
 
 

 

 
Mater. Proc. 2021, 3, 7. https://doi.org/10.3390/IEC2M-09250 www.mdpi.com/journal/materproc 

Proceeding Paper 

Recycling-Oriented Design of the Al-Zn-Mg-Ca Alloys † 
Pavel Shurkin 1,*, Nikolay Belov 1, Torgom Akopyan 1 and Zhanna Karpova 1,2 

1 Department of Metal Forming, National University of Science and Technology MISiS, 119049 Moscow, Russia; 
nikolay-belov@yandex.ru (N.B.); nemiroffandtor@yandex.ru (T.A.); zkarpova2012@yandex.ru (Z.K.) 

2 Keldysh Research Center, 119049 Moscow, Russia 
* Correspondence: pa.shurkin@gmail.com; Tel.: +7-926-585-1990 
† Presented at the 1st International Electronic Conference on Metallurgy and Metals, 22 February–7 March 2021; 

Available online: https://iec2m.sciforum.net/. 

Abstract: Approaches to the design of recycling-tolerant Al-Zn-Mg alloys were formulated to be 
achieved via combined Ca, Fe, and Si, and appropriate solidification conditions and heat treatment. 
A CalPhaD calculation and experimental study were employed for analysis of the Al-8%Zn-3%Mg 
alloy doped with 1–2%Ca, 0.5%Fe, and 0.5%Si. The Al-8%Zn-3%Mg-1%Ca-0.5%Fe-0.5%Si (AlZ-
nMg1CaFeSi) alloy was preliminarily found to be promising since it showed a high equilibrium 
solidus, and an as-cast structure including curved phases (Al), Al3Fe, Al2CaSi2, Al10CaFe2, and (Al, 
Zn)4Ca; favouring a further spheroidization response during a two-step annealing at 450 °C, 3 h + 
520 °C, 3 h. Furthermore, the alloy showed an excellent age-hardening response (195 HV, T6), which 
did not yield the values of the base alloy and outperformed the values of the other experimental 
counterparts. Regarding feasibility, 80% reduction hot rolling was successfully conducted, as well 
as a brief comparison with commercial 6063 impurity-tolerant alloys. As it showed qualitatively 
similar structural patterns and Fe and Si alloying opportunities, the AlZnMg1CaFeSi alloy may 
serve as a sustainable basis for the further development of high-strength aluminum alloys tailored 
for manufacture from scrap materials. 
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1. Introduction 
The role of recycling in metallurgical engineering has always been essential and 

prevalent, having a critical impact not only on the global economy and energy consump-
tion but also on the ecological environment and human life. This is due to opportunities 
for reducing primary metal manufacturing, which is commonly accompanied by hazard-
ous waste and greenhouse gases emissions [1]. When considering aluminum and its al-
loys, their recycling is recognized to be the mature engine of recycling economics, which 
is constantly developing under new technological approaches toward shredding, sorting, 
and castshop manufacturing [2,3]. However, though recycling has made advances, the 
consumption of primary aluminum has kept at a high level (70% primary, 30% recycled), 
which is mostly sustained by demand for premium wrought alloys, intolerant to impuri-
ties [1,4,5]. Specifically, the strongest 7xxx (Al-Zn-Mg) alloys show a marked loss of duc-
tility when Fe and Si impurities are present, due to the formation of harmful intermetallics 
(β type phases), Al3Fe, Al5FeSi, and Al7Cu2Fe, which appear as faceted platelets of up to 
several millimetres [6–8]. We find it drastic but expedient to develop new aluminum al-
loys which are tolerant of the aforementioned impurities. 

Current research on the development of secondary aluminum alloys often bypasses 
the 7xxx family alloys, and thus, most of the new compositions are not able to replicate its 
high strength. Some part of material scientists make a point of recycling chips from the 
same family via powder metallurgy, and also may include work on the addition of rein-

Citation: Shurkin, P.; Belov, N.; 

Akopyan, T.; Karpova, Z. Recycling-

Oriented Design of the Al-Zn-Mg-Ca 

Alloys. Mater. Proc. 2021, 3, 7, 

https://doi.org/10.3390/IEC2M-09250 

Academic Editor: Eric D. van 

Hullebusch 

Published: 18 February 2021 

Publisher’s Note: MDPI stays neu-

tral with regard to jurisdictional 

claims in published maps and institu-

tional affiliations. 

 

Copyright: © 2021 by the authors. Li-

censee MDPI, Basel, Switzerland. 

This article is an open access article 

distributed under the terms and con-

ditions of the Creative Commons At-

tribution (CC BY) license (http://crea-

tivecommons.org/licenses/by/4.0/). 



Mater. Proc. 2021, 3, 7 2 of 13 
 

 

forcement particles [9] and severe plastic deformation [10], but there is no sense of impu-
rities and sustainability for industrial scaling. Meanwhile, the Fe and Si determine the per-
formance of the alloy, not only in mechanical properties but also in corrosion resistance 
and physical properties, like density [8,11–13]. 

The available machine learning equipment and thermodynamic databases are already 
used for designing lightweight steels, sustainable materials for additive manufacturing, 
and high-entropy materials. The approach used for years is phase diagram calculation 
(CalPhaD), providing projections on how the alloy would solidify or melt. In this sense, it 
seems to be possible to design a universal high-strength aluminum alloy using low-con-
centrations of multiple-element aluminum corners constructed using both the available 
data on multicomponent diffusion capacity and intermetallics range and an experimental 
approach on a micro-and near-atomic scale. In favor of this approach, many works have 
been performed on calculating an Al-Zn-Mg-Ni-Fe system, and promoting new alloys with 
a justified Ni/Fe ratio of 1:1, allowing the formation of 5 vol.% of fine Al9FeNi phase [14–16]. 
However, Nickel is not allowed in recycling-oriented plants as it is a very expensive ma-
terial. Calcium seems to be far more preferential since it is the third most abundant metal 
in the earth's crust. Recently, several works on Al-Ca-Fe-Si alloys showed that calcium may 
bind the impurities into finely shaped ternary phases, Al10CaFe2 and Al2CaSi2 [17,18]. In 
our recent research on Al-Zn-Mg-Ca-Fe [19] and Al-Zn-Mg-Ca-Si [20] alloys we showed 
that the foregoing phases may appear as a very fine constituent. However, joint Ca, Fe, 
and Si alloying has not yet been considered. 

Having made the foregoing statements, this study aimed to describe the approaches 
to designing recycling-oriented Al-Zn-Mg-Ca alloys and to present the preliminary results 
on the microstructure, hardening, and feasibility of Al-Zn-Mg-Ca-Fe-Si alloys. The results 
may bring huge progress into a currently static field, for the recyclability of high-strength 
aluminum alloys. 

2. Materials and Methods 
Six model compositions based on the Al-8%Zn-3%Mg matrix were chosen for inves-

tigation. For the sake of demonstration of the joint alloying effect, we studied the base 
matrix alloy, Ca-free alloy doped with Fe and Si, and alloys doped with different Ca. Their 
chemical compositions, according to spectral analysis, are given in Table 1. 

Table 1. Chemical compositions of the model alloys as determined by spectral analysis. 

Alloy 
Nominal and Actual Concentrations (in Brackets), wt.% 

Zn Mg Ca Fe Si Al 
AlZnMg 8(8.1) 3 (2.8) 0 0 0 Balance 

AlZnMgFeSi 8 (7.9) 3 (2.9) 0 0.5(0.51) 0.5(0.49) Balance 
AlZnMg1Ca 8 (7.7) 3 (2.6) 1(0.9) 0 0 Balance 
AlZnMg2Ca 8 (7.8) 3 (3.1) 2(1.8) 0 0 Balance 

AlZnMg1CaFeSi 8 (8.0) 3 (2.8) 1(0.9) 0.5(0.55) 0.5(0.51) Balance 
AlZnMg2CaFeSi 8 (7.7) 3 (2.9) 2(1.9) 0.5(0.52) 0.5(0.50) Balance 

The CALPHAD (Calculation phase diagram) approach implemented in Thermo-Calc 
software (Version 3.1, TCAl4 Al-based alloy database, Thermo-Calc Software AB, 81 
Stockholm, Sweden) [21] was employed for analysis of phase composition and solidifica-
tion behaviour. It was also used for substantiating the alloy content and heat treatment 
route, shown further in the results section. 

The experimental alloys were prepared by the melting route in an electric resistance 
furnace, Nabertherm K 1/13 (Nabertherm GmbH, 71 Lilienthal, Germany), using a 500 g 
capacity graphite crucible. The melting was carried out in an air atmosphere, without the 
addition of protective gas. High-purity (99.99%) and commercially pure (99.9%) alumi-
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num were employed as starting materials for Fe- and Si-free alloys and other alloys, re-
spectively. Following the melting of the aluminum bulk, master alloys Al15%Ca, 
Al10%Fe, and Al10%Si were added with continuous manual stirring down to their disso-
lution. Then, pure Zn (99.99%) and Mg (99.99%) were added, followed by homogenization 
for 15 min at 730–750 °C, skimming, and pouring into a steel mould 15 × 60 × 180 mm. The 
cooling rate was approximately 40 °C/s, as it was estimated by a single-thermocouple 
plugged into an AKTAKOM-2006 recording unit. The latter technique was also used for 
thermal analysis of the ~50 g samples slowly cooled in the furnace atmosphere. 

Heat treatment of the samples included two-step annealing (450 °C, 3 h + 520 °C, 3 h) 
and quenching in water (hereinafter referred to as T4), which will be approved in the re-
sults section. Ageing was performed as isochronal low-temperature exposure at 175°C for 
3 h that corresponded to the T6 condition [19,20]. The microstructure was examined in as-
cast and T4 conditions by scanning electron microscopy (SEM, TESCAN VEGA3), with an 
electron microprobe analysis system (EMPA, Oxford Instruments) and Aztec software. 
The samples were prepared by polishing with diamond suspension and electrochemical 
etching (6 C2H5OH, 1 HClO4, 1 glycerin). To control the properties evolved, Vickers’ hard-
ness test at a load of 10 g (0.1 N) and 15 s dwell was used. 

3. Results 
3.1. Principles of the Alloy Design 

Before starting on the experimental investigations, the approaches to designing novel 
alloys will be briefly clarified. In general, the main principles were taken from [8,14,16], 
which described a highly consistent action for increasing impurities by developing multi-
phase eutectic structures. In these works, they proposed searching for existing eutectic 
mixtures, including differentiated Fe-bearing phase Al8Fe2Si, Al9FeNi, and Al16Fe4Be3Si2, 
along with (Si) or Mg2Si available in particular alloys based on Al-Fe-Mg-Si, Al-Fe-Ni-Si, 
and Al-Fe-Be-Mg-Si. Moreover, there are some recent works on Al-Ca-Fe-Si alloys con-
taining an (Al)+Al4Ca+Al10CaFe2+Al2CaSi2 eutectic mixture. Regarding the essential for-
mation of multiphase eutectic, it is stipulated by substantial differentiation of the structure 
due to the increase in the net volume fraction of the eutectic phases, and providing a sim-
ilar effect as due to an increase in cooling rate. Indeed, the latter must also be controlled 
as a part of the tuning solidification behaviour that must provide an appropriate structure, 
compatible with further treatment. The next step after solidification is the homogenization 
treatment for stress relief, dissolving of non-equilibrium phases, and favourable shaping 
of the insoluble phases. The latter, for example, is widely used in 6xxx alloys for the β-Fe 
phase to α-Fe phase transformation, and the efficiency is dependent on the initial phase 
morphology. Schematic structure evolution in two-phase and three-phase eutectic alloys 
is presented in Figure 1. 
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Figure 1. Schematic view of the two-phase and three-phase eutectics in as-cast and annealed con-
ditions. 

While the smooth surface of a needle- or plate-like Al3Fe and Al5FeSi phases is not 
stable against heating (even near solidus), the curved skeleton-like phases, particularly 
A10CaFe2 and Al2CaSi2, may be fragmented or even spheroidized after exposure to 450–500 °C, 
due to far higher surface energy. Ultimately, the methods we followed for neutralization 
of the harmful recycling-originated Fe and Si impurities were as the following: (1) appro-
priate alloying and solidification conditions for achieving a multiphase eutectic with 
curved intermetallics inside, and (2) substantial heating near solidus for achieving globu-
lar and uniformly distributed intermetallics, favouring ductility at metal formation. 

3.2. Substantiation of the Alloying Content and Heat Treatment Route 
When considering Al-Zn-Mg alloys, several works [14–16] used the foregoing prin-

ciples for developing Fe-rich compositions via Ni alloying and providing Al9FeNi phase 
formation. While the results were successful, the alloying approach may not be described 
as sustainable for practical applications, as nickel is an expensive element. Calcium is 
abundant in the Earth’s crust and also very versatile in aluminide formation, specifically 
Al10CaFe2 and Al2CaSi2, favouring flexibility in recycling-tolerant Al-Zn-Mg-Ca alloy de-
sign. Based on the available information [17–20], seven phases containing Ca, Fe, and Si 
((Al, Zn)4Ca, Al10CaFe2, Al2CaSi2, Al3Fe, Al8Fe2Si, Al5FeSi, and Mg2Si) may be in equilib-
rium with (Al) in the alloys of the considered system. The most probable distribution of 
the elements among these phases is given in Table 2. It can be seen that Ca, Fe, and Si 
additives do not form precipitates. Therefore, the hardening effect of the multi-component 
alloy depends on the concentrations of Zn and Mg in (Al) before ageing (after quenching). 

Table 2. Distribution of elements among phases in the Al-Zn-Mg-Ca-Fe-Si alloys. 

Phases 
Element 

Al Zn Mg Ca Fe Si 
Phases forming during solidification 

(Al,Zn)4Ca + + - + - - 
Al10CaFe2 + - - + + - 
Al2CaSi2 + - - + - + 

Al3Fe + - - - + - 
α-Fe (Al8Fe2Si) + - - - + + 
β-Fe (Al5FeSi) + - - - + + 

Mg2Si - - + - - + 
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T (Al2Mg3Zn3) + + + - - - 
M (MgZn2) - + + - - - 

Precipitates 
T (Al2Mg3Zn3) + + + - - - 

M (MgZn2) - + + - - - 

Unfortunately, the currently available CALPHAD databases do not count the exist-
ence of the Al10CaFe2 phase and the solubility of Zn in the (Al, Zn)4Ca phase. However, as 
our previous research on Al-Zn-Mg-Ca-Fe alloys [19] showed, the foregoing phases may 
appear as a result of non-equilibrium solidification induced by the casting cooling rate, 
while slow-cooled samples included Al3Fe intermetallics. This case is quite similar to Al-
Fe-Mg-Si alloys, which may exhibit the Al8Fe2Si phase instead of the Al5FeSi phase upon 
an accelerated cooling rate [8]. Having said that, the calculation data must be strongly 
supported by experimental evaluation. Preliminary, we provide several principles sup-
ported by our previous research on Al-Zn-Mg and Ca-rich aluminum alloys and CAL-
PHAD calculation: 
(1) Zn and Mg must provide a more than sufficient hardening after solid solution treat-

ment and ageing. With regards to further practical applications, their amount (8 wt.% 
and 3 wt.%) was chosen from concentrations in the established ultra-high-strength 
7085 alloy and our previous studies. For example, the latter showed that excessive 
Zn (>10 wt.%) may bring a lowering of equilibrium solidus and further grain-bound-
ary melting after homogenizing annealing at 500 °C. Additionally, several works [22–24] 
have revealed that an increase in Zn content over 9 wt.% causes a decrease in ductil-
ity, rather than an increase in strength. When considering Mg, the content chosen 
was the maximum for commercial alloys [25]. An increase in Mg is practically used 
for increasing hot tearing resistance, while the toughness, essential for wrought al-
loys, may be tuned by lowering the Mg:Zn ratio. In addition, as is shown in Figure 2a 
both Zn and Mg remarkably narrow the area of (Al) solidification. However, Zn acts 
in a slightly stronger manner and may bring some risks regarding an unacceptable 
primary solidification of intermetallics. 

(2) Ca provides the formation of the eutectic-origin phases, which may also include Fe 
and Si (Al10CaFe2, Al2CaSi2). An increase in the Ca content may bring far more bene-
fits in improving density, corrosion resistance, and casting properties. However, to 
the best of our knowledge, the Ca content must be controlled down to 2 wt.% due to 
limitations in industrial emission spectrometry for chemical analysis. Besides, the 
higher the Ca, the lower the Zn in (Al), due to the incrementing (Al, Zn)4Ca phase, 
bringing a loss of strength. In addition to the primary solidification, an increase in Ca 
from 1 wt.% to 2 wt% shifts the equilibrium line Al3Fe/(Al) by 0.12 wt.%. Hence, fur-
ther Ca alloying may bring Fe-bearing primary phase at a given Fe and Si content. 

(3) Fe and Si contents each of 0.5 wt.% were chosen for the sake of sustainability, provid-
ing opportunities to use commercially pure primary aluminum (Fe + Si < 0.5 wt.%), 
packing, or electrical scrap of grades like 1100 and 8176 (Fe + Si < 1 wt.%). Indeed, 
these elements aggravate the performance of the alloy mainly due to the possible 
formation of adverse Al3Fe and Mg2Si phases. According to preliminary calculations, 
even if the formation of the Al8Fe2Si could be achieved by an increase in Si content, it 
also would lead to excessive Mg2Si phase and lowering of the effective Mg in Al. In 
this respect, based on our previous studies we advocated speculating on the benefi-
cial Ca effect for favouring the microstructure due to the formation of ternary phases. 
According to the polythermal section displayed in Figure 2b, the multicomponent 

Al-Zn-Mg-Ca-Fe-Si alloys undergo complicated phase transformations during equilib-
rium solidification included mainly eutectic-based precipitations from the liquid and fur-
ther solid-state transformations including the formation of T and M phases and Mg2Si 
phases. 
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(a) 
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Figure 2. Calculation phase diagram (CALPHAD) calculation results: (a) liquidus projections of the Al-Zn-Mg-Ca-Fe-Si 
system at 8–10% Zn, 3–4%Mg, 1–2% Ca; (b) polythermal section of the Al-Zn-Mg-Ca-Fe-Si system at 8% Zn, 3% Mg, 1% 
Ca and 1% (Fe + Si). 

By varying Fe:Si ratio it is possible to extend the cooling ranges for the Al3Fe (or pref-
erably Al10CaFe2) phase or Al2CaSi2 phase formation. Moreover, this ratio influences the 
Mg2Si solid-state transformation in the five-phase field (Al)+Al3Fe+ 
Al2CaSi2+Al4Ca+Mg2Si. However, the latter is not expected as it would require the decay 
of the Al2CaSi2 phase, impossible due to the low diffusion of Ca. Moreover, the formation 
of the Mg2Si in Al-Mg-Ca-Si alloys proceeds via peritectic reaction, 
L+Al2CaSi2→(Al)+Al4Ca+Mg2Si [17], which might be suppressed in actual solidification 
conditions. As we chose equal concentrations of 0.5% Fe and 0.5% Si, cooling range equal-
ity (~40 °C) between Al3Fe (Al10CaFe2) and Al2CaSi2 precipitations was expected. Indeed, 
it was preferable to obtain cast samples completely solidified at ~540 °C (equilibrium sol-
idus, the green line in Figure 2b), according to the equilibrium path in the 
(Al)+Al3Fe(Al10CaFe2)+Al2CaSi2+Al4Ca((Al, Zn)4Ca) phase field. In that sense, the alloy 
would have excellent casting properties and may be compatible with high-temperature 
homogenization for shape tuning of the intermetallics. However, under non-equilibrium 
(actual) solidification conditions, the alloy remains liquid until the precipitation of T and 
M phases at ~480 °C (non-equilibrium solidus, the red dotted line in Figure 2b). This was 
calculated by Scheil–Gulliver simulation, which confirmed that the solidification range 
increases from ~80 °C to ~140 °C due to the formation of the non-equilibrium eutectic. This 
path is a key technological factor in 7xxx alloys, determining their service temperatures 
and limited casting properties. It should be mentioned that the latter may be improved by 
the addition of eutectic-forming elements like Ca, due to crack-healing factors and the 
reduction in effective solidification range, as is shown in [26]. 

Summing up the calculation results, in terms of alloys design, we chose the alloying 
content that provided a sufficiently high solidus temperature, which is achieved only in 
equilibrium conditions. This factor forced us to use a two-step annealing mode. According 
to the results of the thermal analysis, the actual temperatures were consistent with the 
calculated ones (Table 3). This follows the rules, as the increase in alloying content leads 
to a decrease in liquidus and formation of the curvatures related to phase precipitations. 
It can be noticed, that AlZnMg2CaFeSi does not show the formation of the non-equilib-
rium eutectic, which was probably due to excessive Ca content and extended dissolving 
Zn in the (Al, Zn)4Ca phase; unfavourable to further solid solution and age-hardening. 
Nevertheless, the results allowed us to profoundly substantiate the chosen heat treatment 
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route including two-step annealing 450 °C, 3 h + 520 °C, 3 h, which also proved to be 
efficient in our previous studies. The first step aims to dissolve the non-equilibrium Zn- 
and Mg-bearing non-equilibrium eutectic (mainly, T and M phase mixture) and falls into 
the (Al)+Al3Fe(Al10CaFe2)+Mg2Si+Al4Ca((Al, Zn)4Ca) field in the polythermal section. The 
second step ensures the absence of the Mg2Si since it falls into the 
(Al)+Al3Fe(Al10CaFe2)+Al2CaSi2+Al4Ca((Al, Zn)4Ca) phase field, and might be effective in 
shape tuning of the insoluble intermetallics with Ca, Fe, and Si up to their spheroidization. 

Table 3. Transformation temperatures in the model alloys, as determined by calculation and direct thermal analysis. 

Alloy 
Phase Transformation Temperatures (Calculation/Experimental), °C 1 

L1 Al3Fe 2 Mg2Si Al4Ca 3 Al2CaSi2 T NS 2 ES 2 
AlZnMg 632/628     483/474 482 559 

AlZnMgFeSi 627/623 615/613 564/561   480/471 474 560 
AlZnMg1Ca 626/623   566/589  482/470 478 545 
AlZnMg2Ca 619/617   578/594  482/468 477 540 

AlZnMg1CaFeSi 620/616 610/- 526/- 559/- 589/585 482/468 477 538 
AlZnMg2CaFeSi 613/610 605/- 526/- 574/- 591/598 481/- 478 535 
1 L—liquidus; NS—non-equilibrium solidus; ES—equilibrium solidus; 2 Al10CaFe2 as expected in actual solidification con-
ditions; 3 (Al, Zn)4Ca as expected in actual solidification conditions. 

3.3. Samples in As-Cast and Heat-Treated Conditions 
As the AlZnMg, AlZnMg1Ca, and AlZnMg2Ca were substantially considered in [20] 

and showed intrinsic as-cast microstructures consistent with (Al)+T and (Al)+T+(Al, 
Zn)4Ca phase compositions, these alloys were considered as counterparts in hardness 
measurements to those containing Fe and Si. The microstructure of the as-cast AlZ-
nMgFeSi alloy (Figure 3a) exhibited clearly defined T phase as bright veins intrinsic to 
7xxx alloys, Mg2Si phase as dark faceted plates, and α-Fe phase as Chinese-script constit-
uents. Indeed, the presence of the latter was not consistent with the calculations, probably 
due to non-equilibrium solidification conditions, but it is still much more favourable than 
the Al3Fe phase. However, the morphology of the α-Fe phase in some places was quite 
needled and its prevalent size was more than 20 μm, which is believed to be incompatible 
with further annealing-induced fragmentation. Generally, if both Mg2Si and α-Fe do not 
show spheroidization after heat treatment, they will certainly aggravate the ductility, as 
well as strength, due to lowering the saturation of (Al). On the contrary, the addition of 
1% and 2% Ca promotes a sufficient change in the microstructure, which is displayed in 
Figure 3b,c in the as-cast AlZnMg1CaFeSi and AlZnMg2CaFeSi alloys. It is striking that 
no Mg2Si appeared, and thus most Si was likely bonded into the Ca-containing phase. As 
is shown in [20], the Al2CaSi2 may have a coarse faceted morphology specifically in Al-Zn-
Mg alloys containing 2% Ca. The presented results also show a significant coarsening of 
the structure in the AlZnMg2CaFeSi alloy compared to the AlZnMg1CaFeSi alloy. Hence, 
the latter may have the best response to annealing tuning, since it presents the curved 
intermetallics with the least linear size. It is prominent that the coarsest area presented 
magnified in Figure 4a included no Fe, but Ca, Zn, and Si corresponded to the (Al)+T+(Al, 
Zn)4Ca+Al2CaSi2 eutectic mixture. When considering the phase composition of the AlZ-
nMg1CaFeSi alloy that is supported by the elemental maps, Zn is distributed among (Al), 
T, and (Al, Zn)4Ca as a dominant element along with Ca. The latter turned out to be suc-
cessful for binding all the silicon, resulting in the absence of the Mg2Si phase, while for 
iron its effect was ambiguous because there was a clearly defined Al3Fe phase (specified 
by a triangle in Figures 3b and 4b), and Ca-rich particles probably were Al10CaFe2 phase 
(specified by a circle in Figures 3b and 4b). Summing up the analysis of the as-cast struc-
tures, the most promising alloy, AlZnMg1CaFeSi, was not as perfect as aligned as in the 
section on the design principles, but outperformed the Ca-free and 2%-Ca bearing coun-
terparts in the size of intermetallics and their morphology. 
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(a) (b)  (c) 

Figure 3. The microstructure of the experimental alloys in an as-cast condition: (a) AlZnMgFeSi alloy; (b) AlZnMg1CaFeSi 
alloy (1: area for magnification, see Figure 4a, 2: area for EMPA analysis, see Figure 4b); (c) AlZnMg2CaFeSi. 

  
(a) (b) 

Figure 4. Specific analysis of the as-cast AlZnMg1CaFeSi alloy microstructure: (a) magnified section showing the Ca-con-
taining eutectic mixture; (b) EMPA elemental mapping on Zn, Ca, Fe, and Si. 

The two-step annealing and further quenching of experimental alloys resulted in a 
complete dissolution of the T phase in (Al). As a result, the base AlZn1Mg alloy becomes 
a single-phase one, and in other alloys, there was a certain amount of particles containing 
Ca, Fe, and Si, since these elements are almost insoluble in (Al). The effect of heat treat-
ment on the morphology of these particles was different. When it comes to Fe and Si-free 
alloys, they exhibited a favourably spheroidized structure, which may be observed in [20]. 
The structure of the AlZnMgFeSi includes the Mg2Si phase of a globular morphology, and 
the Chinese-script α-Fe phase was not sufficiently modified (Figure 5a). The microstruc-
ture of the AlZnMg1CaFeSi alloy was more favourable since the particles were distributed 
more uniformly (Figure 5b). The total number of eutectic particles in this alloy decreased 
in comparison with the cast state (compare Figures 3b and 5b), primarily due to the dis-
solution of the T phase. At the same time, the (Al, Zn)4Ca phase was retained in the struc-
ture but acquired a globular morphology. The Fe- and Si-rich phases showed a faceted 
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shape, but their size was comparable to that of (Al, Zn)4Ca particles, which was most likely 
due to fragmentation upon exposure at 520 °C. 

The analysis of hardening showed that the (Al, Zn)4Ca phase brought a decrease in 
effective Zn content in (Al) and a weakening of ageing response in AlZnMg1Ca, AlZ-
nMg2Ca, and AlZnMg2CaFeSi alloys (170–180 HV in T6) in comparison to the base AlZ-
nMg alloy (~200 HV in T6). A quite similar result was demonstrated for AlZnMgFeSi (185 
HV in T6) due to the formation of insoluble Mg2Si phase, along with lowering of the ef-
fective Mg solubility. On the contrary, joint alloying with 1% Ca, Fe, and Si provided ap-
propriate strengthening (195 HV in T6), probably due to a decrease in the amount of (Al, 
Zn)4Ca and binding of Ca with Fe and Si-bearing phases. 

 
(a) 

 
(b) 

Figure 5. The microstructure of the experimental alloys in the T4 condition: (a) AlZnMgFeSi alloy; (b) AlZnMg1CaFeSi 
alloy. 

3.4. Deformation and Recycling Feasibility 
As is known, the main aggravating effect of Fe and Si in 7xxx alloys is a marked 

reduction in ductility. For ensuring appropriate plasticity upon rolling, we conducted hot 
rolling in a solute condition provided by a temperature of 400 °C. It is shown in Figure 6 
that the base alloy and both alloys AlZnMgFeSi and AlZnMg1CaFeSi showed quite a sim-
ilar performance under a hot rolling reduction of ~80%. It may be speculated that as the 
base alloy was rolled in a high ductility solute condition, the AlZnMgFeSi alloy was suc-
cessful due to effective breaking of the Chinese-script particles, and the AlZnMg1CaFeSi 
did not yield as the very fine microstructure provided a uniform load distribution along 
with the bulk. Contrarily, the AlZnMg2CaFeSi alloy cracked at a reduction of 60%, which 
was most probably due to its coarse structure. 
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Figure 6. Experimental sheet products. 

When it comes to recycling feasibility, it is mostly dependent on the shape of Fe- and 
Si-bearing intermetallics obtained in the homogenized ingot and final wrought product. 
The structure of the ingot must favour efficient rolling or extrusion with a high reduction 
ratio and surface quality in the product. Ultimately, the comparison between AlZnMgFeSi 
and AlZnMg1CaFeSi reveals the efficiency of joint Ca, Fe, and Si alloying in obtaining a 
fine microstructure before metal formation comparable to homogenized 6xxx billets man-
ufactured by DC casting. The latter may bring higher cooling rates and uniformity in the 
structure, due to controlled solidification conditions. As for 6xxx alloys, they are recog-
nized as the main pillars of recyclable aluminium alloys. We analyzed one of the most 
representative, 6063 alloy (Al-0.45Mg-0.43Si-0.37Fe-0.1Cu-0.07Mn-0.02Ti), as supplied by 
JSC Aluminum Alloys Plant (Podolsk, Russia), and formulated from secondary stock, like 
wheels, taint tabor scrap, and drinking cans. Additionally, conductor 1xxx alloys were 
used for dilution and achieving the nominal grade. First, the alloy’s composition is very 
suitable to be the basis for an AlZnMg1CaFeSi model alloy. Despite the 6063 type grades 
having a very low strength performance (UTS~200 MPa), they are widespread in fields 
like construction and automotive, their stream is huge and so appealing to be recycled 
into high-strength aluminum alloys. When comparing the as-cast structures of the AlZ-
nMg1CaFeSi alloy (Figure3b) and 6063 alloys (Figure 7a), we noticed that the latter con-
tains far fewer intermetallics and that they are mostly needle-shaped related to β-Fe. How-
ever, after homogenizing and annealing at 560 °C for 9 h, there is an immense change due 
to the spheroidization (Figure 7b). The structure qualitatively resembles the pattern pre-
sented in Figure 5b of the AlZnMg1CaFeSi alloy in T4 condition and is intrinsic to current 
recycling-tolerant wrought aluminum alloys. Summing up, it may be preliminary con-
cluded that the new Al-Zn-Mg-Ca-Fe-Si shows promise for being efficiently formulated 
from Fe- and Si-rich aluminum scrap, including 6xxx series, conductors, and other low-
alloyed Al-Fe-Si grades. 
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(b) 

Figure 7. The microstructure of the 6063 alloy as supplied by JSC Aluminum Alloys Plant (Podolsk, Russia): (a) as-cast 
condition; (b) annealed condition. 

4. Conclusions 
In this study, we described an approach to design recycling-tolerant Al-Zn-Mg-Ca aluminum 

alloys, carried out an experimental study on the Al-Zn-Mg-Ca-Fe-Si alloys, and chose the most prom-
ising one, which was then briefly compared with commercial counterparts. The main conclusions 
are as follows: 
1. Recycling-tolerant Al-Zn-Mg-Ca aluminum alloys may be formulated via appropriate alloying 

and solidification conditions provided they have an as-cast structure including multiphase eu-
tectic with differentiated insoluble intermetallics, which must contain impurities of recycling 
origin, primarily, Fe and Si. Accordingly, the solidification path and solidus temperature must 
provide the opportunity for high-temperature heat-treating aimed at tuning the shape of the eu-
tectic phase for favouring performance. 

2. The phase composition and solidification path of the Al-Zn-Mg-Ca-Fe-Si alloys showed the pres-
ence of multiphase eutectic (Al)+Al3Fe+Al2CaSi2+Al4Ca under equilibrium solidus of 540 °C. 
However, a first annealing step at 450 °C was required for the dissolving of the non-equilibrium 
eutectic solidified at ~480 °C. 

3. In comparison to AlZnMgFeSi and AlZnMg2CaFeSi, the AlZnMg1CaFeSi exhibited a sufficiently 
fine as-cast structure, including differentiated constituents of equilibrium origin Al3Fe, Al10CaFe2, 
Al2CaSi2, and (Al.Zn)4Ca. After two-step annealing and quenching they were mostly spheroi-
dized, and the non-equilibrium T phase was dissolved in (Al). 

4. A synergetic Ca, Fe, and Si effect on the hardening was described. While the Al-Zn-Mg-Ca alloys 
lose their performance due to Zn dissolution in (Al, Zn)4Ca phase, joint Ca, Fe, and Si alloying 
promotes the formation of additional Ca-bearing phases and the increase in effective solute Zn 
in (Al). The AlZnMg1CaFeSi in the T6 condition possessed a similar hardness value as the base 
AlZnMg alloy (195 HV vs. 200 HV). 

5. The composition of the AlZnMg1CaFeSi alloy may serve as a sufficient basis for the design of 
new high-strength recycling-tolerant wrought aluminum alloys, since it shows good microstruc-
ture, similar to that of 6xxx alloys, excellent hardening response, appropriate processability at 
metal formation, and may be formulated from Fe- and Si-rich aluminum scrap. 
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