1|σ−1(I −Km,σH̄m,σ)

T

+Km,σ(Vm,σ + V̄m,σ)K
T
m,σ. (35)

For the convenience of the subsequent decentralized state
estimator design, we transform the local estimateX̌m,σ and
local estimation error covariancěP xx

m,σ|σ into the information
forms, i.e.

η̌m,σ =Lm,σX̌m,σ|σ,

Ľm,σ =(P̌ xx
m,σ|σ)

−1 (36)

whereηm,σ andLm,σ represent the information vector and the
information matrix, respectively.

B. Design of Decentralized State Estimator

In this subsection, the maximum-a-posteriori state estima-
tion method in [23] is extended to update the local estimate
recursively by using the edge sensing information. For area
n ∈ Nm, the pseudo measurement matrix of the edge mea-
surementzmn,σ can be expressed as

Hmn,σ , (P xz
mn,σ|σ−1)

T (P xx
m,σ|σ−1)

−1 (37)

where

P xz
mn,σ|σ−1 =

4τm
∑

j=0

θjm(χj

m,σ|σ−1 − X̂m,σ|σ−1)

×
(

hmn(χ
j

m,σ|σ−1, X̂n,σ|σ−1)− ẑmn,σ|σ−1

)

with

ẑmn,σ|σ−1 =

4τm
∑

j=0

ωj
mhmn(χ

j

m,σ|σ−1, X̂n,σ|σ−1).

Then, for aream ∈ V , the estimate and the estimation error
covariance ofXm,σ are of the following form

X̂m,σ|σ =P xx
m,σ|σ(η̌m,σ +

∑

n∈Nm

HT
mn,σV̄

−1
nm,σ z̃mn,σ),

P xx
m,σ|σ =(Ľm,σ +

∑

n∈Nm

HT
mn,σV̄

−1
nm,σHmn,σ)

−1 (38)

where

V̄nm,σ ,Vmn,σ +Hnm,σĽ
−1
n,σH

T
nm,σ,

z̃nm,σ ,zmn,σ − hmn(X̂m,σ|σ−1, X̂n,σ|σ−1) +Hmn,σX̂m,σ|σ−1

+Hnm,σX̂n,σ|σ−1 −Hnm,σĽ
−1
n,σηn,σ.

As discussed in [23], for each aream ∈ V , the decentralized
SE algorithm will converge at eachσ after finite iterations. As
such, an inner loop is added in the update of the local estimate.
In summary, the pseudo code of the proposed anomaly-
resistant decentralized SE for wide-area power systems is
outlined in Algorithm 1.

Algorithm 1 Anomaly-Resistant decentralized SE algorithm
for wide-area power systems.

Initialization: For each aream ∈ V, initialize the parameters
X̂m,0|0 andP xx

m,0|0 and choose the weighted coefficientsµ,

ωj
m andθjm (j = 0, 1, . . . , 4τm). In addition, set the kernel

widths ς1 and ς2 and select the positive scalarsζ∗ and t∗.
Recursion:

1: for σ = 1, 2, . . . do
2: Compute the sigma pointsχj

m,σ−1|σ−1
(j = 0, 1, . . . , 4τm)

with known X̂m,σ−1|σ−1 via (16).
3: Compute the local prediction statêXm,σ|σ−1 and the cor-

responding covariance matricesP xx
m,σ|σ−1

, P zz
m,σ|σ−1

and
P xz
m,σ|σ−1

in terms of (18)-(23).
4: Linearize the local measurement function (7) around

X̂m,σ|σ−1 via (24).
5: Construct the augmented model (25) and use the Cholesky

decomposition to calculateSP
m,σ , SV

m,σ andSm,σ in (26).
6: Computeym,σ , Fm,σ andξm,σ via (28).
7: Sett = 0 and let(X̌m,σ|σ)t be the estimate at the fixed-point

iterative stept. Denote(X̌m,σ|σ)0 = X̂m,σ|σ−1 as the initial
iteration value.

8: while ζ > ζ∗ or t < t∗ do
9: Update the iterative stept = t+ 1.

10: Compute(X̌m,σ|σ)t via (34).
11: Compute the iteration accuracy

ζ =
‖(X̌m,σ|σ)t − (X̌m,σ|σ)t−1‖

‖(X̌m,σ|σ)t−1‖
.

12: end while
13: DenoteX̌m,σ|σ = (X̌m,σ|σ)t and updateP̌ xx

m,σ|σ via (35).
14: Calculateη̌m,σ and Ľm,σ via (36).
15: For each arean ∈ Nm, area m receivesX̂n,σ|σ−1 and

calculatesHmn,σ via (37).
Inner loop:

16: Seth = 0, for each arean ∈ Nm, aream computes

(υn
m,σ)0 =Hmn,σX̌m,σ|σ,

(Υn
m,σ)0 =Hmn,σP̌

xx
m,σ|σH

T
mn,σ

and sends them to arean.
17: for h = 1, 2, . . . do
18: Each aream ∈ V updates the edge information once receive

(υm
n,σ)h−1 and(Υm

n,σ)h−1 from its neighborsn ∈ Nm via

(z̃nm,σ)h =zmn,σ − hmn(X̂m,σ|σ−1, X̂n,σ|σ−1)

+Hmn,σX̂m,σ|σ−1 +Hnm,σX̂n,σ|σ−1

− (υm
n,σ)h−1,

(V̄nm,σ)h =Vmn,σ + (Υm
n,σ)h−1.

19: Aream computes the current state estimate and its covari-
ance

(X̂m,σ|σ)h =(Lm,σ)
−1

h (ηm,σ)h,

(P xx
m,σ|σ)h =(Lm,σ)

−1

h

with

(ηm,σ)h =η̌m,σ +
∑

n∈Nm

H
T
mn,σ(V̄nm,σ)

−1

h (z̃nm,σ)h,

(Lm,σ)h =Ľm,σ +
∑

n∈Nm

H
T
mn,σ(V̄nm,σ)

−1

h Hmn,σ.

20: For each arean ∈ Nm, aream computes

(υn
m,σ)h =Hmn,σ(L

n
m,σ)

−1

h (ηn
m,σ)h,

(Υn
m,σ)h =Hmn,σ(L

n
m,σ)

−1

h H
T
mn,σ

with

(ηn
m,σ)h =(ηm,σ)h −H

T
mn,σ(V̄nm,σ)

−1

h (z̃nm,σ)h,

(Ln
m,σ)h =(Lm,σ)h −H

T
mn,σ(V̄nm,σ)

−1

h Hmn,σ

and sends(υn
m,σ)h and (Υn

m,σ)h to arean.
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21: end for
22: end for

Remark 6:In this paper, the anomaly-resistant decentralized
SE algorithm is designed for the wide-area power systems. For
the purpose of improving computational efficiency, the SE for
power system is executed in a decentralized manner where the
whole power grid is divided into several non-overlapping areas
which are interconnected through transmission lines. In the
design of the anomaly-resistant SE algorithm, an augmented
model is established by employing the unscented transfor-
mation technique and the statistical linearization technique.
Then, an MEEF-based cost function is designed based on the
augmented model where the local prediction errors of states
and measurements are all reflected. Finally, the local estimate
is obtained by iteratively solving an optimization problem with
the MEEF-based cost function and such an estimate is then
updated by using the edge measurement.

Remark 7:In comparison with the existing SE schemes for
wide-area power systems, the main novelties of this paper
lie in the following aspects: 1) the scheme we adopted is
novel since the state is first estimated in a decentralized
manner by using the local measurement and then updated with
the aid of edge measurements shared with the neighboring
areas; 2) the augmented model we developed is novel since
it not only reflects the local prediction errors of the state and
measurement but also improves the data redundancy; and 3)
the MEEF criterion we adopted in the estimator design is novel
since it is more comprehensive than the MEE and MC criteria
in the sense of enhancing the resistance of the proposed SE
scheme against the anomalies in the measurements.

V. SIMULATION EXAMPLE

In this section, the proposed anomaly-resistant decentral-
ized SE algorithm for wide-area power systems is tested on
the IEEE 14-bus system. The simulation is implemented in
MATLAB-R2018b with the aid of the Matpower package [44].
The whole test cases are performed on a PC with Intel Core
CPU i7-7700HQ, 2.80GHz and 16 GB RAM. The IEEE 14-
bus is modeled as (1) withAi = 0.89, Bi = 0.11 and
Wi = 0.012 (i = 1, 2, . . . , 14). The value of the expected
steady statēxi can be found in Table I. The installation
positions of the SCADA units and the PMUs remain the same
as they were in [45]. For the SCADA measurement functions
given in (2) and (4), the corresponding covariance matrices of
the measurement noises are set to beV s

i,σ = 1 × 10−3 and
V s
ij,σ = 1 × 10−3 (i, j ∈ {1, 2, . . . , 14}, i 6= j), respectively.

For the i-th bus which is equipped with the PMU, the
corresponding covariance matrix of the measurement noise is
set asV p

i,σ = 1× 10−6.
As shown in Fig. 1, the IEEE 14-bus system is divided into

3 areas and the corresponding local measurements as well as
the edge measurements are all labeled clearly. For them-th
(m = 1, 2, 3) anomaly-resistant decentralized state estimator,
the parameters of the unscented transformation are chosen as
αm = e2, κm = 0.02 andβm = 1. Moreover, the parameters
of the MEEF criterion are selected asµ = 0.2, ς1 = 25 and
ς2 = 2, respectively. The mean square error (MSE) criterion is

adopted to assess the estimation performance of thei-th states,
i.e.

MSEi =
1

T

T
∑

i=1

(

xi,σ − x̂i,σ

)2

whereT represents the number of Monte Carlo simulations
andT = 100.

A. Scenario 1: Centralized Scheme versus Decentralized
Scheme

In this scenario, the standard UKF-based centralized SE
scheme (labeled as C-UKF) is considered for the purpose of
comparison with our proposed anomaly-resistant UKF-based
decentralized SE scheme (labeled as RD-UKF). In order to
save space, the state trajectories of bus 11 (in area 1) and the
state trajectories of bus 10 (in area 2) are taken for illustration.
The simulation results are given in Figs. 2-3. To be specific,
Fig. 2(a) shows the real curves of the states and the associated
estimates of bus 11 in area 1, the corresponding MSEs are
plotted in Fig. 2(b). Similarly, the corresponding results for
bus 10 in area 2 are shown in Fig. 3(a) and 3(b), respectively.
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Fig. 2. Scenario 1: Simulation results of bus 11 for area 1: (a)
Estimated states. (b) MSE.

It can be found from Figs. 2-3 that: 1) the estimation
accuracy of the C-UKF is higher than that of the RD-UKF
since the measurement redundancy of the former is higher
than that of the latter; and 2) the estimation accuracy of our
proposed RD-UKF is acceptable.
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TABLE I: Expected States of IEEE 14-bus System

Bus 1 2 3 4 5 6 7
Voltage (p.u.) 1.060 1.045 1.010 1.018 1.020 1.070 1.062
Phasor (degree) 0.000 -4.983 -12.725 -10.313 -8.744 -14.211 -13.360
Bus 8 9 10 11 12 13 14
Voltage (p.u.) 1.090 1.056 1.051 1.057 1.055 1.050 1.036
Phasor (degree) -13.360 -14.939 -15.097 -14.791 -15.076 -15.156 -16.034

0 10 20 30 40 50 60 70 80 90 100
0.8

1

1.2

1.4
Area 2 (Bus 10) 

The actual state
C-UKF
RD-UKF

0 10 20 30 40 50 60 70 80 90 100
-15.3

-15.2

-15.1

-15

-14.9
Area 2 (Bus 10) 

The actual state
C-UKF
RD-UKF

(a)

0 10 20 30 40 50 60 70 80 90 100
-15

-10

-5

Area 2 (Bus 10) 
C-UKF
RD-UKF

0 10 20 30 40 50 60 70 80 90 100
-15

-10

-5

0
Area 2 (Bus 10) 

C-UKF
RD-UKF

(b)

Fig. 3. Scenario 1: Simulation results of bus 10 for area 2: (a)
Estimated states. (b) MSE.

B. Scenario 2: Resistance to Measurement Outliers Caused
by Non-Gaussian Sequences

For the purpose of verifying the resistance of the developed
anomaly-resistant decentralized SE scheme to the measure-
ment outliers caused by the non-Gaussian noises, in this
scenario, the following two cases are considered:

Case 1: The local measurements of 3 areas and their corre-
sponding parts in the centralized measurement mod-
el are contaminated with consecutive measurement
outliers. Specifically, fromσ = 30 to σ = 60, a
two-component Gaussian mixture sequence, which
has zero means and covariance matrices of0.1I and
10−2I with weights 0.9 and 0.3, is used to model
the outliers.

Case 2: In this case, the randomly occurring measurement
outliers caused by the non-Gaussian sequence are
considered. The detailed parameters of the non-
Gaussian sequence are similar to the one in Case

1.

Similarly, only the states of bus 11 (in area 1) are taken
for illustration in this scenario. Fig. 4 shows the simulation
results under case 1. Specifically, Fig. 4(a) shows the true
state trajectories and the associated estimates of bus 11 in area
1, and the corresponding measurement curves contaminated
with consecutive measurement outliers are plotted in Fig. 4(b).
Similarly, for case 2, the corresponding results are plotted in
Fig. 5.
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Fig. 4. Scenario 2: Simulation results of bus 11 for area 1 under Case
1: consecutive measurement outliers caused by non-Gaussian noises.
(a) Estimated states. (b) Measurement curves.

From Figs. 4-7, it can be concluded that: 1) the estimation
performance of the C-UKF degrades severely in the presence
of consecutive measurement outliers, while our proposed RD-
UKF is anomaly-resistant to such kind of measurement outlier-
s; and 2) when the randomly occurring measurement outliers
occur, the estimation performance of the C-UKF degrades
severely, and the RD-UKF is still anomaly-resistant to these
kinds of measurement outliers.
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Fig. 5. Scenario 2: Simulation results of bus 11 for area 1 under Case
2: randomly occurring measurement outliers caused by non-Gaussian
noises. (a) Estimated states. (b) Measurement curves.

C. Scenario 3: Resistance to Bad Measurement Data

Due to the presence of sensor saturations, gross errors
and/or instrument failures, the measurements in power systems
can be contaminated with bad measurements [46]. In order
to assess the resistance of the developed SE algorithms, the
following two cases are considered:

Case 1: The local measurements of 3 areas and their
corresponding parts in the centralized measurement
model are contaminated with instantaneous errors.
Specifically, whenσ = 50, the measurements are
corrupted with 20% errors.

Case 2: In this case, the local measurements of 3 areas
and their corresponding parts in the centralized mea-
surement model are contaminated with consecutive
errors. Specifically, fromσ = 30 to σ = 60, the
measurements are corrupted with 20% errors.

For the sake of saving space, only the states of bus 10
(in area 2) are taken for illustration in this scenario. The
simulation results under case 1 are plotted in Fig. 6. To
be specific, the trajectories of the states and the associated
estimates of bus 10 in area 2 are plotted in Fig. 6(a), and
the corresponds measurement curves contaminated with con-
secutive gross errors are plotted in Fig. 6(b). Similarly, the
corresponding results for case 2 are plotted in Fig. 7.
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Fig. 6. Scenario 3: Simulation results of bus 10 for area 2 under
Case 2: instantaneous bad measurements. (a) Estimated states. (b)
Measurement curves.

It can be confirmed from Figs. 6-7 that: 1) when the instan-
taneous bad measurements occur, the estimation performance
of the C-UKF degrades severely, and the proposed RD-UKF
is anomaly-resistant to such kinds of gross errors; and 2)
the estimates of the C-UKF are non-convergent when the
consecutive bad measurements occur, while the proposed RD-
UKF performs well under such kinds of gross errors.

D. Computational Efficiency

The average running times (ARTs) of the above three
scenarios are given in Table II. It can be confirmed from
Table II that the proposed decentralized SE has much higher
computational efficiency than the centralized one.

TABLE II: Average Computing Time Under Three Scenarios
At Each Iteration

Scenario 1 2 3

Item None

Case 1:
consecutive

measurement
outliers

Case 2:
randomly
occurring

measurement
outliers

Case 1:
instantaneous

gross
errors

Case 2:
consecutive

gross
errors

AVT (ms)
C-UKF/RD-UKF27/15 28/18 27/17 28/15 26/15
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Fig. 7. Scenario 3: Simulation results of bus 10 for area 2 under
Case 2: consecutive bad measurements. (a) Estimated states. (b)
Measurement curves.

VI. CONCLUSION

In this paper, the anomaly-resistant decentralized SE prob-
lem has been investigated for wide-area power systems. For
the purpose of lighting the computation costs and computation
burdens, a model decomposition approach has been adopted
to facilitate the SE in a decentralized manner. To enhance the
resistance of the proposed decentralized SE scheme against
measurement with anomalies, the MEEF criterion has been
utilized in the estimator design. Specifically, i) by using the
augmented model which reflects the information of the local
prediction errors of state and measurement, a MEEF-based
cost function has been developed; ii) by solving the MEEF-
based cost function with the aid of the fixed-point iteration
technique, local estimates have been obtained; and iii) by
integrating the edge measuring information gradually with
the iterative method, the decentralized estimates have been
calculated. Finally, based on the IEEE 14-bus system, three test
scenarios have been considered in the simulation to verify the
effectiveness of our proposed anomaly-resistant decentralized
SE scheme. One of the future research directions would be
to extend the main SE approach developed in this paper to
other more sophisticated systems such as networked systems
[47]–[53].
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