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Abstract: Chromium-oxyhydroxide (CrxOyHz)-based thin films have previously been shown in
photocatalysis and industrial chlorate production to prevent unwanted reduction reactions to occur,
thereby enhancing the selectivity for hydrogen evolution and thus the overall process efficiency.
Here, a highly reproducible synthesis protocol was developed to allow for the electrodeposition
of CrxOyHz-based thin films with controlled thickness in the range of the sub-monolayer up to
(>4) multilayer coverage. Electrodeposited CrxOyHz coatings were electrochemically characterized
using voltammetry and stripping experiments, allowing thickness-dependent film selectivity to be
deduced in detail. The results are discussed in terms of mass transport properties and structure of
the electrodeposited chromium oxyhydroxide films. It is shown that the permeation of diatomic
probe molecules, such as O2 and CO, was significantly reduced by films as thin as four monolayers.
Importantly, it is shown that the prepared thin film coatings enabled prolonged hydrogen oxidation in
the presence of CO (up to 5 vol.%), demonstrating the benefits of thin-film-protected electrocatalysts.
In general, this study provides insight into the synthesis and use of thin-film-protected electrodes
leading to improvements in (electro)catalyst selectivity and durability.

Keywords: ultrathin oxide layers; electrocatalysis; hydrogen oxidation; selectivity; electrodeposition;
eQCM

1. Introduction

The generation of hydrogen from renewable sources is of great interest for application
in the sustainable production of chemicals. Among others, photocatalytic water splitting is
often seen as a promising technology that solely uses semiconductor particles and solar
illumination [1–4]. To achieve an acceptable rate of H2 production, a semiconductor with
a band gap of approximately 1.8 V is required [5–7]. Diminishing charge recombination
rates and improving the kinetics of the surface reactions require the use of nanoparticulate
electrocatalysts (also referred to as co-catalysts) on the semiconductor surface [8–10], where
noble metal catalysts, such as Pt and Rh are considered to be the most effective for hydro-
gen evolution (HER). Unfortunately, noble metal co-catalysts are also known to catalyse
competing reactions, such as the oxygen reduction reaction (ORR), thereby decreasing the
overall efficiency of the process [11–13].

Enhanced selectivity towards HER can be achieved through the use of core-shell
structures. These structures are used to reduce or prevent undesirable side reactions
from occurring. Examples of such protective layers include NiOx [6,14,15], Mo-based
coatings [16–18], and oxides or oxyhydroxides of Si, Ce, Ti, Nb, and Ta [19–22]. Of particular
interest is chromium oxide (CrOx), which has long been used in the chlorate industry to
improve the overall process efficiency [23–27]. Similarly, CrOx-based thin films or shells
on noble metal catalysts have also been shown to improve the efficiency of photocatalytic
water splitting [28,29] where, in particular, protected Rh particles are used, although in
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general, uncoated Pt nanoparticles are more active for hydrogen evolution [30]. The effect
of thin film coatings has been validated by various studies and is widely accepted [31–34].
Nevertheless, little attention has been paid to the controlled, synthesis-enabling high
control of the thickness of the coatings. Generally, thinner layers are preferred as there are
limitations on the use of CrOx, particularly in higher oxidation states, falling under Annex
XIV of the REACH legislation [35].

CrOx coatings are presumed to enable selective hydrogen evolution by functioning as a
permeable membrane for H+ and OH− rather than an electroactive surface themselves [36].
In addition, it has been suggested that with the Grotthuss mechanism, i.e., in thin hydrated
films, protons reach the catalyst surface via proton hopping, enabling hydrogen evolution
but preventing various larger molecular species from permeating [37]. As such, Qureshi
et al. showed that a wide variety of molecular species that are readily reducible on uncoated
noble metal electrode surfaces are prevented from undergoing reactions when chromium
oxyhydroxide protective layers are present [38]. In addition to the protection against
molecular species, the protection of common contaminants, such as CO, is of great relevance,
i.e., for hydrogen fuel cell and compression applications [39], and as such, controlled
synthesis of over-coatings and a detailed understanding of the functionalities of thin-film-
coated electrocatalysts is required.

Here, by using carefully controlled (sub- to multi-)monolayer electrodeposition, we
assessed the HER activity along with the material’s ability to suppress the oxygen reduction
(ORR) back reaction in alkaline media. For the different coating thicknesses prepared, the
functionality and stability of the CrOx thin film coatings under operational conditions were
determined. The coatings were further characterised using H2 and CO as probe molecules
to elaborate on the permeability of small dissolved molecules. By the careful preparation
of CrxOyHz thin films it was revealed that a minimum thickness of four monolayers of
CrxOyHz is required for the complete suppression of the O2 back reaction, whereas a
single monolayer is ineffective at significantly reducing activity in any of the reactions
tested. Most importantly, it is finally shown that the physical openness of the polynuclear
Cr oxyhydroxide structure in acidic electrolyte enables prolonged activity for hydrogen
oxidation even in the presence of CO (5 vol.%).

2. Results

To enable electrodeposition of CrxOyHz thin films on Pt electrodes with a high degree
of thickness control, a facile protocol was developed. Using cyclic voltammetry (CV) and
electrochemical quartz crystal microbalance (eQCM) measurements in different Na2Cr2O7
concentrations, deposition and dissolution of CrxOyHz films were assessed allowing for
precise thickness determination. In cyclic voltammetry, reduction of the dissolved CrVIO4

2–

anions occurs with a broad peak at Emax = 0.15 V vs. RHE and the resulting CrxOyHz film
is oxidised above 1 V vs. RHE in the anodic sweep (data are shown in Figure S1 in the
Supplementary Materials), being comparable with previous studies [36–38]. As expected
for both reduction and oxidation peaks, the charge (Q) increases with concentration and in
the case of the electrochemical response due to oxidation, the peak potential shifts more
positively with the amount of material deposited. To reliably quantify the amount of
deposited material, the charge associated with the oxidative response was compared to the
mass change (∆m) determined using eQCM measurements (Figure S2), allowing for the
definition of the relationship between the charge required to remove the CrxOyHz coating
and the mass deposited on the Pt electrode. Approximate thicknesses (τ) of the coatings
were estimated from the mass change based on the composition and known densities
of chromium oxyhydroxides [40], considering either fully hydrated Cr(OH)3 (τmax) or
dehydrated and deprotonated Cr2O3 (τmin) forms of chromium oxide.

To prepare coatings of different thicknesses for further electrochemical analysis, elec-
trodeposition was undertaken by chronoamperometry (CA) at 0.15 V vs. RHE for 10 min
using Na2Cr2O7 concentrations ranging from 1 µM to 1 mM at logarithmically increasing in-
tervals. The charge determined by oxidative stripping of these coatings using linear sweep
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voltammetry (LSV) allowed for thickness determination following the eQCM-derived
charge–mass relationship. Table 1 summarizes the concentration dependence of τ for both
hydrated and dehydrated forms of the thin film. As thin films prepared by electrodeposi-
tion have been proposed to be a mixture of both compositions, for simplicity here, the layer
thickness was considered to be an average between the two compositions and is referred
to in the following as τav [25,27,41–43]. At the lowest concentration (1 µM), a τav value of
only 0.14 nm was determined to be below previous estimates of 0.5 ± 0.2 nm for a single
monolayer coverage of Cr(OH)3 [44], indicating incomplete (sub-monolayer) coverage. For
the coating to be useful, a homogeneous layer across the entire electrode surface is required,
which, according to the developed strategy is achieved at a Na2Cr2O7 concentration of
10 µM, where the derived thickness ranges well around the literature’s estimate of a single
monolayer. At a concentration of 100 µM, a growth of 2–4 monolayers was estimated and
a further increase to the concentrations of 1000 µM resulted in an estimated coverage of
4 monolayers. As summarized in Table 1, the developed protocol allowed for reproducible
synthesis of CrxOyHz on Pt electrode. In comparison with earlier work, coatings prepared
at 100 µM (2–4 monolayers) are comparable with the thinnest film tested (1.8 nm) [36].
Finally, it is worth noting that the coatings are homogenous as suggested by SEM analysis
(Figure 1).

Table 1. Estimated minimum (dehydrated) and maximum (fully hydrated) τ after 10 min CA at
different concentrations of Na2Cr2O7.

Conc. (µM) τmin (nm) τmax (nm) No. of Monolayers

1 0.10 ± 0.02 0.17 ± 0.03 <1 monolayer
10 0.46 ± 0.09 0.77 ± 0.14 1 monolayer, approx.

100 1.26 ± 0.07 2.11 ± 0.12 2–4 monolayers
1000 1.76 ± 0.04 2.95 ± 0.07 4+ monolayers

Figure 1. SEM micrographs of the (a) uncoated Pt surface and (b) CrxOyHz-coated Pt surface
produced from electrolyte containing 5 mM Na2Cr2O7/0.1M NaOH.

Linear sweep voltammetry was used to study hydrogen evolution on CrxOyHz-
modified Pt electrodes. The presence of multiple layers does not block the production of
H2 at the Pt electrode, as can be seen in Figure 2, and has been previously reported. Still
the overpotential increases with coverage. With around a monolayer or less of CrxOyHz
coverage on Pt the increase in overpotential is rather negligible (about 5 mV), whereas be-
yond 2 monolayers a significant cathodic shift by approximately 25–30 mV is observed. For
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the thickest layers (4+ layers) 35–40 mV larger overpotentials are required when compared
to uncoated Pt. This is also confirmed by Tafel analysis using:

η = a + b log j

where b is the Tafel slope. Table 2 provides a summary of the determined exchange current
densities (j0) and Tafel slopes (b) for hydrogen evolution at different thicknesses of CrxOyHz
on Pt, being in agreement with previous literature [45].

Figure 2. Linear sweep voltammograms (LSVs) in the HER regime with different levels of CrxOyHz

coverage in N2-saturated 0.1 M NaOH (aq) at 50 mV s−1, at 900 rpm.

Table 2. Exchange current densities (j0) and Tafel slopes (b) for HER with different thicknesses of
CrxOyHz on Pt.

τav (nm) j0 (A cm−2) b (mV dec−1)

0 (Pt only) −3.33 64
0.62 (1 monolayer, approx.) −3.45 60

1.69 (2–4 monolayers) −3.85 57
2.36 (4+ monolayers) −4.00 55

With the successive growth of CrxOyHz, the current for hydrogen evolution drops, par-
ticularly from 1 to 2+ layers. If the reaction proceeded via a tunnelling mechanism the cur-
rent density would be expected to decrease exponentially with increasing coverage [37,46],
whereas in a mechanism proceeding via proton transfer, it would be expected to be
invariant [36]. Thus, the obtained results suggest tunnelling to be the dominant mech-
anism for electrodes covered with a few layers of CrxOyHz, and with increasing thickness,
a proton transfer mechanism appears to be dominating. Further decreases are attributable
to changes in the concentration gradient across the layer as it gets thicker, reducing the
overall proton concentration at the Pt surface [47].

The polarisation curves for measurements in the presence of gas phase reactants (H2
and O2) under identical RDE mass transport controlled conditions are shown in Figure 3.
The presence of one monolayer slightly lowers the measured limiting current density of the
hydrogen oxidation reaction (HOR) and the oxygen reduction reaction (ORR) compared
to bare Pt. In addition, higher potentials are required in the mixed-controlled regime to
obtain similar current densities. Additional layers reduced the limiting current density
significantly in both cases, which indicate that at >2, the coating becomes increasingly
impermeable. The partial blocking of the ORR using CrOx-modified Pt electrodes with
2–4 monolayers was even maintained during extended operation (see Figure S3 in the
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Supplementary Materials). Nevertheless, even for samples with >4 monolayers, the activity
for H2 oxidation was not entirely lost, whereas ORR did not occur in the potential range
probed, i.e., O2 was effectively blocked by the CrxOyHz coating. This supports earlier
reports indicating that ORR is strongly supressed by the presence of a CrOx-based coatings
whilst allowing the permeation of protons and subsequent hydrogen evolution to occur [36].

Figure 3. Linear sweep voltammograms (LSVs) of the (a) HOR (H2 saturated) and (b) ORR (O2

saturated) with different levels of CrxOyHz coverage, both in 0.1 M NaOH (aq) at 50 mV s−1, at
900 rpm.

The H2 and O2 permeability of overlayers was further quantified using the measured
limiting current densities [48–51]. Compared to the bare Pt electrode—where mass trans-
port properties, i.e., the diffusion coefficient D, can be obtained by Levich analysis (see
Figures S4–S6)—transport for CrxOyHz-coated Pt must be associated with both transport
in overlayers and through the diffusion boundary layer. Levich analysis correlates the
limiting current density (jl) and rotation rate (ω) according to:

jl,Pt = 0.62
nFD2/3c

υ1/6 ω1/2

where n is the number of electrons transferred, F is the Faraday constant (96,485.33 C mol−1),
c is the bulk electrolyte concentration given by the solubility of the reactant, and ν is the
kinematic viscosity [5]. In the presence of a CrxOyHz over-coating diffusion, coefficients
or film permeability are obtained by the following relation describing the mass transfer
resistance related to the limiting current densities associated with double layer diffusion
and overlayer coating, as shown below:

1
jl,total

=
1

jl,Pt
+

τf ilm

nFPf ilmc

where the gas permeability Pfilm is linked to the solubilities (Sfilm) of H2 or O2 in the film [52]
and their film diffusion coefficient [48,51], respectively.

Pf ilm = D f ilmS f ilm

Generally, the permeability of the film decreases with increasing thickness, pointing to-
wards a change in film structure for thicker coatings. Using the approximated over-coating
thicknesses, film permeabilities for hydrogen and oxygen at the highest film thickness,
i.e., at >4 monolayers of 2.7 ± 0.7 × 10−10 cm2 s−1 and of 5.2 ± 1.3 × 10−11 cm2 s−1, are
obtained. As already indicated by the remaining hydrogen oxidation activity observed in
LSV scans permeability for hydrogen is higher compared to oxygen permeability, which is
likely related to the size of the oxygen molecule.
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Further performance evaluation of the CrOx-coated Pt electrodes was undertaken
using CO poisoning and subsequent stripping experiments. Figure 4a shows the baseline
corrected stripping measurements of the bare and coated Pt electrodes (for additional
information, see Figure S7). The peak position of the CO stripping peak is known to vary
considerably with electrode surface and electrolyte conditions; however, of interest is the
shape and area of the stripping peak, being indicative of the type(s) of surface interaction
and the amount of CO adsorption [53]. It is generally accepted that the oxidation follows
the Langmuir-Hinshelwood mechanism and that the chemisorbed layer is comprised
predominantly of linear and bridge-bonded CO [54]. In the case of the bare Pt, a clearly
defined pre-peak as well as the main stripping signal are observed. The pre-peak is related
to changes in the surface CO adlayers, changing from higher density adlayers to more
relaxed ones, where weakly bound bridge-bonded CO is desorbed [55–57]. Additionally,
structural rearrangements during desorption include movement from weaker bound terrace
sites to stronger step sites. The loss of peak multiplicity in the presence of a CrxOyHz
coating from 1 to 4 monolayers indicates that there is a restriction of the type of adsorption
and surface rearrangements occur, suggesting a purely linearly bonded configuration is
favoured for coated electrodes.

Figure 4. The (a) CO stripping peaks obtained from the CVs after poisoning for 15 min at 20% CO/N2,
E = 0.05 V vs. RHE, followed by N2 flush for another 15 min at the same potential and (b) loss of
active sites determined from oxidation of adsorbed CO, with linear fit.

Figure 4b shows the determined number of active sites as a function of coating thick-
ness, for which above the layers of CrxOyHz, interaction of CO with the electrode is fully
suppressed. The number of active sites was determined by the ratio of the charge per cm2,
i.e., the integrated CO stripping peak of coated and unprotected Pt surfaces. Considering
this ratio at one monolayer, approximately 25% of the active sites are lost. In fact, it has
previously been suggested that the presence of a CrxOyHz layer on the surface of Pt re-
duces the number of active sites for H adsorption by around this amount [37], indicating
it is still permeable to CO with just restrictions in bonding orientation. The permeability
changes significantly from 1 monolayer to 2+ monolayers, an effect observed for all the
reactions studied here (HER, HOR, and ORR). Thus, the thickness-controlled formation
of protective CrxOyHz layers on the Pt electrode suggest that a minimum of four layers
(approximately 2 nm) is required to fully suppress the O2 back reaction, being that it is
important in photocatalytic hydrogen production. Such layers will also function as effective
protective coatings and will prevent Pt electrode poisoning by CO. Whilst coatings below
four monolayers do not offer complete protection against unwanted side-reaction, the
efficiency towards hydrogen evolution in the presence of competing reactions will still
be improved and thus the thickness-control obtained in this study provides a trade-off
between activity and the amount of CrxOyHz required.
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3. Discussion

To understand the changes in protective layer effectiveness as the coating thickness
increases, it is necessary to consider the structure of the coating. Polynuclear CrxOyHz
thin films have been studied previously and as shown in Scheme 1, are understood to be
a network of hydrated Cr octahedra connected via hydrogen bonding between the OH
ligands and water molecules within the complex [58–60].

Scheme 1. Schematic representation of a network of hydrated Cr octahedra connected via
hydrogen bonding.

A 2009 study by Torapava et al. using large angle X-ray scattering (LAXS) determined
that, under alkaline conditions, Cr–O bond length was 200 pm (in the first coordination
sphere) and, more importantly, Cr–Cr distances were 298 pm in polynuclear Cr(III) hydroxo
complexes [61]. Up to a single monolayer, plenty of physical space for the permeation
of small molecules such as H2, O2, or CO exists and could in part explain why activity
and diffusion characteristics are not significantly different from bare Pt. Of the three, CO
activity was the most reduced by the presence of a single monolayer, followed by ORR,
and then HOR. Considering that H2 has the smallest van der Waals radius of the three
probe molecules used here, the suggested physical openness of the CrxOyHz thin film is in
agreement with the reported experimental observations. In addition, other factors, such
as electronegativity and polarity, likely contribute to the lower permeability of the other
two molecules.

The growth of thin films beyond one monolayer coverage represents a transition from a
2D to a 3D network of Cr complexes and is known to particularly favour tetramer structures
in a high pH environment [62], thus making the network more restrictive to permeation.
This is supported by the results obtained here, where reactions for the larger molecules O2,
CO, and H2 to a slightly lesser extent are significantly affected as the coating grows beyond
two monolayers. Further increases in the coating also lead to the possibility of partial
deprotonation, particularly in the lower layers. This would result in additional closing of
the structure, leading to greater protection of the Pt surface from molecular interactions.

The low permeability is thus partially caused by the electrolyte composition. To finally
reveal the importance of the local pH environment, additional tests were performed in
acidic electrolyte. Specifically, a coating of 4+ monolayers was prepared and was shown
to greatly inhibit both CO interaction with the Pt surface and, to a large extent, to prevent
oxidation of hydrogen. The Pt-coated electrode was used for the hydrogen oxidation
reaction using an electrolyte saturated with 5 vol.% CO/H2. With the coated Pt electrode,
hydrogen oxidation occurred at a similar current density (as shown in Figure 5) and despite
the significant CO concentration used here, the duration of the HOR was notably extended
compared to the reference measurement using unmodified Pt surfaces. Interestingly, CO
poisoning did not even result in a complete deactivation and HOR still occurred, yet at
lower rates. Clearly, penetration of the CO through the coating has been slowed by diffusion
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through the film. Moreover, the retention of some hydrogen oxidation activity suggests the
coating is not being oxidised and sufficiently stable despite the low electrolyte pH.

Figure 5. Chronoamperometry measurements at 0.2 V vs. RHE, at 900 rpm in H2-saturated H2SO4

(adjusted to pH 1.8) electrolyte for blank Pt and the 4+ monolayer CrxOyHz-coated Pt disc, where
saturating gas composition was changed to 5% CO/H2 at 300 s.

Thus, apart from the direct implications in photocatalysis, this work provides addi-
tional insights into the benefits of thin-film-coated electrode surfaces. Particularly, the
obtained results highlight the important factors in the preparation and development of
protective layers in enhancing the selectivity of electrocatalysts toward specific reactions.
The thin film structure is an important aspect of the design of such materials, as a more open
structure allows for permeation of small molecules. Additionally, the physical and chemical
properties of the layers directly influence the type of molecule that can easily permeate
the coating or membrane as well as their behaviour to changing electrode potentials. Con-
sidering the results presented here, in future developments of thin-film-coated electrodes,
multi-membrane configurations should be considered, in particular, for materials such
as CrxOyHz that are susceptible to oxidation but are very effective as protective layers.
Further development of thin-film-coated electrodes will likely result in interesting novel
ultrathin protective layers with beneficial levels of selectivity. Clearly, such developments
are of importance for the implementation of emerging processes in the area of sustainable
chemical production and renewable energy utilization.

4. Materials and Methods

Electrochemical experiments were carried out in 0.1 M NaOH electrolyte solutions.
For electrodeposition of the CrOx-containing protective layers, Na2Cr2O7 (Sigma-Aldrich,
St. Louis, MO, USA, >99.8%) was added to the electrolyte in concentrations ranging from
1 µM–5 mM. For deposition and subsequent characterisation, the electrolyte was pre-
saturated with N2 to remove air by continuous bubbling at 40 cm3 min−1 for at least 15 min.
The electrochemical measurements were performed using a BioLogic VSP-10 and a 100 cm3

capacity three-electrode cell consisting of a Hg/HgO (E0 = 0.098 vs. RHE) or Ag/AgCl
(E0 = 0.197 vs. RHE) reference electrode, a Pt wire or graphite rod counter electrode, and
a rotating ring disk working electrode (RRDE, Pine Research Wavevortex) composed of
polycrystalline Pt (disk and ring).

The reactions of interest were studied by continuous bubbling at 40 cm3 min−1 of
either N2 for the hydrogen evolution reaction (HER) or H2 for the hydrogen oxidation
reaction (HOR) using different rotation rates. Additionally, the oxygen reduction reaction
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was studied by flowing O2 at the same flow rate. By adding up to 20% CO to the N2 or H2
stream we further evaluated the poisoning resistance of coating-modified Pt electrodes.

The mass of the deposited CrxOyHz coatings was determined using a Gamry eQCM
10 M at 5 MHz with Pt coated crystals from Gamry. The difference in mass (∆m) was
determined by the shift in the resonance frequency fs of the electrode using the Sauerbrey
equation [63]:

∆ fs =
2 f 2

0 mn
µqρq

where f 0 is the fundamental frequency of the crystal, m is the mass added, n is the harmonic
number, µq is the shear modulus, and ρq is the density. This can be simplified by reducing
the known constants to a calibration constant, Cf = 56.6Hz cm2 g−1, to give:

∆ f = C f m

where ∆f is the overall frequency change determined experimentally. All potentials are
reported vs. RHE unless otherwise indicated.

5. Conclusions

Controlled deposition of CrxOyHz protective layers on Pt has allowed for the precise
definition of the required film thicknesses to allow for full suppression of O2 back reaction,
with CO poisoning being of relevance among others for the design of photocatalytic
materials. Specifically, it is shown that a single monolayer has a minor influence on the
properties of Pt electrodes and a minimum of four monolayers (approximately 2 nm) is
required to fully block O2 and CO. The properties of the coating are discussed on the basis
of physical porosity altered by changes in the structure of the coating. Importantly, it is
shown that the acidity of the electrolyte largely influences the blocking capabilities of the
coating. Coatings considered to be nonpermeable in alkaline solution were shown to be
active for hydrogen oxidation with extended duration in CO-containing environments.
This has implications in coating design where adjustment of the structure could potentially
lead to control over selectivity and in turn result in higher process efficiencies.

Supplementary Materials: The following supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/catal12101077/s1, Figure S1: Cyclic voltammograms on Pt RRDE; Figure S2:
The eQCM ∆m in 0.1 M NaOH for different Na2Cr2O7 concentrations; Figure S3: Chronopotentiome-
try (CP) at −0.2 mA (−1.02 mA cm−2) and 900 rpm in O2-saturated 0.1 M NaOH (aq) for 3 different
levels of coating; Figure S4: HOR linear sweep voltammograms (LSVs) at different rotation rates;
Figure S5: ORR linear sweep voltammograms (LSVs) at different rotation rates; Figure S6: Levich
plots; Figure S7: CO stripping sweeps; additional experimental information.
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