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Abstract

In this paper, a novel deep learning-based medical imaging analysis framework is developed,
which aims to deal with the insuf�icient feature learning caused by the imperfect property of
imaging data. Named as multi-scale ef�icient network (MEN), the proposed method integrates
different attention mechanisms to realize suf�icient extraction of both detailed features and se-
mantic information in a progressive learning manner. In particular, a fused-attention block is
designed to extract �ine-grained details from the input, where the squeeze-excitation (SE) at-
tention mechanism is applied to make the model focus on potential lesion areas. A multi-scale
low information loss (MSLIL)-attention block is proposed to compensate for potential global
information loss and enhance the semantic correlations among features, where the ef�icient
channel attention (ECA) mechanism is adopted. The proposed MEN is comprehensively evalu-
ated on two COVID-19 diagnostic tasks, and the results show that as compared with some
other advanced deep learning models, the proposed method is competitive in accurate COVID-
19 recognition, which yields the best accuracy of 98.68% and 98.85%, respectively, and exhibits
satisfactory generalization ability as well.

Keywords:	Imperfect data, Arti�icial intelligence, Attention mechanism, Medical imaging
analysis, Progressive learning

1. Introduction

In modern medicine, various medical imaging techniques have been developing prosperously,
such as the computer tomography, X-ray and magnetic resonance imaging [1], [2], [3], etc. In
comparison to the traditional detection methods, applying medical imaging techniques has the
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advantages of short detection time, convenient operations and relatively low costs [4], [5].
Hence, they have been widely applied in many important diagnostic scenes, which accordingly
requires an effective analysis on the obtained imaging data.

In general, the medical imaging data always present the characteristics of large amount, huge
dimension and highly non-linearity, which make it an extremely challenging task to ef�iciently
extract the rich semantic information of some serious diseases. Owing to the fast development
of arti�icial intelligence (AI), the deep learning (DL)-based models have exhibited inspiring per-
formance in analyzing data generated by various medical imaging techniques [3], [6], [7],
which can realize the end-to-end learning from the great amount of data and has aroused great
research interests [8], [9], [10].

It is noticeable that performance of the DL-based models can be severely affected by the im-
perfect medical imaging data, for example, in the chest X-ray images, the organic entity may
merely occupy 50% of space, whereas the rest of background part contains much useless and
redundant information, which causes the waste of computational resources and leads to inef�i-
cient feature extraction [11]. Similarity in imaging results of different diseases also impedes the
accurate recognition of relevant conditions [12].

To deal with the imperfect property of data so as to improve the learning ability of the DL-
based models, many efforts have been carried out, where the application of attention mecha-
nism is a hot research topic. In [13], a novel feature attention super-resolution network has
been proposed to take full use of the rich anatomical information in magnetic resonance im-
ages, which can effectively predict the missing high-resolution details in magnetic resonance
images so as to realize accurate disease diagnosis. To overcome the data redundancy, a multi-
modal spatial attention module has been proposed in [14], which automatically emphasizes the
important spatial regions and suppresses the normal ones.

It is worth mentioning that while applying attention mechanism, global information loss is com-
monly encountered due to the too much focus on the speci�ic local areas, which declines the
recognition accuracy. Moreover, to promote accurate diagnosis, the extracted features are re-
quired to contain both suf�icient details and rich semantic information, and it is promising to
take full advantages of various attention mechanisms to realize ef�icient feature learning. In ad-
dition, how to balance the model complexity and recognition accuracy when designing corre-
sponding feature re�inement components also deserves attention.

Based on above discussions, in this paper, a novel medical imaging analysis framework is devel-
oped, which dedicates to overcoming the weak feature representation resulted from the imper-
fect property of the imaging data. Particularly, in the developed multi-scale ef�icient network
(MEN), a fused-attention and a multi-scale low information loss (MSLIL)-attention block are
proposed to form an information re�inement module so as to realizes a from-coarse-to-�ine
feature extraction in a progressive learning manner. To be speci�ic, in the fused-attention block,
the squeeze-excitation (SE) attention mechanism is applied to highlight important channels and
suppress the useless information. In the MSLIL-attention block, the ef�icient channel attention
(ECA) mechanism is applied to capture global dependencies and, by doing so, the potential in-
formation loss can be compensated to some extents. As a result, not only detailed features can
be ef�iciently extracted, the semantic correlations among different features are enhanced as
well. Finally, the proposed MEN is applied to the important COVID-19 diagnostic tasks for per-
formance evaluation.
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The main contributions of this paper are outlined as follows.

The remainder of this paper is organized as follows. Related work is reviewed in Section 2. The
proposed MEN is elaborated in Section 3. Results and discussions are presented in Section 4.
Finally, the conclusions are drawn in Section 5.

2. Related work

Since the proposed model is applied into the COVID-19 detection task, in this section, some re-
lated recent studies are reviewed in terms of the performance improvement on the DL-based
model.

Regarding to the optimization on model training, in [15], a framework called COVID-ResNet has
been proposed for COVID-19 detection, where during training, the image size is progressively
adjusted to enhance the generalization ability. In [16], an improved snapshot ensemble tech-
nique has been proposed for COVID-19 chest X-ray images classi�ication, which replace the
original probability average by a weighted one, and experiments have shown the effectiveness
of such optimization.

To cope with the over-�itting problem caused by limited chest X-ray image in COVID-19 cate-
gory, some light-weight neural networks have been designed. In [17], a novel framework
DarkCovidNet has been proposed for COVID-19 detection, where both the number of hidden
layers and �ilters are reduced. Experimental results have shown that the proposed method is a
reliable light-weight model that effectively removes redundant information, which obtains accu-
racy of 98.08% and 87.02% in binary classi�ication and multi-classi�ication case, respectively. A
24-layer convolutional neural network (CNN) has been proposed in [18], which is based on the
�irst �ive hidden layers of the VGG [19] architecture and is pre-trained to ensure the accuracy.
In [20], the Ef�icientNetB4 network has been improved by adding a GPA module and dropout
layer to reduce the parameters. Although experiments have shown that above strategy can ef-
fectively simplify the model structure, in complicated multi-classi�ication tasks, these light-
weight models may suffer from insuf�icient learning, resulting in low classi�ication accuracy.

To realize suf�icient feature extraction from images, a multi-kernel-size spatial-channel atten-
tion mechanism has been proposed in [21], which applies convolutional kernels in different
sizes combined with channel and spatial attention to promote accurate recognition of the
COVID-19. In [22], the DenseNet has been combined with GAT [23] model for COVID-19 detec-
tion, where multiple independent attention mechanisms are deployed, and it is proven that the
multi-head mechanism can distinguish the attention on multiple features between the central
and neighboring nodes. Depth-wise dilated convolution module has been applied in [24] to en-

A novel DL-based medical imaging analysis model MEN is developed, which ef�iciently
extracts the features in a progressive learning manner.

(1)

The proposed fused- and MSLIL-attention blocks can effectively coordinate the focus on
lesion areas and the compensation of global information loss.

(2)

Combinations of diverse attention mechanisms realizes suf�icient learning of both details
features and semantic information.

(3)
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large the receptive �ield, which allows the model capturing rich global information of the chest
X-ray image. In [25], a PEPX module has been designed, which not only reduces the network
complexity, but also obtains channel information in different dimensions.

In this study, by applying the progressive learning approach, multi-scale feature extraction and
multi-modal residual fusion methods are integrated to enhance the model performance with-
out signi�icantly increasing the computation complexity.

3. Methodology

In this section, the proposed multi-scale ef�icient network is presented, whose overall frame-
work is shown in Fig. 1, including modules of data preprocessing, information re�inement and
classi�ier.

Fig. 1

Framework of the proposed multi-scale ef�icient network.

3.1. Overall framework of MEN

According to Fig. 1, three main modules are contained in the proposed MEN, where suf�icient
feature extraction and fusion are performed to realize accurate classi�ication. Firstly, images in
three categories are input to the data preprocessing module, which are further expanded with
a series of data augmentation operations, including normalization, center cropping, modal
splicing and data partitioning. In particular, to enrich the channel information of images in
pneumonia class, 3 × 3 convolution, layer normalization and Silu activation function [26] are
applied to transfer the RGB images to 24-channel enhanced vectors.

Then, attention mechanism is applied in the subsequent information re�inement module, which
is mainly realized by the designed fused- and MSLIL-attention blocks. In particular, the former
is used to extract �ine-grained information and the latter is responsible for enhancing semantic
correlations by capturing global dependencies, which realizes a progressive learning and more
implementation details of above two attention blocks are provided in the following subsections.

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10116157/figure/fig1/
https://www.ncbi.nlm.nih.gov/core/lw/2.0/html/tileshop_pmc/tileshop_pmc_inline.html?title=Click%20on%20image%20to%20zoom&p=PMC3&id=10116157_gr1_lrg.jpg
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10116157/figure/fig1/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10116157/figure/fig1/
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Finally, classi�ication is accomplished in the classi�ier, where 1 × 1 convolution, adaptive aver-
age pooling and a fully-connected (FC) layer are applied to process the extracted features.

3.2. Fused-attention block

As is shown in Fig. 1, the fused-attention block is composed of several repeated fused-convolu-
tion (Fused-Conv) modules, whose architecture is shown in Fig. 2. Notice that the input images
of Fused-Conv have large size but few channels, as a result, extracting detailed information is
focused in this module by embedding in the squeeze-excitation (SE) attention mechanism [27].
At �irst, the global average pooling is performed to realize feature compression in spatial di-
mension. Next, importance of each channel is predicted on the compressed features by an FC
layer, which is re�lected by weight coef�icients , and the principle of obtaining  can be de-
scribed as:

(1)(1)

where  and  are number of channels,  is the initial input and  is the compressed one.
 and  are two matrices,  and  denotes activation functions in the FC layer. At last, the

output is obtained by channel-wise multiplication of the weight coef�icient and the initial input.
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https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10116157/figure/fig1/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10116157/figure/fig2/
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Fig. 2

Architecture of components in the fused-attention block.

It is noticeable that the SE attention mechanism is bene�icial for highlighting the lesion areas in
the images so as to determine the focus on important semantic information in case of high-res-
olution images. At the end of Fused-conv module, the 1 × 1 convolution is used to adjust the
number of channels, which enables the fusion of context information.

3.3. MSLIL-attention block

To enhance the extraction of semantic information by introducing useful features, a novel
MSLIL-attention block is developed in the proposed MEN, which consists of a series of MSLIL
convolution (MSLIL-Conv) modules.

As is shown in Fig. 3(a), a multi-branch structure is deployed in the MSLIL-Conv module, where
two dilated-convolutions [28] and a group-convolution are set in parallel. Particularly, the di-
lated-convolution can make compensation for the lost receptive �ields by providing rich global
information, and the 3 × 3 group-convolution can further reduce computational burdens. By
adjusting the hyper-parameters of convolution operators, the outputs of above three branches
can be integrated to enter the ef�icient channel attention (ECA) mechanism [29]. In addition,
the integrated multi-branch output is further multiplied with the output of above ECA mecha-
nism, which can remain partial original features so as to reduce the loss of essential
information.

https://www.ncbi.nlm.nih.gov/core/lw/2.0/html/tileshop_pmc/tileshop_pmc_inline.html?title=Click%20on%20image%20to%20zoom&p=PMC3&id=10116157_gr2_lrg.jpg
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10116157/figure/fig2/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10116157/figure/fig3/
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Fig. 3

Architecture of components in the MSLIL-attention block.

Framework of the ECA mechanism is illustrated in Fig. 3(b), which is equipped with a residual
structure to extract the superior semantic information. Different from the SE mechanism, the
learning of channel importance is performed directly on the input via 1D convolutions. In this
regard, information loss caused by dimension-reduction operations in FC layers can be effec-
tively avoided. Moreover, appropriate cross-channel interaction is also realized to enhance the
correlations of each channel information. In ECA mechanism, the weights of the  convolu-
tion are interleaved with each other in a cross-channel manner, which present in groups and
for each group, the number of weight depends on the size of convolution kernel . The weight
of feature  is calculated by considering only the interaction between  and its  adjacent
channels, which is expressed as:

(2)(2)

where  is the set of  adjacent channels of  and  is the weight of . Note that above Eq.
(2) can be implemented by a fast 1D convolution with kernel size of  by:

(3)(3)

where C1D refers to the  convolution, and the obtained weights are shared in all  chan-
nels. In addition, considering that the channel number  in the proposed MEN is the power of
2, following non-linear map  is applied to characterize the relationship between  and  by:

(4)(4)
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https://www.ncbi.nlm.nih.gov/core/lw/2.0/html/tileshop_pmc/tileshop_pmc_inline.html?title=Click%20on%20image%20to%20zoom&p=PMC3&id=10116157_gr3_lrg.jpg
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10116157/figure/fig3/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10116157/figure/fig3/
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where  and  are two coef�icients, and in this study, they are set as  and , respec-
tively. Finally, given a channel dimension , the kernel size  can be adaptively obtained as:

(5)(5)

where  outputs the nearest odd number.

In addition, two dropout layers are deployed in the MSLIL-attention block, which randomly dis-
card the 20% of features so as to effectively reduce the computational complexity and prevent
the over�itting.

4. Results and discussions

In this section, the proposed MEN is applied to the COVID-19 detection tasks for performance
evaluation, where two public datasets of chest X-ray images are adopted, and the results are
compared with other popular deep learning models.

4.1. Experimental environment

4.1.1. Datasets In this study, the proposed MEN is evaluated on two public COVID-19 chest X-
ray image datasets (https://aistudio.baidu.com/aistudio/datasetdetail/163046) [30], which
are denoted as D1 and D2, respectively. In each dataset, three categories of images are con-
tained, including COVID-19, normal and viral pneumonia. It is noticeable that the samples in
COVID-19 and viral pneumonia category are highly similar, which brings dif�iculties in accurate
recognition. The data partition for model training and testing is based on the ratio of 8:2 as
shown in Fig. 4, and moreover, some data augmentation operations like random �lip and center
crop are performed on the training set, which further enrich the samples to promote robust
feature learning.

Fig. 4

Data partition for model training and testing.

4.1.2. Evaluation metrics For the above mentioned three-category classi�ication tasks, confu-
sion matrix is adopted for performance evaluation, based on which �ive metrics of accuracy,
precision, recall, speci�icity, and F1 score are calculated as follows.

γ b γ = 2 b = 1

C k
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∣
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∣
∣
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https://aistudio.baidu.com/aistudio/datasetdetail/163046
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10116157/figure/fig4/
https://www.ncbi.nlm.nih.gov/core/lw/2.0/html/tileshop_pmc/tileshop_pmc_inline.html?title=Click%20on%20image%20to%20zoom&p=PMC3&id=10116157_gr4_lrg.jpg
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10116157/figure/fig4/


19/03/2024, 13:37 Progressive attention integration-based multi-scale efficient network for medical imaging analysis with application to COVID-…

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10116157/ 9/21

(6)(6)

(7)(7)

(8)(8)

(9)(9)

(10)(10)

where TP and FP refer to the true and false positive classi�ication results, TN and FN are the
true and false negative ones, respectively.

4.1.3. Experimental settings In Table 1, the model con�igurations when training the proposed
MEN are presented, and the comparison models employed in this study are parameterized ac-
cording to the corresponding literature, including ResNet101 [31], MobileNetV2 [32],
DensNet201 [33], Ef�icientNetV2_s [34], and Ef�icientNet_b0 [35]. All experiments are carried
out on the deep learning framework Pytorch, and the operating system is Windows 10 with an
NVIDIA GTX 2060 single GPU.

Table 1

Hyperparameter settings.

Parameters Settings

Training epochs 200

Batch size 16

Optimizer SGD

Learning rate 0.01

Learning rate decay Cosine decay

Accuracy =
TP + TN

TP + FP + FN + TN

Precision =
TP

TP + FP

Recall =
TP

TP + FN

Specificity =
TN

FP + TN

F1 score = 2 ×
recall × precision

recall + precision

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10116157/table/tbl1/
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4.2. Evaluation results

At �irst, the confusion matrix obtained by the proposed MEN on dataset D1 is illustrated in
Fig. 5, and corresponding data are reported in Table 2 for a clear view. It is found that on the
COVID-19 category, the highest classi�ication accuracy of 99.27% is achieved, and the COVID-19
samples that are misdiagnosed as viral pneumonia only take proportion of 0.37%, which
shows that the proposed MEN can effectively distinguish the highly similar images in COVID-19
and viral pneumonia category. For the other two categories, the misclassi�ication rates are both
around 2.6%, which implies that the proposed MEN presents a satisfactory classi�ication per-
formance on dataset D1.

Fig. 5

Confusion matrix on the D1 dataset.

Table 2

Percentage of Ground-truth and Prediction results based on confusion matrix on D1.

Ground-truth Prediction	results

COVID-19 Normal Viral-Pneumonia

COVID-19 99.27% 0.372% 0.372%

Normal 1.115% 97.03% 1.860%

Viral-Pneumonia 0.372% 1.860% 97.77%

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10116157/figure/fig5/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10116157/table/tbl2/
https://www.ncbi.nlm.nih.gov/core/lw/2.0/html/tileshop_pmc/tileshop_pmc_inline.html?title=Click%20on%20image%20to%20zoom&p=PMC3&id=10116157_gr5_lrg.jpg
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10116157/figure/fig5/
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Similarly, the evaluation results on dataset D2 are displayed in Fig. 6 and Table 3, respectively. It
is noticeable that the data are quite limited in D2, especially the COVID-19 samples, which
makes it tough for suf�icient feature extraction. While according to the results, only one image
in COVID-19 category is misclassi�ied as the normal one and none of samples in the other two
categories are recognized as the COVID-19 sample. Moreover, even the lowest accuracy occur-
ring in viral pneumonia image identi�ication reaches 0.974, which demonstrates that the pro-
posed MEN does extract features with strong representation from the limited data, thereby ex-
hibiting outstanding feature extraction ability.

Fig. 6

Confusion matrix on the D2 dataset.

Table 3

Percentage of Ground-truth and Prediction results based on confusion matrix on D2.

Ground-truth Prediction	results

COVID-19 Normal Viral-Pneumonia

COVID-19 97.67% 2.33% 0%

Normal 0% 99.25% 0.746%

Viral-Pneumonia 0% 2.60% 97.40%

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10116157/figure/fig6/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10116157/table/tbl3/
https://www.ncbi.nlm.nih.gov/core/lw/2.0/html/tileshop_pmc/tileshop_pmc_inline.html?title=Click%20on%20image%20to%20zoom&p=PMC3&id=10116157_gr6_lrg.jpg
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10116157/figure/fig6/


19/03/2024, 13:37 Progressive attention integration-based multi-scale efficient network for medical imaging analysis with application to COVID-…

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10116157/ 12/21

Based on the above confusion matrices, �ive indicators in Eq. (6)–(10) are calculated, and cor-
responding evaluation results on D1 and D2 are reported in Table 4 and Table 5, respectively.
Notice that the presented results are in class-wise, and an intuitive presentation is also shown
in Fig. 7, Fig. 8.

Table 4

Performance of the proposed MEN on dataset D1.

Metrics Category

COVID-19 Normal Viral-Pneumonia

Precision 0.9852 0.9775 0.9777

Recall 0.9926 0.9703 0.9777

Speci�icity 0.9926 0.9888 0.9888

F1 score 0.9889 0.9739 0.9777

Accuracy 0.9926 0.9827 0.9851

Table 5

Performance of the proposed MEN on dataset D2.

Metrics Category

COVID-19 Normal Viral-Pneumonia

Precision 1.0 0.9708 0.9924

Recall 0.9767 0.9925 0.9740

Speci�icity 1.0 0.9744 0.9936

F1 score 0.9884 0.9816 0.9832

Accuracy 0.9983 0.9828 0.9845

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10116157/table/tbl4/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10116157/table/tbl5/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10116157/figure/fig7/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10116157/figure/fig8/
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Fig. 7

Performance of the proposed MEN on dataset D1.

Fig. 8

Performance of the proposed MEN on dataset D2.

As is shown in Table 4, all of the evaluation metrics exceed 97% on dataset D1, where the re-
call, speci�icity and accuracy obtained in COVID-19 class obtain the highest value of 99.26%,
which demonstrates that the proposed MEN is competent in accurate recognition of the COVID-
19 samples. In addition, accuracy obtained in the other two categories also reaches 0.9827 and
0.9851, respectively, which shows the competitiveness of our MEN in accurate classi�ication.

https://www.ncbi.nlm.nih.gov/core/lw/2.0/html/tileshop_pmc/tileshop_pmc_inline.html?title=Click%20on%20image%20to%20zoom&p=PMC3&id=10116157_gr7_lrg.jpg
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10116157/figure/fig7/
https://www.ncbi.nlm.nih.gov/core/lw/2.0/html/tileshop_pmc/tileshop_pmc_inline.html?title=Click%20on%20image%20to%20zoom&p=PMC3&id=10116157_gr8_lrg.jpg
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In Table 5, evaluation metrics obtained by the proposed MEN on dataset D2 are reported, and
it is found that both precision and speci�icity in the COVID-19 class reach 1.0. It is worth men-
tioning that as compared to dataset D1, the amount of data in D2 is fewer with unbalanced dis-
tribution, especially the COVID-19 samples are quite limited. Therefore, such result suf�iciently
prove the superiority of the proposed MEN, and the accuracy obtained on dataset D2 is even
0.57% higher than that on D1. Moreover, the F1 score on all categories surpasses 0.98, which
shows the excellent comprehensive performance of MEN by well balancing the precision and
recall.

Based on above discussions, one can conclude that the proposed MEN is reliable in the impor-
tant diagnostic task of recognizing COVID-19 based on the chest X-ray images. On two different
diagnostic scenes, our MEN achieves satisfactory results, which also exhibits a well generaliza-
tion ability.

4.3. Comparisons with other advanced models

To further verify the competitiveness of our method in feature extraction, the proposed MEN is
compared with other �ive advanced deep learning models, and the comparison results in terms
of the overall classi�ication performance are displayed in Table 6, Table 7 and Fig. 9.
Particularly, in [16], an improved snapshot ensemble technique has been combined with a neu-
ral network, and data-speci�ic augmentation operations have been investigated in [30]. Both of
the above two recently proposed models have obtained satisfactory results on dataset D2, and
as a result, in Table 7, they are also compared with the proposed MEN, where the results are
directly cited from the original papers.

Table 6

Performance comparison of the proposed MEN and other �ive advanced models on dataset D1.

Databases Metric Models

Resnet101 Densenet201 Ef�icientnetv2_s Ef�icientnet_b0 Mobilenetv2

D1 Precision 0.9550 0.9677 0.9752 0.9733 0.9213

Recall 0.9541 0.9641 0.9678 0.9727 0.9195

Speci�icity 0.9771 0.9839 0.9876 0.9864 0.9597

F1 score 0.9545 0.9678 0.9752 0.9730 0.9203

Accuracy 0.9694 0.9785 0.9835 0.9818 0.9463

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10116157/table/tbl5/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10116157/table/tbl6/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10116157/table/tbl7/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10116157/figure/fig9/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10116157/table/tbl7/
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Table 7

Performance comparison of the proposed MEN and other seven advanced models on dataset D2.

Databases Metric Models

Resnet101 Densenet201 Ef�icientnetv2_s Ef�icientnet_b0 Mobilenetv2

Precision 0.9565 0.9423 0.9819 0.9821 0.9509

Recall 0.9368 0.9600 0.9814 0.9767 0.9318

Speci�icity 0.9684 0.9729 0.9840 0.9840 0.9640

F1 score 0.9466 0.9512 0.9817 0.9785 0.9413

Accuracy 0.9655 0.9690 0.9827 0.9828 0.9609

Fig. 9

Performance comparison of MEN and other �ive advanced models on datasets  (left) and  (right).

According to Table 6, the proposed MEN shows an improved performance on all �ive metrics as
compared with other �ive advanced deep learning models, with each metric exceeding 98%. It
may due to the deployments of two different channel attention mechanisms in appropriate lo-
cations, which allows a feature extraction with rich and accurate information. In the more dif�i-
cult diagnostic task on dataset D2, it is also found from Table 7 that the proposed MEN outper-
forms other seven state-of-the-art models in terms of each metric. It is noticeable that as com-
pared to the results on dataset D1, there are declines to different extents regarding to accuracy
on D2 obtained by the Renet101, Densenet201 and Ef�icientnetv2_s model. On the contrary, ac-
curacy obtained by Ef�icientnet_b0, Mobilenetv2 and the proposed MEN is even higher on D2
than that on D1, which implies that a lighter structure may be more suitable for handling lim-
ited and imbalanced data. In the designed MSLIL-Conv module of MEN, not only the data are
further enriched by the deployed multi-branch structure, two embedded dropout layers also
effectively prevent the over-�itting phenomenon. Consequently, the proposed MEN can present
stable performance in the case of insuf�icient and imbalanced data.

D2

D1 D2

https://www.ncbi.nlm.nih.gov/core/lw/2.0/html/tileshop_pmc/tileshop_pmc_inline.html?title=Click%20on%20image%20to%20zoom&p=PMC3&id=10116157_gr9_lrg.jpg
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10116157/figure/fig9/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10116157/table/tbl6/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10116157/table/tbl7/
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In addition, the receiver operator characteristic (ROC) curves obtained by above six models are
illustrated in Fig. 10, which selects recall as the vertical coordinate and speci�icity as the hor-
izontal one. A property of the ROC curve is that its shape is able to remain unchanged as the
distribution of positive and negative samples changes, which thereby reduces the interference
caused by different test sets and provides an objective estimation of the model performance.
Note that if the ROC curve is closed to the top left corner, that is, the area under curve (AUC) is
large, then the model is deemed to have good performance. As can be seen in Fig. 10, the pro-
posed MEN yields the best AUC values of 0.9979 on D1 and 0.9999 on D2, respectively, which
shows the competitiveness of our method in extracting discriminative features from both posi-
tive and negative samples.

Fig. 10

ROC curves of the developed MEN and other comparison models on two datasets.

Moreover, a supplement dataset from Kaggle without training is adopted for performance eval-
uations of the six models, where the task is also to recognize the COVID-19 samples from im-
ages of three categories, and the ROC curves are presented in Fig. 11. Combining the results
shown in Fig. 10, it is found that the AUC value obtained by Ef�icientnetv2_s, which is the sub-
optimal model on both datasets D1 and D2, is greatly reduced to 0.8691 on the supplement
dataset. By contrast, the proposed MEN still maintains the highest AUC value of 0.9397, which
shows the outstanding robustness and generalization ability of our method.

1−

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10116157/figure/fig10/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10116157/figure/fig10/
https://www.ncbi.nlm.nih.gov/core/lw/2.0/html/tileshop_pmc/tileshop_pmc_inline.html?title=Click%20on%20image%20to%20zoom&p=PMC3&id=10116157_gr10_lrg.jpg
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10116157/figure/fig10/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10116157/figure/fig11/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10116157/figure/fig10/
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Fig. 11

ROC curves of six models on the supplement dataset.

According to the above discussions, the proposed MEN is competent in recognizing COVID-19
based on chest X-ray images with considerable overall performance. Although satisfactory re-
sults are achieved on different diagnostic tasks, there are still some spaces for further improve-
ments on our method. Firstly, the ability of extracting highly discriminative features can be en-
hanced by diverse convolution variants and multi-scale feature fusion methods [36], [37].
Secondly, common spatial pattern [38] and multi-agent systems [39] can be applied to optimize
the training process, and aiming at the training data, some �iltering techniques can be adopted
to alleviate the interference of noises [40], [41], [42], [43], [44] In addition, some data en-
hancement techniques can be considered as well [45]. Moreover, a number of optimization al-
gorithms and systems can be used to realize potential better structural con�igurations so that
the established network can exhibit superior performance [46], [47], [48], [49], [50]. Finally, it
is also promising to apply the proposed MEN to more medical diagnostic scenes [51].

5. Conclusion

In this paper, a novel multi-scale ef�icient network has been developed, which is a competent
medical imaging analysis framework with ef�icient feature extraction boosted by the two de-
signed attention blocks. In a progressive learning manner, both �ine-grained features and se-
mantic information have been suf�iciently obtained, which promotes the improvement of the
detection accuracy. The proposed MEN has been comprehensively evaluated on two COVID-19
diagnosis tasks, and comparison results with some other advanced models show that the pro-
posed method has presented overwhelming advantages in terms of all applied evaluation met-
rics, which demonstrates its effectiveness and competitiveness.
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