
A Preliminary Analysis of Software Metrics in Decentralised
Applications

G. Ibba1,3, S. Khullar3, E. Tesfai3, R. Neykova3, S. Aufiero2, M. Ortu1, S. Bartolucci2, G. Destefanis3
1University of Cagliari, Italy

2University College London, UK
3Brunel University London, UK

{giacomo.ibba,marco.ortu}@unica.it
{sabrina.aufiero.22,s.bartolucci}@ucl.ac.uk

{shivank.khullar,elaina.tesfai,rumyana.neykova,giuseppe.destefanis}@brunel.ac.uk

ABSTRACT
This study examines software metrics in decentralized applications
(dApps) to analyze their structural and behavioral characteristics as
they grow in complexity. Sixty dApps were categorized into Small
(3 to 29 contracts), Medium (30 to 46 contracts), and Large (47 to
206 contracts) based on their contract count. Initial analysis showed
a non-normal data distribution, leading to the use of Spearman’s
correlation method. Findings revealed that Medium dApps have
strong correlations between metrics like ‘Average Local Variables’
and ‘Maximum Local Variables’, while Large dApps show higher
correlations between ‘Number of Functions’ and ‘State Variable
Count’, indicating more complex contract structures. The higher
Coupling Between Objects (CBO) in large dApps suggests increased
interactions with other contracts or libraries, potentially elevating
security risks. These insights are valuable for developers and stake-
holders in the blockchain and IoT sectors, aiding in understanding
how dApps evolve with increasing complexity and the implications
on software metric relationships.

CCS CONCEPTS
• Do Not Use This Code → Generate the Correct Terms for
Your Paper; Generate the Correct Terms for Your Paper ; Generate
the Correct Terms for Your Paper; Generate the Correct Terms for
Your Paper.

KEYWORDS
Do, Not, Us, This, Code, Put, the, Correct, Terms, for, Your, Paper

ACM Reference Format:
G. Ibba1,3, S. Khullar3, E. Tesfai3, R. Neykova3, S. Aufiero2, M. Ortu1, S.
Bartolucci2, G. Destefanis3. 2023. A Preliminary Analysis of Software Met-
rics in Decentralised Applications. In Proceedings of the Fifth ACM
International Workshop on Blockchain-enabled Networked Sensor Systems
(BlockSys '23). ACM, New York, NY, USA, 7 pages. https://
doi.org/10.1145/3628354.3629533

This work is licensed under a Creative Commons Attribution International 4.0
License.
BlockSys '23, November 12, 2023, Istanbul, Turkiye
© 2023 Copyright is held by the owner/author(s).
ACM ISBN 978-8-4007-0439-0/23/11.
https://doi.org/10.1145/3628354.3629533.

1 INTRODUCTION
Blockchain technology introduces new possibilities for improving
trust and privacy in networked sensor systems across different
areas. Decentralised applications (dApps) play a key role in this,
providing a solid platform for developing solutions that effectively
manage sensor data while ensuring data protection and incentivized
sharing. At the core of dApps are smart contracts—self-executing
contracts with the terms directly written into code, enabling au-
tomated transactions on the blockchain. The growing number of
dApps, especially within the Internet of Things (IoT) and smart
city domains, emphasizes the importance of understanding their
software metrics to improve development, ensure security, and
enhance performance.

This study provides an initial analysis of the software metrics of
dApps, aiming to explore how these metrics vary with the size and
complexity of the dApps. By categorizing 60 dApps (selected from
the DAppScan repository1) [12] into three distinct groups based on
their contract count—Small, Medium, and Large, we aim to analyze
the distribution and correlation of software metrics at both contract
and function levels. Our analysis examines whether and how the
distributions of these metrics, and the correlations among them,
change with the dApp size. This preliminary analysis contributes
to the understanding around dApps’ structure and behavior, setting
the stage for more in-depth future studies.

2 RELATEDWORK
Several studies have previously explored software metrics within
traditional applications to understand their structure and behavior
better[4, 5]. Focusing on object-oriented (OO) software, one of the
pioneering efforts to address this concern is credited to Chidamber
and Kemerer (CK), who proposed the widely recognized CK metrics
suite for OO software systems [1]. Numerous empirical studies
have since underscored significant correlations between certain CK
metrics and bug-proneness [3, 7, 10]. Metrics defined on software
graphs have also been explored, with findings correlating them
to software quality [13]. Transitioning to the blockchain domain,
in a recent work, Ibba et al. [8] developed a tool for employing
complex Networks Analysis on dApps[2], in order to help with the
identification of vulnerability and code optimisation.

Ortu et al. [9] compared Blockchain-Oriented Software (BOS) and
traditional software using 10 metrics, finding significant differences

1https://github.com/InPlusLab/DAppSCAN/tree/main

27

https://doi.org/XXXXXXX.XXXXXXX
https://doi.org/XXXXXXX.XXXXXXX
https://doi.org/XXXXXXX.XXXXXXX
https://github.com/InPlusLab/DAppSCAN/tree/main
https://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3628354.3629533&domain=pdf&date_stamp=2024-01-02

Conference’17, July 2017, Washington, DC, USA G. Ibba1,3 , S. Khullar3 , E. Tesfai3 , R. Neykova3 , S. Aufiero2 , M. Ortu1 , S. Bartolucci2 , G. Destefanis3

in the distribution of Average Cyclomatic and Ratio Comment To
Code metrics, and the Number of Statements metric.

Tonelli et al. [11] analyzed 85,000 Smart Contracts on the Ethereum
blockchain to understand how their constraints are reflected in spe-
cific software metrics compared to traditional software. Findings
showed that while Smart Contracts exhibit more restricted metric
ranges, their lines of code follow a log-normal distribution akin to
traditional software, hinting at some shared characteristics despite
the unique constraints of blockchain environments.

Our study extends the investigation to decentralized applications
on the Ethereum blockchain, categorizing them based on their con-
tract count to explore the distribution and correlation of software
metrics across different complexity levels. This analysis not only
sheds light on how dApp size and complexity interact with vari-
ous software metrics but also sets a foundation for future in-depth
studies aimed at understanding dApps’ evolution and potential
optimization strategies.

3 METHODOLOGY
The metrics for this analysis were collected through a combination
of our in-house analysis tools and Slither[6], a well-known static
analysis framework for smart contracts. In analyzing the software
metrics of decentralized applications (dApps), it is fundamental to
select an appropriate method that accurately reflects the underlying
relationships among the metrics. An initial assessment of the data
revealed a non-normal distribution, which is a common occurrence
in real-world data, especially in a relatively new and rapidly evolv-
ing domain like blockchain. Traditional correlation methods such
as Pearson’s correlation assume a linear relationship and a normal
distribution of data, which could lead to misleading conclusions in
our case.

Spearman’s correlation, on the other hand, does not make any
assumptions about the distribution of the data and measures the
strength and direction of the monotonic relationship between vari-
ables. It evaluates the rank-order relationship between two vari-
ables, making it a more robust choice for this analysis. This method
is well-suited for our dataset, allowing for a more accurate explo-
ration of correlations between software metrics across different
sizes and complexities of dApps.

We proceeded to categorize the dApps into distinct groups based
on their structural complexity, as represented by the number of
contracts they contain. This categorization is fundamental to our
analysis as it provides a systematic approach to understanding how
the structural and behavioral characteristics of dApps vary with
size and complexity, laying a solid foundation for the subsequent
analysis.

The categorization of dApps into Small, Medium, and Large
groups based on the number of contracts they contain is a practical
approach derived from the characteristics of our dataset. The spe-
cific ranges (3 to 29, 30 to 46, 47 to 206) for these categories were
selected to create a balanced division that allows for meaningful
comparison and analysis across groups. However, this division is
arbitrary and represents a significant limitation of the study. It is
dictated by the distribution and the nature of the dApps available in
our dataset rather than a universally accepted standard. This catego-
rization helped in understanding the variation in software metrics

among dApps of different sizes and complexities in the context of
our dataset, though the defined ranges may not hold or be relevant
for a different dataset or in a broader context. Future studies may
benefit from a more standardized or universally accepted method
of categorization, or by exploring alternative methods that might
provide a more nuanced understanding of dApp complexity and
size.

We categorized these applications based on their structural com-
plexity, specifically focusing on the number of contracts they con-
tain. This approach allows us to capture the nuanced differences in
DApps, which can range from simple prototypes to highly complex
ecosystems.

• Small DApps: This category includes DApps with a number
of contracts ranging from 3 to 29. They are often simpler,
either being in the prototype stage or targeting very specific
use-cases. For example, the DApp "Async" has just one file,
three contracts, and eight functions.

• Medium DApps: DApps falling into this category have a
number of contracts ranging from 30 to 46. These DApps are
more complex than those categorized as "Small" but not as
intricate as the "Large" DApps. They often address broader
use-cases and incorporate more complex functionalities. An
example would be "AliumSwap" with 24 files, 30 contracts,
and 240 functions.

• Large DApps: These are highly complex DApps that con-
tain a number of contracts ranging from 47 to 206. They
often serve diverse functions and may be part of a larger
blockchain ecosystem. For instance, "Loopring" has 200 files,
206 contracts, and 1591 functions.

The primary metric driving this categorization is the Number of
Contracts. It offers a quantitative measure of a DApp’s complexity
and potentially its functional diversity. By organizing the DApps
according to these categories, this study aims for a systematic and
structured approach to understanding how size and complexity
relate to other structural and security metrics. This approach helps
identify specific trends or patterns that may be unique to DApps of
certain sizes, thereby adding depth and granularity to the study’s
findings.

Figure 1: Boxplots - number of contract and functions

Figure 1 presents the box plots showing the distributions of
the number of contracts and functions for each category (Small,
Medium, Large):

The first plot shows the distribution of the number of contracts.
The second plot shows the distribution of the number of functions.
In both plots, the central line in each box indicates the median of the

28

A Preliminary Analysis of Software Metrics in Decentralised Applications Conference’17, July 2017, Washington, DC, USA

data, while the top and bottom edges of the box show the interquar-
tile range. The "whiskers" extend to 1.5 times the interquartile range,
and any data points beyond that are considered outliers.

Before studying contract and function level metrics, it is funda-
mental to understand the distribution type for each metric.

Figure 2: Contract Metrics for Small DApp

Figure 3: Contract Metrics for Medium DApp

Figure 4: Contract Metrics for Large DApp

To assess the distribution type, histograms were plotted for each
metric, both at the contract and function levels. These histograms
were generated separately for Small (Fig. 2), Medium (Fig. 3), and

Large dApps (Fig. 4) to observe any category-specific trends. Kernel
density estimates were also plotted to provide a smooth, continuous
representation of the data distribution. The histograms revealed
that most metrics, irrespective of dApp category, exhibited a right-
skewed distribution. Based on this observation, non-parametric
correlation measures like Spearman’s were selected for the subse-
quent correlation analysis.

To prepare for correlation analysis, the normality of metric dis-
tributions was assessed using both Shapiro-Wilk and Kolmogorov-
Smirnov tests, confirming the non-normal nature of the data. This
led to the selection of non-parametric correlation methods, namely
Kendall’s and Spearman’s, to analyze the relationships between dif-
ferent metrics. The findings from these correlation analyses offered
insights into the interplay between various contract and function
attributes, providing a nuanced understanding of dApp characteris-
tics across different sizes and complexities.

Table 1: Summary of Small Dapps

Dapp_Name Num_Files Num_Contracts Num_Functions

Async 1 3 8
Gifto 6 3 55
Polymath 6 6 35
BitcoinSB_V2 3 7 81
CGU 8 8 84
Codex_Altash 3 9 84
Holdefi 7 14 157
1inch 8 15 84
StackerVC 9 17 203
NZ-Beam 4 18 222
PikaPerpv2 8 20 176
XSwap 16 22 188
Saddle 12 22 259
GHST 22 22 143
Donut 15 23 167
ImpossibleSwap 23 26 322
Dodo 26 26 314
BackstopSyndicate 15 28 299
BCUBE 9 29 448
Crodex 18 29 249
FarmHero 6 29 336
Avatar 17 29 336

4 RESULTS
The following contract-related metrics were considered for this
analysis:

• Inheritance Depth: Measures how many layers of inheri-
tance a contract has. A higher depth could indicate a more
complex contract structure. Most Small and Medium dApps
tend to have a lower inheritance depth compared to Large
dApps, which often employ multiple layers of inheritance
for added functionality and modularity.

• CBO (Coupling Between Objects): Indicates the number
of other contracts or libraries that a contract interacts with.
Higher couplingmay lead to increased complexity and poten-
tial risks. The Coupling Between Objects (Contracts in our

29

Conference’17, July 2017, Washington, DC, USA G. Ibba1,3 , S. Khullar3 , E. Tesfai3 , R. Neykova3 , S. Aufiero2 , M. Ortu1 , S. Bartolucci2 , G. Destefanis3

Table 2: Summary of Medium Dapps

Dapp_Name Num_Files Num_Contracts Num_Functions

AliumSwap 24 30 240
SushiSwap 20 31 322
IronLend 26 31 733
Polynetwork 31 32 385
IDLEGovernance 26 33 387
GoodGhosting 26 34 388
Coordinape 14 35 416
IDLEFinance 23 35 478
Gods_Unchained 25 36 574
MeritCircle 13 36 672
Axie_Infinity 25 36 574
TokenCard 24 38 557
ShibaNova 29 38 469
UMA 32 39 310
LuckyChip 27 43 633
Qubit 35 45 754
OriginDollar 30 46 405
COGI 8 46 556

Table 3: Summary of Large Dapps

Dapp_Name Num_Files Num_Contracts Num_Functions

MarbleCards 25 47 488
Amplify 42 49 815
DarkCrypto 39 49 776
DForce 42 54 746
Tanchessv 37 56 665
POA-DPOS 42 56 1124
MetaVaultV2 43 57 609
NaosFormation 49 61 739
AAVE3 59 62 516
ICHI 55 65 986
GammaProtocol 67 69 625
88mph 50 74 765
Atlantis 49 76 647
DSG 51 85 1157
CREAMFinanceFlashloan 71 130 4744
Rikkei 76 135 3444
Compound 85 140 4567
CREAMFinanceCompound 78 144 5544
Venus 89 150 3949
Loopring 200 206 1591

case) is generally higher in Large dApps, suggesting more in-
teractions with other contracts or libraries. Small dApps tend
to have lower coupling, indicating simpler architectures.

• State Variable Count: Represents the number of state vari-
ables in a contract. A higher count could lead to more com-
plex contract interactions. Large dApps generally employ
more state variables, likely to manage more complex states
and operations. Small andMedium dApps usually have fewer
state variables, reflecting simpler logic and state manage-
ment.

• Avg Local Variables: The average number of local variables
used across all functions in a contract. This can be an indica-
tor of how much temporary storage a contract uses. Across
all categories, the average number of local variables tends
to be moderate, indicating a balance in the use of temporary
storage for function computations.

• Max Local Variables: The maximum number of local vari-
ables used in any single function within a contract. The met-
rics show occasional spikes in the number of maximum local
variables in functions, especially in Large dApps, suggesting
some functions may be doing more complex computations.

• No. of Functions: The total number of functions in a con-
tract. This metric gives an idea of the contract’s functionality
and complexity. Observations Large dApps clearly have a
higher number of functions, providing more services or fea-
tures. Small dApps, in contrast, are simpler and offer fewer
functionalities.

4.1 Function level metrics
The following discuss the Analysis of Function-LevelMetrics Across
Dapp Categories to further investigate the complexities of decentral-
ized applications (dApps), the study also focuses on function-level
metrics across Small, Medium, and Large dApps. These metrics
offer a granular look into how individual functions within smart
contracts are designed and implemented.

The function-level metrics analyzed are:

• No. of Parameters: Indicates the number of parameters a
function takes. A higher number could make the function
more complex and harder to use. Functions in Small dApps
tend to have fewer parameters, implying simpler interfaces.
In contrast, Medium and Large dApps often have functions
with more parameters, allowing for more complex interac-
tions.

• Nesting Depth: Represents the depth of nested loops and
conditionals within a function. Deeper nesting can make a
function harder to understand and maintain. Higher nesting
depths are more frequently observed in Large and Medium
dApps, suggesting more intricate logic and conditions. Small
dApps generally have functions with lower nesting depths.

• Function Calls: Counts the number of times a function calls
other functions. Frequent calls can lead to intricate function
behaviors and interactions. Functions in Large dApps usu-
ally make more calls to other functions, indicating a higher
degree of modularity and potential complexity. This is less
common in Small and Medium dApps.

• Cyclomatic Complexity: Measures the number of linearly
independent paths through a function’s source code. Higher
values denote more complex functions. This metric tends to
be higher in functions belonging to Large dApps, pointing
to more complicated control flow. Functions in Small and
Medium dApps usually have lower cyclomatic complexity,
implying simpler logic.

• Local Variable Count: Indicates the number of local vari-
ables within a function. A higher count could imply more
complex computations and logic within the function. Large
dApps typically have functions with more local variables,
likely due to more complex calculations or data manipula-
tions. The count is generally lower in Small and Medium
dApps.

30

A Preliminary Analysis of Software Metrics in Decentralised Applications Conference’17, July 2017, Washington, DC, USA

4.2 Evaluating the Metrics Distribution
Before proceeding with the correlation analysis of contract and
function-level metrics across different categories of decentralized
applications, it is crucial to understand the distribution type for
each metric. This initial step is important as the type of distribution
can significantly influence the choice of correlation measure used.
For instance, Pearson’s correlation is most effective when the data is
normally distributed, but may produce misleading results if the data
is skewed or contains outliers. On the other hand, non-parametric
measures like Spearman’s and Kendall’s correlation are more robust
against such irregularities.

The Shapiro-Wilk test, a widely-accepted statistical test for nor-
mality, was employed on each of the contract and function-level
metrics, segregated by the dApp categories: Small, Medium, and
Large. The test outputs a p-value, where a value less than 0.05 typi-
cally suggests that the data does not follow a normal distribution.
The p-values for all metrics across all categories were significantly
less than 0.05, with function-level metrics even yielding a p-value
of zero. These findings indicate that the metric distributions are
not normal, thereby making a compelling case for the use of non-
parametric correlation measures like Spearman’s or Kendall’s for
the analysis.

As an additional layer of robustness to the normality assessment,
the Kolmogorov-Smirnov (KS) test was executed on each of the
contract and function-level metrics, categorized by the size of the
dApps: Small, Medium, and Large. The KS test compares the empir-
ical distribution function of the sample data with the cumulative
distribution function of a specified theoretical distribution—in this
case, the normal distribution. The p-values obtained for all metrics
across each category were essentially zero, thereby rejecting the
null hypothesis of normal distribution conclusively. These findings
corroborate the results from the earlier Shapiro-Wilk test, reinforc-
ing the decision to employ non-parametric correlation measures
for the subsequent correlation analysis.

4.3 Spearman’s Correlations
In examining the Spearman’s Correlation matrices for contract met-
rics across small (Fig. 5), medium (Fig. 6), and large Dapps (Fig. 7),
certain patterns emerge. For small Dapps, there are notable strong
correlations between ’Inheritance Depth’, ’State Variable Count’,
and ’Number of Functions’ with values greater than 0.7. In contrast,
medium Dapps display slightly diversified strong correlations, be-
tween ’Inheritance Depth’ and ’State Variable Count’ approaching
0.8, with ’Number of Functions’ also being significantly related
to these metrics. However, large Dapps exhibit a dilution in the
strength of these correlations, with the strongest link being be-
tween ’State Variable Count’ and ’Inheritance Depth’ at around
0.78. It’s interesting to note that as the Dapps grow in complexity
(from small to large), the correlations between ’Avg Local Variables’
and other metrics become more dispersed, suggesting that larger
Dapps might have a broader variance in their contract structures.
This comparative analysis provides an insight into how contract
interactions and structures evolve with the size and complexity of
Dapps.

In the evaluation of Spearman’s correlation among function
metrics within decentralized applications (dApps) of varying sizes,

Figure 5: Correlation Metrics for Small DApp

Figure 6: Correlation Metrics for Medium DApp

Figure 7: Correlation Metrics for Large DApp

distinct patterns emerge. For small dApps, there’s a strong positive
correlation between the number of parameters and the local variable
count (0.83), suggesting that as functions increase their parameter
count, they also tend to have more local variables. Medium-sized
dApps show a similar trend, albeit slightly weaker (0.85). In large
dApps, this correlation remains significant but decreases to 0.81.
Interestingly, cyclomatic complexity exhibits a negative correla-
tion with function calls for all dApp sizes: -0.38 for small, -0.39
for medium, and -0.42 for large. This result should be investigated

31

Conference’17, July 2017, Washington, DC, USA G. Ibba1,3 , S. Khullar3 , E. Tesfai3 , R. Neykova3 , S. Aufiero2 , M. Ortu1 , S. Bartolucci2 , G. Destefanis3

further. A negative correlation between cyclomatic complexity and
function calls might initially seem counterintuitive because one
might expect more complex functions to have more function calls.
However, this negative correlation could be related to decompo-
sition, e.g., developers may be breaking down complex logic into
smaller, more manageable functions. This would mean fewer func-
tion calls within each complex function, as the logic is spread out.
Higher cyclomatic complexity often involves more branching (if,
else, switch, etc.). It is possible that in more complex functions, the
logic is handled through conditional structures rather than function
calls. It may reflect a particular design philosophy or best practice
that advises against making multiple function calls within complex
functions to make the code easier to understand and maintain.

It is also noteworthy that the correlation between the number of
parameters and function calls is fairly consistent across dApp sizes,
ranging from 0.22 to 0.24. Overall, these findings provide insights
into the evolution of function design patterns as dApps scale.

The findings from our analysis carry implications for the devel-
opment, security, and performance optimization of decentralized
applications (dApps).

• Development Complexity: Our analysis reveals a clear cor-
relation between the size of dApps and certain software
metrics, which reflects an increase in development complex-
ity as dApps scale. Understanding these correlations can
help developers anticipate the challenges they may face as
their dApps grow, enabling better planning and resource
allocation.

• Security Considerations: The higher Coupling Between Ob-
jects (CBO) in large dApps suggests more interactions with
other contracts or libraries, which could potentially intro-
duce security risks. Moreover, the increased inheritance
depth in larger dApps might also lead to a more complex
contract structure, requiring more rigorous security auditing
and testing to ensure robustness against potential threats.

• Performance Optimization: The analysis of function-level
metrics provides insights into how individual functionswithin
smart contracts are designed and implemented across dif-
ferent dApp sizes. The correlation between the number of
parameters and the local variable count, for instance, could
have implications for the performance and gas costs in Ethereum-
based dApps. Understanding these patterns can help develop-
ers optimize their code to ensure efficient resource utilization,
especially in larger dApps with more complex structures.

• Modular Design: The higher frequency of function calls in
large dApps indicates a higher degree of modularity, which is
essential for managing complexity in software development.
This modularity might aid in isolating issues, enhancing
maintainability, and promoting reusable code.

The analysis undertaken in this study aligns with an exploratory
approach, aimed at uncovering initial insights and trends con-
cerning the software metrics of decentralized applications (dApps)
across varying sizes and complexities.

5 THREATS TO VALIDITY
The validity of this study is subject to several threats that need
acknowledgment. The sample size of 60 dApps selected from the

DAppScan repository is not representative of the broader spectrum
of dApps, potentially introducing a selection bias if the repository
lacks diversity or has a specific focus. The categorization of dApps
into Small, Medium, and Large based on the number of contracts is
somewhat arbitrary and derived from the dataset on hand. This cat-
egorization may not capture the true essence of complexity and size,
thereby potentially oversimplifying the heterogeneity of dApps.
The choice of metrics for analysis, although based on software
engineering principles, may not encompass all relevant aspects
of dApp complexity and functionality, and there might be other
metrics not considered that could provide additional or alterna-
tive insights. The data exhibited a non-normal distribution, which
led to the use of non-parametric correlation measures like Spear-
man’s correlation. While these measures are robust against certain
irregularities, they may not capture all relationships or nuances
present in the data. The findings, may have limited generalisability
beyond the specific set of dApps analyzed, and the rapid evolution
of blockchain technology and dApp development practices may
impact the relevance and applicability of the findings over time. As
an exploratory study, the analysis aims to present initial insights
and trends rather than confirm predefined hypotheses. The find-
ings should be interpreted as preliminary, necessitating further
confirmatory analyses to establish stronger causal or correlational
relationships. Lastly, the accuracy and precision of the tools and
methods used to collect and analyze the metrics can also pose a
threat to validity. Any inconsistencies or errors in measurement
could potentially affect the reliability and reproducibility of the
findings. Through acknowledging these threats to validity, we aim
to provide a transparent account of the limitations inherent in our
study and lay the groundwork for further research that can build
upon, validate, or refine the preliminary results presented.

6 CONCLUSIONS
This preliminary study analysed software metrics of dApps on the
Ethereum blockchain, categorizing them into Small, Medium, and
Large based on contract count. The analysis showed that as dApps
scale, certain metrics such as Inheritance Depth and Coupling Be-
tween Objects (CBO) increase, indicating more complex contract
structures and interactions with other contracts or libraries. Larger
dApps not only have more contracts but also more complex con-
tracts, which could potentially introduce security risks.

On the function level, a consistent relationship was found be-
tween the number of parameters and local variable count across all
dApp sizes. Additionally, a negative correlation between cyclomatic
complexity and function calls was observed, suggesting a possible
trend of decomposing complex logic into smaller, more manageable
functions in larger dApps.

These findings are important for developers and stakeholders
in the blockchain and IoT sectors as they provide a clearer under-
standing of how dApps evolve with increasing complexity. This
information can be valuable for better planning, security auditing,
and performance optimization in dApp development. The results
also provide a basis for more in-depth future studies on software
metrics in decentralized applications.

32

A Preliminary Analysis of Software Metrics in Decentralised Applications Conference’17, July 2017, Washington, DC, USA

7 ACKNOWLEDGMENT
S.B., G.D., R.N. and M.O. acknowledge support from the Ethereum
foundation grant FY23-1048

REFERENCES
[1] 1994. A metrics suite for object oriented design. IEEE Transactions on software

engineering, 20, 6, 476–493.
[2] SabrinaAufiero, Giacomo Ibba, Silvia Bartolucci, GiuseppeDestefanis, Rumyana

Neykova, and Marco Ortu. 2023. The network structure of smart contracts in
ethereum dapps. Complex Networks 2023 (to appear).

[3] Victor R Basili, Lionel C. Briand, and Walcélio L Melo. 1996. A validation
of object-oriented design metrics as quality indicators. IEEE Transactions on
software engineering, 22, 10, 751–761.

[4] Giulio Concas, GiuseppeDestefanis,MicheleMarchesi, MarcoOrtu, and Roberto
Tonelli. 2013. Micro patterns in agile software. In Agile Processes in Software
Engineering and Extreme Programming: 14th International Conference, XP 2013,
Vienna, Austria, June 3-7, 2013. Proceedings 14. Springer, 210–222.

[5] Giuseppe Destefanis, Marco Ortu, Simone Porru, Stephen Swift, and Michele
Marchesi. 2016. A statistical comparison of java and python software metric
properties. In Proceedings of the 7th International Workshop on Emerging Trends
in Software Metrics, 22–28.

[6] Josselin Feist, Gustavo Grieco, and Alex Groce. 2019. Slither: a static analysis
framework for smart contracts. In 2019 IEEE/ACM 2nd International Workshop

on Emerging Trends in Software Engineering for Blockchain (WETSEB). IEEE,
8–15.

[7] Tibor Gyimóthy, Rudolf Ferenc, and Istvan Siket. 2005. Empirical validation
of object-oriented metrics on open source software for fault prediction. IEEE
Transactions on Software engineering, 31, 10, 897–910.

[8] Giacomo Ibba, Sabrina Aufiero, Silvia Bartolucci, Rumyana Neykova, Marco
Ortu, Roberto Tonelli, and Giuseppe Destefanis. 2023. Mindthedapp: a toolchain
for complex network-driven structural analysis of ethereum-based decen-
tralised applications. arXiv preprint arXiv:2310.02408.

[9] Marco Ortu, Matteo Orrú, and Giuseppe Destefanis. 2019. On comparing soft-
ware quality metrics of traditional vs blockchain-oriented software: an empiri-
cal study. In 2019 IEEE International Workshop on Blockchain Oriented Software
Engineering (IWBOSE). IEEE, 32–37.

[10] Ramanath Subramanyam and Mayuram S. Krishnan. 2003. Empirical analysis
of ck metrics for object-oriented design complexity: implications for software
defects. IEEE Transactions on software engineering, 29, 4, 297–310.

[11] Roberto Tonelli, Giuseppe Antonio Pierro, Marco Ortu, and Giuseppe Deste-
fanis. 2023. Smart contracts software metrics: a first study. Plos one, 18, 4,
e0281043.

[12] Zibin Zheng, Jianzhong Su, Jiachi Chen, David Lo, Zhijie Zhong, and Mingxi Ye.
2023. Dappscan: building large-scale datasets for smart contract weaknesses in
dapp projects. arXiv preprint arXiv:2305.08456.

[13] Thomas Zimmermann and Nachiappan Nagappan. 2008. Predicting defects
using network analysis on dependency graphs. In Proceedings of the 30th inter-
national conference on Software engineering, 531–540.

33

	Abstract
	1 Introduction
	2 Related Work
	3 Methodology
	4 Results
	4.1 Function level metrics
	4.2 Evaluating the Metrics Distribution
	4.3 Spearman's Correlations

	5 Threats to validity
	6 Conclusions
	7 Acknowledgment

