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Abstract—This paper presents MindTheDApp, a toolchain

designed specifically for the structural analysis of Ethereum-

based Decentralized Applications (DApps), with a distinct focus

on a complex network-driven approach. Unlike existing tools, our

toolchain combines the power of ANTLR4 and Abstract Syntax

Tree (AST) traversal techniques to transform the architecture and

interactions within smart contracts into a specialized bipartite

graph. This enables advanced network analytics to highlight

operational efficiencies within the DApp’s architecture.

The bipartite graph generated by the proposed tool com-

prises two sets of nodes: one representing smart contracts,

interfaces, and libraries, and the other including functions,

events, and modifiers. Edges in the graph connect functions

to smart contracts they interact with, offering a granular view

of interdependencies and execution flow within the DApp. This

network-centric approach allows researchers and practitioners to

apply complex network theory in understanding the robustness,

adaptability, and intricacies of decentralized systems.

Our work contributes to the enhancement of security in

smart contracts by allowing the visualisation of the network,

and it provides a deep understanding of the architecture and

operational logic within DApps. Given the growing importance

of smart contracts in the blockchain ecosystem and the emerg-

ing application of complex network theory in technology, our

toolchain offers a timely contribution to both academic research

and practical applications in the field of blockchain technology.

Index Terms—Smart Contracts, DApps, Ethereum, Solidity,

Complex Networks

I. INTRODUCTION

Solidity is a high-level, statically-typed programming lan-
guage specifically designed for writing smart contracts on
the Ethereum blockchain platform. It incorporates elements
of existing languages such as JavaScript and Python, but is
tailored to the requirements of blockchain development. One
of its standout features is its contract-oriented design, which
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allows for clear and reusable code structures. This enables de-
velopers to create decentralised applications, complex financial
mechanisms, and even other blockchains. Its popularity and
widespread adoption make Solidity a central subject for study,
especially as smart contracts become increasingly integral
to blockchain ecosystems. The necessity to analyse Solidity
smart contracts is given by two critical aspects: security
and structural understanding of Decentralised Applications
(DApps). Security vulnerabilities in smart contracts can be
dangerous [7], given the immutable nature of blockchain.
Being able to parse and analyse the contracts opens the field
for identifying such vulnerabilities, allowing for timely reme-
diation. In addition to security, the study of Solidity contracts
provides a window into the architecture and operational logic
of DApps. These contracts contain the rules and functions that
dictate the behaviour of a DApp, making their analysis crucial
for understanding how these decentralised systems function.
Therefore, an efficient tool for parsing Solidity smart contracts
serves a dual purpose: enhancing security and enriching the
understanding of DApps. Complex networks theory [8] offer
a powerful lens through which to study and understand the
behaviour of systems. Complex networks, which could be
social, biological, or technological, are characterised by non-
trivial topological features that govern the interactions among
their individual components [18]. By studying the network
structure, researchers can gain valuable insights into emergent
system behaviours, such as robustness, adaptability, and effi-
ciency. In the context of blockchain systems, understanding
the network interactions within and among smart contracts
could provide new perspectives on system vulnerabilities and
operational efficiencies [29]. However, to the best of our
knowledge, there is limited research on the applicability of
complex network theory to the analysis of smart contracts.



Fig. 1: Toolchain resuming the bipartite graph’s creation process

This paper introduces MindTheDApp, a toolchain1 uniquely
designed for the structural analysis of Ethereum-based DApps,
emphasizing a complex network-driven approach. Unlike tra-
ditional tools that perform structural analysis, our tool uses
complex networks analysis techniques to offer an understand-
ing of smart contract interactions. The tool uses ANTLR4
[20] to traverse the Abstract Syntax Tree (AST) of Solid-
ity contracts. This information is then transformed into a
specialised bipartite graph, allowing for advanced network
analytics that can highlight potential bottlenecks or vulnerable
points within the DApp’s architecture. In this graph, one
set of nodes represents smart contracts, while the other set
represents functions. Edges connect functions to the contracts
they interact with, providing a comprehensive view of depen-
dencies and flows within the DApp. Our approach goes beyond
a simple bipartite structure by offering a detailed, context-
specific visualization, making it easier to understand how
various contracts and functions are interconnected [2]. The
graph produced by the tool is particularly suited for complex
network analysis, enabling researchers to study aspects such as
contract interdependencies, potential security vulnerabilities,
and execution flow within decentralised applications.

In addition to introducing MindTheDApp, this paper also
presents an initial dataset of decentralised applications. This
dataset spans various categories, including finance, art, gam-
ing, and technology, and serves as a resource for researchers
and practitioners. It offers a detailed look into the complex net-
works of smart contract interactions within DApps, providing
a foundation for future studies on DApp structures, network
topologies, and potential security concerns.

II. TOOLCHAIN OVERVIEW

Figure 1 illustrates the workflow of our proposed tool for
constructing a complex network-driven bipartite graph repre-

1Github Link to the tool

sentation of a decentralised application. The process begins by
tokenising the DApp’s smart contracts using the Lexer module.
This is followed by generating the Abstract Syntax Tree (AST)
representation of the source code through the Parser module.
Once the AST is constructed, the Analyzer module scans
and extracts key elements relevant to our complex network
analysis. These key elements include contracts, functions,
interfaces, events, modifiers, and libraries.

In the resulting bipartite graph, nodes represent two distinct
categories: the first category comprises functions, events, and
modifiers, while the second category includes smart contracts,
interfaces, and libraries. An edge exists between a node from
the first category and a node from the second category if
and only if the function, event, or modifier from the first
category calls the corresponding contract, interface, or library
in the second category. This includes External calls, which are
interactions that involve source code imported from external
sources. This structure enables a complex network-driven view
of how different components within a DApp interact.

In order to deliver a better understanding of the logic and
tool’s functionalities, we give an example of a Solidity contract
in Figure 2 (a). The code shows a Solidity contract named
Contract3, which imports and uses Contract1 and Contract2

. It implements a function func3 that calls functions func1 and
func2 from these imported contracts. In this setup, Contract3
is the source, and Contract1 and Contract2 are the targets.
The function func3 triggers the calls. Both Contract1 and
Contract2 have similar code structures and make calls to each
other and Contract3.

The dependency graph generated by the tool is shown in
Figure 2 (b). In this specific case, we have six nodes (the three
functions and the three contracts), and six edges highlighting
the contract calls from the specific functions.



1 // SPDX-License-Identifier: MIT

2 pragma solidity ˆ0.7.6;

3 import "./Contract1.sol";

4 import "./Contract2.sol";

5 contract Contract3 {

6 Contract1 contract1;

7 Contract2 contract2;

8
9 constructor (Contract1 _contract1,

10 Contract2 _contract2) {

11 contract1 = _contract1;

12 contract2 = _contract2;

13 }

14
15 function func3() public {

16 contract1.func1();

17 contract2.func2();

18 }

19 }

(a)

func1

func2

func3

Contract1

Contract2

Contract3

(b)

Fig. 2: Example of (a) a solidity contract and (b) the produced bipartite graph

III. METHODOLOGY AND TOOL ARCHITECTURE

Our tool employs ANTLR4 to perform several key tasks
in the smart contract analysis process. After receiving the
Solidity source code, ANTLR4’s lexer first tokenizes the input,
breaking it down into identifiable lexical units. These tokens
are then fed to ANTLR4’s parser, which organises them into
a hierarchical structure, resulting in an Abstract Syntax Tree
(AST). We traverse this AST using auto-generated tree walk-
ers, extracting relevant syntactical and semantical information
for further analysis. This process is key for producing a
bipartite graph that reflects contract and function dependencies
in the analysed smart contracts.

Internally, our tool follows a modular architecture compris-
ing several components (highlighted in Figure 3), each respon-
sible for specific tasks. Upon receiving a Solidity contract for
analysis, the Lexer and Parser modules tokenize the code. The
resulting AST is then passed to the Analysis module, where
features like function calls, contract dependencies, and control
flows are extracted. This data is represented as a bipartite graph
in the Graph module, which is then available for complex
network analysis.

The advantages of using ANTLR4 can be summarised as
threefold:

• Versatility and Performance: ANTLR4 can handle a wide
array of grammar types and employs the efficient LL(*)
parsing algorithm, enabling fast and accurate parsing of
various languages and formats.

• Error Handling and Management: ANTLR4 excels in
identifying and recovering from syntax errors, providing
robust error reporting and continuation capabilities.

• Extensibility and Integration: ANTLR4 supports grammar
inheritance and can generate parser code for multiple
programming languages. It also integrates with build
systems like Maven and Gradle, making it a highly
adaptable tool for diverse development environments.

Given our focus on building a bipartite graph that depicts
function and contract dependencies, the following Solidity
constructs are of particular interest to us:

• Function Definitions and Calls: These provide insight
into the interdependencies between different functions
within and across contracts.

• Modifiers: Used to change the behaviour of functions,
understanding modifiers helps in analysing the conditions
and requirements under which functions operate.

• Events: These are crucial for tracking changes and inter-
actions, offering a dynamic view of contract activities.

• Inheritance and Interfaces: These features help in un-
derstanding contract hierarchies, which is essential for
analysing dependencies.

IV. PARSING RULES FOR NETWORK EXTRACTION

The goal of the tool is to create a bipartite graph that
illustrates the interactions between functions and contracts,
central to Decentralised Applications. The objective is to
detect and showcase a function (within the source contract)
making a call to another contract (termed the target contract).
For this purpose, defining rules to identify valid calls becomes
essential. It is important to mention that the source code for
the Listener, Lexer, and Parser depends on the grammar used
during their creation.

The initial step is to define the kind of nodes in the bipartite
graph. In our study, nodes represent functions, contracts,
interfaces, and libraries. As a result, any call found in the
source code forms a relation (source,target).

For the generation of nodes, specific rules and criteria have
been set:

• Constructor Calls: The constructor initiates a new in-
stance of a contract. This means that a constructor is seen
as a call to the contract itself. For example, if there’s a
contract named ”Bank”, the constructor would produce a



Fig. 3: Toolchain of the ANTLR architecture

self-referencing node, the relation (Bank, Bank), with the
association being defined by the ’constructor’ keyword.

• Global Scope Calls: If a contract call is made outside
of specific structures like functions, modifiers, or events,
and exists within the broad scope of the contract, the link
formed from the Source contract to the Target contract is
labelled as ’Global’.

• Self-Reference Calls: The keyword ’this’ denotes the
contract itself. Every occurrence of ’this’ within a con-
tract is treated as a legitimate call to the contract. For
instance, within a ”Bank” contract, any ’this’ reference
would result in a relation (Bank, Bank). The specific
function where ’this’ appears defines the connection.

• Cast Operations: Casting operations to contracts, li-
braries, or interfaces are treated as valid calls. If there’s
a ”Bank” contract and within it, a cast operation to
”ERC20” is executed, the outcome would be a relation
(Bank, ERC20). The connecting link is determined by the
function where the cast occurs.

• Calls to Constructs: Calls made from one contract
to libraries, interfaces, or other contract structures (like
functions, events, or modifiers) are recognised as valid
calls. For example, a ”Bank” contract invoking a modifier
from another ”Vault” contract produces a valid call. This
interaction would generate a relation (Bank, Vault), with
the specific function in the ”Bank” contract that made the
call determining the link.

• External Source Calls: Calls to contracts, interfaces, or
libraries sourced from external platforms, such as GitHub,
are labelled as ’External’. So, if a ”Bank” contract inter-
acts with an ”ERC20” contract imported from GitHub,
the relationship would be represented as (Bank, External).

Following these rules ensures that the nodes are created ac-
curately and consistently, representing the interactions within
decentralised applications effectively.

A. Parser Definition and Top-Down AST Exploration

This section provides a brief overview of our approach
to traversing the Abstract Syntax Tree (AST) of a Solidity

smart contract, as shown in Figure 4. We employ a spe-
cialised listener classes generated from the Solidity grammar
2. ANTLR provides support for two tree-walking mechanisms
in its runtime library – parse-tree listeners and visitors. We
employ the former since (1) it offers a more efficient tree
traversal and (2) it is applicable to traversals that do not alter
the parse trees, as in our case. In a nutshell, a parse-tree
listener interface responds to events triggered by the built-in
tree walker. The methods in a listener class are callbacks. The
listeners receive notification of events like startTreeNode and
endTreeNode.

Key elements in the contractDefinition branch include
functions, state variables, events, and modifiers, among others.
The listener classes facilitate the traversal of these elements,
extracting relevant information that contributes to our complex
network-driven bipartite graph analysis.

For isntance, traversing the ifStatement branch of the AST
involves understanding the boolean conditions that guide the
code flow. Similarly, loops like forStatement and conditional
constructs like tryStatement offer unique challenges. These
constructs may include further branches that require recursive
exploration, as they could involve additional function calls or
contract interactions.

B. Assembly Code Analysis

In Solidity, assembly code allows developers to interact
more closely with the Ethereum Virtual Machine (EVM).
While Solidity provides a high-level interface for contract
creation, assembly code can be used for certain optimizations
or EVM-specific behaviors.

Analyzing assembly code within the Abstract Syntax Tree
(AST) is different from Solidity code. Figure ?? illustrates
the inlineAssemblyStatement branch in the AST, encapsu-
lating all statements in the Solidity assembly construct. These
statements can include identifiers, blocks, expressions, local
definitions, assignments, among others.

2https://github.com/solidityj/solidity-antlr4/blob/master/Solidity.g4



Fig. 4: Abstract Syntax Tree example of a smart contract

Assembly code has a simpler structure than Solidity, making
its analysis more straightforward. For instance, all assembly
statements can be examined using just assemblyExpression,
assemblyLocalDefinition, and assemblyAssignment, which
cover variable definitions, assignments, and expressions like
function calls.

V. CONTRACT CALLS (GRAPH NODES) EXTRACTION

This section explains how to extract contract calls from a
smart contract’s source code. Our primary focus is on iden-
tifying all constructors and instances of the this keyword to
capture self-referential contract calls. Detecting calls to other
contracts dispersed throughout the code poses a challenge.
These calls can appear within functions, modifiers, events,
and custom errors. However, we opt to exclude calls within
embedded assembly code due to their rare occurrence and
minimal impact on our study.

In our examination of Events and Modifiers, we aim to
find contract calls, uses of functions from other contracts,
contract objects, references to this, and typecasting operations
targeting contracts, interfaces, or libraries. Contract calls can
also occur within boolean conditions of control structures like
if,for, while, and do-while statements.

We conduct a systematic examination of all software con-
structs, covering various types of expressions like variable
declarations and assignments. Sometimes, certain constructs
might not be present in the DApp’s source code, usually
because they are imported from external sources like GitHub.
In such cases, we extract the source code directly from the
relevant web page, generate a unique Abstract Syntax Tree
for that contract, and analyze it. Due to the added computa-
tional requirements and web page dependency, we label these
interactions as ”External calls.”

1) Example of Contract Calls within a Function: In the
example below, the function renounceManagement() calls a
modifier onlyPolicy() and emits an event OwnershipPushed.

1 function renounceManagement() public virtual

override onlyPolicy() {

2 emit OwnershipPushed(_owner, address(0));
3 _owner = address(0);
4 }

Both the modifier and the event come from the same
contract, Ownable. Invoking the modifier and triggering the
event add specific function calls to the sequence, forming pairs
involving the contract Ownable.

In this example, both the event and the modifier are
defined within the same contract, Ownable. The function
renounceManagement is defined within the Ownable contract
as well, and in this case, we have two different contract
calls in which the source and target contract overlap. The
first call provides Ownable as the source and target contract,
renounceManagement as the source function, and the modifier
onlyPolicy being part of the call chain. The second call
provides Ownable as the source and target contract as well,
the renounceManagement as the source function and the event
OwnershipPushed incorporated into the sequence.

In another example, a function called markdown in-
cludes several contract calls. The function starts by calling
IUniswapV2Pair(_pair).getReserves() and stores the result
in a tuple. The key part is the cast operation, leading to
a sequence of function calls involving the getReserves()

method. Following this, the function has an ifStatement

containing the expression IUniswapV2Pair(_pair).token0

()== SGT. This expression also includes a contract call and
should be broken down for further analysis.

1 function markdown( address _pair )

2 external view returns ( uint ) {

3 (uint reserve, uint reservel, ) = IUniswapV2Pair

( _pair ).getReserves();

4 uint reserve;

5 if ( IUniswapV2Pair( _pair ).token0() == SGT ) {

6 reserve = reservel;

7 } else {

8 reserve = reserve;

9 }

10 return reserve.mul( 2 * ( 10 ** IERC20( SGT ).

decimals() ) ).div( getTotalValue( _pair ) )

;

11 }



The function concludes with a return statement that includes
another contract call, casting to IERC20. This adds another
function call sequence involving decimals(), div(), and
getTotalValue().

To summarize, this function includes three primary contract
calls:

• IUniswapV2Pair(_pair).getReserves()

• IUniswapV2Pair(_pair).token0()

• IERC20(SGT).decimals()

The source function, in this specific example, is the function
markdown, which is the function where the three calls are
encapsulated. The source contract is the one that defines the
function markdown, while IUniswapV2Pair and IERC20 are
the two target contracts. The following functions getReserves

, token0, and decimals build the call chain for the three
different contract calls.

Lastly, the function _mint() in the ERC20 contract triggers
the Transfer event from the IERC20 interface.

1 function _mint(address account_, uint256 amount_)

internal virtual {

2 require(account_ != address(0), "ERC20: mint to

the zero address");

3 _beforeTokenTransfer(address(this), account_,

amount_);

4 _totalSupply = _totalSupply.add(amount_);

5 _balances[account_] = _balances[account_].add(

amount_);

6 emit Transfer(address(this), account_, amount_);

7 }

In this case, the function _mint is the source function, the
contract ERC20 (that defines the mint function) is the source
contract, and the contract IERC20, which defines the Transfer

event is the target contract. Moreover, the event takes as input
the address(this) parameter, which refers to the contract
itself (in this specific case ERC20). The tool considers the this
as a valid contract call, and consequentially the ERC20 contract
is both source and target contract, the _mint function as the
source function, and the Transfer event is incorporated into
the sequence.

This section has walked through multiple examples to
illustrate how contract calls within functions are identified
and analysed based on our extraction rules. These examples
cover different scenarios, including function calls, modifiers,
and events, to give a comprehensive view of how contract
interactions occur.

VI. DATASET AND EVALUATION

We have collected 3093 smart contracts from 26 DApps
belonging to different domains and we have generated their
respective dependency graphs. The dataset generated by
MindTheDApp serves as one of the contributions of this paper.
It includes Decentralized Applications (DApps) from various
categories, as recommended by Ethereum.org. The dataset
provides an initial source for researchers and developers
interested in analyzing DApp structures, identifying patterns,
and studying the network topology of these applications.

• Financial: These DApps focus on crypto-based financial
services such as lending, borrowing, and interest accu-
mulation.

• Art and Collectibles: This category emphasizes digital
ownership and revenue for artists, providing investment
opportunities for enthusiasts.

• Gaming: These applications offer interactive entertain-
ment, featuring virtual worlds and valuable in-game col-
lectibles.

• Gambling: In this category, users can engage in various
betting activities, ranging from classic casino games to
blockchain-specific prediction markets.

• Technology: These DApps aim to decentralize developer
tools and integrate crypto-economic systems into existing
technologies.

Table 1 provides a summary of the Decentralized Applications
included in the dataset.

The columns in the table are defined as follows:
• Name: The name of the decentralized application

(DApp).
• Category: The specific category to which the DApp

belongs.
• Macro Category: The broader category under which the

DApp falls.
• Number of Smart Contracts: The total number of smart

contracts that form the basis of the DApp.
• Contract Calls: The count of contract calls identified by

the analyzer.
• Everyday Users: The percentage of total users who

engage with the particular DApp on a daily basis.
• Outflow/Inflow: This column shows the percentage of

currency that is both deposited into and withdrawn from
the exchange, respectively.

A. Evaluation

This section reports on some of our preliminary findings
and illustrates the performance and accuracy of the tool.

1) Performance: To test the applicability of
MindTheDApp, we ran it on 728 applications constituted by
25077 smart contracts from the DAppScan dataset 3, which
is a curated repository built to assess the performances of
smart contracts vulnerability detection tools. We successfully
extracted the dependencies within the DAppScan dataset, and
here we report the performance of the tool on the executed
applications.

We conducted our experiments on a MacBook Air with an
Apple M1 processor with 8 cores, 8 GB of RAM, and 256
GB of SSD with macOs Monterey 12.6.6. All the Solidity
compiler versions are locally installed in case of a needed
version switch, and python (3.8.13), and npm (9.6.7) have been
used to run code and install packages respectively.

The results revealed the efficacy of the tool in properly
scanning and generating a bipartite graph for the sample
of decentralised applications. Trivially, the execution time is

3https://github.com/InPlusLab/DAppSCAN



Name Category Macro Category # of Contracts Contract Calls Everyday Users Outflow/Inflow

Async Art and Fashion Art and Collectibles 7 46 9.91% 8.15%/0.321%
Foundation Art and Fashion Art and Collectibles 59 218 37.09% 5.65%/0.0599%
Super Rare Art and Fashion Art and Collectibles 20 64 10.62% 3.3%/0.216%
Marble Cards Digital Collectibles Art and Collectibles 38 229 13.79% 10.34%/X
Rarible Digital Collectibles Art and Collectibles 252 722 27.16% 10.86%/1.01%
Seaport Digital Collectibles Art and Collectibles 243 2477 27.34% 3.4%/0.152%
Audius Music Art and Collectibles 39 136 X X
Etherisc Insurance Financial 94 486 X X
NexusMutual Insurance Financial 197 606 X X
Balancer Investments Financial 409 1037 10.59% 7.55%/0.188%
PoolTogether Investments Financial 55 184 17.04% 5.56%/0.515%
SetToken Investments Financial 293 2020
Aave Lending and Borrowing Financial 241 628 8.39% 5.48%/1.12%
Compound Lending and Borrowing Financial 37 292 9.03% 6.05%/1.4%
PWN Lending and Borrowing Financial 48 113 10.48% 11.29%/X
TornadoCash Payments Financial 11 40 X X
1Inch Token Swaps Financial 8 12 X X
Uniswap Token Swaps Financial 145 273 23.89% 10.41%/0.144%
Loopring Trading and Prediction Markets Financial 596 3022 15.46% 12.55%/2.31%
Polymarket Trading and Prediction Markets Financial 83 211 X X
Axie Infinity Competition Gaming 25 128 5.25% 4.82%/2.06%
Dark Forest Competition Gaming 28 313 X X
Gods Unchained Competition Gaming 25 128 21.1% 10.19%/2.18%
Crypto Voxels Virtual World Gaming 8 211 9.15% 4.21%/0.2%
Ethereum Name Service Utilities Technology 116 286 28.7% 8.3%/0.152%

TABLE I: Summary of Decentralized Applications

strongly conditioned by the DApp’s dimension. The biggest
DApp of the dataset considering the number of smart contracts
(596 SCs), required 65.16686 seconds for the scanning and
graph generation process, while the smallest (8 SCs) required
0.55405 seconds. The average execution time is 12.60385
seconds.

2) Example Analyses: To demonstrate the applicability of
MindTheDapp, Figure 5 presents an example of a filtered
function network of Ethersic, one of the DApps in our dataset,
presented in Table dI.

Fig. 5: Filtered network of functions for the Etherisc DApp

Figure 5 showcases how the tool can reveal the complex
network of contracts and their interactions within a DApp.

In our study of 26 DApps (Table I) from various categories,
we found notable patterns in function and contract interactions.
Most functions call between 1 to 4 contracts, suggesting task
distribution among multiple functions. All analyzed dApps
exhibit high modularity, with modularity coefficients ranging
from 0.21 to 0.92, indicating the presence of distinct, non-
interconnected components. This pattern is consistent across
dApps of different sizes and categories. Metrics like diameter,
average path length, and clustering coefficient also display
consistency across dApps, hinting at common development
patterns.

We employ a disparity filter to isolate the most crucial inter-
actions within the function and contract networks. A disparity
filter is a network simplification technique that retains only
statistically significant edges, thereby revealing the ’backbone’
of a complex network. This approach allows us to focus on the
most impactful relationships between functions and contracts,
providing a clearer, more meaningful representation of the
network’s core structure. The use of this filter helps us to
distill complex network data into a more manageable form,
making it easier to identify key patterns and vulnerabilities.

After applying a disparity filter, we observed that function
networks retain about 55% of their nodes, while contract
networks shrink dramatically to about 12% of their original
size. We define a ’filtered function network’ as a projection
from the original bipartite graph, where each node represents
a function and edges are formed based on certain projection
rules capturing interactions between functions. Similarly, a
’filtered contract network’ is another projection from the
same bipartite graph, but in this case, each node represents
a contract, and edges are formed based on interactions be-
tween contracts. Both types of networks aim to highlight the
specific interplay of functions or contracts within decentralized



applications.
Lastly, our resilience analysis shows that targeted removal

of high-betweenness nodes can quickly fragment the largest
connected component, unlike random removal. This reveals
the network’s vulnerability to specific disruptions.

B. Potential Usages

MindTheDApp offers several avenues for further analysis
and study. For example, the tool could be used for:

• Identifying key contracts that serve as hubs in the net-
work, which could be critical points for security evalua-
tion.

• Studying the flow of contract calls to identify potential
bottlenecks or inefficiencies in a DApp.

• Comparing the network structures of DApps across dif-
ferent categories to identify common patterns or unique
features.

VII. TOOL APPLICATION AND OUTPUT ANALYSIS

Our tool is able to analyse and extract contract calls from a
selected sample of decentralised applications. After scanning
the DApp, the tool produces a CSV file named after the
application, which contains five columns:

• File: Specifies the name of the smart contract.
• Source Contract: Identifies the contract where the func-

tion calls the target contract.
• Source Function: Notes the function that calls the target

contract.
• Target Contract: Lists the contract called by the source

contract.
• Chain: If the target contract is called after a chain of

function calls, then the whole chain of calls is reported.
Our analysis shows that financial decentralised applications

generally have a higher number of contract calls and are
typically larger in terms of the number of smart contracts
composing the application. MindTheDapp effectively extracts
key elements like modifiers and event calls.

We chose to omit external dependencies to concentrate on
analyzing the intrinsic structure of a DApp in isolation. This
approach allows us to provide a more focused and meaningful
representation of the application’s network topology. By doing
so, we aim to understand the internal interactions, depen-
dencies, and potential bottlenecks within a specific DApp,
which are often more relevant for developers and researchers
interested in optimizing or securing that particular application.

Including external dependencies would widen the scope of
our analysis, potentially diluting the insights gained about the
DApp itself. For example, if external dependencies such as
common contracts like ERC20 were included in the analysis,
they would likely emerge as central nodes in the network
graph. While these nodes may be important in the broader
Ethereum ecosystem, their centrality could distract from the
unique characteristics and vulnerabilities of the DApp being
studied. Therefore, our tool, MindTheDapp, aims to offer a
more precise, application-specific view of the DApp’s internal
network structure.

VIII. THREATS TO VALIDITY

In this section, we outline potential threats to the validity
of our research, addressing issues that could affect both the
generalizability and applicability of our findings.

Lack of Cross-Platform Comparison: Our study is con-
fined to DApps within the Ethereum ecosystem. This narrow
focus hampers our understanding of decentralised applications
more broadly, as a comparative analysis across different plat-
forms could reveal key similarities or differences within the
same DApp categories. Our tool, however, is not platform-
specific and can analyse any Solidty contract independently
of the platform on which it is deployed.

Temporal Scope Limitations: While our research includes
popular Ethereum DApps, it lacks a temporal dimension.
A more comprehensive study would incorporate DApps de-
veloped at various stages of Ethereum’s lifecycle, from its
early years to the present. Such a comparison could yield
valuable insights into the evolving structure and categorization
of DApps over time.

Missing Dependencies: In our analysis, external dependen-
cies like GitHub imports are labeled as ’External,’ obscuring
the original contract names. External contracts could offer spe-
cific patterns that highlight similarities or differences between
DApps.

Parser Testing Scope: Our tool underwent testing on a
dataset of 728 applications. While this sample size allowed us
to identify and address some tool limitations, more extensive
testing on a larger dataset is required to further validate the
tool’s efficiency and effectiveness. For example, initial testing
did not account for empty contract declarations, leading to the
extraction of None-type objects, an issue that has since been
resolved.

IX. RELATED WORK

Research and development in the areas of smart contracts
have seen a surge in recent years. In this section, we discuss
previous work that has laid the groundwork for our study and
highlight the gaps that our research aims to fill.

A. Smart Contract Analysis

Numerous studies have targeted smart contract analysis,
mainly to highlight security vulnerabilities [5], [14], [16],
[23], [24], [26], [28]. These works have employed a range
of methods, from static and dynamic analysis to formal
verification and machine learning-based techniques [14], [23],
[28]. However, such methods often focus on isolated types
of vulnerabilities and lack a broad understanding of the
smart contract’s functionality [16], [23]. For instance, some
studies aim to identify specific kinds of attacks like consensus
protocol attacks, smart contract code bugs, operating system
malware, or fraudulent users [24]. Others direct their attention
to particular analytical aspects such as gas consumption or
opcode analysis [15], [19]. While these efforts contribute
valuable insights into specific vulnerabilities or aspects, they
fall short of offering a thorough perspective on smart contract
functionality and vulnerabilities.



To fill this gap, it is important to develop more comprehen-
sive analytical tools. One promising avenue is the application
of complex networks to the study of DApps. Complex network
analysis can offer additional perspectives on the structure of
smart contract interactions, highlighting potential bottlenecks
or vulnerable points that may not be evident through conven-
tional analytical methods. Hence, there is a need for integrated
approaches that can offer a holistic view of smart contracts and
their interactions within decentralised applications.

B. DApps and Solidity

The Ethereum platform and its native language, Solidity,
have been the subject of numerous studies. These studies
have explored various aspects of decentralised applications
(DApps) and smart contracts on the Ethereum blockchain.
Additionally, they have examined how the community of
developers influences the perception of the platform [3]. For
example, Wu et al. [27] conducted a comprehensive empirical
study of 995 Ethereum DApps, analyzing transaction logs
to gain insights into the structure and behaviors of DApps.
They highlighted the rapid development and wide adoption of
DApps in various domains.

Bhargavan et al. [4] focused on the formal verification
of Solidity contracts using the F programming language,
aiming to prevent bugs and vulnerabilities. In addition to
empirical studies and formal verification, researchers have also
explored tools and techniques for analyzing Solidity contracts.
Hajdu et al. [12] proposed a novel approach for analyzing
Solidity contracts, evaluating its semantics and comparing
it to other analysis tools. Gao et al. [11] developed a tool
called SmartEmbed, which effectively identifies instances of
repetitive Solidity code in smart contracts. Furthermore, the
adoption and implementation of DApps in various domains
have been investigated. Pierro et al. [21] discussed the adoption
of Solidity as the most widely used programming language for
coding DApps on the Ethereum blockchain.

C. Parsing Technologies

ANTLR4 has proven to be a versatile and widely used
parsing technology in various domains. Its features, such
as predicates and support for LL(k) grammars, make it a
powerful tool for parsing and analyzing different types of
input, including source code, natural language, and more.
ANTLR has been utilised as a back-end for Solidity parsers
[22] and software vulnerabilities detectors [1], [17], [25].

Paso [22] is a web-based solidity parser that collects widely
used software metrics from Solidity contracts. It relies on the
same Solidity grammar, as MindTheDApps. Other tools use
ANTLR to generate XML-based intermediate representation
of smart contracts written in Solidity. For instance, SESCon
(Secure Ethereum Smart Contracts by Vulnerable Patterns’
Detection) [1] uses static analysis by converting a .sol file to its
equivalent AST XML parse tree and apply the XPath query to
find some simple vulnerabilities patterns. By combining XPath
and taint analyses, SESCon can identify security vulnerabili-
ties defined by the Ethereum community. Similarly, [17], [25]

uses the Solidity parser to transform the smart contract source
code into an XML parse tree which is then analysed further
using XPath queries on the intermediate representation.

D. Complex Networks

The use of complex networks to understand system behavior
is well-established in various contexts, especially in object-
oriented software systems. Gao et al. [10] employ directed
software coupling networks to empirically analyze the macro-
scopic properties of such systems. Complex network analysis
has been valuable not only in understanding software structure
but also in real-time distributed control applications, where fast
processes and complex interactions are key.

The method is also effective for assessing software risk and
vulnerabilities. Cai et al. [6] use complex network analysis
for vulnerability detection method based on deep learning
and subgraph partition that enhances detection accuracy while
maintaining scalability. Additionally, complex network models
shed light on the behavior and emergence of requirements in
networked systems [13], and can even guide software design
and performance improvement.

Ferretti et al. [9] conducted an analysis of the Ethereum
blockchain using complex network modeling techniques. They
represented the flow of transactions in the blockchain as a
network, with nodes representing Ethereum accounts. This
approach allowed them to gain insights into the structure and
dynamics of the Ethereum blockchain.

These studies highlight the versatility of complex network
analysis in gaining insights into the structure, behavior, and
vulnerabilities of software systems. Such insights are particu-
larly relevant for decentralised applications, where understand-
ing the interactions among smart contracts is essential.

X. FUTURE WORKS

Future work will focus on broadening the dataset of ana-
lyzed DApps to deepen our understanding of smart contract
interactions within decentralized applications. DAppRadar of-
fers valuable data, including new releases and trending ap-
plications across categories, which could be useful for more
comprehensive studies. Currently, our research focuses on
Ethereum-based DApps, giving us a specific view of smart
contract interactions. To provide a wider picture, we plan
to extend our analysis to DApps built on other platforms
like EOS, Solana, Hyperledger, and Cardano. Each of these
platforms uses its own programming languages for smart
contract development, necessitating the creation of new parsers
for each. For example, while Ethereum primarily uses Solidity,
Hyperledger employs languages like JavaScript and Python.

In addition, we aim to study the evolution of DApps
within the Ethereum ecosystem by comparing older and newer
applications. Such a comparative analysis would allow us to
understand changes in DApp structures and smart contract
interactions over time.



XI. CONCLUSIONS

In this paper, we have introduced a tool designed to
highlight interactions among smart contracts in decentralized
applications. The tool accomplishes this by parsing the Ab-
stract Syntax Tree to extract various elements including con-
tract calls, modifiers, constructors, and events. This extraction
offers a more complete understanding of the decentralized
application being analyzed. The tool serves as a valuable
resource for both developers and researchers aiming to grasp
the purpose and structure of a decentralised application and
the interactions among its smart contracts, and the interactions
with external libraries. By providing these insights, our tool
opens the door for more in-depth analysis and improvement of
smart contracts and DApps development, contributing to the
evolving landscape of blockchain technology.
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