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Abstract: Satellite precipitation products (SPPs) are undeniably subject to uncertainty due to retrieval
algorithms and sampling issues. Many research efforts have concentrated on merging SPPs to create
high-quality merged precipitation datasets (MPDs) in order to reduce these uncertainties. This study
investigates the efficacy of dynamically weighted MPDs in contrast to those using static weights. The
analysis focuses on comparing MPDs generated using the “dynamic clustered Bayesian averaging
(DCBA)” approach with those utilizing the “regional principal component analysis (RPCA)” under
fixed-weight conditions. These MPDs were merged from SPPs and reanalysis precipitation data,
including TRMM (Tropical Rainfall Measurement Mission) Multi-satellite Precipitation Analysis
(TMPA) 3B42V7, PERSIANN-CDR, CMORPH, and the ERA-Interim reanalysis precipitation data.
The performance of these datasets was evaluated in Pakistan’s diverse climatic zones—glacial, humid,
arid, and hyper-arid—employing data from 102 rain gauge stations. The effectiveness of the DCBA
model was quantified using Theil’s U statistic, demonstrating its superiority over the RPCA model
and other individual merging methods in the study area The comparative performances of DCBA
and RPCA in these regions, as measured by Theil’s U, are 0.49 to 0.53, 0.38 to 0.45, 0.37 to 0.42, and
0.36 to 0.43 in glacial, humid, arid, and hyper-arid zones, respectively. The evaluation of DCBA and
RPCA compared with SPPs at different elevations showed poorer performance at high altitudes
(>4000 m). The comparison of MPDs with the best performance of SPP (i.e., TMPA) showed significant
improvement of DCBA even at altitudes above 4000 m. The improvements are reported as 49.83%
for mean absolute error (MAE), 42.31% for root-mean-square error (RMSE), 27.94% for correlation
coefficient (CC), 40.15% for standard deviation (SD), and 13.21% for Theil’s U. Relatively smaller
improvements are observed for RPCA at 13.04%, 1.56%, 10.91%, 1.67%, and 5.66% in the above
indices, respectively. Overall, this study demonstrated the superiority of DCBA over RPCA with
static weight. Therefore, it is strongly recommended to use dynamic variation of weights in the
development of MPDs.

Keywords: precipitation estimation; merged precipitation datasets; dynamic clustered Bayesian
averaging (DCBA); regional principal component analysis (RPCA); regional- and elevation-based
evaluation
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1. Introduction

Precipitation is essential to the dynamics of the hydrological cycle, influences global
climate change, and is a critical factor in environmental research [1–3]. In the realm of
hydrological modeling and climate change studies, the accuracy and precision of precipi-
tation estimation are paramount. Despite this, dealing with the significant variations in
precipitation over time and space in countries with topographies as complicated as Pakistan
is a challenging task [4]. Consequently, a comprehensive understanding of the spatial and
temporal distribution of precipitation is crucial. Detailed precipitation data, capturing the
variability across different scales, are indispensable for effective water resource planning
and management. These data are instrumental in developing flood forecasting models,
designing irrigation systems, and formulating adaptive strategies to cope with the impacts
of climate variability and change. This understanding aids in the effective evaluation
of water management strategies and facilitates the planning of various socio-economic
endeavors [5].

The primary sources of precipitation estimation include rain gauges (RGs), weather
radars, satellites, and atmospheric reanalysis products [6]. The precipitation records ob-
tained at traditional RGs are the most accurate point-scale precipitation estimations. Nev-
ertheless, the considerable variability in precipitation over space and time, coupled with
the limited distribution of rain gauges (RGs), poses substantial challenges in precisely
recording the spatial and temporal variations in precipitation [7,8]. Satellite precipitation
products (SPPs) and reanalysis precipitation datasets, on the other hand, are the only
sources of precipitation that provide homogenous regional- and global-scale estimates.
In the past three decades, satellite precipitation products (SPPs) have emerged as a cost-
effective and reliable means for measuring precipitation on both regional and global scales.
The observed efficiency can be largely attributed to the swift progress in remote sensing
methodologies, coupled with ongoing improvements in the algorithms employed for ex-
tracting precipitation data from satellite imagery [8–10]. In parallel to these developments,
the field of satellite-based precipitation measurement has seen substantial advancements,
particularly with the incorporation of new sensor technologies and improved data analysis
methods. The integration of diverse passive and active remote sensing techniques, ranging
from ground-based observations to advanced satellite systems, has markedly enhanced
the accuracy and reliability of precipitation data. Significant progress has been made in
refining the capabilities of satellites to monitor various precipitation patterns, including
those in cold-season scenarios. The introduction of novel sensors and missions, such as the
Advanced Microwave Scanning Radiometer (AMSR-3) on the Global Observing Satellite
for Greenhouse Gases and Water Cycle (GOSAT-GW) and the Earth Cloud, Aerosol and
Radiation Explorer (EarthCARE) W-band radar, promises further advancements in our
ability to accurately monitor and analyze precipitation worldwide. These technological
innovations are pivotal in enhancing our understanding of the hydrological cycle and are
invaluable for regions with limited ground-based observations [11]. Significant progress
has been made in techniques for estimating precipitation through satellites, resulting in
improved precision and expanded range. Meteorological satellites in low Earth orbit
(LEO), managed by organizations such as United States National Oceanic and Atmospheric
Administration (NOAA) and National Aeronautics and Space Administration (NASA),
have grown increasingly essential for analyzing precipitation on both global and regional
scales, particularly in areas where ground-based measurements are limited. These satel-
lites, equipped with advanced sensors and sophisticated algorithms, significantly enhance
precipitation data retrieval. The combination of active and passive microwave sensing
technologies, along with the creation of innovative tools, such as the Advanced Microwave
Scanning Radiometer (AMSR-3) and the EarthCARE W-band radar, has demonstrated
potential in monitoring various precipitation patterns, encompassing those prevalent in
cold-season scenarios [11]. Additionally, the Time-Resolved Observations of Precipitation
structure and storm Intensity with a Constellation of Smallsats (TROPICS) mission is set to
improve global revisit times, which is critical for understanding phenomena like tropical



Water 2024, 16, 597 3 of 26

cyclone intensification [12]. These technological advancements significantly enhance the
reliability of precipitation data, which is crucial for accurate hydrological modeling and
climate research. There are a number of SPPs available to the public that have been exten-
sively used in many studies including water resource management [13,14], hydrological
modeling [15–19], and extreme events analysis [16,20–23].

Despite this, it is impossible to completely eliminate the possibility of mistakes in any
of the SPPs because of the retrieval algorithms and sampling problems. Moreover, the
climate of the region, topography, altitude, seasonality, and many other factors are also
responsible for the high uncertainties associated with individual SPPs [24–27]. Several
researchers have concentrated their efforts on combining various SPP datasets in order
to produce precipitation products of superior quality in an effort to reduce the impact of
these uncertainties [28,29]. These MPDs are developed using two different approaches,
i.e., fixed and dynamic varying SPP weights. The dynamic variation of weights means to
vary the weights both in space and time to account for the varying performances of SPPs
spatiotemporally. For instance, Rahman, Shang [4] and Muhammad et al. [29] developed
MPDs using the fixed-weight approaches. Rahman, Shang [4] merged two of the best SPPs,
namely Tropical Rainfall Measuring Mission (TRMM) Multi-satellite Precipitation Analysis
(TMPA) and Global Precipitation Measurement (GPM)-based Integrated Multi-Satellite
Retrievals for GPM (IMERG), using principal component analysis (PCA) and sample t-test
comparison methods. Their findings showed an increase in estimated precipitation and
reduced uncertainty in a variety of climate zones. Using the leave-one-out cross-validation
(LOOCV) method, Muhammad et al. [29] constructed MPD by assigning weights to the
IMERG research (IR), IMERG real-time (IT), and TRMM 3B42 (RT) models. Based on the
findings, it was determined that MPD displayed a higher level of agreement with RGs than
certain particular SPPs.

Researchers suggested the dynamic variation of weights with time, and the weights
are varied both in space and time using the moving averaging technique by collecting
estimations of the average precipitation over 40 days [6]. Recently, Rahman, Shang [26]
and Rahman and Shang [30] merged four SPPs using DCBA and dynamic Bayesian model
averaging (DBMA) across four climate (glacial, humid, arid, and hyper-arid) zones of
Pakistan. Each of the studies documented a notable enhancement in performance along
with a considerable decrease in uncertainties. The dynamic Weighted Average Least Square
(WALS) and dynamic Regional Weighted Average Least Square (RWALS) MPDs developed
by Rahman, Shang [10] and Rahman and Shang [30], respectively, depicted significant
improvements in precipitation estimation compared to DBMA and DCBA MPDs.

Baez-Villanueva et al. [31] use the Random Forest-based Merging Procedure (RF-MEP)
to merge the gridded precipitation products. The merged precipitation products demon-
strated enhancements in the linear correlation, bias, and variability of precipitation at
various temporal scales, in addition to improvements in the probability of detection, false
alarm ratio, frequency bias, and critical success index for distinct precipitation intensities.
Estimating precipitation with precision from satellite observations at elevated spatiotempo-
ral resolutions across the Tibetan Plateau (TP) continues to present a formidable task. A
dynamic Bayesian model averaging (BMA) algorithm was used to merge multiple satellite
products [6]. The dynamic BMA approach exhibited superior performance when compared
to the individuals at 15 validation sites. Furthermore, BMA has demonstrated its robustness
in seasonality, topography, and other parameters, surpassing traditional ensemble methods,
such as simple model averaging (SMA) and one outlier removal (OOR). The integration of
convolutional neural networks (CNN) and long short-term memory (LSTM) networks in
this model has demonstrated notable enhancements in the precision of precipitation esti-
mates across China. It has effectively reduced errors and substantially increased correlation
coefficients [32]. These developments not only improve the accuracy of quantitative precip-
itation estimates but also generate datasets with greater resolution and precision. This is
advantageous for a range of applications, such as water research and management [32]. A
novel double machine learning (DML) approach has been presented to combine several
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SPPs and gauge data, demonstrating its reliability and validity over the Chinese mainland,
in addition to the CNN-LSTM model. This methodology, employing a fusion of random
forest (RF) classification and diverse machine learning regression models, surpasses conven-
tional single machine learning (SML) algorithms and linear merging techniques [33]. The
DML algorithms have exhibited exceptional efficacy in identifying precipitation events and
enhancing the precision of MPDs, signifying a noteworthy progression in the integration of
satellite and gauge-based precipitation information.

It is crucial to explain why dynamic MPDs should be utilized instead of fixed-weight
MPDs, especially in topographically complicated and climate-diverse areas; it is of great
importance and has not been explicitly answered in the literature. Despite advancements
in satellite-based precipitation estimation, challenges persist, particularly in regions with
complex climates like West Africa. A recent study by Satgé et al. [34] highlighted the
limitations of satellite precipitation products (SPPs) in regional climate monitoring. The
study underscored the need for continuous updates and improvements in SPPs to enhance
their accuracy and reliability. These improvements are critical for regional climate institu-
tions like AGRHYMET RCC-WAS, which monitors rainfall across West and Central Africa,
emphasizing the value of SPPs in providing early rainfall warnings. The research high-
lighted the importance of high spatial resolution satellite products for accurate and timely
rainfall monitoring, thus contributing to effective climate risk management in diverse
geographical regions.

This study addressed the above question by comparing a dynamic MPD (i.e., DCBA)
to a fixed-weight MPD (i.e., RPCA) at the regional scale. The regional-scale assessment
highlighted the role of topography and varying climates in the performance of SPPs and
MPDs. The study used four SPPs to develop both MPDs. The MPDs are evaluated using
daily data from 102 rain gauges (RGs) in Pakistan for a period of sixteen years (2000–2015).

2. Materials and Methods
2.1. Study Area

Situated in South Asia’s western part, Pakistan spans a geographical expanse between
latitudes 23.5◦ N and 37.5◦ N and longitudes 62◦ E and 75◦ E, covering an area of approx-
imately 803,940 km2 [35,36]. The country’s landscape is characterized by its remarkable
diversity, ranging from the famous peaks of the Hindukush, Karakoram, and Himalayas
(HKH) in the north to its southern deserts. The elevation in Pakistan varies significantly,
reaching as high as 8600 m in the HKH mountains and descending to sea level at the
Arabian Sea in the extreme south [10,35]. Geographically, Pakistan shares its northern
boundary with China, its eastern border with India, and the southern frontier is along the
Arabian Sea, while Afghanistan and Iran line its western edge (Figure 1). Elevated precipi-
tation levels are observed in the summer, primarily influenced by monsoonal patterns, and
in the winter, as a result of western disturbances [36]. From July to September, the summer
rainfall in Pakistan predominantly originates from the Bay of Bengal, entering the nation
from the eastern and northeastern directions. This period accounts for a significant portion
of the annual precipitation, approximately 55% to 60%. In contrast, the winter precipitation,
occurring from December to March, is attributed to weather systems originating from the
west. These systems approach Pakistan from the northeast and southwest, contributing to
around 30% of the yearly precipitation totals [35,37].
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Figure 1. (a) Topographical elevation in Pakistan based on the Shuttle Radar Topography Model 
(SRTM), (b) classification of Pakistan into four climatic zones showing meteorological stations and 
their serial numbers in each zone (GMS, HMS, AMS, and HAMS represent meteorological stations 
in glacial, humid, arid, and hyper-arid zones, respectively), and (c) mean annual precipitation vari-
ation across Pakistan. 

This research delineates Pakistan into four separate climatic zones (Figure 1b), gla-
cial, humid, arid, and hyper-arid zones. This classification is utilized to assess the efficacy 

Figure 1. (a) Topographical elevation in Pakistan based on the Shuttle Radar Topography Model
(SRTM), (b) classification of Pakistan into four climatic zones showing meteorological stations and
their serial numbers in each zone (GMS, HMS, AMS, and HAMS represent meteorological stations in
glacial, humid, arid, and hyper-arid zones, respectively), and (c) mean annual precipitation variation
across Pakistan.

This research delineates Pakistan into four separate climatic zones (Figure 1b), glacial,
humid, arid, and hyper-arid zones. This classification is utilized to assess the efficacy of
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dynamic MPDs compared to fixed weight MPDs in diverse geomorphological and meteo-
rological conditions. The glacial zone, located at Pakistan’s extreme northern end, has an
average elevation of 4158 m, primarily consisting of glaciers and perennial snow cover. The
glacial zone, pivotal for the nation’s water supply due to its extensive glaciers, is experienc-
ing notable temperature rises. These changes are critical as they directly influence glacial
melt rates, thereby affecting water availability for downstream regions and subsequently
supporting agricultural, domestic, and industrial uses [38]. Such alterations in glacial
dynamics are partly attributed to the significant rise in atmospheric CO2 levels, which
contribute to the overall warming of the climate, affecting not only the glacial but also
the adjoining humid zones [39,40]. In this region, snowmelt during the summer months
serves as a principal water source for the country’s rivers. The humid zone encompasses
the high mountain ranges of the Hindu Kush Himalayas (HKH), which are the source
of the main rivers in the Indus Basin, including the Indus, Kabul, Swat, Chitral, Hunza,
Gilgit, Jhelum, Kurram, and Panjkora rivers. With a mean altitude of 1286 m, the humid
region receives an estimated 852 mm of precipitation per year. Large agricultural sections
of the Punjab province are drained by the Indus River and its tributaries, yet they are
located in an arid zone typified by low-elevation plains (east) and hilly areas (west) [34].
Conversely, the arid and hyper-arid zones present a scenario of escalating temperatures,
which heighten the vulnerability to extreme weather events and pose significant risks to
agricultural productivity, water resources, and human health. In these regions, adaptation
to increasing temperatures and managing scarce water resources are paramount for sustain-
ing livelihoods and mitigating the adverse effects of climate extremes [41,42]. The average
elevation of the area is 633 m, and it receives an average of 322 mm of precipitation per
year. The barren desert regions known as the hyper-arid zone can be found in the south of
Pakistan, close to the Arabian Sea and Iran. Despite a relatively high average altitude of
444 m, the region receives only 133 mm of precipitation per year.

In addition to temperature changes, precipitation patterns across these climatic zones
are also shifting, indicating a complex pattern of climatic variability. Such variability has
profound implications for water resource management, agriculture, and overall ecosystem
services. Studies have shown that while some regions are experiencing a decrease in
precipitation, others may see an increase, further complicating the management strategies
required to address these changes [43,44].

Moreover, the spatial distribution and trends of maximum and minimum temperatures
across Pakistan’s climatic zones have been thoroughly assessed, revealing an intricate pic-
ture of warming trends that have varying impacts on regional climates. These temperature
shifts are particularly pronounced in the northern glacial and mountainous regions, affect-
ing snow and ice melt patterns, which in turn influence water availability for agricultural
and domestic use. The observed warming trends necessitate robust climate adaptation and
mitigation strategies to safeguard water resources and agricultural productivity, ensuring
food security and livelihoods for the population [45,46].

2.2. Ground Observation Datasets

The current study collects daily precipitation data from 102 RGs, 23 from the Pakistan
Meteorological Department (PMD) and 79 from the Water And Power Development Au-
thority (WAPDA). Figure 1b depicts the regional distribution of the RGs employed in this
study. Rain gauges (RGs) are categorized based on their climatic regions; for instance, RGs
situated in glacial, humid, arid, and hyper-arid zones are labeled as GMS, HMS, AMS, and
HAMS, respectively. Table 1 shows the main characteristics of each climate zone, such as
area, mean elevation, mean annual precipitation, and number of RGs.

Precipitation data recorded by rain gauges (RGs) are manually gathered by WAPDA
and PMD, a process susceptible to both human and technical errors. Moreover, RGs at
high altitudes are more likely to have splashing and wind mistakes, which impact the
data’s quality and negatively degrade MPDs’ performance. As a result, PMD and WAPDA
adjust precipitation data in accordance with the World Meteorological Organization code
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(WMO-N). To guarantee the superior quality of collected precipitation data, rigorous
quality control measures, including analyses for skewness and kurtosis, are implemented.
Additionally, any gaps in the data are addressed by employing the zero-order method for
data imputation [4].

Table 1. Main features of the considered climate regions.

Region Glacial Humid Arid Hyper_Arid

Area (km2) 72,774 137,753 270,484 322,929
Mean elevation (m) 4158 1286 633 444
Mean annual precipitation (mm) 348 852 322 133
Number of RGs 19 39 19 25

2.3. Satellite Precipitation Datasets

In order to perform a comprehensive evaluation of the potential and robustness of
a dynamic MPD (DCBA) in comparison to a fixed-weight MPD (RPCA) at the local scale
across four distinct climatic zones in Pakistan, three different satellite precipitation datasets,
including TMPA 3B42-v7, PERSIANN-CDR, and CMORPH, as well as one reanalysis
precipitation dataset (ERA-Interim), have been selected. Several researchers have conducted
in-depth analyses of Pakistan using the specified datasets and published their findings in
the past. A brief description of these datasets is listed below.

2.3.1. TMPA 3B42-v7

The joint efforts of the NASA and the Japan Aerospace Exploration Agency (JAXA)
ended with the TRMM mission, involving the first space-borne precipitation radar. TRMM
provided the legacy dataset for nearly 26 years, providing uninterrupted precipitation
measurements over tropical and subtropical regions since 1997 [37,38]. Two types of TMPA
products are available, namely real time (3B42-RT) and post-real time (3B42-v6/3B42-v7).
The 3B42-RT, an experimental product, becomes accessible approximately 6 to 9 h after real-
time observations. Nevertheless, the post-real-time product is accessible to users around
10 to 15 days following the conclusion of each month. A notable difference between the
real-time and post-real-time products is the incorporation of monthly rain gauge (RG) data,
employed in the 3B42 for bias correction purposes [47,48]. Additionally, for the purpose of
refining the calibration methodology, 3B42-v7 utilizes worldwide real-time precipitation
data from the Global Precipitation Climatology Centre (GPCC). In this research, TMPA
3B42-v7 (hereinafter referred to as TMPA) is employed, providing a spatial resolution of
0.25◦ and spanning the region from 50◦ S to 50◦ N.

2.3.2. PERSIANN-CDR

The PERSIANN-CDR, a dataset derived from satellite observations, provides esti-
mates of global precipitation. The PERSIANN algorithm was developed by the Center
for Hydrometeorology and Remote Sensing (CHRS) at the University of California, Irvine.
The PERSIANN-CDR system forecasts daily precipitation by integrating artificial neural
networks with data from geostationary satellites. It is a part of the PERSIANN series devel-
oped by CHRS, featuring a spatial resolution of 0.25◦ (28 km) and a temporal frequency of
1 day. PERSIANN fine-tunes its neural network parameters by utilizing passive microwave
(PMW) data from sources such as TMI, AMSU-B, and SSM/I, thereby improving the pre-
cision of precipitation estimates. PERSIANN-CDR employs the same neural network as
earlier PERSIANN models, with the notable difference of utilizing GridSat-B1 as the input
infrared (IR) dataset, replacing CPC-IR. However, the core algorithm remains unchanged.
Notably, PERSIANN-CDR does not incorporate PMW data [49]. PERSIANN-CDR has
assisted several sectors, including weather forecasting, hydrological modeling, climate
studies, and disaster management [50,51].
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2.3.3. CMORPH

CMORPH, a product of the Climate Prediction Center (CPC), utilizes motion vectors
based on infrared (IR) technology to enhance the accuracy of precipitation measurements,
which are extracted from passive microwave (PMW) data [39]. The CMORPH algorithm
combines data from various satellites including GOES 8, GOES 10, Meteosat 5, Meteosat 8,
and GMS 5, integrating these with infrared (IR) data. This approach also incorporates pre-
cipitation estimates based on passive microwave (PMW) data from satellites like NOAA’s
polar-orbiting operational meteorological satellites, the Defense Meteorological Satellite
Program (DMSP), and the Tropical Rainfall Measuring Mission (TRMM). CMORPH is dis-
tinguished by its spatial resolution of 0.25◦ and a temporal frequency of every three hours.

2.3.4. Reanalysis Precipitation Product

ERA-Interim, a comprehensive atmospheric reanalysis system, has been developed by
the European Centre for Medium-Range Weather Forecasts (ECMWF). Providing real-time
global atmospheric information since 1979, it boasts a spatial resolution of 0.25◦. The
production of ERA-Interim data relies on a data assimilation framework based on the
Integrated Forecasting System (IFS, Cy31r2) from 2006. This framework employs 4D-Var
(four-dimensional variational analysis) techniques within a 12 h analytical timeframe.
Moreover, ERA-Interim uses a weather forecasting model for precipitation prediction,
accounting for variations in temperature and humidity [52].

2.4. Methodology
2.4.1. Dynamic Clustered Bayesian Averaging (DCBA)

Clustered Bayesian averaging (CBA) merges the selected SPPs using their adaptive
weights by utilizing the principles of Bayesian theorem. CBA has an advantage over
the conventional Bayesian model averaging (BMA) technique, as CBA accounts for the
nonregionality of BMA. Put differently, the CBA method segments the covariate space
into various subareas, ensuring that the performance of the merged elements (namely,
the satellite precipitation products or SPPs) is consistent within each designated region.
However, the performance of one region differs from the other region [53]. Readers are
referred to [26,53] for the complete description of the methodology.

2.4.2. Regional Principal Component Analysis (RPCA)

Principal component analysis (PCA) effectively reduces a substantial set of potentially
interrelated variables into a more manageable subset termed principal components. This
technique is applied to assign weights to selected satellite precipitation products (SPPs)
relative to rain gauges (RGs), based on their percentage correlation. These weights, denoted
as ‘w’, are designed such that their cumulative total equals one. Prior to implementing
PCA, both K-fold cross-validation and paired sample t-tests were conducted to evaluate
the datasets of SPPs and RGs. The performances of SPPs are evaluated using K-fold cross-
validation, where RG observations are divided into K-datasets (K = 5 in the following
analysis) over the entirety of Pakistan and four selected regions (glacial, humid, arid, and
hyper-Arid zones). The paired-sample t-test, alternatively known as the dependent-sample
t-test, is employed to contrast the satellite precipitation products (SPPs) with rain gauges
(RGs). For an in-depth explanation of the methodology, readers are directed to consult the
work of Rahman et al. [4].

2.5. Performance Evaluation of MPDs

A range of statistical indicators are utilized to assess and benchmark the effectiveness
of both DCBA and RPCA MPDs against rain gauges (RGs). The employed statistical metrics
include mean absolute error (MAE), root-mean-square error (RMSE), correlation coefficient
(CC), standard deviation (SD) [54,55], and Theil’s U coefficient [56]. A comprehensive
description of these statistical indices is provided in Table 2.
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Table 2. Statistical measures to assess the performance of DCMA and RPCA multi-precipitation
datasets (MPDs). ‘M’ and ‘O’ represent simulated precipitation from MPDs and observed precipitation
from rain gauges (RGs), respectively. The number of samples is denoted by ‘n’, and ‘X’ refers to the
data element (X = M for DCBA and RPCA, and X = O for RGs). The overbars on variables indicate
their mean values.

Statistical Index Equation Perfect Value

Mean Absolute Error (MAE) 1
n

n
∑

i=1
|Mi − Oi| 0

Root-Mean-Square Error (RMSE)
√

1
n

n
∑

i=1
(Mi − Oi)

2 0

Correlation Coefficient (CC)
n
∑

i=1
(Mi−Mi)(Oi−Oi)√

n
∑

i=1
(Mi−Mi)

2
√

n
∑

i=1
(Oi−Oi)

2

1

Standard Deviation (SD)
√

1
n

n
∑

i=1

(
X − X

)2 NA

Theil’s U
√

n
∑

i=1
(Mi − Oi)

2/
n
∑

i=1
Mi

2 0

The MAE quantifies the average absolute deviation between the simulated precip-
itation from DCBA/RPCA and the observed data from rain gauges (RGs). The RMSE
is utilized to gauge the average magnitude of the errors in the estimates, comparing the
simulated precipitation to actual observations. On the other hand, the correlation coefficient
(CC) quantifies the degree of congruence between the merged precipitation data and the
observed measurements. The SD computes the capability of MPDs to capture spatiotem-
poral variability in precipitation, where higher SD values indicate a higher deviation of
simulated precipitation data from its mean. The accuracy of forecasts produced by MPDs
is measured using Theil’s U in relation to the observations of RGs. In situations where
the MPDs forecast error is equivalent to that of a basic no-change extrapolation, Theil’s
U metric reaches a lower boundary value of one. Conversely, a value of zero in Theil’s U
signifies an impeccable forecast [56].

3. Results and Discussion
3.1. Spatiotemporal Distributions of DCBA and RPCA Weights

The average weights assigned to the four integrated satellite products, i.e., TMPA,
ERA-Interim, PERSIANN-CDR, and CMORPH, and their spatial distribution are key to
understanding the DCBA and RPCA methodologies. Figures 2 and 3 graphically illustrate
these distributions over Pakistan for the period 2000–2015, providing a visual representation
of the weighting variations.

In the DCBA method, substantial variations in weights are observed across Pakistan
(Figure 2). For instance, the weight assigned to TMPA fluctuates between 20.5% and
44.72%, indicating its variable influence in different regions. Similarly, ERA-Interim’s
weight ranges from 8.14% to 39.65%, PERSIANN-CDR varies from 6.42% to 49.86%, and
CMORPH from 7.53% to 38.47%. These variations reflect the different performance and
suitability of each satellite product in capturing precipitation across diverse climatic and
topographic regions of Pakistan. Notably, TMPA and PERSIANN-CDR emerge as the
more dominant products in the DCBA methodology, with average member weights of
29% and 27%, respectively, followed by ERA-Interim and CMORPH, each averaging 22%.
However, when dissecting the data on a regional scale, specifically across different climate
zones in Pakistan, contrasting trends in weight emerge, underscoring the importance of
regional specificity in precipitation estimation. In the glacial zone, TMPA (34%) outweighs
PERSIANN-CDR (26%), reflecting its greater reliability in this zone. Conversely, in the hu-
mid zone, PERSIANN-CDR’s weight increases to 32%, surpassing TMPA’s 29%, indicating
its superior performance in these environments. In the arid zone, ERA-Interim demon-
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strates higher skill and achieves an equal percentage weight to TMPA (28%), effectively
replacing PERSIANN-CDR as the more reliable source. Furthermore, in the hyper-arid
region, PERSIANN-CDR dominates, with a weight of 26%, and joins TMPA (28%) as
the leading merging members, showcasing its enhanced capability in these conditions.
These findings highlight the significance of considering regional climatic variations when
applying merging techniques like DCBA and RPCA for satellite precipitation products.
The distinct weighting patterns across different climate zones underscore the necessity
of a tailored approach in precipitation data integration, ensuring that the merged dataset
accurately reflects the diverse precipitation dynamics of each region.
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Unlike the DCBA, the RPCA analysis demonstrates less significant variation in the
weighting of satellite products across the entirety of Pakistan (Figure 3). This characteristic
can be attributed to the fixed-weight approach inherent to the RPCA methodology. In this
approach, the weights assigned to each satellite product exhibit relatively less fluctuation
when compared to the adaptive weighting strategy of the DCBA. Specifically, the weight
distribution for TMPA in the RPCA analysis ranges from 31.12% to 36.93%, demonstrating
a narrower band of variation. Similarly, weights range from 19.20% to 26.98% for ERA-
Interim, from 23.10% to 29.89% for PERSIANN-CDR, and from 15.13% to 19.96% for
CMORPH. These values indicate a more consistent weighting across different regions of
Pakistan. The average distribution of weights for RPCA stands at 34% for TMPA, 22% for
ERA-Interim, 27% for PERSIANN-CDR, and 17% for CMORPH. This distribution highlights
the predominant role of TMPA in the RPCA methodology, followed by PERSIANN-CDR,
ERA-Interim, and CMORPH, in descending order of their average weight contributions.
Further analysis on a local scale, examining various climate zones within Pakistan, reveals
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a similar ranking in skills across these zones. TMPA and PERSIANN-CDR consistently
exhibit superior performance compared to ERA-Interim and CMORPH in all climate zones.
This observation underscores their robustness and reliability across a range of climatic
conditions within the country. The average weight distribution for TMPA shows diverse
percentages across different climatic zones, demonstrating its adaptability to varying
meteorological conditions: 32.42% in glacial areas, 35.53% in humid regions, 34.18% in
arid zones, and 33.85% in hyper-arid localities. PERSIANN-CDR, exhibiting a slightly
lower but still significant weight allocation, stands at 26.10% in glacial zones, 29.29% in
humid regions, 25.93% in arid zones, and 25.00% in hyper-arid areas. These findings from
the RPCA analysis emphasize the importance of a consistent and balanced weighting
approach across different climatic zones. They highlight the need for a carefully calibrated
weighting strategy in the RPCA methodology, ensuring that the merged precipitation
dataset accurately reflects the precipitation dynamics of each region within Pakistan.

3.2. Statistical Evaluation of DCBA and RPCA

In assessing the performance of DCBA and RPCA, a local-scale evaluation is conducted,
offering sophisticated and detailed insights into their accuracy and robustness. This
localized approach allows for a nuanced assessment of the dynamic variation of merging
weights and a meticulous analysis of the spatial distribution of errors across different
climate zones. Such detailed evaluation is critical in understanding the spatial heterogeneity
and local variability in precipitation estimates.

3.2.1. Glacial Zone

Figures 4 and 5 offer a detailed visualization of the spatial distribution of a suite
of statistical measures on a daily timescale within the glacial zone. These figures are
instrumental in elucidating the performance nuances of DCBA and RPCA in a region
characterized by complex meteorological dynamics.
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Figure 4a does not exhibit a clear spatial pattern for MAE within the glacial region,
suggesting a more random distribution of errors. The range of the MAE for DCBA is be-
tween 2.38 mm/day at GMS17 and 1.19 mm/day at GMS16, averaging 1.70 mm/day across
the zone. For RPCA, the MAE is generally higher, averaging 2.51 mm/day with a peak at
2.99 mm/day at GMS9 and a minimum of 1.82 mm/day at GMS11. These values highlight
the variability in error magnitude across different locations, reflecting the heterogeneity
in precipitation patterns within the glacial zone. Furthermore, Figure 4b demonstrates a
distinct spatial trend for RMSE, particularly in the southern and southeastern parts of the
glacial region. This spatial variation in the RMSE suggests a geographical dependency of
the error magnitude, possibly influenced by local topographic and climatic factors.

For DCBA, the RMSE values range from 2.97 mm/day at GMS19 to 8.71 mm/day
at GMS15. In comparison, RPCA exhibits a broader range of RMSE, spanning from
6.72 mm/day at GMS1 to 13.64 mm/day at GMS15. The higher RMSE values, espe-
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cially for RPCA, indicate larger magnitudes of errors in these specific areas, pointing to
potential limitations of the model in capturing the complex precipitation dynamics of the
glacial zone.

DCBA demonstrated a significantly higher correlation with RGs as compared to RPCA
in the glacial zone (Figure 5a). The CC values for RPCA range between 0.31 (GMS2) and
0.68 (GMS11). On the other hand, the CCs have significantly increased for DCBA, ranging
between 0.53 (GMS12 and GMS2) and 0.69 (GMS4 and GMS19). DCBA and RPCA have
average CCs of 0.63 and 0.50, respectively. The maximum value for the standard deviation
of DCBA is 9.21 mm/day (GMS1), and the minimum value is 3.28 mm/day (GMS5).

Similarly, the observed SD values for RPCA exhibit a wider range, with the maxi-
mum and minimum recorded at the same rain gauges (RGs), being 14.71 mm/day and
7.26 mm/day, respectively. In terms of Theil’s U, as depicted in Figure 5c, DCBA demon-
strates greater efficiency compared to RPCA. For DCBA, Theil’s U values vary from 0.41 at
GMS19 to 0.56 at GMS12. Conversely, RPCA’s Theil’s U values span from a low of 0.38 at
GMS11 to a high of 0.66 at GMS15. The average values of Theil’s U for DCBA and RPCA
are calculated to be 0.49 and 0.53, respectively.

These spatial analyses provided by Figures 4 and 5 are critical for understanding the
performance characteristics of DCBA and RPCA in a challenging glacial environment. They
offer valuable insights into the spatial heterogeneity of model performance, informing future
enhancements in model algorithms and the need for region-specific calibration strategies.

3.2.2. Humid Region

The spatial distributions of MAE and RMSE in the humid zone are shown in Figure 6.
The MAE (Figure 6b) and RMSE (Figure 6c) gradually decrease from north (northwest
and northeast) towards the south (southwest and southeast) with few exceptions. For
DCBA, the average values of MAE and RMSE are 1.59 and 7.16 mm/day, respectively.
Relatively higher average values are observed in the case of RPCA with magnitudes of
2.51 and 10.74 mm/day for MAE and RMSE, respectively. The maximum MAE and RMSE
values for DCBA are 2.48 mm/day and 9.68 mm/day, respectively, at RGs HMS4 and
HMS11. Moreover, the minimum MAE and RMSE values are 1.13 mm/day (HMS40) and
3.87 (HMS28). Relatively high values of MAE and RMSE are observed for RPCA with max-
imum/minimum values of 3.11/1.93 mm/day (HMS1/HMS40) and 14.18/7.04 mm/day
(HMS11/HMS28), respectively.

The spatial variation of the CC, SD, and Theil’s U are depicted in Figure 7. A more
elevated correlation coefficient (CC) is noted from the central to the eastern parts of the
humid zone (Figure 7a). DCBA significantly improves in correlation with RGs. DCBA
exhibits a highest correlation coefficient (CC) of 0.84 (HMS13), a lowest CC of 0.67 (HMS21),
and an average CC of 0.77. In comparison, RPCA shows a somewhat lower correlation,
with maximum, minimum, and average CC values of 0.77 (HMS16), 0.47 (HMS28), and
0.63, respectively. The SD for DCBA shows a declining trend from northwest to northeast
with values ranging from 4.81 (HMS30) to 9.27 (HMS4) mm/day (Figure 7b). In the case of
RPCA, comparatively higher SD values ranging from 8.5 (HMS30) to 13.3 (HMS4) mm/day
are observed, having a similar spatial distribution trend to that of DCBA. The average SD
values for DCBA and RPCA are 7.34 mm/day and 10.80 mm/day, respectively. When
compared to the glacial zone, Theil’s U shows a significant improvement in the humid zone
for predicting precipitation (Figure 7c). In terms of DCBA, HMS1 and HMS4 exhibit lower
forecasting accuracy (Theil’s U greater than 0.5), whereas HMS25 exhibits a higher accuracy
(Theil’s U of 0.31). The average value of Theil’s U for DCBA is 0.38. Moreover, the Theil’s U
values for RPCA are comparatively higher than the DCBA. The highest and lowest levels
of forecasting accuracy are seen at HMS38 (with a Theil’s U value of 0.32) and HMS4 (with
a Theil’s U value of 0.68), respectively. Theil’s U for RPCA has an average value of 0.45.
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3.2.3. Arid Region

In the arid zone, the performance of RPCA and DCBA in estimating precipitation
exhibits distinct spatial patterns, as detailed in Figures 8 and 9. The MAE from west to
east is observed for both methodologies, as demonstrated in Figure 8a. DCBA records an
average MAE of 1.23 mm/day, with its highest and lowest MAE values observed at AMS8
(1.74 mm/day) and AMS12 (0.72 mm/day), respectively. RPCA, on the other hand, shows
a generally higher MAE, averaging 2.88 mm/day, peaking at 7.49 mm/day at AMS15,
and dropping to 1.57 mm/day at AMS12. This spatial variation in MAE underscores
the complexities of accurately estimating precipitation across diverse subregions within
the arid zone. The spatial distribution of the RMSE presents another contrasting trend,
as shown in Figure 8b. The RMSE values increase towards the northeast of the arid
zone, with a notable peak in the central region. For DCBA, the RMSE values range
from a maximum of 5.93 mm/day at AMS2 to a minimum of 1.75 mm/day at AMS19,
averaging 3.45 mm/day. RPCA exhibits significantly higher RMSE values, more than
double those of DCBA, with maximum, minimum, and average values of 8.95 mm/day
(AMS10), 4.73 mm/day (AMS19), and 7.02 mm/day, respectively. This indicates that
RPCA, with its fixed-weight approach, tends to amplify errors, particularly in regions with
complex climatic interactions.
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Figure 9a illustrates the spatial correlation of DCBA and RPCA with RGs in the arid
zone. DCBA shows a higher correlation in the southeast, whereas RPCA exhibits a higher
correlation in the extreme north and east. The average correlation coefficients (CC) for
DCBA and RPCA are 0.85 and 0.73, respectively, with DCBA displaying a maximum CC
value of 0.87 at AMS15 and AMS8 and a minimum CC value of 0.83 at AMS12 and AMS14.
This variation in correlation reflects the differing abilities of the two methodologies to
capture the spatial patterns of precipitation in the arid zone. Additionally, the standard
deviation (SD) values, as depicted in Figure 9b, show a gradual increase from west to
east in the arid zone, with the highest values centrally located. The mean SD values for
DCBA and RPCA are 3.28 mm/day and 6.42 mm/day, respectively. DCBA’s maximum
SD is observed at 4.63 mm/day at AMS2 and the minimum at 1.77 mm/day at AMS19.
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For RPCA, the SD ranges even more significantly, from a maximum of 8.23 mm/day at
AMS2 to a minimum of 4.40 mm/day at AMS19, indicating greater variability in RPCA’s
estimates. Lastly, Theil’s U statistic, as shown in Figure 9c, reveals the accuracy of forecasts
in different parts of the arid zone. Most RGs for DCBA have Theil’s U values below 0.4
except for AMS10 and AMS11, with an average of 0.37. In contrast, RPCA typically exceeds
DCBA’s Theil’s U values, indicating less accurate forecasts with the highest, lowest, and
mean values recorded at 0.56 (AMS10), 0.38 (AMS2), and 0.42, respectively. This suggests
that DCBA provides more accurate forecasts than RPCA, particularly in the extremities of
the arid zone.
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3.2.4. Hyper-Arid Region

Figures 10 and 11 show the spatial variations of six performance measures in the
hyper-arid zone. Both DCBA and RPCA underestimated precipitation in hyper-arid zones.
The performance of DCBA is significantly improved with respect to RPCA and compared
to other climate zones.

The MAEs for DCBA range between 0.61 mm/day (HAMS18) and 1.29 mm/day
(HAMS24). Similarly, the MAEs for RPCA range between 1.43 mm/day (HAMS18) and
2.91 mm/day (HAMS24) (Figure 10a). In the southwestern part of the hyper-arid zone,
higher MAE values are observed, showing a gradual decrease towards the east. A compara-
ble pattern is noted for the RMSE within this climatic zone. A higher RMSE (4.94 mm/day
for DCBA at HAMS22 and 7.47 mm/day for RPCA at HAMS10) is observed in the south-
west, while the minimum RMSE (1.49 mm/day for DCBA at HAMS8 and 3.93 mm/day
for RPCA at HAMS8) is in the northwest of the hyper-arid zone (Figure 10b). The average
values of RMSE for DCBA and RPCA are 3.15 mm/day and 5.66 mm/day, respectively.
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When compared to other climate zones, the CC values in the hyper-arid zone are signifi-
cantly higher (Figure 11a). The figure depicts higher DCBA and RPCA performance in the
southeast of the hyper-arid zone. The maximum CCs for DCBA and RPCA are 0.88 and
0.83 at HAMS11. A lower correlation with RGs is observed in the southwest of the climate
zone. The minimum CCs for DCBA and RPCA are 0.80 (HAMS10) and 0.76 (HAMS24),
respectively. A contrasting trend is observed for the SD and Theil’s U compared to CC
(Figure 11b,c). The maximum SD is observed in the southwest and declines towards the
northwest of the climate zone.
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The maximum SD for RPCA (7.96 mm/day at HAMS10) reduces to 3.72 mm/day
(HAMS10) for DCBA. The average SD for DCBA and RPCA is 2.59 mm/day and 6.40 mm/day.
Theil’s U represents higher forecasting accuracies of DCBA and RPCA in the southeast of
the hyper-arid zone. DCBA and RPCA show lower forecasting accuracies with a magnitude
of 0.40 and 0.47 at HAMS24, while maximum accuracies (0.30 for DCBA and 0.37 for RPCA)
are observed at HAMS19 and HAMS18. The average Theil’s U in the hyper-arid zone for
DCBA and RPCA are 0.36 and 0.43, respectively.

The findings from this evaluation reveal that DCBA significantly reduces uncertainties
compared to RPCA and the individual satellite precipitation products (SPPs). This outcome
underscores the enhanced efficacy of DCBA in regional-scale hydrological evaluations,
where the need for precise precipitation data is paramount. The dynamic weighting
approach of DCBA, which adjusts weights based on regional climatic conditions, proves to
be instrumental in achieving greater accuracy and reliability in precipitation estimates.
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3.3. Evaluation of DCBA/RPCA against the Merging Members Using Calibrated RGs Data

Table 3 provides a comprehensive comparative analysis of the mean daily precipitation
metrics, as determined by DCBA, RPCA, and the four individual SPPs. This comparison is
grounded in an evaluation against data from 102 RGs, encompassing the diverse climatic
zones of the study region. The data compiled in the table illustrate the relative perfor-
mance of each method and product, offering critical insights into their efficacy in different
hydrological contexts. The analysis in Table 3 reveals that both DCBA and RPCA exhibit
superior performance in comparison to the individual SPPs across all climatic zones. This
superiority is marked by higher forecasting accuracy, better correlation with RG observa-
tions, and reduced errors in precipitation estimates. The enhanced performance of these
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MPDs underscores their robustness in integrating and refining precipitation data from
multiple satellite sources. Among the SPPs, TMPA stands out for its superior performance,
characterized by high forecasting accuracy and a strong correlation with RGs. TMPA’s
consistency across all climate zones, coupled with its relatively small uncertainty, positions
it as the most reliable individual satellite product in the study. This indicates TMPA’s
advanced capabilities in capturing diverse precipitation dynamics, making it a valuable
tool in hydrological modeling and analysis. Conversely, CMORPH is noted to have the least
favorable performance among all the merging members. This finding highlights potential
limitations in CMORPH’s algorithm or spatial–temporal coverage that might affect its
effectiveness in certain climatic conditions. Overall, the results from Table 3 indicate that
MPDs, particularly DCBA, significantly reduce the uncertainties inherent in individual
SPPs. By effectively merging and harmonizing data from different satellite sources, MPDs
demonstrate enhanced capabilities for application in hydrological contexts. Notably, DCBA
shows a markedly improved performance compared to RPCA. This improvement can
be attributed to the dynamic merging approach of DCBA, which tailors the weighting of
satellite products based on regional climatic characteristics. In contrast, the fixed-weight
merging approach of RPCA, while still outperforming individual SPPs, does not match the
adaptability and precision of DCBA. This comparison underscores the efficacy of dynamic
weighting strategies in satellite precipitation data integration, offering a more accurate and
reliable tool for hydrological evaluations and water resource management.

Table 3. Daily average statistical metrics of MPDs (DCBA and RPCA) and four SPPs (TMPA, ERA-
Interim, PERSIANN-CDR, and CMORPH) at 102 RGs from 2000 to 2015.

Zone MPD/SPP MAE
(mm/day)

RMSE
(mm/day) CC SD (mm/day) Theil’s U

Glacial Zone

DCBA 1.70 5.92 0.63 7.49 0.49
RPCA 2.51 10.56 0.50 12.44 0.53
TMPA 2.79 10.83 0.45 12.63 0.56

ERA-Interim 3.25 11.39 0.38 13.04 0.64
PERSIANN-CDR 3.01 11.01 0.42 12.78 0.60

CMORPH 3.60 11.87 0.34 13.09 0.67

Humid Zone

DCBA 1.59 7.16 0.77 7.34 0.38
RPCA 2.51 10.74 0.63 10.80 0.45
TMPA 2.80 11.62 0.59 11.13 0.48

ERA-Interim 3.34 11.58 0.52 11.67 0.54
PERSIANN-CDR 3.05 11.32 0.56 11.40 0.51

CMORPH 3.65 11.84 0.49 11.93 0.58

Arid Zone

DCBA 1.23 3.45 0.85 3.28 0.37
RPCA 2.88 7.02 0.73 6.42 0.42
TMPA 3.15 7.28 0.71 6.69 0.46

ERA-Interim 3.65 7.91 0.63 7.18 0.54
PERSIANN-CDR 3.40 7.64 0.67 6.94 0.50

CMORPH 3.91 8.18 0.61 7.41 0.57

Hyper-Arid
Zone

DCBA 1.06 3.15 0.84 2.59 0.36
RPCA 2.06 5.66 0.80 6.40 0.43
TMPA 2.32 5.97 0.76 6.66 0.46

ERA-Interim 2.82 6.53 0.68 7.17 0.53
PERSIANN-CDR 2.57 6.24 0.72 6.91 0.50

CMORPH 3.04 6.84 0.65 7.43 0.57

3.4. Evaluation of DCBA/RPCA and Merging Members at Different Elevations

Precipitation is dependent on elevation and varies significantly as elevation increases
(Ma et al., 2018). In order to comprehend the effect of elevation and associated uncertainty
on estimated precipitation, DCBA and RPCA are compared to four merging members.
The elevation of Pakistan is divided into six groups: 0–500 m, 500–1000 m, 1000–2000 m,
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2000–3000 m, 3000–4000 m, and more than 4000 m (shown in Table 4). The error indices are
calculated in each group of elevation.

Table 4. Daily average statistical metrics of two MPDs and four SPPs at 102 RGs over different
elevations.

Elevation (m) MPD/SPP MAE
(mm/day)

RMSE
(mm/day) CC SD (mm/day) Theil’s U

>4000

DCBA 1.50 5.92 0.68 7.84 0.46
RPCA 2.60 10.10 0.55 12.88 0.50
TMPA 2.99 10.26 0.49 13.10 0.53

ERA-Interim 3.48 10.82 0.42 13.56 0.60
PERSIANN-CDR 3.21 10.48 0.46 13.29 0.57

CMORPH 3.84 11.24 0.37 13.69 0.63

4000–3000

DCBA 1.75 5.57 0.65 7.78 0.48
RPCA 2.57 10.24 0.50 12.60 0.50
TMPA 2.68 10.49 0.47 12.79 0.53

ERA-Interim 3.14 11.06 0.40 13.21 0.61
PERSIANN-CDR 2.86 10.69 0.43 12.96 0.58

CMORPH 3.47 11.54 0.36 13.29 0.65

3000–2000

DCBA 1.62 6.39 0.70 6.76 0.48
RPCA 2.56 10.68 0.55 10.53 0.50
TMPA 2.89 10.98 0.52 10.78 0.53

ERA-Interim 3.37 11.52 0.45 11.24 0.60
PERSIANN-CDR 3.11 11.18 0.49 10.98 0.57

CMORPH 3.68 11.90 0.41 11.38 0.63

2000–1000

DCBA 1.57 6.36 0.74 7.06 0.40
RPCA 2.36 10.19 0.62 11.06 0.45
TMPA 2.62 10.52 0.58 11.35 0.49

ERA-Interim 3.16 11.10 0.51 11.87 0.57
PERSIANN-CDR 2.90 10.80 0.55 11.60 0.53

CMORPH 3.48 11.42 0.47 12.08 0.61

1000–500

DCBA 1.47 6.46 0.78 6.33 0.37
RPCA 2.56 9.64 0.70 9.66 0.42
TMPA 2.82 10.03 0.66 9.97 0.46

ERA-Interim 3.39 10.55 0.58 10.51 0.53
PERSIANN-CDR 3.10 10.27 0.62 10.25 0.50

CMORPH 3.70 10.81 0.55 10.78 0.56

500–0

DCBA 1.30 4.50 0.81 4.14 0.36
RPCA 2.20 7.65 0.75 7.77 0.41
TMPA 2.77 7.91 0.67 8.05 0.45

ERA-Interim 3.25 8.46 0.60 8.54 0.52
PERSIANN-CDR 3.00 8.20 0.64 8.29 0.49

CMORPH 3.51 8.75 0.57 8.78 0.56

Analysis shows that DCBA outperformed RPCA and the other four merging members
in all elevation groups. In the case of SPPs, CMORPH presented the worst performance in
all elevation groups. Moreover, uncertainties are elevation-dependent, so they are reducing
with a decrease in elevation. For DCBA, the MAE and RMSE decrease from 1.50 mm/day
and 5.92 mm/day at elevations above 4000 m to 1.30 mm/day and 4.50 mm/day at
elevations between 500 and 0 m, respectively. Similarly, the MAE and RMSE for CMORPH
reduce from 3.84 mm/day and 11.24 mm/day at elevation >4000 m to 3.51 mm/day and
8.75 mm/day at elevation between 500 and 0 m, respectively. The correlation coefficient
and forecasting accuracy (Theil’s U) of MPDs and merging members are also significantly
increased from the high elevation (>4000 m) to the lower elevation (500–0 m).

DCBA shows significantly improved performance at each elevation group. For in-
stance, when DCBA is compared with the highly skilled SPP, i.e., TMPA at an elevation
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greater than 4000m, all the statistical indices, i.e., MAE, RMSE, CC, SD, and Theil’s U, are
improved by 49.83%, 42.31%, 27.94%, 40.15%, and 13.21%, respectively. However, rela-
tively less improvement is observed for RPCA compared with TMPA, i.e., 16.35%, 13.04%,
1.56%, 10.91%, 1.67%, and 5.66%, respectively. DCBA dominancy continues until the lower
elevation (500–0 m), where the comparison between DCBA and TMPA revealed 53.06%,
43.11%, 17.28%, 48.57%, and 30.77% improvements in the MAE, RMSE, CC, SD, and Theil’s
U, respectively. Similarly, 20.58%, 3.28%, 10.67%, 3.48%, and 21.15% improvements are
observed for RPCA against TMPA.

Previous research has shown that precipitation and SPPs are topographically depen-
dent. Rahman et al. (2018) demonstrated the poor performance of different SPPs and MPDs
at high elevations (greater than 4000 m). The performance of MPDs and SPPs significantly
improved at low elevated climate zones. Similarly, Shen, Xiong [57] revealed the topo-
graphic dependency of precipitation in the Tibetan Plateau. Their findings showed that
as elevation increased above 4000 m, the uncertainty in precipitation estimates increased
significantly. To evaluate the quality of MPDs, specifically DCBA and RPCA, the perfor-
mance of the constituent SPPs is analyzed. These SPPs are instrumental in determining the
weights for DCBA/RPCA to ensure optimal alignment with observations from rain gauges
(RGs) [58]. Aside from the topographic dependence of SPPs, the dominance of snow above
4000 m may affect the quality of RG data, which influences DCBA and RPCA results.

Although DCBA has made significant progress in addressing uncertainties in Pak-
istan’s complex topography, there are still areas in the glacial and humid zones at higher
elevations that require further attention. DCBA faces challenges in elevated terrain due
to inadequate SPP data. The effectiveness of SPP is reduced in high-altitude areas due
to topography and snow [9]. The uncertainties at elevated locations are increased due
to various factors, such as wind impact, evaporation, human errors, splash effects, and
seasonal variations affecting the global precipitation gauges (GPGs) [26].

4. Conclusions

This study assessed the importance of the dynamic variation (both in space and time)
of weights compared with the fixed-weight approach in merging SPPs. Highlighting the
significance of dynamically varying weights, this study conducts a thorough evaluation of
two MPDs, namely dynamic clustered Bayesian averaging (DCBA) and regional principal
component analysis (RPCA), across four distinct climatic zones and various elevation
groups in Pakistan. Additionally, the performance of these MPDs is assessed in comparison
to their constituent merging members across different climate zones and elevation levels.
The key findings of the current research are given below:

(1) DCBA with dynamic weights outperformed RPCA with a fixed weight in all climate
zones and different elevation regions of Pakistan.

(2) DCBA and RPCA dominated all the merging members (TMPA, PERSIANN-CDR,
CMORPH, and ERA-Interim) across all four climate zones and different elevations in
terms of the MAE, RMSE, CC, SD, and Theil’s U.

(3) The accuracies of MPDs and SPPs are all highly dependent on the elevation, and the
performances of MPDs and SPPs significantly increased as the elevation decreased.
The improvements in DCBA and RPCA are relatively greater with respect to the best
SPP (TMPA) at low elevations.

Overall, this study demonstrated the superior performance of DCBA, which is devel-
oped using the dynamic approach, i.e., weights are varied using the moving averaging
scheme both in space and time. Therefore, it is recommended that MPDs should be de-
veloped by dynamically varying the weights, especially in complex topographic regions
like Pakistan.
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