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Abstract—This paper proposes predefined-time adaptive neu-
ral network (PTANN) and event-triggered PTANN (ET-PTANN)
models to efficiently compute time-varying tensor Moore-Penrose
inverse. The PTANN model incorporates a novel adaptive pa-
rameter and activation function, enabling it to achieve strongly
predefined-time convergence. Unlike traditional time-varying
parameters that increase over time, the adaptive parameter
is proportional to the error norm, thereby better allocating
computational resources and improving efficiency. To further
enhance efficiency, the ET-PTANN model combines an event
trigger with the evolution formula, resulting in the adjustment of
step size and reduction of computation frequency compared to the
PTANN model. By conducting mathematical derivations, the pa-
per derives the upper bound of convergence time for the proposed
neural network models and determines the minimum execution
interval for the event trigger. A simulation example demonstrates
that the PTANN and ET-PTANN models outperform other related
neural network models in terms of computational efficiency and
convergence rate. Finally, the practicality of the PTANN and
ET-PTANN models is demonstrated through their application to
mobile sound source localization.

Index Terms—Recurrent neural network, adaptive parameter,
event-triggering mechanism, time-varying tensor Moore-Penrose
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I. INTRODUCTION

The Moore-Penrose (MP) inverse is a fundamental concept

in science and engineering. For example, there are many

image-based applications, such as image fusion [1], image

classification [2], and gesture recognition [3]. Most of them

involve matrix inversion operations. Moreover, the MP inverse

finds applications in various fields, including network learning

[4], robotics [5], and big data analysis [5]. With the rapid

growth of data volume due to advancements in internet and

hardware technologies, the need to handle large-scale data has

become crucial. In response to this challenge, researchers have

extended the MP inverse from matrices to tensors and have

explored the properties of tensor MP inverse [6], [7].
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The importance of the MP inverse has sparked the interest

of numerous scholars, leading to the development of various

methods for its computation [8]–[10]. For instance, Stan-

imirovic et al. [9] proposed an iterative scheme based on error

bounds to compute the MP inverse, while Zontini et al. [10]

employed the generalized Schulz iterative method. However,

iterative methods with a time complexity of O(n3) are not

suitable for handling large-scale data. Consequently, recurrent

neural networks (RNNs) with parallel computing capabilities

have been utilized for computing matrix and tensor equations.

Among RNNs, gradient neural networks (GNNs) have shown

proficiency in addressing time-invariant MP inverse problems

[11]–[13]. Nevertheless, GNNs overlook the derivative infor-

mation of coefficients, rendering them insufficient for solving

time-varying tensor MP inverse (TV-TMPI) problems.

Numerous studies have proven that zeroing neural networks

(ZNN) can effectively solve time-varying problems [14]–[19].

To address the time-varying matrix inverse, Zhang et al. [14]

introduced the zeroing neural network, a unique type of RNN.

The ZNN combines the advantages of GNNs while effectively

handling time-varying problems. The ZNN model achieves

exponential rate convergence to the theoretical solution. Over

time, researchers have made continuous improvements to

the convergence performance of ZNN models [15]–[19]. Tan

et al. [15] proposed two activation functions with varying

parameters to achieve finite-time convergence and robustness

in ZNN models. The finite-time convergence of ZNN models

is influenced by the initial state, leading researchers to de-

velop fixed-time convergence ZNN models by designing new

activation functions [16]–[18]. For example, Jin et al. [18]

introduced two novel activation functions and presented two

fixed-time convergence ZNN models. Furthermore, Qi et al.

[19] proposed a novel ZNN model with strong predefined-time

convergence, where the upper bound on convergence time is

independent of other model parameters.

The ZNN model has been utilized by some researchers to

address time-varying MP inverses. Two novel ZNN models,

characterized by their non-linear activation functions, were

introduced by Chai et al. [20] and Sowmya et al. [21]. It

has been demonstrated that both ZNN models converge to the

theoretical solution of the time-varying MP inverse within a

finite time scale. However, it is worth noting that the aforemen-

tioned ZNN models come with increased computational costs

as they aim to improve the convergence rate. To address this

issue, Xiao et al. [22], [23] proposed adaptive neural network

(ANN) models. These models utilize parameters that adapt to
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changes in the error norm, thereby enhancing the convergence

rate and computational efficiency. Similarly, Wang et al. [24]

pointed out that adaptive dynamic programming technology

significantly reduces the computational burden of neural net-

works.

The current research landscape indicates substantial ad-

vancements in addressing the MP inverse and in the develop-

ment of ZNN models. Nevertheless, there remain significant

gaps and limitations in the field. Primarily, research on the

time-varying tensor MP inverse is scant, despite some studies

extending the MP inverse to the time-varying or tensor do-

main. Secondly, the existing ANN models, which include the

optimized ZNN models for computational efficiency, exhibit

subpar convergence performance and do not attain optimal

predefined-time convergence. Thirdly, as the tensor order in-

creases, the computational cost of the evolution formula grows

rapidly. Moreover, the value of the evolution formula between

adjacent iterations does not change significantly, resulting

in inefficient utilization of computing resources. Thus, the

focal issue addressed in this paper is the time-varying tensor

Moore-Penrose inverse, where the research is directed towards

enhancing the convergence performance and computational

efficiency of the ANN model.

The convergence performance of the ANN model can be

enhanced by introducing novel adaptive parameters and acti-

vation functions. Additionally, to reduce the computational fre-

quency of the evolution formula, event-triggered control can be

employed. Event-triggered control, based on the system state,

offers significant improvements in computational efficiency

compared to periodic control [25]. Consequently, the concept

of event triggering has attracted considerable interest among

researchers. For example, within the scope of the consistent

tracking problem in multi-agent systems, an event-based finite-

time control method was introduced by Li et al. [26]. This

method not only guarantees that the tracking error converges to

zero in a finite time, but also reduces resource waste. However,

event-triggered control is susceptible to measurement errors.

To address this, researchers have devised threshold strategies

[27]–[29]. Inspired by these approaches, and to ensure the ac-

curacy of the upper bound on convergence time, we propose a

hybrid threshold. Furthermore, to further reduce computational

costs, we adjust the value of the evolution formula within the

trigger interval, thereby influencing the step size of the ode45

solver.

In summary, this paper introduces two neural network

models: the predefined-time adaptive neural network (PTANN)

model and the event-triggered PTANN (ET-PTANN) model.

These models utilize novel activation functions and adaptive

parameters to achieve strongly predefined-time convergence.

The adaptive parameters optimize the utilization of computing

resources, while the event-triggered mechanism, combined

with the evolution formula, reduces unnecessary computations.

Therefore, when compared with conventional solving methods,

the PTANN and ET-PTANN models demonstrate a faster rate

of convergence, greater accuracy in convergence time, and

improved computational efficiency.

The main contributions of this paper are highlighted as

follows:

1) The PTANN and ET-PTANN models are proposed to

compute time-varying tensor MP inverse, both achieving

strongly predefined-time convergence.

2) A novel adaptive parameter is introduced to allow for the

flexible allocation of computing resources, thereby en-

hancing the computational efficiency of the ANN models.

3) A design of a hybrid threshold event trigger is presented,

which integrates, for the first time, the evolution formula

with the event triggering mechanism. This innovation is

an improvement in computational efficiency with no loss

of convergence rate.

4) The upper bound of convergence time for the proposed

models and the minimum execution interval of the event

trigger are calculated.

This paper is organized into six sections. Section II provides

necessary preliminaries and presents the problem formulation.

Section III describes the design process of the PTANN and ET-

PTANN models. Theoretical analysis and mathematical proofs

of the two proposed models are presented in Section IV. To

validate the aforementioned theory, simulation examples were

conducted in Section V. The application of the PTANN and

ET-PTANN models to mobile sound source localization is

demonstrated in Section VI. Section VII concludes the full

paper and expresses future research direction.

II. PRELIMINARIES AND PROBLEM FORMULATION

In this section, the relevant definitions of nonlinear systems

and the knowledge of tensors will be introduced, with purpose

to enhance the understanding of readers and provide an

introduction to the problem formulation.

A. Nonlinear System

Consider a nonlinear system:

ẋ(t) = −λΦ (x(t), t) ∈ R
n, x(0) = x0, t ∈ [0,+∞), (1)

where λ > 0 is a tunable parameter; Φ(·, ·) : Rn × R
+
0 →

R
n is a continuous monotonically increasing odd function;

and R
+
0 = {0}⋃R

+. The equilibrium point of system (1) is

x(t) = 0.

Definition 1 ([30]). If there exists a parameter 0 6 τ < +∞
such that x(t) = 0 for all t > τ , then system (1) is said

to reach a stable state at time τ . In this case, the function

T (x0) = inf{τ > 0 : ‖x(t)‖2 = 0, ∀t > τ} is referred to as

the settling-time function of system (1).

Definition 2 ([31]). For system (1), if there exists an indepen-

dent parameter T satisfying

T (x0) 6 T, ∀x0 ∈ R
n, (2)

then system (1) is said to be predefined-time stable.

Definition 3 ([19]). For ∀x0 ∈ R
n, if T = sup{T (x0)}, then

T is non-conservative, and system (1) is said to be strongly

predefined-time stable.
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B. Tensor Knowledge

For N positive integers H1, H2, . . . , HN , the expression of

N -order tensor is as follows:

B = (bh1h2...hN
)16hi6Hi

, i = {1, 2, . . . , N}. (3)

Here, B ∈ R
H1×H2×···×HN is a multidimensional array with

N entries.

Definition 4 ([7]). For tensor B ∈ R
H1×···×HN×K1×···×KM , if

there exists a tensor A ∈ R
K1×···×KM×H1×···×HN satisfying

Ak1...kMh1...hN
= Bh1...hNk1...kM

,

1 6 kj 6 Kj , j = {1, 2, . . . ,M}, (4)

then A is said to be the transpose of B, denoted as BT.

Definition 5 ([32]). The Moore-Penrose inverse of tensor B ∈
R

H1×···×HN×K1×···×KN exists and is unique, denoted as B† ∈
R

K1×···×KN×H1×···×HN , where B† satisfies



















B ∗N B† ∗N B = B,
B† ∗N B ∗N B† = B†,

(B ∗N B†)T = B ∗N B†,

(B† ∗N B)T = B† ∗N B.

(5)

with ∗N standing for the Einstein product.

Definition 6 ([33]). An invertible mapping that converts ten-

sors to matrices is mathematically expressed as Θ(B) = B ∈
R

H×K , where B ∈ R
H1×···×HN×K1×···×KM , H =

∏N
y=1 Hy

and K =
∏M

y=1 Ky. Here, the specific mapping rules are as

follows:

Bh1h2...hNk1k2...kM
→ Bij (6)

where i and j are positive integers satisfying

i = hN +
N−1
∑

α=1

(

(hα − 1)
N
∏

y=α+1

Hy

)

,

j = kM +
M−1
∑

α=1

(

(kα − 1)
M
∏

y=α+1

Ky

)

.

C. Problem Formulation

Extending Definition 5 to the time-varying domain, the

TV-TMPI is obtained, i.e., the MP inverse of B(t) ∈
R

H1×···×HN×K1×···×KN is B†(t) ∈ R
K1×···×KN×H1×···×HN .

Then, convert tensors B(t) and B†(t) into matrices B(t) and

B†(t) by Definition 6, where B(t) and B†(t) satisfy



















B(t)B†(t)B(t) = B(t),

B†(t)B(t)B†(t) = B†(t),

(B(t)B†(t))T = B(t)B†(t),

(B†(t)B(t))T = B†(t)B(t)

(7)

with B(t) ∈ R
H×K , B†(t) ∈ R

K×H , H =
∏N

y=1 Hy and

K =
∏M

y=1Ky .

According to the rank of B(t), there are two ways to

calculate B†(t).

1) If rank(B(t)) = K , then A(t) = BT(t)B(t) is invertible,

and B†(t) is called the left MP inverse calculated by

B†(t) = A−1(t)BT(t),

B†(t)B(t) = I ∈ R
K×K .

(8)

2) If rank(B(t)) = H , then C(t) = B(t)BT(t) is invert-

ible, and B†(t) is called the right MP inverse calculated

by
B†(t) = BT(t)C−1(t),

B(t)B†(t) = I ∈ R
H×H .

(9)

III. THE DESIGN OF THE NEURAL NETWORK

In this section, the design process of the traditional ZNN

model is introduced. The PTANN model is proposed by

combining a novel adaptive parameter and activation function.

Furthermore, the ET-PTANN model is proposed by combining

an event trigger and evolution formulation.

A. Standard ZNN Model

The standard design process of the ZNN model consists

of three steps: proposing the error equation, designing the

evolution formula, and constructing the ZNN model. Equation

(9) is taken as an example, where X(t) represents the matrix

to be solved. The following error function is obtained:

E(t) = X(t)C(t)−BT(t) ∈ R
K×H . (10)

Then, an evolution formula is used to drive E(t) to converge

to zero [14]:

Ė(t) = −λΦ (E(t)) . (11)

Here, the evolution formula (11) satisfies the definition of

a nonlinear system (1), where λ represents the convergence

parameter. The activation function array Φ(·) is composed of

continuous, monotonically increasing odd functions denoted

as φ(·).
Substituting (10) into (11), we obtain the ZNN-R model

about the right MP inverse:

Ẋ(t)C(t) = −λΦ
(

X(t)C(t)−BT(t)
)

−X(t)Ċ(t) + ḂT(t)
(12)

and, similarly, we obtain the ZNN-L model for the left MP

inverse based on (8):

A(t)Ẋ(t) = −λΦ
(

A(t)X(t)−BT(t)
)

− Ȧ(t)X(t) + ḂT(t).
(13)

B. PTANN Model

The simulation of the ZNN model is commonly performed

using the ode45 solver to evaluate its performance. Therefore,

to improve computational efficiency within the ode45 solver,

we propose the PTANN model. Before introducing the PTANN

model, it is necessary to have a basic understanding of ode45.

The ode45 solver is a variable-step solver that combines

the 4th-order and 5th-order Runge-Kutta (RK) methods [34].

The step size in ode45 represents the increment of time t
between adjacent iterations [35], which dynamically adjusts

the step size based on the change rate of the model state:
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when the state changes rapidly, the step size is reduced to

improve accuracy, and when the state changes slowly, the step

size is increased to avoid unnecessary computations [36]. In

the case of formulas (12) and (13), the state matrix X(t) and

the magnitude of Ė(t) are directly proportional. Therefore,

when using the ode45 solver to solve the state matrix X(t)
through the neural network model, the step size is inversely

proportional to
∥

∥Ė(t)
∥

∥

F
.

In previous studies, conventional time-varying parameters

were designed to accelerate convergence [37], [38]. These

parameters increase over time, reducing the step size of ode45
and resulting in increased computational costs for the neural

network model. To reduce the computational cost, we propose

a novel adaptive parameter:

λdp(t) =
w‖E(t)‖pF

T
, (14)

where 0 < p < 0.5, w = (HK)−
p

2 , T > 0 is the only

parameter that can affect the upper bound of convergence time,

and ‖ · ‖F stands for the Frobenius norm.

Remark 1. The analysis above makes it clear that the

convergence parameter λdp(t) has a direct impact on the

model’s change rate, subsequently influencing the step size of

the ode45 solver. This step size is closely associated with the

computational cost of the model. In particular, the convergence

parameter λdp(t) is inversely proportional to the step size,

while it is directly proportional to the convergence rate and

the computational cost.

During the convergence phase, larger values of ‖E(t)‖F
and λdp(t) can accelerate the convergence rate of the ANN

model. This allocation of computing resources speeds up the

convergence process. During the stable phase, smaller values

of ‖E(t)‖F and λdp(t) can reduce the computational cost

of the ANN model. This allocation of computing resources

minimizes unnecessary computations. Therefore, the adap-

tive parameter λdp(t) improves computational efficiency by

appropriately allocating computing resources based on the

magnitude of ‖E(t)‖F.

The PTANN model is proposed by incorporating the adap-

tive parameter λdp(t) and the activation function Φdp(·). The

element expression of the activation function Φdp(·) is given

by:

φdp(x) =
1

p
exp(|x|p)|x|1−2psign(x), (15)

where 0 < p < 1/2 and sign(·) is a function defined by

sign(x) =











1, if x > 0

0, if x = 0

−1, if x < 0.

(16)

Contrary to traditional activation functions, incorporating for-

mula (15) with adaptive parameter λdp(t) equips the PTANN

model with the capability to achieve strong predefined-time

convergence and an accelerated convergence rate. The benefits

of this approach will be showcased in subsequent simulation

experiments.

Fig. 1. Module diagram of the PTANN-R model (18).

Substituting the adaptive parameter λdp(t) and activation

function Φdp(x) into the evolution formula (11), we obtain

Ėdp(t) =− λdp(t)Φdp(E(t)),

ėdp(t) =− w‖E(t)‖pF
Tp

exp(|e(t)|p)|e(t)|1−2psign(e(t)),

(17)

where ėdp(t) represents the elements of matrix Ėdp(t).

Subsequently, the PTANN-R model about the right MP

inverse is

Ẋ(t)C(t) =− λdp(t)Φdp

(

X(t)C(t)−BT(t)
)

−X(t)Ċ(t) + ḂT(t),
(18)

and the PTANN-L model about the left MP inverse is

A(t)Ẋ(t) =− λdp(t)Φdp

(

A(t)X(t)−BT(t)
)

− Ȧ(t)X(t) + ḂT(t).
(19)

Considering the structural similarity between the PTANN-

R and PTANN-L models, a module diagram has been created

exclusively for the PTANN-R. As illustrated in Fig. 1, the

PTANN model operates using a series of components, namely,

accumulators, multipliers, amplifiers, integrators, and differen-

tial modules, with X(t) denoting the state variable.

C. ET-PTANN Model with Event Trigger

As discussed in Remark 1, the adaptive parameter λdp(t)
can regulate the allocation of computing resources in the

PTANN model and improve computational efficiency. How-

ever, during the convergence phase, this adaptive parameter

has little impact on the step size of ode45. To further enhance

computational efficiency, we introduce an event-triggered evo-

lution formula that reduces the computational frequency.

The design process for the ET-PTANN model with event

triggering is described as follows. Building upon (17), an

event-triggered mechanism is added to the evolution formula,

leading to the following new evolution formula:

Ėet(t) = −λet(t)Φet(E(t)), (20)

where t ∈ [tk, tk+1), k ∈ N, and the sequence {tk} represents

the moment at which Ėet(t) is recomputed.
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Compared to the conventional periodic control, the Ėet(t) in

the event-triggered ET-PTANN model contains measurement

error ε(t) obeying

ε(t) = −λet(t)Φet(E(t)) + λdp(t)Φdp(E(t))

= Ėet(t)− Ėdp(t).
(21)

Here, ε(t) is used to quantify the error in Ė(t) resulting from

the hysteresis of the event trigger.

To ensure the convergence performance of the ET-PTANN

model, it is important to keep the error ε(t) within a small

range. The value of ε(t) depends on the difference between

Ėdp(t) and Ėdp(tk). If this difference is too large, the value

of Ėet(t) is updated. However, due to the hysteresis in Ėet(t),
there is a possibility that Ėet(t) and E(t) have the same

sign, which can cause E(t) to diverge, even though E(t) and

Ėdp(t) have different signs. Therefore, the trigger condition

for updating Ėet(t) is defined as follows:

∣

∣ėdp(tk)− ėdp(t)
∣

∣ > γ or ėet(t)ėdp(t) < 0, t > tk, (22)

where γ > 0 represents the threshold of the event trigger,

ėet(t) represents the elements of matrix Ėet(t).

The threshold γ allows us to control the measurement error

ε(t) and the triggering frequency. A smaller threshold leads to

a smaller measurement error and a higher triggering frequency,

while a larger threshold results in a larger measurement

error and a lower triggering frequency. Depending on the

relationship between the threshold and the trigger condition,

we can classify the threshold into two types: fixed threshold

and relative threshold. Each type has its own advantages and

disadvantages.

The relative threshold is proportional to
∣

∣ėdp(tk)
∣

∣ according

to (22). As
∣

∣ėdp(tk)
∣

∣ approaches 0, the relative threshold con-

trols ε(t) within a small range. In contrast, the fixed threshold

remains constant, resulting in a small ε(t) for large
∣

∣ėdp(tk)
∣

∣.

To reduce measurement error and ensure the convergence rate

of the model, we design a hybrid threshold using a piecewise

function. The expression of the hybrid threshold is as follows:

γ =















η1 if
∣

∣ėdp(tk)
∣

∣ >
η1 − η2

σ
,

σ
∣

∣ėdp(tk)
∣

∣+ η2 if
∣

∣ėdp(tk)
∣

∣ <
η1 − η2

σ
,

(23)

where η1 > 0, η2 > 0 and 0 < σ < 1. Here, η2 is used to

ensure a lower limit for γ. The specific range of values for η1
and η2 will be analyzed later.

Note that |e(t)| is inversely proportional to time t, and

both λdp(·) and φdp(·) are monotonically increasing functions.

Therefore, the following inequality holds:

∣

∣ėdp(tk+1)
∣

∣ 6
∣

∣ėdp(t)
∣

∣, t ∈ [tk, tk+1). (24)

From the previous analysis, it is evident that
∣

∣ė(t)
∣

∣ can be

reduced to enhance computational efficiency. Letting ėet(t) =
ėdp(tk+1), its expression is as follows:

ėet(t) =ėdp(tk+1)

=ėdp(tk)− γsign (ėdp(tk)) ,
(25)

TABLE I
EFFECTS OF MAIN DESIGN PARAMETERS OF PTANN AND ET-PTANN

MODELS.

Model Parameter Source Effect

PTANN,
ET-PTANN

‖E(t)‖F λdp allocating computing resources

T λdp determining convergence time

p λdp, Φdp controlling convergence rate

ET-PTANN γ Ėet controlling measurement error

where t ∈ [tk, tk+1). When t = tk, edp(tk) = eet(tk) =:
e(tk). It follows from (17) that sign (ėdp(tk)) = −sign(e(tk)),
and therefore

ėet(t) =− λdp(tk)φdp(e(tk)) + γsign(e(tk))

=− w‖E(tk)‖pF
Tp

exp(|e(tk)|p)|e(tk)|1−2psign(e(tk))

+ γsign (e(tk)) .
(26)

It is known from (22) that Ėet(t) and Ėdp(t) have the same

sign, and

ėet(t)ėdp(t) > 0,
∣

∣ėdp(tk)
∣

∣

(∣

∣ėdp(tk)
∣

∣− γ
)

> 0.
(27)

Substituting (23) into (27), we have η1 > η2/(1− σ), (1−
σ)emin > η2 > 0, where emin represents the minimum value

of |e(t)| in the stable phase.

Replacing the evolution formula Ėdp(t) of PTANN mod-

els with Ėet(t), we obtain the ET-PTANN model. The ET-

PTANN-R model about the right MP inverse is

Ẋ(t)C(t) =− λet(t)Φet (E(t))−X(t)Ċ(t) + ḂT(t)

=− λdp(tk)Φdp

(

X(tk)C(tk)−BT(tk)
)

+ γsign(E(tk))−X(t)Ċ(t) + ḂT(t),

(28)

and the ET-PTANN-L model about the left MP inverse is

A(t)Ẋ(t) =− λet(t)Φet (E(t))− Ȧ(t)X(t) + ḂT(t)

=− λdp(tk)Φdp

(

A(tk)X(tk)−BT(tk)
)

+ γsign(E(tk))− Ȧ(t)X(t) + ḂT(t).

(29)

Remark 2. The PTANN and ET-PTANN models have four

main parameters: ‖E(t)‖F, T , p, and γ. As shown in Table I,

‖E(t)‖F, T and p are common parameters for the two models.

‖E(t)‖F is desigen to allocate computing resources. p is used

to control the convergence rate. T determines the upper bound

of the convergence time. γ is a special parameter of the ET-

PTANN model, which acts on the event trigger. Its role is to

control the measurement error caused by the event trigger,

which affects the convergence rate and convergence time of

the model.

IV. THEORETICAL ANALYSIS

A. Stability Analysis

Let us now show that the PTANN and ET-PTANN models

can achieve convergence in the sense of Lyapunov.
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Theorem 1. Given a tensor B(t) ∈ R
H1×···×HN×K1×···×KN ,

if it is mapped to a matrix B(t) ∈ R
H×K , the state matrix

X(t) ∈ R
K×H of the PTANN and ET-PTANN models can

globally converge to the MP inverse of B(t), i.e., B†(t).

Proof: For the PTANN model, we consider an element

e(t) of error matrix E(t), which evolves as

ė(t) = −λdp(t)φdp(e(t)). (30)

Let a Lyapunov candidate function be d(t) = e2(t) and take

its time derivative to obtain

ḋ(t) = 2e(t)ėdp(t)

= −2λdp(t)e(t)φdp(e(t)).
(31)

From (14) and (15), we know that λdp(t) > 0 and

e(t)φdp(e(t)) > 0. Therefore, we obtain

{

d(t) > 0 d(t) = 0 if e(t) = 0,

ḋ(t) 6 0 ḋ(t) = 0 if e(t) = 0.
(32)

According to the Lyapunov stability theorem, E(t) of the

PTANN model converges to 0 over time, and the state matrix

X(t) globally converges to the MP inverse of B(t). Similarly,

we can prove that E(t) of the ET-PTANN model converges

to 0 over time, and the state matrix X(t) globally converges

to the MP inverse of B(t) as well.

B. Convergence Analysis

Theoretical analysis will be provided in this subsection to

support the fact that the parameter T is the only factor that

affects the upper bound of convergence time.

Theorem 2. Given a tensor B(t) ∈ R
H1×···×HN×K1×···×KN ,

if it is mapped to a matrix B(t) ∈ R
H×K , then for any

initial state X(0) ∈ R
K×H , the state matrix X(t) of the

PTANN model will converge to the MP inverse of B(t) within

a predefined-time T .

Proof: Let eij(t) denotes the ij-th element of error matrix

E(t). Then, we define a new variable v(t):

v(t) =

√

√

√

√

1

HK

K
∑

i=1

H
∑

j=1

e2ij(t), (33)

‖E(t)‖F =
√
HKv(t). (34)

From the above definition, v(t) can be regarded as the element

of E(t) to a certain extent. Therefore, it follows that

v̇(t) =− λdp(t)φdp(v(t))

=− w‖E(t)‖pF
Tp

exp(vp(t))(v(t))1−2p

=− 1

Tp
exp(vp(t))(v(t))1−p,

(35)

which can be transformed into

dt = −Tp exp(−vp(t))(v(t))p−1dv(t). (36)

Letting the convergence time of the PTANN model be Tc,

its integral equation is

Tc =

∫ Tc

0

1dt. (37)

When t tends to 0, v(t) = v(0), and when t tends to Tc,

v(t) = 0. By replacing dt with dv(t), we have

Tc =

∫ 0

v(0)

−Tp exp(−vp(t))(v(t))p−1dv(t)

6T

∫ +∞

0

exp(−vp(t))dvp(t)

=T,

(38)

where the parameter T of λdp(t) serves the upper bound of

convergence time of the PTANN model. The proof is now

complete.

Remark 3. To improve the computational efficiency of the

ET-PTANN model, we set
∣

∣ėet(t)
∣

∣ 6
∣

∣ėdp(t)
∣

∣. However, this

poses some difficulties in determining the upper bound of

convergence time of the ET-PTANN model. By setting a small

threshold γ, the measurement error ε(t) is controlled within

a small range, which leads to a similar convergence rate

between the ET-PTANN and PTANN models. As a result, they

can share the upper bound of convergence time.

C. Execution Interval Analysis

In order to avoid Zeno behavior in the event trigger, it is

necessary to prove that the minimum execution interval is

greater than zero.

Theorem 3. In the ET-PTANN model, there exists a certain

time tτ > 0 such that, for ∀k ∈ N, the execution interval

tk+1 − tk is greater than tτ .

Proof: Let m(t) represent the element with the largest

absolute value in E(t), whose evolution is governed by

ṁdp(t) = −λdp(t)φdp(m(t))

= −w‖E(t)‖pF
Tp

exp(|m(t)|p)|m(t)|1−2psign(m(t)).

(39)

It follows from ‖E(t)‖pF 6 (HK)
p

2 |m(t)|p that

∣

∣

∣

∣

dṁdp(t)

dt

∣

∣

∣

∣

6
1

Tp
exp(|m(t)|p)(p+ (1− p)|m(t)|−p). (40)

As shown by (22), there is a derivative error ǫ(t) in the

trigger gap:

ǫ(t) = ṁdp(tk)− ṁdp(t) t ∈ [tk, tk+1) (41)

with the following time derivative:

d|ǫ(t)|
dt

= sign(ǫ(t))ǫ̇(t). (42)
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TABLE II
EXPERIMENTAL HARDWARE AND SOFTWARE INFORMATION.

Processor RAM Software

Intel(R) Core(TM) i5-1035G1
CPU @ 1.00 GHz 1.19 GHz

16.0 GB MATLAB R2022a

Since ṁdp(tk) is a constant, ǫ̇(t) = −dṁdp(t)/dt, and we

have that

d|ǫ(t)|
dt

=− sign(ǫ(t))
dṁdp(t)

dt

6

∣

∣

∣

∣

dṁdp(t)

dt

∣

∣

∣

∣

6
1

Tp
exp(|m(t)|p)(p+ (1− p)|m(t)|−p).

(43)

Let κ = 1
Tp exp(m

p
a)(p + (1 − p)m−p

a ), where ma =
max{|m(t)|}. When t → tk+1, it follows from (22) that

|ǫ(t)| = γ, and then

|ǫ(tk+1)| − |ǫ(tk)| =
d|ε(t)|
dt

(tk+1 − tk),

γ − 0 6 κ(tk+1 − tk).
(44)

Letting tτ = tk+1 − tk, it follows from (23) that

tτ >
γ

κ
>

η2
κ
, (45)

which ends the proof.

V. SIMULATION EXAMPLE

To validate the theoretical findings, a simulation example

is conducted in this paper. Furthermore, to showcase the

advantages of the PTANN and ET-PTANN models, several

ZNN models are introduced for comparison. The hardware

and software information of the experiment is shown in Table

II.

A. The ZNN Models for Comparison

This subsection provides a brief introduction to the ZNN

models used for comparison, namely, the sign-bi-power ZNN

(SBPZNN) [39], noise-suppression variable-parameter ZNN

(NSVPZNN) [38], and varying-parameter finite-time ZNN

(VPFTZNN) [37]. The information of the compared ZNN

models and the novel ANN models is presented in Table III.

The parameters k1, k2, k3, λ, β1, β2 > 0 and q > 1; h and ̟
are odd integers and ̟ > h; p, w, γ, and T have been defined

in Section III.

B. Example

Consider a 4th-order tensor B(t) ∈ R
2×2×2×3 whose

expression is given as follows:

B(:, :, 1, 1) =

[

cos
(

3t
2

)

0

0 0

]

, B(:, :, 1, 2) =

[

sin
(

3t
2

)

cos
(

3t
2

)

0 0

]

,

B(:, :, 1, 3) =

[

0 sin
(

3t
2

)

cos
(

3t
2

)

0

]

, B(:, :, 2, 1) =

[

0 0
sin

(

3t
2

)

cos
(

3t
2

)

]

,

B(:, :, 2, 2) =

[

0 0
0 sin

(

3t
2

)

]

, B(:, :,2, 3) =

[

0 0
0 0

]

.
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(b) error norm difference

Fig. 2. Error norm obtained by neural network models and error norm
difference between ET-PTANN and PTANN models.
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Fig. 3. Partial theoretical solution X∗(t) and partial state solution X(t) of
neural network models.

Clearly, B(t) has a right MP inverse, i.e., the rank of matrix

B(t) ∈ R
4×6 is 4, where B(t) is a mapping of tensor B(t).

To compute the MP inverse of B(t), we set initial values

for the parameters as k1 = 1, k2 = 1, λ = 1, p = 1/3, q =
3/2, h = 1, ̟ = 3, k3 = 0.5, β1 = 0.5, β2 = 0.2, w =
24−1/6, η1 = 0.5, η2 = 0.001, σ = 0.1, T = 0.5. All elements

of initial state X(0) are 1.

In the simulation example, we obtain Fig. 2 and Fig. 3 to

evaluate the performance of the proposed models. Fig. 2(a)

illustrates the dynamic trajectory of ‖E(t)‖F. We observe that

both the ET-PTANN and PTANN models exhibit the fastest

convergence rate, with their error curves almost overlapping.

To further compare the differences between the two ANN

models, we present Fig. 2(b), which shows the difference

in ‖E(t)‖F for the PTANN and ET-PTANN models. The

maximum difference is only 0.078, and it quickly converges

to 0 over time. Fig. 3 displays the dynamic trajectories of

partial state solution X(t) and theoretical solution X∗(t). It

can be seen that state solutions X(t) of PTANN and ET-

PTANN models converge to theoretical solution X∗(t) in 0.3
s, which is mutually confirmed with Fig. 2(a).

Let Tu represent the upper bound of convergence time, and

Tc represent the actual convergence time. Tu can be calculated

using Table III, and the corresponding Tc is derived from Fig.

2(a). Based on this, we obtain Fig. 4(a), where the blue bars

represent the Tc of the neural network models, while the red
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TABLE III
COMPARISON OF SBPZNN [39], VPFTZNN [37], NSVPZNN [38], PTANN AND ET-PTANN MODELS.

Model Activation function Parameter Upper bound of convergence time

SBPZNN [39] φsbp(x) = (k1|x|p + k2|x|q)sign(x) λ 1
λk1(1−p)

+ 1
λk2(q−1)

VPFTZNN [37] φvp(x) = (k1x+ k2x
h
̟ ) λcosh(k3t)

1
k3

arcsinh

(

k3̟

k1h(̟−h)
ln

(

k1

k2

e
1− h

̟
max (0) + 1

))

NSVPZNN [38] φns(x) =

{

k1|x|qsign(x) + k2x, if |x| > 1

k1|x|psign(x) + k2x, otherwise.

λ exp(β1arccot(t)
+β2t)

1
β2

ln
(

1 +
β2(q−p)

λk1(1−p)(q−1)

)

PTANN φdp(x) =
1
p
exp(|x|p)|x|1−2psign(x) w‖E(t)‖pF/T T

ET-PTANN φet(x) =
1
p
exp(|xk|

p)|xk|
1−2psign(xk) w‖E(tk)‖

p
F/T T

1.15
1

0.51
0.31 0.33

2.35

1.32

0.99

0.19 0.17

0

1

2

3

4
Tc

Tu − Tc
t(s)

SBPZNN VPFTZNN NSVPZNN PTANN ET-PTANN

(a)
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(b)

Fig. 4. Upper bound Tu of convergence time of neural network models.

bars represent the difference between Tu and Tc, i.e., Tu−Tc.

We observe that the Tu of the PTANN and ET-PTANN models

is the most accurate, which reduces unnecessary computations

and indirectly improves computational efficiency. Moreover,

the Tu of the PTANN and ET-PTANN models are independent

of other parameters. By setting k1 = α and k2 = 1/α, we

obtain the following equations:

Tusbp =
1

λα(1 − p)
+

α

λ(q − 1)
,

Tuvp =
1

k3
Arcsinh

(

k3̟

αh(̟ − h)
ln
(

α2e
1− h

̟
max (0) + 1

)

)

,

Tuns =
1

β1
ln

(

1 +
β2(q − p)

λα(1 − p)(q − 1)

)

,

in which Tusbp, Tuvp, and Tuns represent the upper bounds

of convergence time of the SBPZNN, VPFTZNN, and

NSVPZNN models, respectively. When α → 0, they will

all tend to infinity, but the upper bounds Tudp and Tuet of

convergence time of the PTANN and ET-PTANN models are

not affected by α. Fig. 4(b) verifies the above conclusion.

To maintain generality, we conduct tests to examine the

influence of parameter p and initial state X(0) on the PTANN

and ET-PTANN models. As shown in Fig. 5, we observe

that as p and X(0) increase, the convergence time of both

ANN models also increases. Nevertheless, such an increase

is small and does not exceed the predefined upper bound of

convergence time Tu which is represented by the black straight

line in the figure.

To demonstrate the computational efficiency of the PTANN

and ET-PTANN models, we conducted further research with

the same parameter settings as in Fig. 2. The results of the
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Fig. 5. Convergence performance of PTANN and ET-PTANN models with
varying initial parameter and initial state.

TABLE IV
COMPUTATIONAL EFFICIENCY OF NEURAL NETWORK MODELS.

Model
Convergence

time
Computation

time
Iterations

Computation
counts of

evolution formula

SBPZNN 1.15 s 85.34 s 1736 1736

VPFTZNN 1 s 134.64 s 2096 2096

NSVPZNN 0.51 s 167.49 s 3368 3368

PTANN 0.31 s 53.20 s 1094 1094

ET-PTANN 0.33 s 37.48 s 740 501

research are presented in Table IV. The computation time

of the neural network models is proportional to the number

of iterations of ode45. Compared with the SBPZNN model

with time-invariant parameters, the VPFTZNN and NSVPZNN

models exhibit shorter convergence time, but the number of

iterations also increases accordingly. However, both the ET-

PTANN and PTANN models have shorter convergence time

and computation time, that is, they achieve improvements

in both convergence rate and computational efficiency. Their

Copyright © 2024 Institute of Electrical and Electronics Engineers (IEEE). Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or 
future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any 
copyrighted component of this work in other works by sending a request to pubs-permissions@ieee.org. See https://journals.ieeeauthorcenter.ieee.org/become-an-ieee-journal-author/publishing-
ethics/guidelines-and-policies/post-publication-policies/ for more information

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: 
DOI10.1109/TNNLS.2024.3354936, 



IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 9

36.48

66.17

28.47
21.10

6.74

48.86

68.47

139.02

32.10 30.74

85.34

134.64

167.49

53.20

37.48

0

50

100

150

200

T (s)
[0, Tc]
[Tc, 2]
[0, 2]

SBPZNN VPFTZNN NSVPZNN PTANN ET-PTANN

(a) computation time

31.72

66.17

55.82

68.04

21.06

57.48

68.47

93.30

18.99 18.29

0

20

40

60

80

100

T (s)
Tcct

Tsct

SBPZNN VPFTZNN NSVPZNN PTANN ET-PTANN

(b) average computation time

Fig. 6. Computation time and average computation time of neural network
models at different phases.

computation time are significantly lower than those of other

neural network models, at 37.48 s and 53.20 s, respectively.

Comparing the number of iterations and the computation

counts of the evolution formula, we can observe that the

computation counts of the evolution formula for the ET-

PTANN model are lower. The event trigger reduces the com-

putation counts of the evolution formula by 239, accounting

for approximately 32.3% of the total iterations.

Next, we discuss the computation time of the neural network

models in different phases. In Fig. 6, the blue bar signifies

the computation time for the convergence phase, the red

bar indicates the computation time for the stable phase, and

the yellow bar represents computation time for the entire

operational phase. As shown in Fig. 6(a), the computation time

of the PTANN and ET-PTANN models is significantly lower

than that of other models, both in the convergence phase and

the stable phase. To account for the differences in convergence

time among the neural network models, we normalized the

computation time. The results are shown in Fig. 6(b). In the

stable phase, the traditional time-varying ZNN models, namely

the VPFTZNN and NSVPZNN models, exhibit larger average

computation time (Tsct) compared to the SBPZNN model with

time-invariant parameters. The proposed adaptive parameters

λdp(t) and λet(t) greatly reduce Tsct. Furthermore, the event

trigger reduces the average computation time (Tcct) of the ET-

PTANN model in the convergence phase.

To demonstrate the advantages of adaptive parameter λdp(t)
and activation function φdp(·), we compared the changing

trends of λ(t) and φ(·) from different models and obtained Fig.

7. Observing Fig. 7(a), it is evident that λdp(t) of the PTANN

model diminishes as time progresses, ultimately converging to

near 0 at 0.3 s. As depicted in Fig. 2(a), this is consistent with

the time for ‖E(t)‖F to converge to 0 for the PTANN model.

Conversely, the λ(t) of other models does not decrease over

time, and even λ(t) of the VPFTZNN increases over time.

By comparing Fig. 7(a) and Fig. 6(b), it can be observed that

the order of the average computation time (Tsct) of the stable

phase is consistent with their λ(t) order, thereby validating the

conclusion in Remark 1, that is, λ(t) is proportional to the

computational cost. Moreover, comparing Fig. 7(b) and Fig.

2(a), we notice that the sequence of convergence times for

the models aligns with the sequence of slopes of φ(·). This

further confirms that the slope of φ(·) is proportional to the

convergence rate, and the novel φdp(·) has more advantages

in convergence performance.
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Fig. 7. Activation function and convergence parameter of neural network
models.

VI. APPLICATION

In this section, we apply the PTANN and ET-PTANN mod-

els to mobile sound source localization, specifically using the

Time-Difference-of-Arrival (TDOA) algorithm. The TDOA

algorithm relies on measuring the time difference between the

arrival of a signal at receivers located at different positions

[40]. By utilizing this algorithm, we can establish an error

equation among the sound source and microphones. In the

context of sound source localization, the signal corresponds

to the sound wave, the receiver represents the microphone,

and the signal source corresponds to the sound source.

Taking 2D moving sound source as an example, we need to

define the coordinates of n microphones and the sound source:

N =

[

x1 x2 · · · xn

y1 y2 · · · yn

]

∈ R
2×n, l(t) =

[

x(t)
y(t)

]

∈ R
2,

(46)

where n > 4. Microphone positions are chosen at random and

do not change, while the source moves along the trajectory

over time. Based on the relationship between the source and

the microphones, we obtain

di(t) = vTi(t) =
√

(xi − x(t))2 + (yi − y(t))2, (47)

∆Ti(t) = Ti(t)− T1(t), (48)

v∆Ti(t) = vTi(t)− vT1(t) = di(t)− d1(t). (49)

Here, i ∈ {1, · · · , n}; di(t) represents the distance between

the sound source and the i-th microphone; v = 340 m/s is

the speed of sound; Ti(t) represents the time that the sound

arrives at the i-th microphone; ∆Ti(t) represents the time

difference of arrival between the i-th microphone and the 1-th

microphone.

Through a series of derivations [41], we obtain











z31(t) z32(t)
z41(t) z42(t)

...
...

zn1(t) zn2(t)











[

x(t)
y(t)

]

=











−s3(t)
−s4(t)

...

−sn(t)











, (50)
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Fig. 8. Sound source localization trajectories and coordinate errors for PTANN, ET-PTANN and VPFTZNN models.
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Fig. 9. Computation time of different phases of neural network models in
sound source localization.

where

zi1(t) =
2(xi − x1)

v∆Ti(t)
− 2(x2 − x1)

v∆T2(t)
,

zi2(t) =
2(yi − y1)

v∆Ti(t)
− 2(y2 − y1)

v∆T2(t)
,

si(t) =v(∆Ti(t)−∆T2(t)) +
x2
1 + y21 − x2

i − y2i
v∆Ti(t)

− x2
1 + y21 − x2

2 − y22
v∆T2(t)

, ∀i ∈ {3, · · · , n}.

(51)

For convenience, (50) is rewritten as

l(t) = Z†(t)s(t), (52)

where Z(t) = [z31(t), z32(t); · · · ; zn1(t), zn2(t)], l(t) =
[x(t), y(t)]T, and s(t) = [−s3(t),−s4(t), · · · ,−sn(t)]

T.

As shown in (50), Z(t) and s(t) are known, and we can

obtain the position of the sound source by calculating Z†(t).
Since rank(Z(t)) = 2 is full rank, we can have the following

model:










M(t)Ẋ(t) =− λ(t)Φ
(

M(t)X(t)− ZT(t)
)

− Ṁ(t)X(t) + ŻT(t),

l(t) =X(t)s(t),

(53)

where M(t) = ZT(t)Z(t). By substituting specific activation

function and parameters, we obtain the neural network model.

For comparison purposes, we have established the PTANN,

ET-PTANN, and VPFTZNN models. The number of micro-

phones is 4, the initial state l(0) = [6,−2]T, k1 = 2, k2 = 2,

k3 = 0.5, λ = 1, p = 5/13, h = 5, ̟ = 13, T = 0.5. The

figures below displays the results.

Fig. 8 displays the sound source localization trajectories and

coordinate errors of the PTANN, ET-PTANN, and VPFTZNN

models. Comparing the trajectories in Figs. 8(a), 8(b), and

8(c), we observe that the PTANN and ET-PTANN models

align with the actual moving sound source trajectory earlier.

Examining the coordinate errors in Fig. 8(d), 8(e), and 8(f),

we find that the PTANN and ET-PTANN models demonstrate

faster convergence rates.

Fig. 9 illustrates the computation time of the neural network

models at different phases of sound source localization. In the

time interval of [0, 2π] s, the neural network models exhibit

the following order of computation time from high to low:

VPFTZNN, PTANN, and ET-PTANN. During the convergence

phase, the VPFTZNN model has the lowest computation

time, at 31.49 s, but its computation time during the stable

phase increases to 2237.11 s. In contrast, the PTANN and

ET-PTANN models have computation time of 272.04 s and

236.49 s, respectively, during the stable phase, resulting in

lower overall computation time. The introduction of the event-

triggered mechanism significantly reduces the computation

cost of the ET-PTANN model during the convergence phase.

In conclusion, the application of the PTANN and ET-

PTANN models to mobile sound source localization demon-

strates their practicality and efficiency in real-world scenarios.

VII. CONCLUSION

In this paper, the PTANN and ET-PTANN models have

been proposed to efficiently compute time-varying tensor MP

inverse. The PTANN model has a novel adaptive parameter
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and activation function, while the ET-PTANN model combines

the evolution formula with event trigger. Theoretical analysis

has confirmed the predefined-time convergence of both models

and highlighted their improved computational efficiency. Sim-

ulation example and practical application have demonstrated

the superior convergence rate and efficiency of the PTANN

and ET-PTANN models. Future research will focus on further

enhancing the computational efficiency of ANN models and

exploring their applications in real-world scenarios.
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[7] H. Ma, N. Li, P. S. Stanimirović, and V. N. Katsikis, “Perturbation theory

for Moore–Penrose inverse of tensor via Einstein product,” Comput.

Appl. Math., vol. 38, pp. 1–24, 2019.
[8] V. Y. Pan, F. Soleymani, and L. Zhao, “An efficient computation of

generalized inverse of a matrix,” Appl. Math. Comput., vol. 316, pp.
89–101, 2018.
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