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ABSTRACT 

Data centres (DCs) are the most significant energy consumers globally, where 

IT and cooling devices account for approximately 45% and 55% of their total 

energy consumption, respectively. Despite the extensive research conducted 

on reducing the energy consumption of IT devices, studies focusing on the 

reduction of energy consumption of cooling devices in DCs are relatively 

limited. Furthermore, there is a lack of research on the optimal utilisation of 

existing cooling devices to minimise their energy consumption. In this study, a 

Model Predictive Control (MPC) framework, in which a Vector Autoregressive 

Model (VAR) and Particle Swarm Optimisation (PSO) are integrated, is 

proposed to optimise the energy consumption in DCs by controlling the 

temperature setpoints of air conditioners (ACs).The VAR model is employed 

to capture the causal-effect relationships among the system variables, which 

affect the temperature changes in DC rooms, and then used to predict future 

temperature parameters over time. The PSO algorithm is utilised to find the 

optimal temperature setpoints combinations based on the future temperature 

changes provided by the VAR model. The Model Predictive Control (MPC) 

framework controls the VAR model and the PSO optimisation, continuously 

evaluating the optimised operation of air conditioners (ACs) and adjusting the 

VAR model if any deviation is detected to ensure the energy efficiency of DCs 

falls within the predefined range. Through this approach, the optimisation 

problem can be solved dynamically, taking future performance into 

considerations, and proactively avoiding potential issues. The feasibility of the 

proposed MPC framework has been tested in a national DC room in Thailand. 

Moreover, the effectiveness of the framework under various operating 
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scenarios was validated through a Computational Fluid Dynamic (CFD) 

simulated environment. The results of the field experiment demonstrate that 

the proposed MPC framework is effective in reducing energy consumption in 

the DC room, achieving a 32.5% reduction compared to existing cooling 

practices that utilise fixed AC setpoints during operation. Additionally, the 

simulation results illustrate a high adaptability of the proposed approach to 

changing conditions. This study makes significant contributions at the 

intersection of theoretical, methodological, and practical domains. In terms of 

theoretical contributions, this study challenges prevailing paradigms in DCs’ 

energy optimisation. By emphasizing managerial solutions over traditional 

hardware modifications, our approach offered a novel perspective on effective 

energy optimisation strategies. Methodologically, our research introduces a 

dynamic framework (MPC) integrating predictive modelling (VAR) and 

optimisation algorithms (PSO). The integration of VAR, PSO, and MPC 

approaches not only leverages their respective strengths but also 

compensates for their individual limitations, maximising the synergistic 

potential. Our method also provides a flexible and adaptive solution by 

autonomously adjusting to changing system states. This adaptive quality 

bridges the gap between theory and practical application, differentiating our 

approach significantly from conventional practices in comparable industries. 

Practically, the proposed approach has been proved effective in controlling the 

temperatures in the DC room, achieving notable energy savings. Furthermore, 

the experiment demonstrates that the proposed MPC framework responds to 

workload changes within a reasonable timeframe, indicating its’ real-time 

adaptability. 
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NOTATIONS 

T:  set of time points, where T = [0,...,Tmax] ∩ N.  

P:  set of lagged terms, where P = [0,...,Pmax] ∩ N. 

xt ∈ Rnx×1:  state vector at time t ∈ T, where nx represents the 

dimensionality (number of components in xt). 

ut ∈ Rnu×1:  vector of control actions at time t ∈ T, where nu 

represents the dimensionality (number of components 

in ut). 

xref
t ∈ Rnr×1:  reference state vector at time t ∈ T, where nr represents 

the dimensionality (number of components in xref
t). 

V = [1,...,Vmax] ∩ N:  set of ACs units. 

J = [1,...,Jmax] ∩ N:  set of the server racks. 

S = [1,...,Smax] ∩ N:  set of ceiling temperature sensors. 

Yt = [y1t,...,ydt]:  set of endogenous variables of the VAR model at time t 

∈ T, where d ∈ N denote the number of the endogenous 

variables. 

Zt = [z1t,zmt]:  set of exogenous variables of the VAR model at time t ∈ 

T, where m ∈ N denotes the number of the exogenous 

variables. 



 

- 17 - 

Tv,t
cool:  the temperature supply of the vthAC unit at time t ∈ T, 

where v ∈ V . 

Pv,t
cool:  the power consumption for the vthAC unit at time t ∈ T, 

where v ∈ V . 

Pj,t
comp:  the computational power for the jth server rack at time t 

∈ T, where j ∈ J. 

Tt
outflow:  the temperature at the airway point nearest to the AC 

units at time t ∈ T. 

WLj,t:  the estimated DC workload (CPU usage) of the jth 

server rack at time t ∈ T, j ∈ J. 

WLt:  the average workload of the DC room at time t ∈ T. 

HGj,t:  the heat generated by the jth server rack at time t ∈ T. 

Pj,t
Comp:  the computational power for the jth server rack at time t 

∈ T. 

Ts,t
ce:  the temperature from the sth ceiling sensor at time t ∈ T. 

Tt
ambient:  the server room ambient temperature at time t ∈ T. 

Tt
outdoor:  the outdoor temperature from the sensors on the 

outdoor chiller at time t ∈ T. 

n:  number of ACs’ temperature setpoints combinations. 
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Ai:  D × D coefficient matrices of Y, where i = 1,...,P. 

B:  D × M coefficient matrix of potentially deterministic 

regressors (exogenous variables). 

εt:  a D dimensional white noise process in the VAR model 
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TSP Traveling Salesman Problem 
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This chapter contains a brief introduction to the current state of energy 

consumption in global data centres (DCs) and an overview of the existing DC 

energy-saving operations. The rationale behind the need for an efficient and 

effective operational solution to the DCs will be presented. Additionally, the 

discussion covers the motivation, objectives, and significance of this study. 

The chapter closes with an outline of the dissertation. 
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With the increasing demands of digital computing services, Data Centres 

(DCs) have become one of the largest energy consumers. It was reported 

that DCs consume 100 times more energy than conventional office buildings 

(Jiao et al. 2017). Significant efforts have been made into improving the 

energy efficiency of DCs. However, such studies were mainly focused on the 

design of the infrastructures of the DCs that require plenty of resources and 

time by replacing their current facilities. This study aims at developing 

managerial strategies for using the existing cooling devices in DC rooms to 

achieve energy efficiency through active interventions.  

Two major energy consumers in a DC room are cooling devices and IT devices, 

where cooling devices occupy more than 55% of the total power consumption 

(Zhang et al. 2017). There is a recognised trade-off dynamic between the 

energy consumption of cooling devices and IT devices within a DC. This trade-

off stems from the fact that maintaining lower temperatures in the DC leads to 

an increase in the energy consumed by cooling devices. However, in the 

meantime this decrease in temperature enhances the efficiency of IT devices, 

resulting in reduced energy consumption on their part. Conversely, the 

decision to maintain higher temperatures in the DC results in a reduction in the 

energy consumption of cooling devices. Nevertheless, this reduction in cooling 

energy would potentially compromised computing efficiency and leads to a 

subsequent rise in the energy usage of IT devices. This delicate balance 

underscores the intricate relationship between temperature management, 

cooling systems, and the energy efficiency of IT infrastructure within a DC 

environment. The traditional operational strategy used by DC managers to 
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save energy consumption of cooling devices is turning off a certain number of 

ACs to save energy in the winter season. However, a limited number of studies 

provide more sophisticated strategies to make optimal use of ACs. A detailed 

summary of the existing solutions can be found in Chapter 2. Such a research 

gap motivates this study. 

Empirical pieces of evidence showed that increasing the AC setpoint by a 

single degree could result in 4-5% energy cost savings; and increasing the 

setpoint by 10 degrees, which is also a realistic number, could result in savings 

of over 40% (Glenn & Amherst 2020). Although this aspect is simple, it is hardly 

the case under the situation considering the complex nature of DC assets. 

According to the ASHRAE, (a US institute that provides DCs with guidelines 

for energy saving) thermal guideline from 2004 to 2016, the recommended 

thermal temperature has been changed from 20-25 degrees to a newer and 

wider recommended range of between 18-27 degrees from 2008 due to the 

advances in technologies for IT servers (ASHRAE 2014). To achieve an 

optimal envelope for a plant, it is essential to consider a trade-off between 

three crucial factors: high reliability, maximum energy efficiency, and 

permissibility limits within which the plant can function effectively. Finding the 

right balance between these factors is vital for ensuring the efficient and 

reliable operation of the plant. This is done through tests and is not a statement 

of reliability. In the current era, there is a larger focus on saving energy costs 

under the premise of ensuring the reasonable operation of the equipment 

instead of only looking at the reliability of the equipment. In practice, even 

referring to the thermal guidelines, DCs have the sense to maintain their 
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temperature within the recommended range, however according to a survey, 

more than 90% of DCs maintain a constant temperature of approximately 24 

degrees to safeguard the optimal functioning of IT devices. This practice 

stands in contrast to the recommended maximum working temperatures of 27 

degrees by ASHRAE (2016), implying that DCs are potentially operating in an 

over-cooled state, contributing to inefficiencies in energy consumption. 

(Fernandes 2018). Increasing the AC setpoints blindly could jeopardize the 

health of the servers and other hardware, as existing hot spots may become 

even hotter and higher hot aisle temperature may activate server fans and 

offset efficiency gains (Ham et al. 2015). Therefore, a rigorous plan to optimise 

the ACs' temperature setpoints is critical to increase the energy efficiency of 

the DC.  

From the optimisation perspective, the problem is challenging because of the 

following reasons. Firstly, the DC room environment involves multiple variables, 

such as all the energy consumption variables of the cooling components, 

temperature variables, power consumption variables, and the workload 

variables of the IT devices, as well as other variables. Therefore, the 

optimisation model needs to consider a large number of factors. Secondly, the 

interactions among the factors increase the complexity of the optimisation 

problem. Thirdly, DC rooms are prone to changes in room configurations, 

including the addition or removal of IT servers or server racks. An optimisation 

model formulated for a DC room configuration may not work anymore when 

the configuration is changed (E.Rob 2021). Therefore, the traditional 

optimisation approaches have limitations in the DC environment, and more 
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dynamic and adaptive approaches are needed. In the fourth point, it is 

noteworthy that conventional optimisation methodologies frequently neglect 

the consideration of time lags in the interactions among variables. Specifically 

in the thermal contexts of DC rooms, where the time lags are prevalent. 

Consequently, it is crucial for the optimisation models that designed for the 

DCs environment conscientiously incorporate these time lags into their 

framework. The optimisation problem in this study aims to minimise the 

aggregate energy consumption by identifying the optimal combination of ACs 

temperature setpoints whilst maintaining the room temperature within 

permissible limits, thereby ensuring a conducive working environment for IT 

equipment. The integration of the Vector Autoregressive Model (VAR), and 

Particle Swarm Optimisation (PSO) with Model Predictive Control (MPC) 

represents a dynamic solution to the problem, leveraging one of the most 

advanced and powerful approaches in the field of process control. MPC model 

is a multivariate optimal control strategy that incorporates the predictive model 

and optimisation model in a process to optimise system objectives dynamically. 

There are many connections between MPC and optimisation. MPC and 

optimisation are closely linked, as MPC serves as an optimisation method for 

solving control problems. It provides optimised control actions for the controller 

by solving the optimisation problem. MPC consists of three main parts: (1) A 

system predictive model; (2) The prediction of the future movements of the 

related variables; (3) A control (decision-making) system. Following the 

process, a decision support system (DSS) was developed to optimise energy 

consumption in DCs using the MPC concept. The VAR model is utilised as the 

system predictive model in this context. It is a multivariate time series model 
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that was initially introduced by Sergent and Sims in 1977, following the 

development of a dynamic structural Causal Chain Model (CCM) by Wold in 

1964. The VAR model is a reduced form of a structural model in the Cowles 

tradition, as noted by Qin in 2011. VAR model in this system is used as a 

system analysis and forecasting model to capture the complex interactions 

among the number of meteorological variables and power plants and predict 

the future movements of the related variables after manipulating the control 

inputs, which are ACs temperature setpoints. Also, the VAR model will detect 

whether the constraints for IT server operations have exceeded the limits. 

Meanwhile, a PSO method solves the optimisation of objective functions over 

time in a receding horizon manner under the MPC scheme.  

Compared to general optimisation approaches, the proposed MPC-based 

optimisation approach has the major advantage on the optimisation horizon 

that enables optimising the current state in time whilst taking future 

performance into account with the flexibility in terms of the capability to deal 

with multi-variables and handling interactions between them. This is mainly 

achieved by the following aspects: (1) VAR as a multivariate model is capable 

of mapping multi-variables in a complicated environment into one model, and 

the variables interact with each other bidirectional. (2) VAR serves as a 

predictive model that enables a forecast of future state conditions through the 

manipulation of control inputs (the ACs temperature setpoints). This capability 

facilitates the implementation of optimal inputs in advance, ensuring efficient 

energy consumption. (3) As a meta-heuristic optimisation solver, PSO can 

efficiently achieve the global optimal solution when compared to other types of 
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optimisation solvers. PSO is particularly advantageous in handling 

multivariable optimisation problems and is easy to implement, further 

increasing its appeal as an optimisation tool. (4) MPC is a feedback receding 

horizon control system, that the output of the previous stage that will be used 

as the input to the next stage. It can predict future events and take control 

measures accordingly. The whole system can be run dynamically. (5) The MPC 

process allows multiple constraints on the control input and the states at the 

same time, this feature guarantees the optimisation system functions under 

multiple conditions. 

The remaining paper will be organised as the following: Chapter 2 will provide 

reviews of the relevant literature on three aspects regarding the research gap 

on this topic and a detailed comparison of the existing approaches to solve the 

problem on a technical level. Chapter 3 discusses the typical processes 

involved in design science studies and highlights how this study aligns with the 

principles and methodologies of the design science field to address the 

identified problem. Chapter 4 provides an overview of the VAR-PSO-MPC 

approach, and the formulation of the optimisation problem will be presented. 

In Chapter 5, the focus is on the practical DC experiment and system 

implementation, which encompasses the VAR modelling and forecasting, 

Power Usage Effectiveness (PUE) optimisation, MPC control processes, as 

well as other supporting analyses necessary for the study. Furthermore, a 

comparison of performance between the proposed approach and the Genetic 

Algorithm is provided. Chapter 6 validates the real-world implementation of the 

VAR-PSO-based MPC scheme, while Chapter 7 delves into the use of 
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simulation as a means to validate performance across various DC scenarios. 

Chapter 8 provides a summary of the research findings and discusses the 

advantages of this study compared to similar research. Additionally, it 

examines the future prospects of the technology, including potential challenges 

and opportunities for further research.



 

 

 

 

In this chapter, a review of relevant previous research work is given on the 

existing energy-saving solutions of DCs. Three categories of the most popular 

energy-efficient engineering design techniques for DCs are introduced in this 

chapter's opening section, along with their limitations. This provides the 

methodological motivations for this study. Subsequently, the system 

identification models, optimisation approaches, and control theories are 

discussed in the context of industrial energy-saving operations. Detailed 

comparisons of similar approaches are also given and followed by a review of 

the relevant work in each field. Finally, the state of the arts of the proposed 

methodology in terms of the literature review and their relevance to the subject 

matter of this dissertation is stated at the end of this chapter.   
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2.1 The existing energy-saving solutions of DCs 

Notably, although DCs has been used for years, their energy-efficient concern 

has not drawn much attention until recently, some research demonstrated a 

remarkable annual growth rate (20% to 33%) of global electricity consumption 

(Nadjahi et al. 2018). Such a result is inconsistent with the previous discussion 

about DC operators being more focused on the reliability of the devices instead 

of energy efficiency. Following the discovery of the unavoidable fact that DC 

has the biggest energy consumption worldwide, a concerted research effort 

has been put into the energy efficiency solutions of the DCs. This section will 

outline the most recent developments towards the solution to the problem, and 

the state of the art regarding the motivation of the proposed approach.  

Current research on reducing energy consumption in DCs can be categorised 

into three main fields: cooling configuration design, IT-side renovations, and 

thermal management. The cooling configuration design mainly focuses on 

optimising the layout and efficiency of cooling systems to enhance heat 

dissipation and reduce overall energy usage in DCs. IT-Side renovations 

involve improvements and innovations in information technology infrastructure 

to enhance energy efficiency, such as more energy-efficient hardware and 

software solutions. Thermal management, as a more wild concept, compasses 

strategies for effectively managing and controlling the temperature within DCs, 

including advanced monitoring systems and adaptive thermal management 

techniques. In the upcoming discussion, the three primary fields will be 

reviewed individually and subsequently compared to the proposed solution 

presented in this dissertation. 
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(1) Cooling configuration design  

The study by Cheung et al. (2018) realised that approximately 40% of the 

energy consumption goes into the cooling system and it is the major source of 

a high PUE in the DC, therefore a concerted research effort has been put into 

the development of cooling technologies. Traditionally, air cooling systems 

have played an important role in DC cooling technologies, innovations to 

improve the air-cooling energy efficiencies, such as containment of hot/cold 

aisles and variable fan speed has shown to reduce energy cost consumption 

significantly by up to 70% (Carbó et al. 2016a). Nevertheless, IT density 

doubles every two years according to Moore’s law, which indicates that 

traditional air cooling is insufficient to meet the heat generated by the 

increasing IT density. Following the inference by Moore, efforts have been 

made on novel cooling technologies, which focused on four categories as 

follows: 

The free cooling technology aims at using the natural airside or water side 

economisers as well as the heat pipe air exchange technology to cool down 

the DC (Daraghmeh & Wang 2017).  

The liquid cooling technology is efficient when the power density of the DC is 

high, there is plenty of evidence indicating that has the potential to solve many 

of the problems associated with air cooling systems, especially as computer 

density rise (Carbó et al. 2016b).  

The two-phase flow technology utilizes a refrigerant that releases the heat 

generated by the server racks into the environment (Riofrío et al. 2016).  
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The building envelope technology such as building shell, fabric or enclosure 

materials and performances have also been wildly studied by the existing 

literature (Akeiber et al. 2016). 

(2) IT-side renovation 

According to New York Times, the average server usage rate is 6% to 12%, 

and 90% of the servers run at less than 5% utilisation (New York Times 2012). 

Efforts have been made to improve server performance, including the following: 

Servers consolidation methods suggested integrating multi-redundant servers 

into fewer servers and sharing fewer power supplies (Verma et al. 2009). 

Server virtualisation allows tasks to be done by multiple virtual servers instead 

of single physical servers to achieve an energy-saving purpose (Schulz 2011). 

Storage consolidation is to manage the data storage to avoid the devices 

running with heavy storage that causes energy waste. It has been wildly 

suggested to adopt new alternatives to traditional disk storage as flash storage 

(Zhang et al. 2018). 

Decommissioning the idle servers enables energy efficiency because energy 

savings from the server level result in approximately 1.9 times thus at the 

facility level due to reduced energy waste in the power infrastructure (PDU, 

UPS, building transformers) and reduced energy needed to cool the heat 

produced by the server (Emerson Network Power, 2012). 

Upgrade energy-efficient power suppliers such as PDUs, PSUs, voltage 

regulators, processors as well as energy-efficient fans (Lintner et al. 2011). 
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Upgrade the CPU with a dynamic energy-saving function that is capable to run 

in an energy-saving mode according to the CPU usage (Lintner et al. 2011). 

Upgrade the network transmission equipment to the newer generations as they 

pack greater throughput per unit of electricity (Wang et al. 2012). 

Upgrade the constant fan speed cooling devices to variable fan speed, 

therefore adapting to the changes in DCs workload (Pöyhönen et al. 2021). 

(3) Thermal management  

Adapting the server racks to the hot/cold aisle layout as well as the 

containment and enclosure methods are the most commonly adopted 

approaches to saving energy in cooling (Niemann et al. 2013). 

The optimal layouts of the cooling devices according to the thermal dynamics 

are also wildly studied by the literature. For example, shorten the distance 

between cooling devices and IT devices to minimise the cooling air waste on 

the way. (Stahl & Sullivan 2001),(Patel et al. 2002). 

(4) Comparison of existing solutions 

Although there are remarkable breakthroughs in the field of the DCs’ hardware 

innovations, however, one of the common disadvantages of the existing 

approaches is the complexity and high cost of upgrading and replacing the 

existing infrastructure. Existing new technologies require additional time to 

verify, improve and mature before applying to the practical DCs. The high cost 

of replacing the existing facilities is also crucial for realising the energy-saving 

goal of the DCs through hardware renovations and replacement. The report 
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from Forbes Technology Council (R. Danilak 2020) evaluated that it would be 

hardly seen some essential improvements in the above areas in the next five 

years since a benefit from the adoption of new energy-efficient techniques for 

DCs would be easily compromised by the cost of renewing the DC 

infrastructures, this essentially became one of the barriers to realising the 

facilities renovations. Therefore, this circumstance sparks our motivation to 

investigate managerial strategies instead of changing the existing facilities in 

DC to reduce energy costs. 

Figure 2-1 shows a systematic review of more than 200 related studies from 

our previous work. shows that around 39% of the literature look at the IT 

facilities, 33% look at cooling facilities and 19% focus on thermal management 

in the DC. Most of the papers written were on observations and ideas from 

data centres and an analysis of them, rather than a movement towards a 

solution. There is a limited number of studies investigating cooling operations 

to save energy in DCs without changing any infrastructure. This highlighted the 

state of the art of our proposed approach to fill up the research gap in the 
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existing literature. 

 

A – Literature that investigates innovations in cooling facilities. B – Literature 

that includes information related to thermal management. C – Literature review 

papers. D – Literature that investigates innovations in IT facilities  

Table 2-1 provides a comparative overview of current DC energy-saving 

solutions, as well as presenting the positioning of the present thesis within the 

existing literature. 

Table 2-1 The comparative overview of DC energy-saving solutions  

Field Reference Exemplary Approaches Key Findings 

Cooling 

configuration 

design 

Daraghmeh 

and Wang 

(2017) 

A free cooling technology  The integrated system of 

mechanical refrigeration and 

thermosiphon (ISMT) is considered 

an ideal solution for DCs. The 

improved ISMT consumed about 

34.3 –36.9% less energy than 

traditional cooling systems. 

Carbó et al. 

(2016b) 

Liquid cooling technology  The study analyses and quantifies 

the potential for heat reuse by 

performing extensive thermal 

characterisation and suggested that 

the use of liquid cooling systems in 

DCs can provide higher heat 

removal capacity. 

Riofrío et al. 

(2016) 

The two-phase flow technology  Analysed the enhancements of two-

phase flow cooling technologies 

including microchannel technology, 

plate-fin heat exchangers (PFHE), 
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and spray cooling, also provide 

evidence of their efficiency. 

Akeiber et 

al. (2016) 

The building envelope technology  Reviewed popular building envelop 

technologies and suggests Phase 

change materials (PCM) can be 

incorporated into the building 

envelope to increase its thermal 

mass and improve energy 

performance. 

IT design Verma et al. 

(2009) 

Server consolidation  Adopted a pMapper power-aware 

application placement methodology 

and successfully reduced power 

consumption in server side through 

consolidation. 

Schulz 

(2011) 

Server virtualization  This study revealed that the 

implementation of servers 

virtualisation facilitates the 

utilisation of a reduced number of 

servers, resulting in reduction in 

electricity consumption and waste 

heat. It also suggests that 

decommissioning the idle servers 

will lead to significant energy 

saving. 

Zhang et al. 

(2018) 

Storage consolidation  Designed a Combining three (C3) 

system that consists of three 

modules: prediction, consolidation, 

and migration to achieve live 

migration and reallocation of the 

server’s storage, therefore achieve 

energy reduction. 
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Pöyhönen 

et al. (2021) 

Server hardware innovations 

 

By upgrade the constant fan speed 

cooling devices to variable fan 

speed that could adapt to the 

server’s workload fluctuations, the 

energy consumed by the servers 

can be significantly reduced. 

Thermal 

management 

Niemann 

et.al (2013) 

Optimal layout of servers  Energy reduction can be observed 

by adapting the server racks to the 

hot/cold aisle layout as well as the 

containment and enclosure 

methods. 

(Stahl & 

Sullivan 

2001),(Patel 

et al. 2002) 

Optimal layout of cooling devices Shorten the distance between 

cooling devices and IT devices can 

minimise the cooling air waste 

during transmission. 

Managerial 

strategy 

This study Optimise energy consumption by 

optimise the ACs temperature 

setpoints 

Significant energy reduction of 

32.5% without any hardware 

renovation or infrastructure 

changes. 

 

2.2 Technical methodological review 

This section will review the literature at a technical methodology level. As the 

proposed approach is the combination product of three fields: system 

identification, optimisation problem solving and the control strategy, similar 

approaches will be compared and evaluated respectively in each field. The 

current research gap, current challenges, fierce debates, as well as the state 

of the art within each field will be discussed on the technical level.  
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2.2.1 System-identification in modelling optimisation problems 

System identification is a fundamental methodology for modelling complex 

system and subsequently optimising their behaviour. It’s a process that 

involves extracting the insights of the systems’ dynamics by observing the 

interactions between the system variables. The system identification process 

takes inputs represents the stimulus or control applied to the system, while the 

output signifies the system's corresponding response (Theodoridis and 

Kraemer). When transitioning to the realm of optimisation, the input and output 

relationship of the system identification model becomes instrumental. 

Optimisation aims to find the most efficient or optimal set of inputs that lead to 

desired outputs. In this context, the system identification model acts as a 

surrogate for the real-world system, facilitating the exploration of input 

configurations that yield optimal outcomes. By utilising the recognition gained 

from the system identification model, optimisation algorithms can navigate 

through the input space, seeking combinations that maximise or minimise a 

specified objective function(Biegler et al.).  

Selecting the appropriate identification method is seamlessly aligns with the 

identification of the optimisation problem. Optimisation of energy consumption 

through the adjustment of AC setpoints is directly connected to combinatorial 

problems. In the context of air conditioning management, determining optimal 

setpoints involves discrete decision-making, presenting a challenge analogous 

to those explored in combinatorial optimisation studies (Boyd 2004). These 

types of problems have been extensively studied, ranging from Traveling 

Salesman Problem (Prabowo et al. 2018; Tadei et al. 2017), scheduling 
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problems such as Flow-shop and Job-shop scheduling (Calude et al. 2005), 0-

1 knapsack problems (Feng et al. 2017), Bin Packing problems (Song et al. 

2018), and graph clustering problems (Bastkowski et al. 2016). Among those, 

the scheduling problem emerges as particularly relevant to our current 

exploration. Extensive research has explored energy-efficient scheduling, 

particularly in the context of thermal dynamics. The Empirical mathematical 

equations, grounded in first principles, serve as foundational elements for a 

wide range of commercial modelling software. (US.DOE.2014). However, 

although traditional mathematical modelling occupies an important place in 

optimisation modelling, several practical problems remain to be addressed. 

Studies have proved that traditional mathematical modelling takes up to 90% 

of the effort regarding the time and cost in the modelling process, particularly 

when the environment is multivariate and complicated. (Chemical Engineering 

Department King Saud University 2002). Due to the demanding need for an 

in-depth understanding of a system's nature. The challenge of traditional 

mathematical modelling arises from the complexity of the system or limited 

knowledge of the underlying physical laws and principles (Mäkilä & Partington 

2003). Alternatively, data-driven model has emerged to be a shortcut to 

address the inherent challenges proposed by traditional mathematical 

modelling. 

Perez, Baldea and Edgar (2019) adopted a data-driven approach to estimate 

the coefficient of a Reduced Order Model (ROM) as the objective function of 

the problem is to minimise the peak hours’ cooling load by pre-cooling control 

actions. The ROM model largely reduced the computational workload in real-
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time. This is the most related paper in the literature that studies the DCs 

cooling managerial strategy. However, it revealed several gaps and 

shortcomings. This research focused on shifting the peak hours’ cooling load 

to the unoccupied time to pre-cool the house, therefore achieving the peak 

load reduction instead of managing the energy-saving operations all over time. 

Another major drawback to adopting the ROM model is that the model is 

inherited from the empirical studies of the building cooling environment, to 

ensure computational efficiency, the independent variables are fixed to be a 

few main impactable components, in other words, ignored the variables that 

less impactable to the cooling load. In specific cases, the ROMs are invalid 

because the empirical model only considered the generalised household 

thermal environment, however, not able to adapt to special cases. Most 

importantly, this model fails to take the mutual-affected relationships among 

the variables in the complex environment into account due to its simplicity. 

Although the energy-saving feasibility has been proved by the data from the 

individual household, however, because of the similar residential behaviours 

and the relatively simple household environment, the ROMs are insufficient to 

adapt to a more complex thermal environment, such as heavy-duty DCs. The 

proposed system identification VAR model aims to leverage data-driven 

models, at the same time to address the gaps mentioned above. 

 

The complexity of the DC environment, which encompasses numerous 

variables, is widely recognised (Ferreira & Pernici, 2016). As such, there is a 

need for a multivariate model that can capture the interactions between these 

variables. The proposed VAR model is one of the most commonly used models 
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in multivariate time series analysis. From a longitudinal perspective, the Vector 

Autoregression (VAR) model is an extension of the univariate time series 

Autoregressive (AR) model. From a horizontal viewpoint, the VAR model, 

together with its related models, such as Vector Moving Average (VMA) and 

Vector Autoregressive Moving Average (VARMA), employ linear relationships 

to describe a stationary system. Compared to the general time series 

estimation model and some machine learning techniques, VAR has various 

advantages. It strengthens by describing the interaction relationship among 

variables with fast, easy and efficient features.  Athavale et al. (2019) 

compared the temperature prediction performance of four different types of 

Data-Driven Models (DDMs) including Artificial Neural Networks (ANN), 

Support Vector Regression (SVR), Gaussian Process Regression (GPR) as 

well as Proper Orthogonal Decomposition (POD) in a DC, the result 

demonstrated that only NN could handle multiple output points in one model. 

However, because of the unknown features of the system and multi-

dimensional problems that need to be solved in one model, it requires a large 

volume of data to feed into the model and all these models are facing a similar 

difficulty, which is expensive to run in practice and relatively time-consuming. 

In contrast, VAR considered all the endogenous variables into a mutual-

effected relationship and represents the system in a comprehensive matrix 

form, because of its linearity feature, the model is inexpensive and efficient to 

run. Moreover, as a time series model with the AR structure, the data can be 

substituted into the VAR model recursively to predict the future movements of 

the system variables. E.Mostafa (2015) compared the performances of several 

macroeconomic structural models to the benchmark models VAR and 
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Autoregressive Integrated Moving Average (ARIMA) models, the result 

demonstrated that the VAR model outperformed the other models regarding 

the forecasting accuracy and the amount of interpretable information contained 

in the prediction result. A psychological study done by Eason (2020) 

demonstrated that the VAR model had a good performance in analysing the 

bidirectional relationship between the objectives subject to the selection of 

variables and the size of the sample data. Compared to the other nonlinear 

models, VAR has advantages from the linearity property, it simplified the 

estimation procedure and, most importantly, gives an easily interpreted output 

on a modular level in terms of the parameter weights (Friedman et al. 2000).   

Table 2-2 presents a comparison between traditional mathematical 

methodologies and data-driven approaches. Additionally, within the data-

driven model’s scope, it contrasts the VAR model with various system 

identification models commonly referenced in the literature, emphasizing their 

applicability to the current study. 

Table 2-2 The comparison of VAR and other system identification models 

Category Model Advantages Disadvantages Applicability 

Traditional 

mathematical 

approach 

Queuing 

Models; 

LP,IP,MIP; 

Thermal 

models; 

Makov 

models; 

Game theory 

models 

(1) Provides a clear 

optimization framework for 

resource allocation. 

(2) Allows for the 

incorporation of constraints 

and objective functions in a 

systematic manner. 

(3) Well-established 

algorithms for solving LP and 

IP problems efficiently. 

(1) Computational 

Expensive 

(2) Requires deep 

understanding of the 

systems physics. 

(3) Lack of flexibility to 

adapt to the changes in 

environment 

Consider the 

complexity of the DC 

environment, and the 

requirement of 

flexibility, adaptability 

of the model itself, 

traditional 

mathematical 

approach is not 

appropriate. 

Data-driven 

approaches 

 

VAR 
(4) Linearity properties 

include efficient 

implementation and 

computational saving, more 

(4) The performance of 

forecasting may be 

affected by the selection 

of variables and the size 

(1) DC is a complex 

environment in that a 

multivariate model is 

required. 
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 interpretive compared to non-

parametric models.  

(5) Parameters are easy to 

estimate: Under stationary 

conditions, the parameter 

estimation of VAR is 

consistent with the ordinary 

least square estimation 

(OLS). 

(6) Has many statistical 

properties: 

Allowing interval estimation, 

residual analysis and model 

diagnosis, etc. 

(7) The Time series models 

have advantages in 

forecasting. 

(8) Allows involving multi-

variables. 

(9) Endogenous, exogenous 

assumption makes the 

interrelationships between 

variables easy to interpret. 

(10) Flexible, easily increase 

or reduce variables. 

of the sample data. 

(5) Compared to other 

structural models, VAR 

parameters may have 

less theoretical meaning. 

(2) Sample data is 

enough to estimate a 

VAR model and its 

efficiency makes real-

time tracking and 

control possible. 

(3) It is an appropriate 

approach for the DC 

environment because 

it doesn’t need a 

thorough 

understanding as well 

as time and effort to 

study the systems 

physics. 

ARIMA (1) Linearity. Easy to 

implement; 

(2) Only include one 

endogenous variable and its 

past values. The structure is 

simple; 

(3) Can be used for 

forecasting purposes; 

(4) Seasonality adapted. 

Univariate model. Not 

apply to the complex 

environment. 

 

As a univariate model, 

ARIMA is not suitable 

because DC is a 

complex system with 

multi-variables.  

Classification 

models-SVM 

(1) Able to solve high-

dimensional problems, and 

large feature spaces. 

(2) Able to solve the problem 

with small samples. 

(3) Able to handle the 

interaction of nonlinear 

features. 

(4) No local minimum 

problem; (relative to ANN and 

(1) The efficiency is 

relatively low When the 

sample size is large. 

(2) There is no universal 

solution to nonlinear 

problems, and 

sometimes it is difficult to 

find a suitable kernel 

function. 

(3) Not sufficient in 

interpreting high-

Not suitable because : 

(1) There is a large 

size of sample data in 

DC. 

(2) DC has multi-

variables the binary 

classification is not 

appropriate. 

(3) Real-time 

estimation of the DC 

environment has the 
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other algorithms). 

(5) No need to rely on the 

entire data. 

Strong generalization ability; 

dimensional mapping of 

the kernel function, 

especially the radial 

basis function. 

(11) Conventional SVM 

only supports binary 

classification. 

Sensitive to missing 

data. 

chance to receive 

missing data in the 

sample that SVM is 

not satisfied to handle.   

 

ANN (1) Has the ability to learn and 

model nonlinear complex 

relationships. 

(2) ANN can be generalized. 

After learning from the initial 

historical data, it can also infer 

the unknown relationship of 

unknown data. 

(3) ANN does not impose any 

restrictions on the input 

variables (distribution). Many 

studies show that ANN 

performs well in modelling 

data with heteroscedasticity 

because it can learn hidden 

relationships in the data 

without imposing any fixed 

relationships. This is very 

wildly used in financial time 

series forecasting with very 

large data fluctuations. 

 

(1) Poor interpretative. 

The most likely known 

disadvantage of neural 

networks is their "black 

box" nature (unknown 

law about the outputs). 

(2) Time costly. ANN 

takes a long time to train. 

(3) Compared with 

traditional machine 

learning algorithms, 

neural networks usually 

require more data, at 

least millions of labelled 

samples. However, many 

machine learning 

problems can be solved 

well with less data. 

(4) Computational 

expensive. 

 

Not suitable because: 

(1) DC environment 

is a serious 

environment that 

needs an 

interpretative and trust 

model as a system 

model.  

(2) The DC needs to 

make a fast and 

efficient reaction to 

the energy 

inefficiency, 

computational-

expensive would be a 

barrier to this purpose. 

Also, the ANN itself 

will consume more 

energy. 

Deep 

learning 

(1) Compared with machine 

learning, deep learning is 

more effective on complex 

problems. 

(2) More potential depends 

on the sample size. 

 

(1) Computational 

expensive. 

(2) Required high-

performed hard-core. 

(3) “Black-box” property. 

Less interpretative. 

(4) Designing the model 

is complicated. 

 

Similar to ANN, deep 

learning is the 

advanced version of 

the general neuron 

network which has 

more layers, this will 

increase the level of 

complicity and 

increase 

computational and 

human effort, 

moreover, time-

consuming. 
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2.2.2 Review of the optimisation solvers 

As the magnitude of data increases and hardware capabilities improve, 

optimisation issues tend to be tied to more scenarios, and the dimensions of 

the algorithms grow proportionately. One way to solve such high-dimensional 

data is to impose certain structural constraints on the problem from the 

perspective of parameter estimation, which is often non-convex. 

Correspondingly, the objective functions of such optimisation problems are 

also non-convex. Non-convex objective functions and constraints can model 

the problems more accurately, however tackling such problems might be 

difficult. Compared to convex optimisation problems, non-convex optimisation 

issues are more difficult to solve. Solving the objective function by traditional 

mathematical approach is mostly NP-hard, and addressing approximation 

solutions is also likewise NP-hard (Jain & Kar 2017). R.Urbanucci (Urbanucci 

2018) categorized the optimisation solutions for energy polygeneration 

systems into three types, including optimum synthesis, design, and operations, 

in which MILP (Mixed Integer Linear Programming) is the approach for 

operations with the main advantage in finding the global optimal solution to the 

problem and easy to be solved by many commercial solvers. In practice, 

solving optimisation problems in high dimensions (large candidate solutions) 

can be difficult because it is time consume and computationally expensive 

during calculation by mathematical evolution algorithms (Tomassetti & 

Cagnina 2013) or nonlinear algorithms (Du & Chen 2000). D.Steen (2015) 

derived a thermal storage model for energy-saving by MILP and confirmed that 

because of the existence of the endogenous problem in the thermal 
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environment, the temperature storage cannot be tracked by MILP for the whole 

timeline horizon but only a single time step. To overcome these difficulties, the 

proposed approach integrates endogenous modelling by a time series model 

VAR and solves the VAR objective function with a PSO solver. 

In recent years, there has been significant attention given to addressing the 

challenge of solving high-dimensional non-convex optimisation problems. The 

most widely adopted approaches are gradient descent, momentum, and 

heuristic. Swarm Intelligence (SI) is a popular heuristic approach used to solve 

high-dimensional non-convex optimisation problems. It was introduced in 1989 

by G. Beni and J. Wang (1993) and inspired by the flocking behaviour of birds 

in biology. Following the emergence of SI, Kennedy and Eberhart (1997) 

developed a heuristic approach named Particle Swarm Optimisation (PSO) in 

the mid-1990s. PSO is a computational method that can improve the 

optimisation of candidate solutions through iteration. It obtains a set of 

candidate solutions according to the mathematical formulations of the position 

and velocity of the particles, and the movements of particles in the search 

space give potential solutions to the problem. The movement of each particle 

is not only affected by its local optimal position, but the global optimal solution 

will also guide these particles to the optimal position. PSO update the optimal 

information by the joint feedback from each particle (cognitive) and its 

neighbour particle (social) that guaranteed the high probability and efficiency 

concerning finding the global optimal. Due to its various benefits including 

robustness, performance, and simplicity, PSO has been wildly accepted. In 

general terms, the PSO algorithm is mainly used for solving contentious 
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variable problems. However, because of the good convergence and 

adaptability of PSO, efforts have been made to adapt PSO to solve the discrete 

optimisation problem as well. Kennedy & Eberhart (1997) defined the first 

discrete binary version of the PSO algorithm. The particles are encoded using 

binary strings. By using the sigmoid function, the speed is limited to the interval 

[0, 1] and interpreted as a "change in probability". Yang et al. (2019) extended 

this method to quantum space. Similarly, Pang et al. (2004) used a fuzzy matrix 

to represent the position and velocity of the particle, redefined the operator of 

the PSO algorithm, and applied it to the solution of the Traveling Salesman 

Problem (TSP) problem. G.Pampara (2006) combined the PSO algorithm with 

the angle modulation technology in signal processing to reduce the 

dimensionality of the high-dimensional binary problem therefore the 

optimisation problem can be solved. Afshinmanesh et al. (2005) redefined the 

addition and multiplication in the discrete PSO algorithm and uses the negative 

selection in the artificial immune system to achieve the speed limit. Hu (Hu et 

al. 2003) proposed an improved PSO algorithm to deal with the permutation 

problem, preliminary research on the n-queen problem shows that the 

improved PSO algorithm is very promising in solving the constraint satisfaction 

problem. Parsopoulos & Vrahatis (2000) used standard functions as an 

example to test the ability of the PSO algorithm to solve integer programming 

problems. A.Salman (Salman et al. 2002) abstracted the task assignment 

problem as an integer programming model and proposes a solution based on 

the PSO algorithm. It was observed that PSO requires less computational 

effort and has fewer parameters to adjust compared with other stochastic 

algorithms such as genetic algorithms (Khare & Rangnekar 2013). Mahor 
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(Mahor et al. 2009) reviewed the general optimisation approaches and the 

result illustrated that the heuristic approaches such as genetic algorithms, 

simulated annealing, ant colony optimisation, neuron network, Tabu search, 

and PSO performs better than general conventional optimisation approaches 

such as mathematical programming, and among them, PSO outperforms the 

others among those and provided the best result to the question. Table 2-3 

compared and summarised the advantages and disadvantages of the 

penitential approach to the problem from the literature, and the applicability of 

chosen PSO to solve the proposed optimisation problem. 
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Table 2-3 The comparison of PSO and other common optimisation 

approaches 

Category Model Advantages Disadvantages Applicability 

Conventional 

optimisation 

approach 

Mathematical 

programming 

1) Clear 

structure, good 

interpretation of the 

relationship of the 

variables 

2) Robustne

ss and the fixed 

structure make the 

model perform 

static and robust. 

3) Easy to 

implement. Fast 

speed 

4) Efficient 

during calculation. 

5) Simple 

and compact 

approximation to 

complex decision-

making. 

 

1) Requires a deep 

understanding of the 

nature of the 

environment. 

2) Construction of the 

model can be time and 

human-effort-

consuming. 

3) Can be complicated 

when the number of 

variables increases. 

4) Solving such a 

complicated algorithm 

is difficult or even 

cannot be solved. 

5) Re-estimation of the 

system would be 

problematic. 

6) Hard to adapt to 

dynamic changes. 

 

1) The optimisation 

formulation will take 

advantage of 

mathematical 

programming, using 

statistical parameters 

to form the objective 

function and 

constraints.  

2) It will also consider 

the dynamic revolution 

of the environment. 

3) But we solve it with 

the heuristic approach 

to avoid the 

complexity of finding 

the mathematical 

solution. 

Heuristic Tabu 

Search (TS) 

1) Fast, efficient to 

converge to the 

globally optimal. 

2) Easy to 

implement. 

1) Too greedy to the 

local or neighbour 

spaces, then ignored 

the possibility of other 

spaces. 

2) Easy to stick in local 

optimal. 

Too strict and greedy 

to the optimal solution, 

however, in the DC 

environment we 

expect to find the 

global optimal with a 

fast converge speed. 

Genetic 

Algorithm 

(GA) 

1) The optimised 

function is not 

required to be 

differentiable, 

continuous, etc. 

2) The search 

process starts from 

a set of solutions to 

1) Compared to PSO, it 

has the shortcoming 

that it does not have 

any memory of 

previous attempts. 

2) All the information is 

shared between 

individual participants 

1) Compared to PSO, 

GA is less efficient 

with the converging 

speed. In real-time 

optimisation practice, 

PSO is preferred. 

2) Programming is more 

complicated. Once the 
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the problem, rather 

than from a single 

individual. It has an 

implicit parallel 

search feature, 

thereby reducing 

the possibility of 

falling into a local 

minimum. 

 

in GA, however, PSO 

only shares optimal 

solutions among 

individuals, resulting in 

GA converging slower 

than PSO to the 

optimal. 

3) Programming is more 

complicated. Encoding 

and decoding are 

required before and 

after optimisation is 

done. 

4) Crossover and 

mutation operation is 

problematic. 

model needs to be 

adjusted, this 

increased the human 

effort. PSO is 

preferred. 

 

PSO 

1) Has the advantage 

to memorize the 

previous attempts. 

2) The optimised 

function is not 

required to be 

differentiable, 

continuous, etc. 

3) Fast convergence 

speed. 

4) simple, easy to 

implement. 

5) The search 

process starts from 

a set of solutions to 

the problem, rather 

than from a single 

individual. It has an 

implicit parallel 

search feature, 

thereby reducing 

the possibility of 

falling into a local 

minimum. 

6) The input of 

decision variables 

can be multi-values 

1) Although the PSO 

algorithm provides the 

possibility of global 

search, it does not 

guarantee 

convergence to the 

global optimum. 

2) At present, PSO has a 

little rigorous 

theoretical basis. It 

simulated the 

biological searching 

behaviour, but it does 

not explain the reason 

why it is effective and 

the scope of its 

application is relatively 

unclear. 

1) The PSO algorithm is 

derived from the 

Complex Adaptive 

System (CAS). 

2) The subject is active 

and interacts with the 

environment and other 

subjects. 

3) Finally, the entire 

system may also be 

affected by some 

random factors. 

4) The above features 

are all consistent with 

the assumptions in the 

DC.  

5) Suitable to solve real-

time optimisation 

problem which 

requires convergence 

speed. 

6) ACs’ temperature 

setpoint combinations 

are in a large 

searching space, and 

PSO is strong in 
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but not only one. searching among high 

dimensions space. 

 

2.2.3 Review of the system control strategies 

In the field of online control, MPC is a widely used feedback control algorithm 

and has been recognised and applied in many industries. As a control 

approach, it comes from industry practice rather than academia. Track back to 

the early 1960s, only simple input/output models were applied for system 

control until Kalman (1960) raised the notion that the states are the “internal 

memory” of the system and not always measurable. This laid the foundation of 

Linear Quadratic Gaussian Control (LQG). However, LQG does not take the 

constraints into account and only can be applied to linear models. The problem 

has been solved after the receding horizon concept emerged. A model 

predictive heuristic control (MPHC) approach was introduced by Richalet in 

1978 that has all the properties of MPC except the requirement of optimal 

controlling. In contrast to MPC optimisation, MPHC determines future actions 

by iteratively operating the system until the constraints are satisfied. While it 

only guarantees that the system will not violate the constraints, it does not 

necessarily ensure optimality. Nonetheless, it paved the way for the 

subsequent development of MPC, as noted by Richalet et al. (1978). Dynamic 

matrix control (DMC) was the first attempt at MPHC with the computation of 

optimal control variables, and it was initially applied by the Shell Oil Company 

in the 1960s. This approach has been reported to outperform the widely used 

Proportional-Integral-Derivative (PID) control in Shell Oil's production line. 
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Honeywell had confirmation of its convergence/stability in an internal study by 

the late 1970s/early 1980s. Beginning in the late 1980s, academic work on 

MPC demonstrated ways to lower the computing cost of MPC in critical issues. 

With the improvement of computational capabilities, MPC has been applied 

exclusively in industries (Mayne et al. 2000a) (B . Lee and L . Markus 2021). 

MPC has been introduced as a control technique for obtaining feedback from 

the predicted future state and optimising the active intervention to the current 

state, from the rapid control loop, the state can be optimised by the optimal 

control input at each time step. In this way, the whole system can be 

segmented into short-period linear processes and optimisation can be applied 

to each time horizon (Rawlings 2000). From the 1970s to nowadays, MPC has 

been developed from a heuristic control algorithm into a new branch of 

enriching theoretical and practical content. MPC is aimed at controlling 

problems with optimisation requirements, there is a variety of literature that has 

verified its successful control in complex industrial processes has been fully 

demonstrated and proves that MPC has a great potential for handling complex 

constrained optimal control problems (Qin & Badgwell 2003) (Mayne et al. 

2000a). It has been realised by embedding the system identification model and 

prediction model in the MPC process. In recent years, MPC has been wildly 

used in many fields, such as advanced manufacturing, energy, environment, 

aerospace, and medical care. Literature about MPC covered the content of the 

supply chain for semiconductor production management (Wang et al. 2007), 

high-pressure composite processing in material manufacturing (Dufour et al. 

2004), building energy-saving control (Salsbury et al. 2013), flight and satellite 

attitude control (Silani & Lovera 2005). A breakthrough in MPC is applied in the 
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vehicle control conducted by Hassan (2016), an electronic vehicle speed 

control using MPC has been designed with the time delay based on a fuzzy 

model, and the simulation demonstrated a good control result of leading the 

electronic car to the motor with its speed setpoints) (Hassan Khooban et al. 

2016). Since MPC is a flexible approach that has been already approved by 

the founder that it can be adapted to over 90% of the control problems, in 

recent years, MPC has been also considered to apply to the power system as 

well as the DCs. Izawa (Izawa & Fripp 2018) adopted an MPC control for the 

air conditioner energy consumption in the commercial building and take 

weather, electricity price, and occupancy into account. The result 

demonstrated the proposed approach can save 15% of the energy consumed 

by the air conditioner compared to other optimisation approaches adopted. 

Also, Google has reported that MPC control has significantly reduced the 

cooling cost by 9% in one of their DCs (Schwenzer et al. 2021). Yu et al. (2017) 

conducted a full set of benchmark approaches, including MPC to control the 

temperature in a small-scale building environment, and the result showed that 

MPC outperforms other approaches, including the most wildly-used thermostat 

technique, energy consumption in the DC has been convincingly reduced by 

43% under MPC control strategy. Since the majority of the problems mentioned 

above are multi-variable and require constraints, MPC became a natural fit 

based on its strength in handling multi-variable issues and its’ ability to simplify 

the complex system, and it has aroused the attention in the field of DC cooling 

control. 
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Technically, based on the principles of working, the control strategies can be 

divided into three categories: Classical controllers, predictive controllers and 

repetitive controllers (Schwenzer et al. 2021). As one of the predictive control 

strategies, MPC has advantages in many aspects compared to conventional 

control strategies, also among other predictive control strategies:  

(1) The classical controllers and repetitive controllers, such as the PID 

controller, bang-bang controller or state controllers consider only the 

past and current system behaviours and are reactive to deviations (Ang 

et al. 2005) (Hillerström & Walgama 1996). However, MPC takes the 

future system behaviours into account, and the foresight of the 

prediction horizons will be considered to avoid the future problem in 

advance by minimising the deviation between the prediction and the 

reference (Rawlings 2000) (Schwenzer et al. 2021). 

(2) Conventional controllers frequently encounter limitations as they 

primarily depend on accurately tracking the dynamics and trajectories 

of the system, which is considered the most challenging aspect of the 

control process. In contrast, MPC is presented as a more versatile 

solution that can effectively address a wide range of problems. Notably, 

MPC is noted for its capability to handle challenges even in situations 

where there is limited understanding of the system's nature or when 

there is a lack of confidence in the feasibility of traditional control 

approaches. Furthermore, MPC has the benefit from it relies on the 

optimisation model that fits any scenario, instead of formulating the 

tedious system control law, it determines the control law automatically 
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by a model-based optimisation. This main advantage makes MPC 

flexible to adapt to different industries and favourable to the engineering 

community (Lee et al. 1999)(Rawlings 2000). 

(3) Practically, many actual processes are nonlinear but can be regarded 

as linear in a small operating range. Most applications can adopt linear 

MPC to solve complex problems. The receding horizon manner of MPC 

simplifies a complex system by segmenting a long-term complex 

process optimisation into short-term linear optimisation problems which 

are easier to solve (Gros et al. 2020).  

(4) Besides the control theory in MPC, it is also superior to handling multiple 

constraints. Compared to similar control strategies, for example, PID, 

MPC shows a great advantage in coping with multiple constraints 

simultaneously on the subjects and offers better performances 

compared to similar control laws. MPC allows the constraints to be 

added both to the manipulated variables (MV, input) and controlled 

variables (CV, output) as well as the state (Houwing et al. 2008). 

Comparingly, PID has to run several separate control systems to add 

more constraints. The work of Mayne (2000) shows that MPC can 

systematically handle physical constraints, and its stability is thoroughly 

investigated. M. Pisaturo (2015) has developed a model for controlling 

the start-up of a passenger car using a dry clutch in an automatic 

manual transmission. Similarly, a vehicle control model by MPC has 

been conducted by Jung (2012) with constraints on the state and the 

input.  
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(5) Linearity may make system forecasting errors, therefore affecting the 

optimisation. However, MPC has another advantage compared to 

normal model-based optimisation, which is brought by its receding 

horizon strategy (Agrawal 2020). Under this strategy, MPC is adept at 

forecasting events or conditions that are closer in time or proximity to 

the current moment. MPC is considered to be more optimal since the 

proximal prediction has a smaller error compared to a distance 

prediction, because the prediction error is generally increased when the 

prediction horizon is long. Also, its feedback mechanism compensates 

for the estimation errors that are produced by the uncertain structure 

between the model estimation and the actual process. This 

conservatively guarantees the control is optimal. The combination of 

prediction and optimisation is the main difference and advantage 

compared to conventional control laws (Mayne et al. 2000b). 

(6) Receding horizon strategy also provides advantages for MPC to 

manage the system that exists the time delay and inverse response by 

setting up an appropriate prediction horizon and control horizon. Time 

delays refer to the lag between an action taken in the system and the 

resulting effect, while inverse responses occur when the system reacts 

in the opposite direction to the applied input before eventually 

stabilising. By taking into account the anticipated future behaviour of 

the system within the prediction horizon, MPC controller facilitates the 

dynamic adjustment of both the prediction horizon and the control 

horizon. This adaptability ensures that the controller is capable of 

meeting the overall control objective effectively. when compared to 



Chapter 2                           Literature Review 

 

56 

other feedback controllers, as it enables MPC to effectively and 

naturally address complex system dynamics and achieve better 

control performance in the presence of time delays and inverse 

responses (Holiš & Bobál 2015). 

(7) Because of the finite control horizon and a fixed moving window, linear 

control problems under MPC control are easy to be transferred to 

quadratic programming problems, which is more computationally 

efficient (Rao et al. 2001). 

 

However, while MPC offers indisputable advantages, some academics argued 

that the additional computing load brought by the design cannot be overlooked 

even though the system performance is rigorously guaranteed by theory (XI et 

al. 2013). This is also the main reason that the application field questioned the 

feasibility of MPC theories. In response to this issue, the technique of "offline 

design, online synthesis" is recommended in the qualitative synthesis of 

predictive control. By converting part of the online calculation of the integrated 

control law into the offline calculation, the purpose of reducing the amount of 

online calculation is achieved. Hu proposed an offline MPC output feedback 

scheme for the system with both parametric uncertainly and bounded 

disturbances, estimated error rates of the previous states were used to refresh 

that of the current online, and the result showed the joint implementation of 

offline and online largely saved the computational time and increased the 

prediction accuracy of the system (Hu & Ding 2018). Also, a light, efficient 

system identification model is needed to save computational costs. 
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Table 2-4 compared MPC to the most similar control strategy in the literature, 

namely Proportional Integral Derivative (PID), and provides the reason we 

select MPC to be the proposed optimisation scheme. 

  

Table 2-4 The comparison of PID and MPC 

Model The input-

output variables 

Prediction  Constraints Specific to this 

study 

PID  Difficult to handle 

multi-input and 

multi-output 

Control depends on 

past and current 

states but does not 

consider the future 

state. 

Have to run several 

separate PID 

models to add the 

constraints 

DC is a complex 

environment, multi-

variables have to be 

estimated, and the 

constraints can be 

many. Also, a time 

delay is another 

property in the DC 

for one variable to 

respond to another. 

Therefore, MPC is 

preferred. 

MPC Easy to handle 

multi-input and 

multi-output 

Control can 

consider the 

prediction of future 

movements and 

implement past 

decision variables to 

control the future 

state. 

Can easily handle 

multiple constraints 

 

2.3 State of the art 

Overall, from the literature, we can conclude that MPC is a proper scheme to 

control the complex environment, such as DCs, under which the optimisation 

can be run dynamically with optimal control strategies provided for each control 

horizon. To reduce the modelling effort and computational effort, a statistical 

linear model VAR will be applied to identify the environment. The non-convex 
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nature of optimisation problems involving time delay and multiple variables 

makes them difficult to solve using traditional mathematical approaches, and 

the problems are known to be NP-hard. Therefore, a heuristic optimisation 

solver- PSO optimisation is an appropriate solver and will be applied to search 

for the control solutions in the feasible field. Combining these three 

approaches is the result of considering the advantages of each field. 

 The contributions of the proposed study to the literature include the following: 

(1) Filled the gap in the literature by providing an energy-efficient operation 

control strategy of DC without changing IT and cooling devices. Offered 

a dynamic energy-saving managerial plan from a new perspective – the 

utilisation of the AC setpoints combinations. 

(2) An optimal control strategy was proposed in this work, distinguishing it 

from other literature that mainly focused on post-event static 

optimisation. 

(3) The proposed real-time statistical model VAR can identify the large 

complex system and largely save the traditional mathematical modelling 

effort, without a necessary deep understanding of the thermal nature, 

which has been wildly studied in the literature. The VAR model will be 

fast reacted to environmental changes, also reducing the computational 

power and time-consuming that has been considered an impediment in 

most control laws. 

(4) The feasibility of MPC optimal control strategies will be validated in the 

actual DC environment, which can be referenced by future studies. 
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(5) It will be a novel attempt to combine the statistical model with the 

optimisation strategy and the system control strategy. Instead of the 

traditional mathematical approach which requires deep knowledge of 

the system and considerable human effort, the combination of the 

statistical model will bring the benefits of fast speed, efficiency, and easy 

implantation, moreover, easy to adapt to different complex 

environments. 

  



 

 

 

 

This chapter discusses the common procedures of design science studies and 

how the proposed study that utilises the VAR-PSO-MPC approach 

emphasises the design science field and follows its’ procedures to solve the 

addressed problem. 
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3.1 Overview of design science research philosophies  

Kumar, R. (2021) defines research philosophy as a set of assumptions or 

beliefs that relate to the nature of knowledge and the ways it can be acquired. 

This essential element underpins any research project, guiding the choice of 

research methodology and assisting the researcher in effectively tackling the 

research questions. 

Positivism, interpretivism, and critical theory are the three frequently employed 

research philosophies. As per Norris, G. (2021), positivism is grounded on the 

belief that there exists an objective reality that scientific methods can observe 

and measure. On the contrary, interpretivism asserts that reality is subjective 

and is not directly observable, but instead, it is constructed through social 

interactions and interpretation. While critical theory seeks to examine the 

influence of power dynamics in society on the development of people’s 

perceptions and comprehension of reality. 

While it is possible to argue that design science (DS) research can draw upon 

elements of positivism, interpretivism, and critical theory, it is not typically 

classified within any one of these traditional research paradigms. Rather, 

design science research is often viewed as a distinct approach that combines 

elements of theory and practice in the creation of innovative artefacts or 

systems to address specific problems in the field of information systems 

(IS)(Hevner and Chatterjee,2010). Van (2004) posits that the integration of 

design science research methodology into the field of Information Systems (IS) 

complements traditional research philosophies, in essence, design science 

research methodology serves as a supplementary approach that can enhance 
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conventional research paradigms in the IS field. The design science research 

methodology integrates theoretical concepts with practical applications to 

create innovative solutions that can be systematically tested and refined 

through iterative processes. As such, this methodology holds significant value 

in advancing the field of IS in operations management (OM) and beyond. Van 

(2013, 2016) emphasises the importance of design science research in 

creating novel artefacts or systems to address specific problems in the field of 

IS. 

3.2 A design science methodology for minimising energy 

consumption in Data Centres 

This study follows the five-stages Design Science Research (DSR) process 

that defined by Vaishnavi and Kuechler (2015). Within the context of this study, 

the adoption of the DSR approach proves essential. It facilitated a systematic 

framework for defining the problem domains and inspired a comprehensive 

progression of research steps concerning various facets of evaluation. 

The flowchart shows in Figure 3-1 presents the standard procedures that 

govern design science studies and explains how the proposed VAR-PSO-MPC 

approach, adheres to these protocols.   
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Figure 3-1The DSR process flowchart 

The primary step is to identify a problem that requires a solution. Accordingly, 

the primary objective of the proposed study is to address the issue of high 
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energy consumption in DCs. In the digital era, DCs play a crucial role, and their 

energy usage is significant, amounting to approximately 1% to 3% of the 

world's total energy consumption (Liu, Yu, & Wang, 2021). Additionally, existing 

method mainly focusing on costly hardware renovation. Thus, this study aims 

to develop a comprehensive methodology that can effectively minimise the 

energy consumption of DCs without changing existing infrastructure. 

The second stage of conducting DSR involves specifying the suggested 

objectives of the research, which derived from the identified problem. In 

response to the pressing energy challenges within DCs and recognising gaps 

in current energy-saving approaches, our study introduces a problem-oriented 

solution with a comprehensive framework. A Decision Making System(DSS) 

should be developed based on managerial strategy rather than hardware 

renovation. 

The third step is to design and develop the artefact or system to solve the 

problem. In this study, the proposed artefact is the VAR-PSO-MPC 

methodology. Which combines the VAR time-series modelling technique, the 

PSO optimisation algorithm, and the MPC control technique to create an 

effective solution. We designed and developed the methodology by integrating 

these approaches, taking into consideration their strengths and limitations to 

address the problem comprehensively. 

The fourth step is to evaluate the artefact or system. the feasibility, scalability 

and robustness of implementing MPC have been assessed through a 

combination of practical experiment and simulation. The practical experiment 

involved the application of MPC control strategies within the actual DC to 



Chapter 3                  Research Philosophy And Problem Statement 

65 
 

regulate temperature, manage energy consumption according to the variation 

of server’s workload. Due to the mission-heavy nature of the DC, the scalability 

and robustness of MPC towards certain high-impact scenarios, such as 

additions and removals of devices, changes in server room layouts, and 

extreme environmental conditions could not be practically tested. To address 

this limitation and comprehensively evaluate the MPC system, simulation has 

been designed and conducted. 

The final step of design science is to communicate the results of the study. The 

outcomes and methodology of this study have been presented in this 

dissertation and additional research papers are presently being pursued. 

Furthermore. The methodology that was developed in this study has been 

shared with the DC industry to aid them in reducing their energy consumption 

and promoting the sustainable development of society. 

Overall, the proposed study that uses the VAR-PSO-MPC approach adheres 

to the established procedures of design science research. The VAR-PSO-MPC 

methodology exemplifies the design science research philosophy in several 

ways. It takes a problem-focused approach to design a solution for the DCs’ 

energy efficiency problem. It combines elements of theory and practice by 

incorporating three different techniques to optimise different aspects of the 

data centre's energy usage. It creates an innovative artefact or system that 

addresses the problem comprehensively and effectively. Also, the findings of 

this study and the proposed methodology can be referenced by energy-heavy 

industries, making it a valuable contribution to the field of information systems. 

 



 

 

 

 

This chapter gives a brief introduction to the proposed methodology and 

introduces the DC variables. Subsequently, the detailed formulation of the 

optimisation processes under MPC control to minimise the power consumption 

in the DC environment is presented. The chapter concludes with a process 

graphic containing the formulations, demonstrating the iteration of the MPC 

control process. 
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4.1 Method outline 

An overview process of the generalised control scheme is shown in Figure 4-1. 

The combination of VAR-PSO-MPC will provide a systematic dynamic 

optimisation process strategically. Before introducing each approach in detail, 

in this chapter, a basic concept of the MPC control strategy will be explained 

and an overview of the theoretical framework of VAR-PSO under the MPC 

scheme will be outlined.  

There are several components have been involved in the entire process, 

including the following: 

(1) A system identification model. 

(2) A prediction mechanic for the future system. 

(3) An optimisation solver to optimise the cost function for each forecasting 

horizon. 

(4) The plant, to which the optimal control strategies will be implemented. 

MPC is an optimisation method to solve the control problem. In the loop of the 

MPC controller at the bottom of the graph, a fixed system model will be 

constructed to predict the future movement of the predefined certain time 

horizon. Then the optimiser will optimise the objective function (would be the 

cost function of MPC) to solve the optimisation problem (minimise the gap 

between the manipulated system status and the referenced system status) 

time by time on each time step over the prediction horizon, this optimisation 

process will be done under a receding horizon manner. As for the 
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implementation, although the optimiser will optimise the objective functions 

and provide a sequence of optimal control actions correspondingly, in practice, 

the manager will only take the first action in the optimal sequence to apply to 

the plant (This can be seen from the upper loop in Figure 4-1). The 

performance of the plant will be recorded as a new system condition and will 

be applied for the new iterations for the next prediction and optimisation. The 

output from the optimisation act as the input to the plant and changes the 

system status practically, therefore, also act as an input to the prediction and 

optimisation for the next loop. The strategy guaranteed the optimal control 

conservatively because this optimises the system with the consideration of its 

future performance while preventing unpredictable changes in the future 

horizon. 

 

Figure 4-1 The processing diagram of VAR-PSO-MPC framework 

 

The combination of VAR-PSO-MPC provides a systematic dynamic 
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optimisation process strategically. The VAR model, as a multivariate time 

series model, captures the intricate relationships among the system variables, 

incorporating lagged values and multi-directional interactions. It takes the real-

time data as input to forecast the future movements of the interacted variables 

in the DC room. Based on VAR prediction structure, the PSO algorithm solves 

the objective function by manipulating the ACs temperatures setpoints and 

minimise the gap of forecasted PUE value and desired PUE value. Within the 

MPC control framework, the optimised control actions are implemented at 

appropriate intervals, and real-time feedback from the system will be utilised 

as an input to VAR prediction of the next iteration. Furthermore, error correction 

is performed according to the system feedback, and VAR parameters are 

adjusted at each time step.  

This strategic integration addresses challenges and fills existing gaps through 

the following key aspects:  

(1) Inherent Complexity Navigation: The VAR model excels in capturing 

intricate relationships within complex environments. And it also superior in 

demonstrates computational efficiency.  

(2) Complexity Reduction Efforts: We employed Granger causality test, 

Impulse response function, and Variance Decomposition within the VAR 

modelling framework. These methods assist in variable selection and offer a 

comprehensive understanding of the complex interactions within the DC. By 

identifying key variables and their interdependencies, the dimension of the 

optimisation problem has been reduced. This reduction makes the optimisation 

space more manageable. Unlike conventional optimisation systems that 
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directly integrate complexities into the objective function, our DSS strategically 

incorporates this complex relationship during the VAR estimation stage, 

effectively simplified the optimisation algorithm. This reduces computational 

loads significantly. Furthermore, MPC frameworks segment the complex 

nonlinear problem into smaller linear problems at each time-step, further 

reduced the complexity and enhanced the system efficiency. 

(3) Temporal Dynamics Consideration: The VAR model accounts for delays 

in variable responses, crucial in the context of DCs. Rigorous criteria such as 

the Akaike Information Criterion (AIC) and Schwarz Criterion (SC) are 

employed to determine the appropriate lag length, enhancing the accuracy of 

capturing temporal dynamics. 

(4) Real-Time Adaptability: To accommodate the dynamic real-time 

environment, our approach integrates synchronised time series data into the 

VAR model, facilitates real-time feedback from the system and enabled error 

correction. 

(5) Increased optimal performance: The incorporation of PSO algorithm 

improved the efficiency in searching the global optimal solutions and 

significantly reduced the possibility to fall into local optima. 

It is Noteworthy that the integration of three approaches will not only leverages 

their respective strengths, but also compensating for their individual limitations 

and maximising the synergistic potential. This strategic integration also 

highlights our methodological innovation, differentiating our approach 

significantly from conventional practices in comparable industries. Table 4-1 
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shows their individual strengths and limitations, as well as how the limitations 

have been compensated by integration. 

 

Table 4-1 Individual Strengths, Limitations, and Compensations through 

Integration" 

 Strength  Limitations Benefit from integration 

VAR • Captures 

interdependencies 

among variables 

• Enhances 

interpretability of 

complex systems 

• Computational 

efficiency  

• Long-term 

prediction accuracy 

 

• MPC allows for real-

time refinement using 

sensor data 

• MPC enables complex 

problem to be segmented 

into small linear 

problems, therefore 

reduce error 

PSO • Superior at 

exploring large 

solution space 

• Finding global 

optima 

• Simplicity and 

flexibility 

• Influenced by initial 

particle positions 

• Struggles in high-

dimensional 

problems 

• Temporal dynamic 

of the system may 

increase complexity 

for PSO to handle 

• VAR simplifying this 

complexity 

• Refined initial starting 

point based on VAR 

prediction and MPC 

real-time feedback 

• VAR prediction offering 

PSO insights into the 

future enables PSO to 

handle the temporal 

dynamic naturally 

MPC • Ability in 

handling multiple 

objectives and 

constraints 

• Considered future 

performance of 

the system 

• Real-time 

adaptable  

• Conventional MPC 

relies solely on 

predefined system 

models and 

gradient-based 

optimisation 

methods, required 

significant design 

efforts 

• VAR as a data-driven 

approach, provides the 

system model without 

the need to study the 

complex system physics. 

• PSO explores the 

solution space more 

comprehensively than 

traditional gradient-

based methods 

 

4.2  MPC model form 

4.2.1 The Basic Assumptions for MPC 

Because the MPC approach emerged from industry practices, therefore there 

are assumptions not only about the models but also about the plants. The 
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model assumes the environment is stable and follows a certain manner. 

Therefore, the data collection was assumed to be no failure, and the devices 

work in normal mode. 

 

Assumption I: No sensor failure or noise. 

Assumption II: The system identification model is assumed to be 

appropriate and estimation errors are negligible. 

Assumption III: No unpredicted environmental disturbances. 

 

Theoretical formulation of MPC 

Minimise the cost function, which is the summation of the state cost 

function: 

𝑀𝑖𝑛.
𝑢(𝑘),…𝑢(𝑘+𝑁−1)

𝐽𝑁(𝑋𝑁, 𝑈𝑁) = ∑ (𝑥(𝑢)𝑘+𝑖 − 𝑥𝑟𝑒𝑓
𝑁
𝑖=1 )2

  

Subject to  

◼ Model of the process innovation 𝑥(𝑘 + 1) = 𝑓(𝑥𝑘, 𝑢𝑘) 

◼ States’ constraints 𝑥𝑘 ∈ 𝑋𝑘, 𝑘 = 1, … , 𝑁 − 1 

◼ Actions’ constraints 𝑢𝑘 ∈ 𝑈𝑘, 𝑘 = 1, … , 𝑁 

The objective function is the summation of the stage cost functions on each 

time step over the prediction horizon. The stage cost functions are the 

deviations between the model's predicted future states and the reference 
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states. The objective function will be subject to the system identification model, 

which is the innovation of the state and control actions. Also, there would be 

other constraints on both control actions and the states, according to the 

industry conditions. 

Figure 4-2 shows the control principles of MPC. Three basic components of 

the MPC (prediction, online optimisation, and receding horizon operation) are 

demonstrated. The lower part of the graph demonstrates the changes in the 

control actions and the upper part of the graph demonstrates the changes in 

the system state in response to the changes in control actions. By predicting 

the future objective functions, the optimal control actions will be given by the 

optimisation algorithms. The optimal control actions will be only implemented 

for a short period, and the system will respond to the control actions applied 

Figure 4-2 MPC control principle 
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to the devices. Optimised control actions will be applied recursively. With the 

optimisation window marching on, the full control horizon can be optimised.  

4.3  Optimisation problem formulation 

 

⚫ The control actions 𝒖𝒕 

Let AC temperature setpoints combination at time k denoted as vector 𝑢𝑘 , 

according to the ACs’ attributive: 

 

1,

2,
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, , [16,28]
...
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cool
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cool

tcool cool

t v t v t

cool

v t

T

T
u T t T T

T

 
 
 

= =  


 




 

 (4.1) 

Where the range was given by the ACs’ setting temperature points in the 

plants’ specifications. 

 

⚫ The state 𝒙𝒕 

The PUE index as one of the endogenous variables in VAR model, which 

belongs to the endogenous set 𝑌𝑡 = (𝑦1𝑡, . . . 𝑦𝑚𝑡), 𝑀 ∈ ℕ , also serves as the 

system state in MPC, therefore can be written as 1t tPUE y x= =  . The PUE 

value closer to 1, the more efficient the DC operates. 

According to the concept of MPC, the stage cost function will be denoted as: 

 ℓ(𝑥, 𝑢) = ‖𝑥(𝑢)𝑡 − 𝑥𝑟𝑒𝑓‖
2
 (4.2) 

This represents the stage gap between the system state after operating the 
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control action and the expectation of the state (the reference state). 

The objective function (Cost function) of MPC would be the summation of 

the stage cost functions over the whole prediction horizon from time 𝑡 =

𝑘 𝑡𝑜 𝑘 + 𝑁: 

 𝑀𝑖𝑛.
𝑢(𝑘),…𝑢(𝑘+𝑁−1)

𝐽𝑁(𝑋𝑁 , 𝑈𝑁) = ∑(𝑥(𝑢)𝑘+𝑖 − 𝑥𝑟𝑒𝑓

𝑁

𝑖=1

)2 (4.3) 

 

Subject to the constraints: 

𝑥𝑘+1 = 𝑓(𝑥𝑘, 𝑢𝑘), where 𝑓(𝑥) is the system prediction function, which will be 

formulated by the VAR model in the next section. 

𝑥(0) = 𝑥0, where𝑥0is the initial value of the state. Can be obtained through 

historical data. 

(1) 𝑢𝑘 ∈ 𝑈, ∀𝑘 ∈ [0, 𝑁 − 1], 

(2) 𝑥𝑘 ∈ 𝑋, ∀𝑘 ∈ [0, 𝑁]. 

 

The value function is the minimum value of the objective function (cost 

function): 

 𝑉𝑁(𝑥) = 𝑀𝑖𝑛.
𝑢𝑘,…𝑢(𝑘+𝑁−1)

𝐽𝑁(𝑋𝑁, 𝑈𝑁) = ∑(𝑥(𝑢)𝑘+𝑖 − 𝑥𝑟𝑒𝑓

𝑁

𝑖=1

)2 (4.4) 

 

4.4  Solution structure with VAR model 



Chapter 4            Methodology 

76 
 

4.4.1 Variables specifications and model assumptions 

VAR is a data-driven model for system identification. As a time series model, it 

also is used as the prediction function in the MPC control process. In this 

section, the optimisation theory of MPC control under the solution structure 

with the VAR model will be demonstrated. 

Table 4-2 lists the DC variables that involve in the server room environment. 

Variables are categorised into two groups: endogenous variables and 

exogenous variables. These variables are influenced by changes or 

fluctuations within the environment itself, at the same time, their behaviours 

also affect to the environment. ACs’ outflow temperature measured from the 

closed point of the airway (Tt
outflow:), server room ambient temperature (

ambient

tT ), 

the heat generated from the servers that measured by the temperature 

difference of the front and back side of the server rack ( 𝐻𝐺𝑗𝑡 ), 

and PUE value are considered to be endogenous variables. Exogenous 

variables, on the other hand, are external factors that have an impact on the 

server room environment but are not influenced by changes within the 

environment itself. The temperature outside the DC (
outdoor

tT ), the server's given 

IT workload (𝑊𝐿𝑡), and the ACs temperatures setpoints temperatures ( ,

cool

v tT ) 

are exogenous variables, which affect the system but are not affected by the 

system. 

Table 4-2 The DC variables list 

Endogenous variables Exogenous variables 
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outflow

tT  

outdoor

tT  

ambient

tT  
,

cooling

v tT  

𝐻𝐺𝑗𝑡 
𝑊𝐿𝑡 

𝑃𝑈𝐸𝑡 
 

 

• Assumptions 

The five basic assumptions for the VAR-based MPC control are shown as the 

following: 

Assumption I: The system is linear in each time step. 

Assumption II: Each control action 𝑢(𝑡) remain constant in each 

implementation horizon. 

Assumption III: DC environment is a complex environment with DC 

components mutually affecting each other. In this study, all the indoor 

temperature variables and energy consumption variables are modelled as 

endogenous variables, and the given IT load, AC setpoints temperatures, 

and outside temperature are modelled as exogenous variables. 

 

4.4.2 VAR model form 

General VAR(p) model consist of M endogenous variables Yt, and p = Pmax 

time-lags, with exogenous variables Zt denoted as: 
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𝑉𝐴𝑅(𝑝): 𝑌𝑡 = 𝐴1𝑌1,𝑡−1 + ⋯ + 𝐴𝑝𝑌𝑀,𝑡−𝑃𝑚𝑎𝑥
+ 𝐵𝑍𝑡 + 휀𝑡 (4.1) 

The length of the lag will be selected by AIC and SC. Due to time-series 

model’s characteristic, VAR model would predict the states and actions for 

future t + δ time periods ahead recursively. The following sessions will 

demonstrate how VAR model been utilised to predict the future states. 

 

4.4.3 The VAR model prediction 

In this section, the prediction method based on the VAR model will be 

demonstrated.  

Take VAR(1) as an example to be simplified: 

 

𝑉𝐴𝑅(1): 𝑌𝑡 = 𝛷1𝑌𝑡−1 + 𝐵𝑍𝑡 + 휀𝑡 (4.2) 

 

𝑍𝑡 is a set of exogenous variables (including the control actions , ,

cool

v t v tu T= , the 

DC outdoor temperature 
outdoor

tT , and the given IT workload tWL  ), where the 

AC temperature setpoints are given by the optimiser, and two separate ARIMA 

forecasting models will be applied to forecast the outdoor temperature and the 

CPU usage for the target forecasting period. Therefore, for the VAR model,  Zt 

can be regarded as the deterministic regressors that are given. Let BZt =

Ψ1ut + c,  represent the exogenous term BZt is a function of the control actions 

and a constant. Assume that the ACs temperature setpoints vector is adjusted 
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at time 𝑡 and stays constant in each forecasting horizon until time 𝑡 + 𝛿.  The 

innovation of the forecasting is shown as function (4.3) as follows: 

 

𝑌𝑡 = 𝐴1𝑌𝑡−1 + 𝐵1𝑢𝑡 + 𝑐 + ε𝑡 

𝑌𝑡+δ = 𝐴1𝑌𝑡+δ−1 + 𝐵1𝑢𝑡 + 𝑐 + ε𝑡+δ 

𝑌𝑡+δ−1 = 𝐴1𝑌𝑡+δ−2 + 𝐵1𝑢𝑡 + 𝑐 + ε𝑡+δ−1 

𝑌𝑡+δ = 𝐴1(𝐴1𝑌𝑡+δ−2 + 𝐵1𝑢𝑡 + 𝑐 + ε𝑡+δ−1) + 𝐵𝑢𝑡 + 𝑐 + ε𝑡+δ 

= 𝐴1
2𝑌𝑡+δ−2 + (𝐴1 + 𝐼)𝐵1𝑢𝑡 + (𝐴1 + 𝐼)𝑐 + 𝐵1ε𝑡+δ−1 + ε𝑡+δ 

= ⋯ 

= 𝐴1
δ𝑌𝑡 + (Φ1

δ−1 + 𝐼)𝐵1𝑢𝑡 + (𝐴1
δ−1 + ⋯ + 𝐴1 + 𝐼)𝑐 + 𝐴1

δ−1ε𝑡+1 + ⋯

+ 𝐴1ε𝑡+δ−1 + ε𝑡+δ 

(4.3) 

 

Then the conditional expectation (mean) will be as the following equation: 

𝐸(𝑌𝑡+δ) = 𝐴1
δ𝑌𝑡 + (𝐴1

δ−1 + 𝐼)𝐵1𝑢𝑡 + (𝐴1
δ−1 + ⋯ + 𝐴1 + 𝐼)𝑐 (4.4) 

 

Substitute the DC variables into Extend the above equation to be extended to 

a matrix form: 

 

1

1 12

1 1 1 1 1( ) ( ... )
...

cooling

cooling

outflow outflow

coolingambient ambient
v tt t

PUE PUE T

HG HG T
E A A I B A A I c

T T

TT T

  



− −

+

     
     
     = + + + + + +
     
     

         

 

 (4.5) 

Where the constant term c  is practically calculated by the predictions of 

exogenous variables outdoorT  and workload WLt  over the prediction horizon t0 ≤ 
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t ≤ tpredict,t ∈ T, are predicted by the ARIMA model. 

Extract the function of the state variable 𝑥𝑡 = 𝑃𝑈𝐸 as and decision variableand 

𝑢𝑡 = [𝑇1,𝑡
𝑐𝑜𝑜𝑙𝑖𝑛𝑔

, 𝑇𝑣,𝑡
𝑐𝑜𝑜𝑙𝑖𝑛𝑔

] , from equation (4.5), then the system innovation 

function can be represented as the following equation: 

 

𝑥𝑢(𝑡) : 𝐸 (𝑥𝑡+𝛿 = 𝑎1𝑥𝑡 + 𝑎2𝐻𝐺𝑡 + 𝑎3𝑇𝑡
𝑎𝑚𝑏𝑖𝑒𝑛𝑡 + 𝑎3𝑇𝑡

𝑜𝑢𝑡𝑓𝑙𝑜𝑤
+ 𝐵1𝑢𝑡

+ 𝐶𝑃𝑈𝑡 + 𝑇𝑡
𝑜𝑢𝑡𝑑𝑜𝑜𝑟 + 𝑐 

(4.5) 

 

This can be easily expanded to 𝑉𝐴𝑅(𝑝) case. And the order of the VAR model 

𝑝 can be selected by AIC and SC criteria. 

The optimisation problem then can be formulated following the MPC 

formulation law. 

Let 𝑘 denote the optimisation start point of each time horizon, for each horizon 

𝑡 = 𝑘 + 𝑁, the objective function is to minimise the total running cost of each 

stage: 

1

2

...
1

. ( , ) [ ( ) ]
k

N

N N N k i ref
u u

i

Min J X U x u x+

=

= −
 

(4.6) 

 Subject to the following constraints: 

s.t. 
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a) 𝑥𝑘+1 = 𝑓(𝑥𝑘, 𝑢𝑘) 
(4.7) 

where 𝑓(𝑥) is the system prediction function formulated by the 

VAR model.  

b) ,18 27ambient

tt k T =    

This is the restriction of room temperature provided by ASHRAE 

Guideline 2016   

(4.8) 

 

c) 
,,16 28cooling

v tt k T =    

The restriction of temperature setpoints from the AC attributive 

(4.15) 

d) ,0 1t k WL =    

A workload is a percentage number between 0 and 1 which is the 

CPU usage of the servers. 

(4.16)  

e) ,1.2 2.5tt k x =    

The constraint on the state variable. According to the practical 

environment and hardware condition in the target DC. which is the 

PUE value should be a number between 1.2 and 2.5. 

(4.17) 

 

The equation of the above constraints can be derived from 𝑉𝐴𝑅(𝑝) process 

equation. 

4.4.4  Error evaluation and error correction 

For the general recursive prediction, only one model with fixed coefficients will 

be applied to the whole forecasting horizon, and the real past information 
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retrieved from the environment to input to the forecasting model would be only 

used to forecast the first period. From the second period, all the past 

information input to forecast is based on the previous forecasted value rather 

than the real information from the environment. This will accumulate the 

forecasting error exponentially. The direct prediction method can reduce the 

forecasting error by re-estimate the model coefficient before each prediction 

starts. However, this would be computationally costly. The proposed study 

adopted the error evaluation and error correction method for each prediction 

horizon. 

2

1

1
( ' )

n

t

RMSE y y
n =

= −
 

(4.18) 

Root mean square error (RMSE) accuracy will be applied to evaluate the 

prediction accuracy of time 𝑡 − 1 at time 𝑡.  

Eq.19 is the formulation of RMSE, where  𝑦′  is the forecasted value of the 

variable and 𝑦 is the measured value of the variable at time 𝑡. 

 

The system evaluates the prediction error for the previous stage at every start 

point of the new prediction. The error bound is set to 0.4. if RMSE is higher 

than 0.4, the system will retrieve the latest historical data from the data API 

and re-estimate the VAR model coefficient. 

4.5  The optimal control for the DC environment 

Suppose that we have 𝑛 sets of AC outflow temperature combination vector 
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𝑢𝑘, denotes ACs’ setpoints combinations of all AC units at time 𝑘. Then the 

searching space of the AC temperature set point combinations will be denoted 

as follows:  

𝛧𝑛 = [

𝑢1,𝑘

𝑢2,𝑘

…
𝑢𝑛,𝑘

] , 𝑛 ∈ 𝑁∗. (4.19) 

 

Let 𝜌: 𝛧 → 𝐿𝑥(𝛧𝑛), maps the control actions sets of temperature combination 

bundles into a permutation matrix 𝛧. Where 𝛧𝑛is the arbitrary field. 

 

As a result, a traditional optimisation approach that substitutes all the feasible 

solutions of size 𝜂 into the optimisation equation will be impossible. Because 

in that case, a great computational effort will be required to calculate the 

𝐹(𝑢) = (𝑓1(𝑢), 𝑓1(𝑢), … . 𝑓𝜂(𝑢)) at every time step to obtain the optimal solution 

𝑢𝑘
𝜊. 

To solve the optimisation problem PSO approach will be adopted. The PSO 

algorithm is an evolutionary algorithm. It states with a random solution and 

finds the optimal solution by iteration. And then testing the solution quality by 

fitness value.  

 

Suppose we have, each particle 𝑖 has the velocity 𝑉𝑖and position 𝜒𝑖, 𝜒𝑖 is a 𝛾 

dimensional vector that represents the AC temperature setting range 
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[𝜏𝑙𝑜𝑤, 𝜏ℎ𝑖𝑔ℎ]. 

 

In PSO optimisation theory, we will have:  

𝑣𝑖 = 𝜛𝑣𝑖 + 𝑐1 × 𝑟𝑎𝑛𝑑() × (𝑝𝑏𝑒𝑠𝑡𝑖 − 𝑥𝑖)
+ 𝑐2 × 𝑟𝑎𝑛𝑑() × (𝑔𝑏𝑒𝑠𝑡𝑖 − 𝑥𝑖) 

(4.20) 

𝑥𝑖 = 𝑥𝑖 + 𝑣𝑖 (4.21) 

 

In the above equations, 

𝑖 = 1,2, … , 𝑛, where 𝑛 denotes the number of particles. Here would be the total 

number of ACs temperature setpoints comb; 

𝑣𝑖 is the velocity of the particle 𝑖.Here would be the AC temperature setpoint 

changes and the direction (increase/decrease) of each change.  

𝑉𝑚𝑎𝑥 the maximum value of iv 𝑣𝑖 < 𝑉𝑚𝑎𝑥,if 𝑣𝑖 > 𝑉𝑚𝑎𝑥, then 𝑣𝑖 = 𝑉𝑚𝑎𝑥. 

𝑟𝑎𝑛𝑑() is a random number between (0,1); 

𝑥𝑖 is the current position of the particle 𝑖. 

𝑐1, 𝑐2 are learning coefficients, normally set to 𝑐1 = 𝑐2 = 2 

𝜛 is the momentum coefficient. A greater 𝜛indicates a higher ability in seeking 

global optimum but a lower ability in seeking partial optimum. Vice versa.  

The optimisation process will be demonstrated as follows: 
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Step1:  

Initialise: 

1 1,1 1,2 1, 1 1

1 sup sup sup

1 1,1 1,2 1, 1 1

( , ... ) ( )

( , ... )

l

l

V T T T f f X
P

X T T T pBest X

=    = 
= → 

= =

 

(4.9) 

2 2,1 2,2 2, 2 2

2 sup sup sup

2 2,1 2,2 2, 2 2

( , ... ) ( )

( , ... )

l

l

V T T T f f X
P

X T T T pBest X

=    = 
= → 

= =

 

,1 ,2 ,

sup sup sup

,1 ,2 ,

( , ... ) ( )

( , ... )

n n n n l n n

n

n n n n l n n

V T T T f f X
P

X T T T pBest X

=    = 
= → 

= =

 

𝑔𝐵𝑒𝑠𝑡 = 𝑚𝑖𝑛. 𝑝 𝐵𝑒𝑠𝑡 

 

 

 

(4.10) 

 

 

Step 2:  

Update the positions of the particles 

P1 = {
V1 = ω ∗ V1 + c1 ∗ r1 ∗ (pBestmin − X1) + c2 ∗ r2 ∗ (gBest − X1)

f1
a = F(X1), X1

a = X1 + V1
 

P2 = {
V2 = ω ∗ V2 + c1 ∗ r1 ∗ (pBestmin − X1) + c2 ∗ r2 ∗ (gBest − X2)

f2
a = F(X2), X2

a = X2 + V2

 

                        … 

Pn

= {
Vn = ω ∗ V1 + c1 ∗ r1 ∗ (pBestmin − X1) + cn ∗ rn ∗ (gBest − Xn)

fn
a = F(Xn), Xn

a = Xn + Vn

 

 

(4.11) 

Step 3:  
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Evaluate the particles: update 𝑝𝐵𝑒𝑠𝑡 and 𝑔𝐵𝑒𝑠𝑡 

if 𝑓𝑖
𝑎 < 𝑓𝑖, then 𝑝𝐵𝑒𝑠𝑡 = 𝑋𝑖

𝑎, if not, keep 𝑝𝐵𝑒𝑠𝑡𝑖 = 𝑋𝑖. 

𝑔𝐵𝑒𝑠𝑡 = 𝑚𝑖𝑛. 𝑝 𝐵𝑒𝑠𝑡𝑖 (4.12) 

 

Step 4: Until the last iteration, end up the process, and get the most 

approximate optimal solution. 
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The below pseudocode demonstrated the PSO procedure: 

In the end, the system identification model, VAR prediction, and PSO 

Procedure PSO 

  For each particle i  

Initialise velocity Vi and position Xi for particle 

Evaluate particle i  and set pBesti Xi=  

End for 

min{ }gBest pBesti=  

While not stop 

For 1i =  to N , 

   Update the Volocity and potition of particle i   

Evaluate particle i  

If ( ) ( )fit Xi fit pBesti  

pBest Xi=  

If 

( ) ( )fit pBesti fit gBesti  

pBesti gBesti= ; 

End for 

End while 

Print gBest 

End Procedure 
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optimization solver will be integrated into an MPC process. The MPC 

pseudocode can be derived as follows: 

 

Algorithm : 

 

Given: 

System structure 

 

    sys.A       :   dynamics matrix A 

    sys.B       :   input matrix B 

    sys.Q       :   state cost matrix Q 

    sys.R       :   input cost matrix R 

    sys.xmax    :   state upper limits x_{max} 

    sys.xmin    :   state lower limits x_{min} 

    sys.umax    :   input upper limits u_{max} 

    sys.umin    :   input lower limits u_{min} 

    sys.n       :   number of states 

sys.m       :   number of inputs 

 

MPC parameters (params structure): 
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    params.N        :   MPC horizon N 

    params.Qf       :   MPC final cost Q_f 

    params.kappa    :   Barrier parameter 

    params.niters   :   number of newton iterations 

    params.quiet    :   no output to display if true 

 

Step 0: For the target terminal horizon 𝑁 > 0, set the time step resolution 

𝛿 > 0and forecast horizon𝑁𝛿 > 0, subdivide the time interval [0, 𝑁] as  

0 < 𝛿 < 2𝛿 … < (𝑁 − 1)𝛿 < 𝑁𝛿 

Repeat 

Step 1: For every forecast horizon, read the current state of the process 

𝑥(0) = 𝑥0, 

 

Step 2: Compute an optimal control sequence by solving the MPC 

optimisation problem eq.  

Solution: 𝑢(𝑘), 𝑢(𝑘 + 1), 𝑢(𝑘 + 2), … 𝑢(𝑘 + 𝑁 − 1) 

Step 3: Apply to the plant only the first element of such a sequence: 

𝑢𝜊(𝑘) = 𝑢𝑘 

Step 4: Update the time 𝑘 ← 𝑘 + 1 

Update the initial state 𝑥0 ← 𝑥(𝑢𝜊) 

Back to Step 1 
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Figure 4-3 demonstrated the whole process of VAR-PSO-MPC control. The 

whole MPC scheme was separated into two parts: The offline process and the 

online process. This is for the purpose to save computational power and 

computational time. According to Figure 4, the VAR-PSO-based MPC control 

will follow the five steps below: 

 

Step I: In the offline process, we use the historical data collected from the DC-

installed sensors to estimate the VAR model parameters. 

Step II: Prediction. VAR model will be used to predict future movement, 

starting from an initial control action 𝑢0. The online process will start with VAR 

giving predictions of the future states 𝑥𝑘s (Future PUE value) based on the 

initial control actions 𝑢0 (The initial AC’s temperature setpoints) from time 0 ¬𝑘. 

The total prediction horizon is time 𝑡 = 𝑘 to 𝑡 = 𝑘 + 𝑁 − 1 .  

Step III: Optimisation. PSO optimisation algorithm will be applied to minimise 

the cost function and search for the optimal solution among ACs set point 

combinations under the given constraints to the state and control actions. The 

optimisation will be made at the time 𝑡 = 𝑘 to minimise the summation of the 

future deviations between the reference value𝑥𝑟and the predicted value in the 

target time horizon. This will give us the suggested optimal future control 

actions over the prediction horizon 𝑁. PSO optimisation solver is applied to 

solve the optimisation at each time step. 

Step IV:  MPC scheme will only take the optimal control actions at time step 

1 to implement the control action at the first time step, written as 𝑢1
𝜊.  
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Step V: The first output of optimal control 𝑢1
𝜊 from the optimisation along with 

the measured states will be used as an input to the next prediction, in this case, 

the system innovation can be achieved. 
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Figure 4-3 The processing graph of the VARVAR-PSO-MPC framework 

  



 

 

 

 

In this chapter, the experimental results obtained will be presented and 

discussed. Firstly, the design of the experiment will be detailed in terms of the 

research objectives. Subsequently, configurations of the experiment will be 

presented. Following this, the data's analytical results will be thoroughly 

demonstrated. Based on the analytical result, the system model VAR and its’ 

prediction performance will be evaluated. Furthermore, optimisation under 

MPC control will be operated and compared to several different scenarios as 

well as the performance of the Genetic Algorithm (GA). 
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5.1 Design of Experiment 

The experiment was carried out in a real data centre in Thailand. The 

experiment was divided into three parts: The first stage entails the installation 

of sensors, data collection, data analysis, system identification modelling, 

prediction validation, and model adjustment. The second stage entails testing 

the optimisation solver and the MPC prototype, the parameters adjustment, 

and performance improvements. The third stage entails performance 

validation and evaluation. 

(1) Sensors installation  

The sensors were provided by a third party, including temperature sensors on 

the front and back rack of the servers, sensors installed on the ceiling to detect 

the ambient temperature, also sensors outside the DC to detect the outside 

environment temperature. The third party will provide the thermal mapping 

service including sensors installation and management, data storage, room 

thermal dynamic mapping, and provide the data stream collected by the 

sensors. The server's workload data will be provided by the DC central 

management system. Also, energy consumption data is provided by the smart 

energy metres installed in the server room. 

(2) Data collection 

Historical data have to be collected for a week with one hour's resolution from 

13th June 2022 to 19th June 2022. To ensure diversity of the data, AC 

temperature settings will be varied from 18 to 29 degrees, alternated among 

four AC units. During one week, there are three times of stress tests on the 
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servers, which will manipulate half of the servers to a full workload. All the data 

have to be unified in a time-series form and prepared to be used to estimate 

the system model. 

(3) Data analysis and system identification modelling 

Data analysis involves estimating the stabilities of the variables, analysing the 

thermal environment in the server room, and detecting the causal relationship 

between DC components. After processing the data, the coefficients of the 

VAR model will be estimated.  

(4) Prediction validation and model adjustment 

The prediction has been conducted based on the system model VAR every 6 

hours. Validation of the prediction accuracy has been conducted to tune the 

VAR parameters’ values such as adjusting coefficients’ weights or adjusting 

the forecast horizon. 

To validate the prediction accuracy and adjust the coefficients. The data was 

divided into two sets: training and validation. The training dataset comprises 

about 75% of the data needed to estimate the VAR coefficients, while the 

validation dataset contains the remaining 25% to check the prediction's 

accuracy. Human monitoring has been seriously executed to prevent the 

violence of the constraints and prevent the extreme temperature settings that 

would lead to harm to the facilities. 

(5) Testing optimisation solver and the MPC prototype 

This experiment has been conducted from 20th June 2022 to 3rd July 2022. 
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The MPC optimal control prototype has been applied to the server room. DC 

manager adjusts the AC setpoints temperature according to the optimal 

solutions given by the optimisation solver. The implementations were following 

the MPC control law. Different control horizons have been applied to compare 

the performances. 

(6) Monitoring of the temperature boundary and emergency alarm 

According to the ASHRAE guideline, the recommended servers’ working 

temperature condition should be between 15 to 32 degrees. The servers in the 

target server room have a down-locking system that would automatically shut 

down to prevent overheating and also down-lock to reduce the heat. 

Additionally, the DC managers have been informed to closely monitor the heat 

by the temperature sensors. 

(7) Performances validation and result evaluation 

The final validation and result evaluation have been conducted from 4th July 

2022 to 10th July 2022. Validation of the control application will be compared 

with the result in the absence of the MPC control. Also, the result has been 

compared with the results from a different non-parametric approach-Genetic 

algorithm (GA). 

5.2 Server room configuration 

Figure 5-1 and Figure 5-2 show the 3D view and top view of the server room 

configurations. Two server rack rows are located back to back parallelly, with 

an underground cold air supply on both front sides of the racks. 3 AC units 
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have been installed in a separate room, with an underground cooling aisle 

connected to the server room to supply the cooled air.  

Table 5-1 lists the environmental and power consumption monitoring devices 

that have been installed in the server room. 2 temperature sensors have been 

installed on the ceiling to detect the room's ambient temperature. 4 sensors on 

the server rack front and rear side to detect the server rack temperatures. 1 

sensor is attached close to the ACs outlet underground air aisle to detect the 

ACs outflow temperatures. 1 sensor on the outdoor chiller to detect the 

temperature outside the DC. Energy analysers have been installed on each 

AC unit and on the outdoor chiller for calculating the cooling power 

consumption. Smart PDUs have been installed in each target server rack. 

These devices are capable of measuring all sockets. To calculate the total load 

on server racks, the load that comes from the PDUs should be gathered. 

 

Figure 5-1 3D view of the server room 
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Table 5-1 The environmental and power consumption monitoring devices 

Devices name Count Location 

Temperature 
sensors 

2 ceiling 

Temperature 
sensors 

1 Outdoor chiller 

Temperature 
sensors 

1 AC outlet air aisle 

Temperature 
sensors 

4 Server racks 

Smart PDUs 14 Server racks 

Energy analysers 3 AC units 

Energy analysers  1 Outdoor chiller 

 

  

Figure 5-2 Top view of the server room 
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5.3  Historical data and analytical results 

5.3.1 Historical data 

The historical data for one week contains 168 data points with 15-minute 

intervals that have been collected from an actual DC’s data API in Thailand. 

These data have been used to model the system identification model VAR. 

The raw data from the sensors are in 15-minute intervals, to be adapted to the 

optimisation and MPC control process, it has been extracted to be one-hour 

intervals by sequence.Figure 5-3 to Figure 5-7 demonstrated the historical 

data of the DC variables according to experiment week I (Figure 5.3 shows the 

one server rack’s front and back temperatures, and the deviation between 

them). Characteristics of DC variables will be analysed.  

 
◼ The historical temperatures data  
 

 

Figure 5-3 The historical data of the server racks temperatures in week 1 
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Figure 5-4 The historical data on the outdoor temperature in week 1 

 

 

Figure 5-5 The historical data on the ACs’ temperature setpoints in week 1 
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◼ Other DC variables 
 

 

Figure 5-6 The historical data on power usage in Week 1 

 

Figure 5-7 The historical CPU usage in Week 1 
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◼ Descriptive statistics 
 

Table 5-2 summarised the statistics of the historical data of experiment week 

I. The results show that before adopting the MPC control strategy, both ACs 

have been operated at a low temperature of around 18 to 19 degrees, and the 

low temperatures have been always kept for a long time. The ambient 

temperature of the server room was around 23.6 degrees. This is 4 degrees 

lower than the ASHRAE recommended maximum temperature boundary. PUE 

value was around 2.2, which indicated the DC has been operated relatively 

inefficiently.  

During the experiment, an unexpected decline in non-IT power, coupled with a 

corresponding reduction in overall power consumption, was observed on the 

third and fourth days. This phenomenon was attributed to an unforeseen power 

outage. This anomaly has been acknowledged as an outlier, and as a result, 

the affected data has been deliberately omitted from the subsequent analysis. 

 

Table 5-2 Descriptive statistics of the DC variables in experiment week 1 

 
T_OUTFL

OW 
T_OUTDO

OR 
T_AMBIE

NT PUE HG CPU AC2 AC1 

 Mean  19.16679  29.19552  23.65970  2.203755  9.052985  13.59510  18.66269  19.15224 

 Median  19.25000  29.00000  24.03270  2.207000  9.000000  13.07510  19.00000  19.00000 

 Maximum  20.25000  35.50000  25.00000  2.300000  11.00000  30.17150  20.00000  20.00000 

 Minimum  18.25000  24.00000  23.50000  2.100000  4.500000  3.404470  18.00000  18.00000 

 Std. Dev.  0.523618  2.732161  0.412640  0.058717  0.658813  4.373003  0.549177  0.670176 

 Skewness -0.175490  0.319075  0.211739 -0.052855 -1.498150  1.019266  0.035139 -0.186834 

 Kurtosis  1.869689  2.467017  2.763941  1.726512  13.25361  5.582868  2.251979  2.202208 

         

 Jarque-Bera  39.10541  19.29898  6.562020  45.58641  3185.692  302.2486  15.75825  21.66611 

 Probability  0.000000  0.000064  0.037590  0.000000  0.000000  0.000000  0.000379  0.000020 

         

 Sum  12841.75  19561.00  16522.00  1476.516  6065.500  9108.715  12504.00  12832.00 

 Sum Sq. Dev.  183.4236  4993.887  113.9119  2.306504  290.3690  12793.39  201.7672  300.4716 

         

 Observations  670  670  670  670  670  670  670  670 
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5.3.2 Analytical results 

Before building the VAR model, the analysis of whether the data required to 

meet the VAR conditions has to be conducted. Analysis including stability test, 

lag length selection for building VAR, the Granger causalities, impulse 

responses, and variance decompositions have been conducted after the VAR 

coefficients have been estimated. Additionally, the outdoor temperatures and 

CPU usage will be forecasted by univariate ARIMA models. These two 

variables, as well as the ACs setpoints, will be inserted into the VAR model as 

exogenous variables to forecast the PUE in future periods. To ensure the 

quantity of historical data, and present the data movement in more detail, the 

analytical part adopted 15 minutes of data resolution, as the raw data given in 

week 1. Raw data in experiment week 1 contains 672 sample points, after 

adjustment, the analysis contains 670 data points. As regards the tests that 

would be related to the model structure, hourly data with 167 data points for a 

week would be adopted, this is consistent with the following optimisation and 

MPC control data resolution. 

 

a. Stability test 

The VAR model requires all the endogenous variables to be stationary.  

 

Table 5-3 shows the unit root test for the endogenous variables. The result 

shows that the unit root test rejected the endogenous variables that have a unit 

root. This means that the endogenous variables we have are stationary, and 
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the system is stable. This condition is meet the requirements of building a VAR 

model. 

 

Table 5-3 The unit root test results of endogenous variables 

 

 
b. Lag length selection 

It can be concluded from Table 5-4 that all of the criteria give the smallest 

number to the lag length of 1 and that the criterion tends to select 1 as the 

optimal lag length for the VAR model. This demonstrates how past information 

influences the dependent variable's behaviour after an hour. 

 

Table 5-4 The lag length selection result and criteria 

 

VAR Lag Order Selection Criteria   

Endogenous variables: T_AMBIENT T_OUTFLOW PUE HG   

Exogenous variables: C  CPU AC1 AC2 T_OUTDOOR  

Sample: 1 167     

Included observations: 159    
       
       

 Lag LogL LR FPE AIC SC HQ 
       
       

0  240.2719 NA   7.36e-07 -2.770716 -2.384690 -2.613955 
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1  290.3657   94.51670*   4.79e-07*  -3.199569*  -2.504723*  -2.917399* 

2  302.1230  21.59199  5.06e-07 -3.146202 -2.142535 -2.738623 

3  309.4342  13.05889  5.66e-07 -3.036908 -1.724420 -2.503921 

4  316.5900  12.42148  6.34e-07 -2.925661 -1.304353 -2.267265 

5  332.0295  26.02374  6.41e-07 -2.918610 -0.988481 -2.134805 

6  344.8833  21.01876  6.71e-07 -2.879035 -0.640086 -1.969821 

7  350.1073  8.279567  7.75e-07 -2.743488 -0.195718 -1.708866 

8  357.3503  11.11503  8.74e-07 -2.633337  0.223253 -1.473306 
       
       
       

 * indicates lag order selected by the criterion  

 LR: sequential modified LR test statistic (each test at 5% level) 

 FPE: Final prediction error    

 AIC: Akaike information criterion   

 SC: Schwarz information criterion   

 HQ: Hannan-Quinn information criterion   
 

 
c. Granger causality test 
 

Table 5-5 demonstrated a significant result of the Granger causality test 

rejecting the null hypothesis that the variables do not have a Granger causality 

relationship. The conclusion is, that the past value of one variable can affect 

the future value of another, which means that the DC endogenous variables 

have interrelated causality. 

 

Table 5-5 Granger causality test result 

Pairwise Granger Causality Tests 

Sample: 1 670  

Lags: 2  
    
    

 Null Hypothesis: Obs F-Statistic Prob.  
    
    

 PUE does not Granger Cause HG  668  1.03054 0.0357 

 HG does not Granger Cause PUE  1.19824 0.0302 
    
    

 T_AMBIENT does not Granger Cause HG  668  92.0593 5.E-36 

 HG does not Granger Cause T_AMBIENT  73.5063 1.E-29 
    
    

 T_OUTFLOW does not Granger Cause HG  668  154.422 9.E-56 

 HG does not Granger Cause T_OUTFLOW  23.7933 1.E-10 
    
    

 T_AMBIENT does not Granger Cause PUE  668  2.62599 0.0731 

 PUE does not Granger Cause T_AMBIENT  2.56248 0.0779 
    
    

 T_OUTFLOW does not Granger Cause PUE  668  1.38762 0.0254 

 PUE does not Granger Cause T_OUTFLOW  1.22143 0.0295 
    
    

 T_OUTFLOW does not Granger Cause T_AMBIENT  668  97.6517 7.E-38 

 T_AMBIENT does not Granger Cause T_OUTFLOW  42.0526 6.E-18 
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d. Impulse response functions 
 

Figure 5-8 shows the impulse responses of each variable. If the variable is 

sensitive to another variable’s shock, it will show an obvious trend in the graph. 

 

 

Figure 5-8 The impulse response of the endogenous variables 

 

If we give each variable one standard deviation of shock from another variable, 

the trend that this variable will respond to is shown in Figure 5-8. These give 

us the information that the variables mutually affect each other, and the 

responses follow certain trends. 
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e. Variance decomposition 

Figure 5-9 shows the variance decomposition of each endogenous variable. 

Variance decomposition indicates how the percentage changes of one variable 

to the other variables’ shock.  From the result, it can be seen that the DC 

variables mutually affect each other and have responded to the given shock 

from each other. After the above historical data analysis, we can build a VAR 

model with 4 endogenous variables, 4 exogenous variables, and a lag length 

of 1 at level (0 differential).  
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Figure 5-9 Variance decomposition of the endogenous variables 

 

 

5.4 The prediction of exogenous variables 

Exogenous variables in the VAR model have been considered as given, 

therefore separate forecasting models would be applied to forecast the 

exogenous variables, to be inserted into the VAR model to forecast PUE.  
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5.4.1 Prediction of the outdoor temperature 
outdoorT   

The exogenous variable 
outdoorT must be given when predicting the PUE value 

by the VAR model. ARIMA model will be adopted to predict the value of the 

CPU. 

Table 5-6 demonstrates the correlogram of the 
outdoorT  series. The ACF and 

PACF graphs illustrate the CPU following an AR process. ACF graph gradually 

declined and PACF cut-off at two spikes indicates that AR(2) model can be 

used to forecast future 
outdoorT s. The AR(2) model of the outdoor temperature 

is shown in Table 5-7 The AR(2) model of outdoor . 

 

 

 

 

 

Table 5-6 Correlogram of OT 
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Table 5-7 The AR(2) model of outdoor temperature 

Dependent Variable: T_OUTDOOR  

Method: ARMA Maximum Likelihood (OPG - BHHH) 

Sample: 1 167   

Included observations: 167  

Convergence achieved after 12 iterations 

Coefficient covariance computed using outer product of gradients 
     
     

Variable Coefficient Std. Error t-Statistic Prob.   
     
     

C 29.07331 0.842731 34.49893 0.0000 

AR(1) 1.391506 0.062856 22.13796 0.0000 

AR(2) -0.451324 0.060404 -7.471757 0.0000 

SIGMASQ 0.463956 0.043718 10.61235 0.0000 
     
     

R-squared 0.937497     Mean dependent var 29.20659 

Adjusted R-squared 0.936346     S.D. dependent var 2.732692 

S.E. of regression 0.689450     Akaike info criterion 2.135612 

Sum squared resid 77.48060     Schwarz criterion 2.210295 

Log likelihood -174.3236     Hannan-Quinn criter. 2.165924 

F-statistic 814.9531     Durbin-Watson stat 2.093974 

Prob(F-statistic) 0.000000    
     
     

Inverted AR Roots       .88           .51 
     
     

 
 

 

Figure 5-10 demonstrates 
outdoorT   as forecasted by the AR(2) model. The 

forecasted value has been compared with the actual measured value in the 

graph. In the VAR prediction, the OT would be used as the exogenous variable 
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to forecast the PUE value. 

 

Figure 5-10 The prediction of outdoor temperature 

 

 

5.4.2 Prediction of Workload  

The exogenous variable workload (CPU usage) has to be given when 

predicting the PUE value by the VAR model. ARIMA model will be adopted to 

predict the value of the CPU usage. 

 

 

 

 

Table 5-8 The correlogram of CPU usage. Table 5-8 demonstrates the 

correlogram of the CPU series. The gradually downward trend ACF graph and 

a PACF graph with two significant spikes illustrate the CPU following an AR 

process. An AR(2) model has been adopted to model and forecasts future 
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CPUs, the model is shown in Table 5-9. 

 

 

 

 

Table 5-8 The correlogram of CPU usage 
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Table 5-9 The AR(2) model of CPU usage 

     
     

Variable Coefficient Std. Error t-Statistic Prob.   
     
     

C 13.54856 0.656119 20.64954 0.0000 

AR(1) 1.409435 0.018057 78.05353 0.0000 

AR(2) -0.501225 0.017972 -27.88964 0.0000 

SIGMASQ 1.690801 0.029732 56.86864 0.0000 
     
     

R-squared 0.911451     Mean dependent var 13.59510 

Adjusted R-squared 0.911053     S.D. dependent var 4.373003 

S.E. of regression 1.304207     Akaike info criterion 3.379066 

Sum squared resid 1132.836     Schwarz criterion 3.405975 

Log likelihood -1127.987     Hannan-Quinn criter. 3.389489 

F-statistic 2285.099     Durbin-Watson stat 2.030795 

Prob(F-statistic) 0.000000    
     
     

Inverted AR Roots  .70+.07i      .70-.07i 
     
     

 

Figure 5-11 is the CPU usage forecasted by AR(2) model. The forecasted 

value has been compared with the actual measured value in the graph. In the 

VAR prediction, the OT would be used as the exogenous variable to forecast 

the PUE value. 

 

 

Figure 5-11 The prediction of CPU usage 
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5.5 The VAR model and an open-loop VAR-PSO 

optimisation 

5.5.1 The VAR model structure 

VAR modelled each variable as a dependent variable and depends on other 

variables' historical behaviours. Here we pick out the part where PUE act as 

the dependent variable and depends on other variables. The model adopted 

the time lag of one at the level. The model structure and parameters are shown 

in Table 5-10. 

 

Table 5-10 The structure of the VAR model 

Vector Autoregression Estimates  

Sample (adjusted): 2 167  

Included observations: 166 after adjustments 

Standard errors in ( ) & t-statistics in [ ] 
     
     
 T_AMBIENT T_OUTFLOW PUE HG 
     
     

T_AMBIENT(-1)  0.533443  0.011664 -0.023619  0.558555 

  (0.07479)  (0.03099)  (0.01727)  (0.15725) 

 [ 7.13242] [ 0.37631] [-1.36733] [ 3.55212] 

     

T_OUTFLOW(-1) -0.145877  0.024865  0.021021 -0.053549 

  (0.06290)  (0.02607)  (0.01453)  (0.13224) 

 [-2.31921] [ 0.95390] [ 1.44700] [-0.40492] 

     

PUE(-1)  0.202065 -0.233020 -0.175958  1.569453 

  (0.34243)  (0.14191)  (0.07909)  (0.71995) 

 [ 0.59009] [-1.64203] [-2.22483] [ 2.17995] 

     

HG(-1)  0.008628 -0.012280  0.020554  0.268192 

  (0.03677)  (0.01524)  (0.00849)  (0.07732) 

 [ 0.23463] [-0.80574] [ 2.41998] [ 3.46871] 

     

C  6.500060  2.022553  2.381807  1.467307 

  (1.41445)  (0.58617)  (0.32668)  (2.97383) 

 [ 4.59546] [ 3.45043] [ 7.29085] [ 0.49341] 

     

CPU  0.006009  0.000224 -0.000848  0.017864 

  (0.00453)  (0.00188)  (0.00105)  (0.00952) 

 [ 1.32651] [ 0.11936] [-0.81050] [ 1.87572] 

     

AC1  0.246315  0.471300  0.005062 -0.255471 

  (0.04007)  (0.01661)  (0.00926)  (0.08425) 
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 [ 6.14654] [ 28.3791] [ 0.54692] [-3.03216] 

     

AC2  0.098895  0.418820  0.007940 -0.367298 

  (0.05019)  (0.02080)  (0.01159)  (0.10552) 

 [ 1.97047] [ 20.1366] [ 0.68496] [-3.48087] 

     

T_OUTDOOR  0.022007  0.005404 -0.001100  0.015617 

  (0.00750)  (0.00311)  (0.00173)  (0.01577) 

 [ 2.93475] [ 1.73900] [-0.63513] [ 0.99057] 
     
     

R-squared  0.691963  0.970349  0.668377  0.457281 

Adj. R-squared  0.676266  0.968838  0.020906  0.429626 

Sum sq. resids  9.018443  1.548843  0.481074  39.86453 

S.E. equation  0.239671  0.099324  0.055355  0.503899 

F-statistic  44.08480  642.2307  1.440392  16.53549 

Log likelihood  6.211634  152.4380  249.4852 -117.1442 

Akaike AIC  0.033595 -1.728169 -2.897412  1.519810 

Schwarz SC  0.202317 -1.559446 -2.728689  1.688532 

Mean dependent  24.66867  19.15060  2.201946  9.069277 

S.D. dependent  0.421233  0.562650  0.055943  0.667212 
     
     

Determinant resid covariance (dof adj.)  3.76E-07   

Determinant resid covariance  3.01E-07   

Log likelihood  304.2388   

Akaike information criterion -3.231792   

Schwarz criterion -2.556904   

Number of coefficients  36   
     
     

 

The above VAR model will be used as the prediction model to predict the PUE 

value for the future 𝑁 periods. This prediction model will be embedded into the 

fitness function in response to the changes in the ACs’ temperature setpoints, 

to optimise the PUE by minimising the future gap between PUE forecasted and 

reference values. 

 

5.5.2 An open-loop optimisation  

 

An open-loop optimisation is a form of optimisation where the system being 

optimised is not continuously monitored during the optimisation process, and 

the optimisation is solely based on a predetermined model or set of inputs. To 

test the feasibility of the PSO solver, an open-loop optimisation based on VAR 

has been conducted without applying any feedback control strategy.  Figure 
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5-12  illustrates the 24-hour PUE value forecasting before and after 

optimization for the initial loop. The pre-optimization curve represents the 

forecasted PUE using the initial AC temperature settings. Simultaneously, PSO 

optimisation has been applied to determine the optimal combinations of AC 

temperatures at time 0, aiming to achieve optimal PUE values for the 

subsequent 24 hours (depicted as the post-optimization PUE curve).The graph 

indicates that prior to optimisation, the forecasted PUE values for the next 24 

hours ranged from 2.2 to 2.4. After optimisation, this range notably decreased 

to 1.8 to 2.0. Additionally, there's an observable upward trend in the optimised 

PUE, suggesting that the performance under open-loop control diminishes 

over time. This trend could be attributed to the decreased predictive accuracy 

of the VAR model over longer time horizons, highlighting the necessity for a 

closed-loop control with a shorter control horizon to ensure the degree of 

optimal. 
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Figure 5-12 An open-loop control forecast for 24 hours 

 

Table 5-11 summarised the statistic of the open-loop control, the result 

indicated a significant reduction in the value of the objective function and 

average PUE. 

Table 5-11Summary statistics of one open-loop control 
 

Value of objective function Average PUE 

Before 
optimisation 

11.7701 2.20 

After optimisation 4.4308 1.86 
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5.6 The closed-loop MPC controlling 

A closed-loop optimisation is a method of optimisation where the system under 

consideration is continuously monitored during the optimisation process, and 

the optimisation is modified based on real-time feedback from the system. In 

the previous section, the optimal ACs temperature setpoints have been 

implemented and kept constant for the whole period as an open-loop. However, 

it appears to be an upward trend. It can be inferred that keeping the ACs 

setpoints as the constant may be inefficient at the end of the control horizon. 

This is due to the decreased prediction performance of the prediction model at 

the end of the control horizon may cause a higher error for the control. 

Additionally, the air conditioner may work inefficiently at the end of the horizon 

which will cause PUE to increase.  Therefore, in this section, MPC control will 

be introduced.  The MPC keep the constant temperature setpoints on a shorter 

horizon, to ensure the optimal PUE in the long term. 

Figure 5-13 demonstrates the result of the optimisation following the dynamic 

control strategy MPC. The upper part of the graph shows the predicted results 

of PUE values based on the optimal control strategies for four control loops. 

The grey curve on the upper graph is the actual PUE value under MPC control. 

The lower part of the graph shows the actual control actions on the cooling 

devices (the optimal ACs’ temperature setpoints). It has been achieved by 

operating the suggested ACs’ optimal setpoints at each control loop. At the 

start point of each loop, the optimisation model optimised the PUE value based 

on the prediction of future 24-hour performance and implement the suggested 

AC temperature setpoints recursively on an hourly basis. 
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At the period 0k =  in the prediction horizon 1, the PSO optimiser optimised the 

ACs temperature setpoints by minimising 
24

2

0

1

[ ]i ref

i

PUE PUE+

=

−  . The blue 

curve on the upper part of the graph shows the forecasting result based on 

optimisation. It can be inferred from the graph that there is an upward trend in 

24 hours. The range is from 1.84 to 2.07, the first 6 periods are relatively low. 

Therefore, instead of keeping the optimal ACs’ temperature setting to be 

constant for 24 hours, the optimal AC temperature settings have been kept on 

the ACs for less than 6 hours (The response of PUE shows as the red dot 

curve). To reduce the control error, the actual implementation takes just one 

hour at each control horizon. Then the time window moves to 1t k= +  . At 

prediction horizon 2, the PSO optimiser optimised the ACs temperature 

setpoints by minimising 
24

2

1

1

[ ]i ref

i

PUE PUE+

=

− . The orange curve on the upper 

part of the graph shows the forecasting result based on optimisation. Similarly, 

an upward trend has been shown in the graph after a few periods of prediction, 

the PUE value has been reduced to 2.01 at the end of the prediction horizon. 

Although PUE has been reduced compared to the first prediction horizon, to 

ensure the actual PUE is optimal and avoid the error due to the long-term 

prediction, the control actions have been implemented on the AC for just an 

hour. So far the control actions have been implemented for two hours, from 

period 1 to 2, and the corresponding PUE value has been shown as the red 

dot curve. 

The same is for the prediction horizons 3 and 4, shown as the red dot in the 

graph. By applying the MPC control strategies recursively, the actual PUE 
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value can be maintained at a relatively low range. As the grey curve that is 

shown in the figure. 

 

 

Figure 5-13 One-day closed-loop MPC control 

 

5.6.1 The Performance Comparison experiment 

(1) Comparison of different control intervals 
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Figure 5-14 compares the implementation of the MPC strategy on three 

different frequencies (hourly, 3-hourly, and 6-hourly). When comparing the 

mean of optimised PUEs of different implementation strategies, the PUE from 

implementing the strategy on an hourly frequency is more optimal than the 

PUE from implementing the strategy on a 3 and 6-hour frequency. It is possible 

to conclude that frequent and close monitoring and control can improve energy 

efficiency. 

 

Figure 5-14 Optimised PUE with different implementation frequency 

 

(2) The performance comparison of PSO and GA 

As the characteristics of PSO and GA that have been summarised in the 

literature review section, PSO and GA are both heuristic optimisation 

algorithms that imitate an individual's adaptability to populations based on their 

natural characteristics, and because they both solve problems through the 

search space, their performances have been compared on various problems. 
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In this section, the same PUE optimisation problems have been solved with 

GA. To achieve this, the same algorithm has been applied with the same 

number of maximum iterations and population size. The performances of PSO 

and GA by comparing :(1) The mean of the fitness values that did not violate 

the constraint. Since it is a minimisation problem, so the smaller fitness value 

means a better performance of the minimisation. (2) The standard deviation of 

the fitness values to the mean. The smaller standard deviation means the 

optimisation system is more stable. (3) The running time of both algorithms. 

The shorter the better. 

 

In order to identify the solutions that do not adhere to the constraints, a penalty 

of 1,000 has been applied to the fitness values that violated the constraints. 

Both PSO and GA have been run 50 times based on the initial settings. Table 

5-12 shows the values of objective functions (fitness values), mean and 

standard deviations of the values that did not violate the constraints. Figure 

5-15 plots the points of both fitness values for comparison.  It can be concluded 

that with the same number of maximum iterations and population size, PSO 

has a better fitness value compared to GA. The standard deviation shows that 

among the fitness values, the PSO result is more stable than the GA result. 

 

Table 5-12 The fitness values of PSO and GA 

 Values of the objective function   

 [1] [8] [15] [22] [29] [36] Mean Std.dv 

 4.717 5.125 5.157 4.234 4.019 3.384   

 4.683 4.655 3.741 4.243 4.58 4.389   

 4.388 3.765 5.141 4.322 4.579 4.018   

PSO 5.897 4.43 4.341 5.716 3.943 3.738 4.364 0.598 

 4.022 4.789 3.689 4.377 3.637 4.75   

 4.121 5.031 3.925 4.058 4.38 3.561   
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 3.822 3.693 5.492 4.971 3.824 3.956   

 6.769 5.923 7.045 5.671 5.395 5.077   

 5.82 5.238 6.585 5.862 5.917 5.146   

 5.062 5.347 6.154 5.357 6.551 6.029   

GA 6.944 5.644 5.399 6.888 5.576 5.171 5.754 0.647 

 4.894 5.976 5.898 5.883 4.918 5.046   

 4.638 5.276 4.965 5.538 6.731 5.737   

 6.713 5.851       

 
 

 

Figure 5-15 The fitness values of PSO and GA 

The comparison of fitness values 

 

Table 5-13 compared the running time of PSO and GA for one round. It can be 

concluded that with the same number of maximum iterations and population 

size, PSO has taken a shorter time to reach the optimal solution compared to 

GA. This can also be illustrated from the fitness values, PSO is more sensitive 

to identifying those solutions that violated the constraints (we extracted by 

adding the number 1,000), therefore narrowing the searching space to reduce 

the total time cost. 

Overall, PSO optimisation outperforms the GA algorithm according to its 

fitness values, stabilities, and execution times.  
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Table 5-13 The running time of PSO and GA 

 Running time 

PSO 91.21 sec 

GA 176.29 sec 

 

5.7 Real-world Validation 

The first part of the section introduces brief information on the validation in 

terms of the method and the location. Afterwards, three main components of 

validation have been presented in this section. As the performances of the 

system model VAR plays an important role in the prediction, which lays the 

foundation of the optimisation and system control, a validation of the prediction 

accuracy, has been provided. 

The second part of the section explains the validation of the energy-saving 

potentials of the proposed approach, the experiment results from the previous 

chapter have been compared with the general energy consumption in the DC 

according to the information provided by the DC managers.  

Additionally, the third part of the section verified the violence of environmental 

constraints.  A detailed summary is presented to highlight the main findings. 

5.7.1 Method of validation 

MPC control strategy consists of optimisation and prediction, where the 

prediction function is embedded into the optimisation function. Therefore, 

validation should involve three aspects: The accuracy of the prediction model, 
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the goodness of the optimisation, and the performance of the whole MPC 

control framework. 

The validation has been conducted in the actual DC located in Thailand. After 

historical data collection and model adjustment, the validation has been 

conducted in the third week and the fourth week. 

The validation indices include the accuracy of the prediction model, weekly 

percentage of energy saving, and percentage of PUE weekly reduction. By 

comparing the real data, the performances of the proposed approach can be 

validated in practice. 

5.7.2 Validation of the prediction accuracy 

The evaluation of VAR prediction is shown in Table 5-14. The Root Mean 

Squared Errors (RMSE) of four VAR endogenous variables range from 0.09 to 

0.49, indicating that the prediction model performed well. Figure 5-16 to Figure 

5-19 shows the comparison of forecasted and measured endogenous 

variables. The VAR model shows a good ability to handle multi-variable 

forecasting problems. 

 

 

Table 5-14. The VAR forecast evaluation 

Forecast Evaluation    

Sample: 1 167    

Included observations: 167   
      
      

Variable Inc. obs. RMSE MAE MAPE Theil 
      
      

HG 167  0.490049  0.301708  3.320369  0.026964 

PUE 167  0.053833  0.046380  2.106583  0.012222 

T_AMBIENT 167  0.233084  0.190490  0.772288  0.004724 

T_OUTFLOW 167  0.096594  0.068915  0.362521  0.002521 
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RMSE:  Root Mean Square Error   

MAE:  Mean Absolute Error   

MAPE:  Mean Absolute Percentage Error  

Theil:  Theil inequality coefficient  
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Figure 5-16 The forecast comparison of the heat generation by the servers 
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Figure 5-17 The forecast comparison of the ambient temperature in the 

server room 
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Figure 5-18 The forecast comparison of the outflow temperature of the AC 
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Figure 5-19 The forecast comparison of the PUE 
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5.7.3 Validation of the energy-saving performance 

Figure 5-20 depicts the power consumption variables throughout the 

experiment. The graph shows that the total power is high in the first week 

without intervention about the server room nature. However, it began to fall 

dramatically on day 8, when the experiment started. It is primarily due to a 

significant reduction in Non-IT power consumption. Even after the second 

week, when the DC was asked to increase the IT load for the experiment, there 

was no increase in total power consumption, demonstrating that optimal AC 

temperature setpoints control is efficient. 

 

Figure 5-20 The changes in power usage variables 

 

Figure 5-21 and Table 5-15 demonstrated the energy-saving potential in the 

target data centre by adopting the proposed MPC control strategy respectively. 

It can be concluded that controlling the AC setpoints using the MPC strategy 

can significantly reduce energy consumption in the DC and has a promising 
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energy-saving potential. 

 

 

Figure 5-21 Average power before and after the experiment 

 

 

 

Table 5-15 The energy-saving potential 

Power Annual Savings 

Before 
(kWh) 

After 
(kWh) 

Savings 
(kWh) 

Reduction 
% 

Energy 
savings 

kW 

Cost 
savings 
(THB) 

Greenhouse 
Gas 

Reduction 
lbs 

63.51 42.86 20.65 32.5% 307,505 1,537,524 405,906 

 

 

Table 5-16 summaries the descriptive statistics after implementing MPC 

strategies in the experiment from week 2 to week 4. The PUE mean value has 

decreased from 2.20 to 1.86. The server room ambient temperature has been 

increased by 1 to 2 degrees due to the increased ACs’ temperature setpoints. 

  



Chapter 5         Experiment 

130 
 

 

 

Table 5-16 Descriptive statistics of experiment Week 2 -Week 4 

 
T_OUTFL

OW 
T_OUTDO

OR 
T_AMBIE

NT PUE HG CPU AC2 AC1 

 Mean  22.28012  29.77654  26.07670  1.859797  8.945329  17.57359  21.77866  22.59713 

 Median  23.50000  29.50000  25.50000  1.862000  9.000000  16.58105  23.00000  24.00000 

 Maximum  24.50000  36.00000  28.00000  2.300000  13.00000  30.17150  24.00000  25.00000 

 Minimum  18.25000  24.00000  23.00000  1.800000  4.500000  3.404470  18.00000  18.00000 

 Std. Dev.  2.368723  2.478738  1.365139  0.116748  1.209664  6.000674  2.372696  2.621779 

 Skewness -0.568551  0.240930 -0.003063  2.213539  0.414960  0.344680 -0.573126 -0.603050 

 Kurtosis  1.518326  2.464483  1.375815  6.742580  3.579858  2.205873  1.527139  1.564252 

         

 Jarque-Bera  273.8362  40.73897  207.0842  2638.064  80.46266  86.80967  273.4321  276.0101 

 Probability  0.000000  0.000000  0.000000  0.000000  0.000000  0.000000  0.000000  0.000000 

         

 Sum  41975.75  56099.00  49128.50  3571.681  16853.00  33108.64  41031.00  42573.00 

 Sum Sq. Dev.  10565.23  11569.42  3509.167  25.66561  2755.369  67803.23  10600.70  12943.22 

         

 Observations  1884  1884  1884  1884  1884  1884  1884  1884 

 

 

5.7.4 Validation of the room and server temperature constraints 

According to the ASHRAE guidelines, the server room temperature should be 

between 18°C and 27°C. Furthermore, the working temperatures of the 

servers should not be higher than 32°C or lower than 15°C. As shown in Figure 

5-22 and Figure 5-23, the temperature from the front and back sides of the 

server rack temperature sensors, as well as the ambient temperature sensors, 

did not violate the boundary value during the experiment. This indicates that 

the server room's IT devices are operating under safe conditions. 



Chapter 5         Experiment 

131 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5-23 The ambient temperature during the experiment 

Figure 5-22 The rack front and back temperature during experiment 



 

 

 

 

This chapter presents the verification of the VAR-PSO-MPC approach in 

minimising the Power Usage Effectiveness (PUE) in data centres (DCs) using 

Computational Fluid Dynamics (CFD) simulation environment. The primary 

objective of this experiment is to test the performance of the VAR-PSO-MPC 

framework under different scenarios in the server room. 
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6.1 Simulation purpose and overview  

Testing a proposed approach in an actual DC in the real world can be a 

valuable way to validate its effectiveness and evaluate its practicality. However, 

there are several limitations to consider when conducting such tests: 

1) Conducting tests in an actual DC can be expensive, particularly when it 

requires modifications to the current infrastructure. This may not be a 

viable option for smaller organizations or those with limited budgets due 

to the high costs involved. 

2) Testing a new approach in a live DC can potentially lead to disruptions 

in ongoing operations, which could result in downtime or other issues. 

This can be particularly problematic in critical systems where any 

downtime can have severe consequences. 

3) Limited scalability: Depending on the size and fix the configuration of 

the server room and devices, it may not be possible to test the approach 

at scale, which could limit the ability to draw meaningful conclusions. 

4) Limited control: In a real-world DC, there may be factors beyond the 

experimenter's control that could impact the results of the test, such as 

changes in workload, network issues, or hardware failures. 

5) Security and privacy: Testing a new approach in a live DC may raise 

security and privacy concerns, especially if it involves sensitive data or 

systems. 

Given these limitations, it's often advisable to experiment in a simulated or 
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controlled environment. This can help to identify potential issues and refine the 

approach while the actual data centre could not make it under some special or 

extreme conditions.  

The purpose of the simulation is to address several key questions, including: 

(1) How effective is the proposed VAR-PSO-MPC control strategy in 

reducing PUE? 

(2) How quickly does the control strategy respond to changes in IT load 

and associated temperature increases? 

(3) Does the control operation approach the upper and lower boundary 

values for room and server temperatures? 

(4) How quickly does the proposed control strategy respond to extreme 

conditions? 

(5) How well does the control framework adapt to changes in infrastructure, 

such as alterations to the server rack and air conditioner layouts? 

To answer these questions, the simulation will be conducted using a baseline 

DC model followed by the application of the VAR-PSO-MPC framework under 

various operating conditions. 

6.2 Simulation design 

6.2.1 Simulation parameters 

The effective design and management of DCs are critical to ensuring their 
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smooth operation and maximum efficiency. A key aspect of this is the 

simulation of different parameters and conditions that may affect the 

performance of DCs. This section lists the simulation parameters that will be 

used to simulate the DC fluid dynamic and evaluate the performance of the 

control operations. The parameters include the size of the DC, the number and 

type of servers, the server layout, the cooling system, and the environmental 

conditions. Additionally, the locations and numbers of sensors installed will 

also be discussed. 

(1) Size of the data centre 

The size of the DC is an important factor that can impact its efficiency and 

effectiveness. In this experiment, the data centre size will be 54 square metres. 

This size is chosen based on the actual experiment DC size and the 

requirement to house 10 server racks while providing adequate space for 

movement and maintenance activities. A different size would have been ideal 

for future expansion of the experiment, however, due to the requirement of 

historical data, a similar DC size to the actual DC has been chosen for this 

experiment. 

(2) Number and Type of Servers 

In this experiment, 10 server racks with half of the servers on a high workload, 

and another half of the servers with a low workload have been adopted for the 

simulation. High-Performance Computing (HPC) servers are designed to 

handle complex and intensive workloads that require high-speed processing 

and storage capabilities. With the adoption of HPC servers, the workload can 
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be simulated as that closely resembles real-world scenarios, making it easier 

to evaluate the performance of the DC. The use of HPC servers also allows 

for sufficient load balancing and redundancy, ensuring that the DC remains 

operational even in the event of a server failure. 

(3) Server Layout 

The layout of servers in a DC is another critical parameter that can affect its 

performance. In this experiment, the servers will be arranged in a hot aisle/cold 

aisle arrangement. This layout is a popular choice for DCs because it helps to 

optimise cooling and reduce energy consumption. In a hot aisle/cold aisle 

arrangement, servers are placed in alternating rows with cold air being 

supplied through the raised floor to the front of the servers (cold aisle) and hot 

air being exhausted from the back of the servers into the ceiling (hot aisle). 

This layout helps to prevent the mixing of hot and cold air, which can lead to 

inefficiencies and overheating. 

(4) Cooling System 

The cooling system used in a DC is crucial to maintaining optimal operating 

conditions. In this experiment, we will be using two air conditioners with 

underground airflow pipes. The air conditioners will be located in the area 

beside the server room and will supply cool air through the raised floor to the 

cold aisle. The hot air will be exhausted into the atmosphere through the ceiling. 

The use of underground airflow pipes helps to reduce energy consumption by 

minimising the distance that cool air needs to travel to reach the servers. 

(5) Environmental Conditions 
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To ensure that the DC remains within the recommended operating conditions 

for its equipment, the environmental conditions in this experiment were 

referenced from the AHREA guideline (2018). As such, the ambient 

temperature boundary will be set at 17-28°C, which aligns with the actual 

experiment, and the relative humidity range will be 40-60%. These conditions 

have been determined to be optimal for the operation of high-performance 

computing servers and will help to maintain stable operating conditions within 

the DC. These environmental boundaries will serve as the basis for formulating 

the boundary conditions of the simulation in this experiment. 

(6) Sensor Installation Points 

The installation of sensors in a DC is essential to monitor and control its 

performance. In this experiment, we will be installing sensors in three locations, 

the locations and the number of the sensors will be displayed like 

location/number, as the following: ceiling/2, server racks/10, and AC outflow 

(air intake point)/1. The ceiling sensors will be used to monitor the overall 

temperature and humidity conditions within the DC. The server rack sensors 

will be used to monitor the temperature of the servers and detect any hotspots. 

These parameters are selected to reflect typical DC operating conditions and 

to allow for comparison with different operation scenarios. 

 

6.2.2 Simulation steps 

Computational Fluid Dynamics (CFD) is a popular technique used to simulate 

fluid flow in various applications, such as cooling systems in DCs. In this 
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context, a CFD simulation can provide insights into the thermal performance 

of IT equipment and cooling systems, enabling engineers to optimise their 

design and operation. However, designing and running a CFD simulation can 

be a challenging task, involving several steps that require careful consideration. 

This section presents the crucial steps necessary for designing and executing 

a CFD simulation to model fluid flow in a DC cooling system. Moreover, it 

elaborates on how the simulation will validate the VAR-PSO-MPC control 

framework. 

The following steps involve CFD simulation procedures: 

1) Problem Definition: The first step is to define the problem, including the 

type of fluid flow, create the geometry of the system, and set the initial 

and boundary conditions.  

2) Mesh Generation: The next step is to create a mesh that will discretise 

the geometry into small elements. The size and shape of the mesh will 

affect the accuracy of the results. 

3) Selection of Fluid Model: The selection of a fluid model depends on the 

characteristics of the fluid being simulated. The most common models 

are laminar flow, turbulent flow, and multiphase flow. 

4) Boundary Conditions: Boundary conditions are the constraints imposed 

on the fluid flow by the surrounding environment. These include inlet 

and outlet conditions, as well as any walls or solid objects in the system. 

5) Solver Setup: Set up the CFD solver that is capable to govern the 
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equations of the fluid flow. The solver should be configured to accurately 

solve the problem defined in step 1. 

6) Running the Simulation: Once the solver is set up, the simulation can 

be run. The output will be a set of data files containing temperature 

information about the fluid flow and also will give out the calculation 

result of the power usage based on the attributive and performance of 

the IT and cooling devices. 

7) Post-Processing: The simulation must be post-processed to extract 

useful information. This includes creating visualisations of the fluid flow, 

as well as extracting numerical data for further analysis. 

8) Validate the simulation: To ensure that the simulation results are 

accurate and reliable, Validation and verification tests will be performed. 

The simulation will be compared to the experimental data from the 

previous experiment, given that the simulation environment's size and 

layout are identical to that of the actual DC. Additionally, grid 

convergence studies and sensitivity analyses will be conducted to verify 

the accuracy of the simulation. 

Once the CFD simulation environment is developed, it can be utilized to 

implement the MPC framework. The simulation takes the MPC-optimised 

setpoint temperature as input and produces an output in the form of a CSV 

formatted file. This output file contains the information required for the 

optimisation and control process to calculate the next optimised control input 

for the simulated environment. By utilizing this iterative process, the MPC 
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algorithm adjusts the AC setpoint temperature to maintain the desired 

temperature conditions within the DC, at the same time, minimises PUE. This 

approach enables real-time control of the cooling system, ensuring that the  

cooling capacity is always matched to the thermal load within the DC.  Figure 

6-1 demonstrates a processing graph of the proposed approach. 

 

6.2.3 Performance Evaluating KPIs and Scenarios 

6.2.3.1 KPIs 

The following KPIs can be used to evaluate the performance: 

(1) PUE: The PUE should be measured and compared under baseline 

Figure 6-1 The process of validation under CFD environment 
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conditions and MPC control. The goal is to achieve a lower PUE with 

an MPC control framework. 

(2) Temperature: The temperature of the server room should be monitored 

and compared under baseline conditions and MPC control. The goal is 

to achieve a more stable and optimal temperature with MPC control. 

(3) Power Consumption: The power consumption of the IT equipment and 

air conditioning system should be monitored and compared under 

baseline conditions and MPC control. The goal is to achieve a lower 

power consumption with MPC control. 

(4) System running time: Increasing the number of controlled variables: and. 

modifying the physical layout of the server room may have an impact 

on the system running time. A well-designed system should be able to 

adapt to these changes with minimal impact on its performance. 

 

6.2.3.2 Scenarios 

In addition to evaluating the performance of the MPC controller under different 

operating conditions, different scenarios can be simulated to test the 

robustness and flexibility of the controller. The scenarios that will be simulated 

in this experiment are as the following: 

(1) Baseline: DC operating under typical conditions without the VAR-PSO-

MPC framework applied. 

(2) Server load variation: DC operating under variation of workload with the 
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MPC control applied to test the efficiency of the algorithm's response to 

changing workload conditions. 

(3) Additional cooling units: The incorporation of extra cooling units aims to 

evaluate the adaptability of the system model and the performance of 

the MPC framework under conditions of increased cooling capacity, 

heightened cooling energy consumption, and variations in room layout. 

(4)  Additional server rack: Aims to assess the adaptability of the system 

model and evaluate its capacity to handle the significant increase in 

server workload and the subsequent rise in server and room 

temperatures, as well as variations in room layout. 

(5) Door-open scenarios: Simulate changes in external conditions, such as 

sudden changes of room temperature resulting from unexpected door 

openings, aimed at evaluating the performance of the MPC controller 

under extreme circumstances. 

By following this simulation plan, the performance of VAR-PSO-MPC can 

be evaluated in a CFD-simulated server room environment, and different 

scenarios can be tested for comparison with the baseline condition. The 

simulation will evaluate how the VAR-PSO-MPC framework performs in 

different contexts in terms of stability, accuracy, and efficiency. The results 

of these simulations will provide insights into the strengths and limitations 

of the framework and suggest areas for further improvement. 
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6.2.4 Simulation Tools and Techniques  

1) Geometry tool: SOLIDWORKS. Build up a simulated 3D geometry 

environment of the server room, including all the physical space of the 

server room and the layout of the facilities. 

2) Mesh tool: DistMesh package in STARCCM+: This is a popular open-

source meshing package that provides functions for generating 2D and 

3D Delaunay meshes. It includes several options for controlling mesh 

size and quality, as well as tools for visualizing and refining the mesh. 

3) Define the physics in the server room: Computational Fluid Dynamics 

Toolbox in STARCCM+. This toolbox is specifically designed for 

simulating fluid dynamics and heat transfer in complex geometries. It 

includes a range of solvers for different types of flow problems, such as 

laminar and turbulent flow, and allows for the creation of custom models 

and user-defined functions. 

4) CFD Simulation and MPC model verification: R- STARCCM+. This 

involves creating a simulation loop that updates the input variables and 

parameters at each time step, runs the MPC controller to determine the 

optimal cooling setpoints, and updates the simulation based on the 

controller output. 

5) Evaluate the performance of the VAR-PSO-MPC controller in reducing 

the PUE of the simulated data centre environment. This may involve 

analysing key performance indicators such as the PUE, temperature 

gradients, and cooling system energy consumption, and comparing the 
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results with those obtained using the baseline setpoints. 

6.3 Simulation modelling procedures   

6.3.1 Geometry 

In CFD simulations, one of the most crucial steps is to create a suitable 

geometry that accurately represents the physical domain. This process 

involves importing, evaluating, and simplifying complex geometries, and 

generating a suitable mesh. 

The initial step involves the generation or acquisition of the geometric model, 

which can be achieved through the use of various tools such as Computer-

Aided Design (CAD) software or other 3D modelling software. The geometric 

representation should accurately reflect the physical domain, incorporating 

pertinent details such as the object(s) dimensions and shape, as well as the 

surrounding environment. Subsequently, the geometry must undergo a 

thorough evaluation to address inconsistencies and guarantee its watertight 

integrity. Additionally, simplification procedures may be applied as necessary 

to reduce computational expenses. 

In this experiment, the SOLIDWORKS software was employed to model the 

DC environment. To ensure accuracy and facilitate comparison with the prior 

experiment conducted in a physical DC located in Thailand, the server size 

and rack layout in the simulation were maintained at identical values. The 

historical data collected from the previous experiment was utilized to 

authenticate the current simulation environment. Additionally, the performance 

of the control framework was examined using various simulated scenarios that 
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cannot be feasibly tested in a physical server room. 

Figure 6-2 and Figure 6-3 demonstrate the geometry used for the simulation, 

with a top view and a 3D view respectively. 

 

Figure 6-2 Top view of the server room geometry 
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6.3.2  Mesh generation and evaluation 

7.2.2.1 Mesh generation 

The fundamental objective of mesh generation is to partition the geometry of 

the problem domain into small, discrete elements to enable the numerical 

solution of the governing equations for fluid flow. It is imperative to note that 

the quality of the mesh plays a crucial role in determining the accuracy and 

reliability of the simulation results. Therefore, a well-designed mesh should 

strike a balance between high resolution in regions of interest and low 

resolution in regions of lesser importance. This not only reduces computational 

resources and time but also ensures the continuity of fluid flow across the 

computational domain.  

The mesh type that has been chosen to simulate the DC environment is 

Figure 6-3  3D Server room geometry layout  
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hexahedron (or "hex") mesh. The use of hex mesh in computational fluid 

dynamics (CFD) simulations of DCs offers several advantages. One primary 

advantage is its ability to accurately represent the complex geometry of the 

components within the DC. This is due to the regular shape of hexahedral 

elements, which are cube-shaped with straight edges and right angles, 

providing a more uniform distribution of nodes and a more precise 

representation of the geometry. This contrasts with other mesh types, such as 

tetrahedral or prismatic meshes. Additionally, hex mesh has the potential to 

minimise numerical errors and provide better accuracy in regions of interest, 

such as where cooling systems or heat-generating components are located. 

This can lead to more reliable and accurate simulation results, aiding in the 

identification of potential thermal issues and enabling the design of effective 

cooling strategies. (Mittal & Iaccarino, 2005). Figure 6-4 shows the top view 

and Figure 6-5 shows the 3D view of the mesh. 

Figure 6-4 Top view of the server room mesh 
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The quality of the mesh plays a significant role in the accuracy of CFD 

simulations. A sensitivity test has been conducted to optimise the elements of 

the mesh. 

7.2.2.2 Mesh sensitivity analysis 

Table 6-1 presents the mesh quality in terms of a numerical index ranging from 

0.000001 to 1, with higher values indicating better quality and lower values 

indicating poorer quality.  The volume change range in a mesh is a metric used 

to evaluate the quality of the mesh. It is the ratio of the maximum volume 

change to the average volume change for all elements in the mesh. This range 

is calculated as the ratio of the maximum volume change to the average 

volume change across all elements in the mesh. A high-volume change range 

suggests that certain elements in the mesh may be distorted, while a low 

volume change range indicates a more uniform shape across all elements. 

Figure 6-5 3D view of the server room mesh 
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Table 6-1 Numerical Indices of mesh quality 

Volume change range 
Number of 
elements 

Quality 
Index 

0.000000e+00<=Volumn 
change<1.000000-06 

0 0.000% 

0.000000e+00<=Volumn 
change<1.000000-05 

0 0.000% 

0.000000e+00<=Volumn 
change<1.000000-04 

0 0.000% 

0.000000e+00<=Volumn 
change<1.000000-03 

0 0.000% 

0.000000e+00<=Volumn 
change<1.000000-02 

0 0.000% 

0.000000e+00<=Volumn 
change<1.000000-01 

5 0.001% 

0.000000e+00<=Volumn 
change<1.000000-00 

437080 99.999% 

 

Additionally, the result of sensitivity analysis yielded an optimal mesh selection 

with a face value of 1270434 and vertices of 577568, which refer to the 2D 

polygons that constitute the surface of the 3D object being meshed. The faces 

and vertices together define the geometry of the mesh. Furthermore, we 

evaluated the validity of the mesh, and the results indicated that the mesh is 

topologically valid, with no negative volume cells. This evaluation process 

ensured that the mesh was of high quality and suitable for use in the CFD 

simulations. 

 

6.3.3  Physical formulation of fluid properties 

Fluid simulation for DC airflow by the CFD method involves solving the Navier-

Stokes equations numerically to simulate the flow of air in and around the DC. 
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The formulations utilized for this simulation are as the following: 

(1) Navier-Stokes equation  

One common formulation used in CFD for simulating the airflow in DC is the 

incompressible Navier-Stokes equation, this equation describes the 

conservation of momentum for a fluid in terms of velocity, pressure, and 

temperature. In the context of CFD the Navier-Stokes equation is typically 

expressed in its dimensionless form, which is more suitable for numerical 

simulations. 

 
𝜕𝑢

𝜕𝑡
+ 𝑢∇𝑢 = −∇𝑝 + 𝑣∇2𝑢 + 𝑓 (6.1) 

 

 

Where: 

 

𝑢 is the velocity vector of the fluid, 

𝑝 is the pressure, 

𝜈  is the kinematic viscosity, 

f  is any external forces acting on the fluid, and 

𝛻  is the nabla operator. 

 

The Navier-Stokes equation is supplemented by the continuity equation, which 

expresses the conservation of mass for the fluid. 
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(2) Continuity equation 

The continuity equation is a fundamental equation in fluid dynamics that 

expresses the conservation of mass for a fluid. It states that the rate at which 

mass entries a control volume must be equal to the rate at which mass leaves 

the same volume, accounting for any accumulation or depletion of mass within 

the volume itself. 

 ∇. 𝜇 = 𝑜 (6.2) 

 

(3) Energy function 

The energy function (also known as the potential function), is a scalar field that 

describes the energy per unit volume of a fluid. The general form of energy 

function can be derived from the Navier-Stokes equation and continuity 

equation. 

 𝑝𝑐𝑝

𝜕𝑇

𝜕𝑡
+ 𝑝𝑐𝑝(𝑢. ∇)𝑇 = 𝑘∇2𝑇 + +𝑄 + 𝑄𝑖𝑛 − 𝑄𝑜𝑢𝑡 (6.3) 

 

Where: 

 

𝑇 is the temperature,  

𝑝𝑐𝑝is the specific heat capacity, 

 𝑘 is the thermal conductivity,  

𝑄 is any internal heat sources or sinks,  

𝑄𝑖𝑛 is the amount of heat flowing into the system, 
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𝑄𝑜𝑢𝑡represent the heat flowing out of the system. 

 

For the CFD simulation of the server room, we will modify the above equation 

in terms of AC and server CPU usage. 

 𝑝𝑐𝑝 (
𝜕𝑇

𝜕𝑡
+ 𝑢. 𝛻𝑇) = 𝑘𝛻2𝑇 + 𝑄𝑠𝑒𝑟𝑣𝑒𝑟 + 𝑄𝐴𝐶 (6.4) 

 

Where: 

𝑄𝐴𝐶 is the rate of heat transfer per unit volume due to the air conditioners. 

𝑄𝑠𝑒𝑟𝑣𝑒𝑟 is the rate of heat transfer per unit volume due to the servers. 

To incorporate the heat generated by CPUs, we could model each CPU as a 

point source of heat within the computational domain. The rate of heat transfer 

per unit volume is due to the CPUs.  𝑄𝑠𝑒𝑟𝑣𝑒𝑟 could then be expressed as: 

 𝑄𝑠𝑒𝑟𝑣𝑒𝑟 = ∑ 𝑞𝑖

𝑁

𝑖=1
𝛿(𝑋 − 𝑋𝑖) (6.5) 

 

Where : 

𝑁 is the number of CPUs in the domain, 

𝑞𝑖is the rate of heat generation per unit volume for the 𝑖-th CPU,  

𝑋𝑖is the location of the 𝑖-th CPU,  

𝛿(𝑋 − 𝑋𝑖) is the Dirac delta function, which is zero everywhere except at 𝑋 =
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𝑋𝑖 where it has an infinite value that integrates to 1. This means that there is 

no heat generation at any point in the domain except at the location 𝑋 = 𝑋𝑖. 

This modified energy equation takes into account the heat generated by CPUs 

and can be solved numerically along with the Navier-Stokes equations and 

mass conservation equation to simulate the fluid dynamics and temperature 

distribution in a DC server room. 

(4) Turbulence equation 

According to a study by Wu et al. (2019), the k-epsilon turbulence model is 

commonly used in CFD simulations of server rooms to accurately predict the 

distribution of temperature and air velocity within the room. The model solves 

transport equations for the turbulent kinetic energy and the rate of dissipation 

of turbulent kinetic energy, which takes into account the production and 

dissipation of turbulence due to fluid flow and shear stresses, as well as the 

diffusion of turbulence through the fluid. Empirical constants are used to 

account for the effects of turbulence on the fluid, and these can be adjusted to 

match experimental data or to better match the specific conditions of the server 

room being simulated. Overall, the k-epsilon turbulence model is a useful tool 

for simulating the complex fluid dynamics of DC server rooms. Based on the 

assumption that the behaviour of turbulence at a given point in space is 

influenced by the conditions at nearby points, the turbulence equations 

adopted for this simulation can be denoted as the following: 
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𝜕𝜌𝑘

𝜕𝑡
+

𝜕𝜌𝑘𝑢𝑖

𝜕𝑥𝑖
=

𝜕

𝜕𝑥𝑗
[(𝜇 +

𝑢𝑡

𝜎𝑘
)

𝜕𝑘

𝜕𝑥𝑗
] + 𝑃𝑘 − 𝜌휀 (6.6) 

 

 

 
𝜕휀

𝜕𝑡
+

𝜕𝜌휀𝑢𝑖

𝜕𝑥𝑖
=

𝜕

𝜕𝑥𝑗
[(𝜇 +

𝑢𝑡

𝜎휀
)

𝜕𝑘

𝜕𝑥𝑗
] + 𝐶𝑙

휀

𝑘
𝑃𝑘 − 𝐶2 𝜌

휀2

𝑘
 (6.7) 

 

 

Where: 

 

𝑘 is the turbulent kinetic energy,  

휀 is the rate of dissipation of turbulent kinetic energy, 

𝜌 is the density of air, 

𝑢𝑖 is the velocity vector,  

𝜇 is the molecular viscosity of air,  

𝜇𝑡 is the turbulent viscosity,  

𝜎𝑘 and 𝜎휀 are empirical constants, 

𝑃𝑘 is the rate of production of turbulent kinetic energy, 

𝐶𝑙  and 𝐶2  are additional empirical constants that help to account for 

the effects of turbulence on the fluid, 

𝑥𝑖 and 𝑥𝑗 denotes the spatial location in the domain where the turbulent 

flow is being simulated. 

 

The above equations provide the mathematical framework of the air and heat 
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transfer in the server room, which can be used to formulate the CFD simulation. 

The energy equation describes how heat is generated by the CPUs and 

removed by the air conditioning system, while the turbulence model accounts 

for the complex, three-dimensional flow patterns that arise in the presence of 

obstacles and thermal gradients. Moreover, the effectiveness of the k-epsilon 

model in simulating flows in enclosed spaces is widely recognised, making it a 

commonly used turbulence model in the field of computational fluid dynamics. 

By numerically solving these equations using a suitable CFD solver, valuable 

insights can be obtained into the thermal behaviour of the server room. These 

insights can then be used to optimise the design of the cooling system, 

ensuring the reliable operation of the servers while minimising energy 

consumption. Such an approach holds promise for improving the overall 

efficiency and sustainability of DC operations. 

 

6.3.4 Server room attributes and boundary conditions 

To ensure the reliability and performance efficiency of the IT infrastructure in 

the simulation, the room size, the number of server racks, total power capacity, 

air conditioner capacity, server thermal load, and power usage effectiveness 

(PUE) are among the key attributes that must be carefully evaluated during the 

planning and design phases. Additionally, boundary conditions such as the 

inlet air temperature and airflow rate must be closely monitored and controlled 

to maintain optimal conditions for the servers and other IT equipment. In the 

following section, we will provide a detailed discussion of the essential 
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attributes and boundary conditions for the successful operation of a server 

room, based on the latest thermal guidelines and industry best practices. 

7.2.2.3 Server room attributes 

Table 6-2 presents the essential attributes of the server room that must be 

considered when conducting a simulation. The size of the server room used in 

the simulation is identical to that of the actual experiment conducted earlier, 

measuring 57.43 square metres with a height of 3 metres. The table includes 

information on the number of server racks, total power capacity, air conditioner 

capacity, cooling capacity, and server thermal capacity. These attributes are 

crucial in accurately modelling the temperature and airflow distribution in the 

server room, as they affect the thermal load and cooling requirements of the 

IT equipment. Additionally, power usage effectiveness (PUE) is also listed as 

a key attribute, as it reflects the overall efficiency of the power and cooling 

systems in the server room. Other relevant attributes, such as the location of 

the server room, wall and floor construction, and airflow obstructions, may also 

impact the simulation results and should be carefully considered. Boundary 

conditions will be calculated based on the key attributes that are given. 

 

Table 6-2 Key attributes of the server room 

Attribute Value 

Room size 57.m2 

Room height 3 m 
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Number of server racks 10 

Air conditioner capacity 2 x 14,000 W 

Server thermal capacity 10 x 5,200 W 

General Power usage effectiveness (PUE) 2.3 

 

7.2.2.4 Boundary conditions 

Assumptions 

A. The air conditioners provide all of the cooling for the server room. 

B. Incompressible flow: The simulation assumes that the air inside the 

server room is incompressible, meaning that changes in density due to 

changes in temperature or pressure are negligible. 

C. No radiation effects: The simulation assumes that the effects of radiation 

on the heat transfer within the server room are negligible. 

 

(1) Total thermal load 

𝑇𝑜𝑡𝑎𝑙 𝑡ℎ𝑒𝑟𝑚𝑎𝑙 𝑙𝑜𝑎𝑑 

=  𝑠𝑒𝑟𝑣𝑒𝑟 𝑡ℎ𝑒𝑟𝑚𝑎𝑙 𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦 

+  𝑎𝑖𝑟 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛𝑒𝑟 𝑐𝑜𝑜𝑙𝑖𝑛𝑔 𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦 

Under the general server room condition, 

𝑇𝑜𝑡𝑎𝑙 𝑡ℎ𝑒𝑟𝑚𝑎𝑙 𝑙𝑜𝑎𝑑 =  52000𝑊 + 28000𝑊 

𝑇𝑜𝑡𝑎𝑙 𝑡ℎ𝑒𝑟𝑚𝑎𝑙 𝑙𝑜𝑎𝑑 =  80000𝑊 

 

(2)  Mass flow rate  



Chapter 6      Simulation-Based Evaluation 

158 
 

Effective cooling of a server room is heavily dependent on the rate of airflow, 

making it a critical factor in maintaining optimal temperatures for IT equipment. 

The airflow rate can be calculated using the following formula: 

 

𝐴𝑖𝑟𝑓𝑙𝑜𝑤 𝑟𝑎𝑡𝑒 (𝑚3/ℎ)  

=  𝑇𝑜𝑡𝑎𝑙 𝑡ℎ𝑒𝑟𝑚𝑎𝑙 𝑙𝑜𝑎𝑑 (𝑊) / (1.2 ×  𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐 𝐻𝑒𝑎𝑡 

×  𝑇𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 𝐷𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒) 

 

Assuming a specific heat of 1.0 𝑘𝐽/𝑘𝑔 ∗ 𝐾  and a temperature difference of 

0.88°𝐶, which means that for every kilogram of air passing through the system, 

there is a change in enthalpy (heat content) of approximately 10.05 𝑘𝐽, and the 

difference between the inlet and outlet temperatures of the air passing through 

the system is 3°𝐶, the required airflow rate is: 

 

𝐴𝑖𝑟𝑓𝑙𝑜𝑤 𝑟𝑎𝑡𝑒 =  80000𝑊 / (1.2 ×  1.0𝑘𝐽/𝑘𝑔 × 𝐾 ×  3°𝐶 

=  22222 𝑚3/ℎ 

 

So the mass flow rate of air required to achieve the required airflow rate would 

be: 

 

𝑀𝑎𝑠𝑠 𝑓𝑙𝑜𝑤 𝑟𝑎𝑡𝑒 (𝑘𝑔/𝑠)  

=   
𝐴𝑖𝑟𝑓𝑙𝑜𝑤 𝑟𝑎𝑡𝑒 ( 𝑚3/ℎ) 

3600
×  𝐴𝑖𝑟 𝐷𝑒𝑛𝑠𝑖𝑡𝑦 (𝑘𝑔/𝑚3) 
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Assuming an air density of 1.2 𝑘𝑔/𝑚3, the required mass flow rate is: 

 

𝑀𝑎𝑠𝑠 𝑓𝑙𝑜𝑤 𝑟𝑎𝑡𝑒 =   
22222𝑚3/ℎ 

3600
×  1.2

𝑘𝑔

𝑚3
=  7.4𝑘𝑔/𝑠 

 

To achieve this mass flow rate, the airflow should be divided equally between 

the two ACs, so each AC needs to provide: 

 

𝑀𝑎𝑠𝑠 𝑓𝑙𝑜𝑤 𝑟𝑎𝑡𝑒 𝑝𝑒𝑟 𝑎𝑖𝑟 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛𝑒𝑟 =  
7.4 𝑘𝑔/𝑠 

2
 = 4.7𝑘𝑔/𝑠 

 

(3) Inlet air boundary condition  

Following the guidelines by ASHRAE (2021) for DC cooling, the recommended 

range for an inlet air temperature of the air conditioning units is between 18°C 

and 27°C. The calculations below are to determine the required cooling 

capacity of each AC unit to achieve the desired inlet air temperature and 

maintain the appropriate temperature difference between the inlet air and room 

temperature. This information is important for selecting appropriate air 

conditioner units and designing an effective cooling system for the server room. 

Assuming an inlet air temperature of 22°C and a room temperature of 25°C, 

the air conditioners need to cool the air by: 

 

𝑇𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒 

=  𝐼𝑛𝑙𝑒𝑡 𝑎𝑖𝑟 𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 −  𝑅𝑜𝑜𝑚 𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒

=  22°𝐶 −  25°𝐶 =  −3°𝐶 
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Therefore, each air conditioner needs to provide a cooling capacity of: 

 

𝐶𝑜𝑜𝑙𝑖𝑛𝑔 𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦 𝑝𝑒𝑟 𝑎𝑖𝑟 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛𝑒𝑟 

=  𝑀𝑎𝑠𝑠 𝑓𝑙𝑜𝑤 𝑟𝑎𝑡𝑒 𝑝𝑒𝑟 𝑎𝑖𝑟 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛𝑒𝑟 ×  𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐 ℎ𝑒𝑎𝑡

×  𝑇𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒

= 7.4𝑘𝑔/𝑠 ×  1.0 𝑘𝐽/𝑘𝑔 ∗ 𝐾 × ( −3°𝐶) =  −22.2 𝑘𝑊 

 

Since the cooling capacity cannot be negative, therefore here should assume 

that each air conditioner needs to provide a cooling capacity of 22.2 kW. 

 

With the distance between the AC units and the inlet air point of the server 

room, airflow velocity, and ACs cooling capacities, the inlet air temperatures 

can be calculated by the following equations: 

 𝑄 =  𝑚 ×  𝑐_𝑝 ×  𝛥𝑇 (6.8) 
 

Where:  

𝑄 = Cooling capacity of the air conditioning unit (kW)  

𝑚 = Mass flow rate of air (𝑘𝑔/𝑠)  

𝑐_𝑝 = Specific heat of air  

(𝑘𝐽/𝑘𝑔 × 𝐾) 𝛥𝑇 = Temperature difference between inlet and outlet air 

(𝐾) 
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Assuming that the cooling capacity of the air conditioning unit, the airflow 

velocity, and the distance between the AC units and the inlet air point, the mass 

flow rate is determined, the inlet air temperature can be calculated using the 

following formula: 

 𝑇_𝑖𝑛𝑙𝑒𝑡 =  𝑇_𝑜𝑢𝑡𝑙𝑒𝑡 −  (𝑄 / (𝑚 ×  𝑐_𝑝)) (6.9) 
 

Where:  

𝑇_𝑖𝑛𝑙𝑒𝑡 =  𝐼𝑛𝑙𝑒𝑡 𝑎𝑖𝑟 𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 (°𝐶) 

𝑇_𝑜𝑢𝑡𝑙𝑒𝑡 =  𝑂𝑢𝑡𝑙𝑒𝑡 𝑎𝑖𝑟 𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 (°𝐶) 

 

(1) Fan speed dynamic condition 

To sustain the necessary mass flow rate, the fan speed of the ACs must be 

regulated according to their performance curves. These curves can be 

obtained through the manufacturer's specifications or by conducting 

experiments. In addition, to ensure the required mass flow rate and inlet air 

temperature are maintained, the fan speed must be dynamically adjusted 

based on the thermal load of the server room. 

In summary, the inlet boundary conditions for the server room are: 

 

(2) Humidity 

It is generally recommended to maintain the humidity within the range of 40% 

to 60% to avoid equipment damage from condensation or static electricity 

build-up (ASHRAE,2021). Maintaining proper humidity levels helps to prevent 
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equipment failures and data loss. For this simulation, a constant operating 

humidity of 50% was chosen to simplify the model. 

 

(3) AC Airflow velocity 

ASHRAE (2021) has outlined certain recommendations regarding air velocity 

in DCs, suggesting that the optimal range of air velocity is typically between 

0.15 and 0.76 meters per second (30 to 150 feet per minute) for a majority of 

cooling equipment in a server room.  Typically, the calculation of AC airflow 

velocity given the mass flow rate would be presented as the following: 

𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦 =  𝑚𝑎𝑠𝑠 𝑓𝑙𝑜𝑤 𝑟𝑎𝑡𝑒 / (𝑑𝑒𝑛𝑠𝑖𝑡𝑦 × 𝑐𝑟𝑜𝑠𝑠_𝑠𝑒𝑐𝑡𝑖𝑜𝑛𝑎𝑙 𝑎𝑟𝑒𝑎) 

For this simulation, a constant air velocity of 0.25 meters per second was 

utilized as a simplifying assumption. 

 

(4) Wall boundaries 

The wall surface is assumed to have a thermal conductivity of 1.5 W/mK. 

The thickness of the wall is assumed to be 0.2 metres. 

The air outlet point is set to be the freedom outlet (pressure outlet with 0 

pressure. 

These boundary conditions can be used to simulate the behaviour of airflow 

and temperature around the air outlet point on the wall of the server room. 
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(5) The Porous surface boundary  

The AC airway located underneath the raised floor is designed to distribute the 

cool air evenly across the room. In this CFD simulation, the airway is modelled 

as a porous surface with a porosity of 90%. This means that 90% of the surface 

area is covered by small openings or pores that allow the air to flow through, 

while the remaining 10% is assumed to be impermeable. The porous surface 

is modelled using a Darcy-Brinkman model which accounts for the pressure 

drop and flow resistance due to the presence of the porous surface. The 

porous boundary condition of the airway allows for accurate modelling of the 

airflow and temperature distribution in the DC, ensuring efficient cooling of the 

servers. 

 

6.3.5 The CFD solver 

(5) Solver Selection and Configuration  

The transient solver, specifically tailored to capture the unsteady 

characteristics of the flow and temperature fields in a server room, has gained 

significant adoption in the simulation of dynamic server room states. To ensure 

the attainment of simulation results that meet the required levels of accuracy, 

it is recommended that the transient solver settings be appropriately 

configured following the size and complexity of the server room geometry. The 

versatility of the continuum mechanics solver in STAR-CCM+ enables it to 
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solve a broad spectrum of fluid dynamics problems, encompassing laminar 

and turbulent flows, multiphase flows, heat transfer, and combustion. Thus, it 

has been selected to tackle the algorithms outlined earlier. The solver utilizes 

a cell-centred approach and solves the equations of fluid motion, including the 

Navier-Stokes equations, for each cell in the discretized domain. The solver 

includes advanced numerical algorithms such as the pressure-implicit with the 

splitting of operators (PISO) algorithm, which is used to solve the pressure-

velocity coupling in unsteady flows, and the Menter-SST (Shear Stress 

Transport) turbulence model, which is widely used for modelling turbulent flows 

in complex geometries. 

(6) Time Step and Maximum Number of Iterations 

The time step governs the pace of the simulation and has a direct bearing on 

the accuracy and stability of the obtained results. To ensure the attainment of 

simulation results that are commensurate with the desired level of accuracy, 

the selection of an appropriate time step size warrants careful consideration of 

the physical attributes of the server room. Typically, a smaller time step size 

would yield more precise results, however, albeit at the cost of heightened 

computational time. The maximum number of iterations is the maximum 

number of time steps that the solver will perform during the simulation. The 

appropriate setting of a value is of utmost significance in guaranteeing the 

timely completion of a simulation, whilst concurrently capturing the transient 

behaviour of flow and temperature fields. The maximum number of iterations 

should be determined based on the server room's size and complexity, as well 

as the desired level of precision.  
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Furthermore, a fixed time step provides the simulation process predictability 

and stability in contrast to the variable time step. It ensures uniformity in the 

time intervals at which calculations are performed, therefore simplifying the 

computational procedures and enhancing the overall stability of the simulation. 

This is particularly crucial in systems with complicated dynamics that are 

susceptible to environmental changes, such server rooms. 

In this simulation, a time step of one second has been selected, along with a 

maximum iteration limit of 100, following comparative testing of various time 

intervals and iterations. This decision was made to balance system runtime 

and performance considerations.  

(7) Convergence Criterion 

The convergence criterion is a measure of the accuracy of the simulation 

results. It is the threshold value that the solver uses to determine when the 

solution has reached a steady state. A suitable convergence criterion for a 

dynamic state server room simulation is a maximum residual error of 0.01 or 

less. This means that the solution has reached a steady state when the 

maximum residual error in the solution is less than 0.01. However, the 

convergence criterion should be chosen based on the desired level of 

accuracy and the size and complexity of the server room geometry. 
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6.4 MPC performances under different simulated 

scenarios 

To assess the efficacy of the VAR-PSO-MPC control framework in minimising 

the Power Usage Effectiveness (PUE) of a server room, a series of simulations 

were conducted under different scenarios. The objective of these simulations 

was to validate the performance of the control framework by analysing the 

impact of different parameters on the PUE, including server utilisation, cooling 

system efficiency, and ambient temperature. The simulations were performed 

using a detailed model of the server room, which included the thermal and 

energy characteristics of the equipment, as well as the cooling infrastructure. 

The results of the simulations were analysed to determine the effectiveness of 

the VAR-PSO-MPC control framework in reducing PUE under different 

operating conditions. The details of the simulations and the corresponding 

results are presented in the subsequent sections. 

6.4.1 Baseline condition  

This section presents the baseline condition for the server room simulation, 

which is based on the geometry and mesh that were generated in the previous 

section. The purpose of this baseline condition is to establish a reference point 

for future simulations and to provide a benchmark for evaluating the 

effectiveness of the control strategies under various conditions. 

The baseline condition assumes that the server room has been operated under 

normal conditions without the manipulation of the server workload and ACs 

temperature settings for 12 hours during the daytime. The initial configuration 
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of the server room is based on the results of a previous experiment from the 

real-world DC. It is assumed that the cooling system operates with 100% 

efficiency, and the initial supply air temperature for both ACs is 17°C. The IT 

load has been allocated to roughly 20% of the total capacity, which is 10000 

watts. It is commonly observed in the literature that DCs usually function at 

less than 30% of their total capacity. Notably, the calculated air outlet 

temperature of the air conditioning (AC) system deviates from the AC setpoint 

temperature by 0.88°C, which can be attributed to the spatial separation (2 

metres) between the two. In addition, the initial temperature and humidity 

levels within the server room were also set to match observed conditions, and 

the power consumption of the IT equipment and cooling system was based on 

actual usage data. Moreover, the initial placement and configuration of the IT 

equipment and cooling infrastructure were modelled after the real-world DC 

layout, and the initial conditions of the external environment, such as outdoor 

temperature and humidity levels, were taken into consideration.  the server 

room conditions in the simulated environment adhered to the These settings 

were chosen to ensure that the simulated environment closely resembled real-

world DC conditions and that the results of the study were relevant to practical 

DC operations. 

Figure 6-6 Temperature distribution and fluid contour under the baseline 

conditiondisplays a graphic visualisation of the fluid flow and temperature 

contour at the baseline condition. The figure provides a clear representation of 

the fluid's motion and highlights important features, such as velocity, vortices 

and boundary layers. Areas of high velocity typically exhibit rapid and smooth 

streamlines, indicating the presence of high fluid momentum. Conversely, 
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areas of low velocity may display turbulent or irregular flow patterns and slower 

streamlining. Moreover, vortices will show as rotating structures within the fluid 

flow and are characterised by their circular or spiral flow patterns. Moreover, 

variations in temperature between servers indicate the variation in heat 

generation due to the difference between the workload that has been assigned. 

Additionally, high PUE constantly around 2.3 infers that under normal 

operating conditions, the room has been over-cooled, and energy waste exists. 

 

 

  

Figure 6-6 Temperature distribution and fluid contour under the baseline 

condition 
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Figure 6-7 and Figure 6-8 demonstrates the servers working temperature and 

the ambient temperature under baseline conditions, where the DCs typically 

operate at a constant temperature without temperature control. The initial 

temperature settings of both ACs were 17°C, which led to an over-cooling 

problem in the server room. Despite the significant workload assigned during 

busy working hours, the temperature in the server room remained notably 

lower than the upper boundaries, which are 27°C for the ambient temperature 

32°C for the servers’ temperature, leading to inefficient energy usage. This 

highlights the need for improved strategies to optimise the energy efficiency of 

server rooms, even under high workloads. 

 
Figure 6-7  The servers’ temperature under baseline condition 



Chapter 6      Simulation-Based Evaluation 

170 
 

 

 

6.4.2 Server load variation scenario 

This simulation scenario includes variations in server workload to reflect real-

world operating conditions. A series of simulations will be conducted to assess 

the system's performance under different workloads. The CPU workload will 

be varied from 19% to 70% of the total capacity in increments of 10% at each 

change. The simulation will be executed for 12 hours to capture the transient 

behaviour of the system. Figure 6-9 depicts the temperature distribution and 

fluid contour under workload variation scenario by simulation. 

 

 

Figure 6-8 The ambient temperature under baseline condition 
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The presentation of the simulation results will involve an evaluation of DC 

variables, involves temperature distribution, server temperature, ambient 

temperature, and PUE, in comparison to the corresponding baseline 

simulation outcomes. The server temperature changes over 12 hours. Figure 

6-10 demonstrate the effects of server workload variation. To maintain optimal 

conditions, the proposed MPC control strategy has been employed to execute 

the optimal ACs temperature setpoints and regulate the ambient and server 

temperature levels within a specific range, while simultaneously minimising 

Figure 6-9 Temperature distribution and fluid contour under servers workload 

variation scenario 
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PUE, it also demonstrate a scenario where the temperature of the servers is 

close to exceeding the temperature limit of the servers (32°C) from the 

beginning of the 11th hour of simulation, indicating that the current maximum 

cooling capacity of the server room cannot handle the workload increase 

beyond 67%. Figure 6-11 shows the ambient temperature under the MPC 

control over time, provides evidence of the efficacy of MPC control in regulating 

ambient temperature during workload variations. The graph illustrates that, 

whenever the workload increased, the ambient temperature experienced 

severe surges. However, with the application of MPC control, the temperature 

was brought down to a static stage within approximately half an hour. However, 

with the workload reaching 67%, the temperature displays a trend towards 

approaching the upper limit of 27 degrees. 

 

Figure 6-10 Servers’ temperatures with workload variation  
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Figure 6-12 displays the movements of the CPU, PUE, and temperature 

settings for the ACs. The results of the CFD simulation indicate that the VAR-

PSO-MPC control strategy effectively adjusts the two ACs ‘temperature 

settings based on predicted server temperatures, ambient temperatures, and 

PUE. The simulation involved gradually increasing the server workload every 

few hours from 19.23% to 67.31%, and the results demonstrate that the 

implementation of the MPC strategy yields commendable outcomes in 

reducing PUE and ensuring that all temperature measurements remain within 

acceptable limits. To investigate whether the reduction in PUE was primarily 

attributed to the control strategy and not the addition of IT workload, the CPU 

workload was held constant for the initial three-hour period spanning 10,800 

seconds. Specifically, the implementation resulted in a significant decrease in 

PUE from its initial value of 2.30 to a final value of 1.9046 when the IT workload 

remain stable, indicating the efficiency of the MPC control strategy. 

Figure 6-11 Ambient temperature with workload variation 
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Nonetheless, when the IT workload reaches 67.31%, the heavily loaded 

servers were predicted to approach the upper-temperature threshold, despite 

efforts to optimise the ACs’ temperature setpoints based on VAR predictions, 

wherein both ACs were set at a minimum temperature of 16°C. These results 

imply that the present air conditioning capabilities are insufficient to 

accommodate the temperature rise resulting from high processing loads on 

the servers. This suggests that at this stage, additional cooling devices or an 

increase in the cooling capacity of the current devices is necessary to ensure 

that the system remains within the safe operating temperature range.  

 

 

Figure 6-13 illustrate the servers’ temperature for the last two hours under a 

workload variation scenario. The yellow zone in the figure represents a 

Figure 6-12 PUE and CPU with MPC control under workload variation  



Chapter 6      Simulation-Based Evaluation 

175 
 

prediction that the server with the highest workload will reach the temperature 

upper boundary at 39651 seconds. In the actual simulation environment, the 

temperature upper boundary was reached at 39702 seconds, 51 seconds later 

than the predicted time. Despite this error, the advance notice provided by the 

prediction allowed the control system to respond to the temperature alarm 

promptly. To provide additional evidence supporting the prediction and to 

evaluate the behaviour of servers’ temperature, the simulation has been 

conducted for a full period of 12 hours. The results indicate a critical 

consequence: Without a server down-locking system, when the workload 

assigned to the server exceeds its capacity and the cooling capacity of the air 

conditioning units is insufficient, the temperature of the server quickly becomes 

unstable and the over-heating of the servers may lead to potential performance 

issues or even system failure and hardware damage. 
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Further analysis of the simulation results revealed that the temperature 

distribution was not uniform, with some areas experiencing higher 

temperatures than others. This highlights the importance of accurate prediction 

and control of temperature distribution to ensure the optimal performance of 

the DC. The simulation also showed that the ambient temperature had a 

significant impact on the system's performance, indicating the need for a 

reliable and robust cooling system to handle fluctuations in the ambient 

temperature. 

In conclusion, the results of the CFD simulation suggest that the VAR-PSO-

MPC control strategy is effective in managing the PUE and maintaining the 

Figure 6-13 Temperature boundary alarm of the server temperatures 
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temperature within the boundary conditions under normal workload conditions. 

However, additional cooling capacity or cooling devices may be necessary to 

handle higher workload conditions. The simulation results also emphasise the 

importance of accurate temperature prediction and control and the need for a 

reliable cooling system to ensure optimal DC performance. 

 

6.4.3  Scenario with additional cooling unit 

In this section, the scenario of adding supplementary AC units to the existing 

infrastructure of the current DC scenario will be presented. The aim is to 

evaluate its impact and assess the system's adaptability to changes.  

As evidenced by the previous scenario, which involved workload fluctuations, 

an insufficient-sized air conditioning system may result in overheating issues 

when a heavy workload is assigned to the server. Therefore, incorporating an 

extra air conditioning unit into the present infrastructure is imperative to ensure 

that the servers operate safely and within acceptable temperature limits. 
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Figure 6-14 depicts the comparison of the temperature of a heavy-load server 

that operated under two ACs and three ACs scenarios respectively. As the 

result demonstrated in the preceding section, the temperature of the heavy-

loaded servers touched the upper boundary when the CPU load is up to 67.31% 

(shown as the red line). Alternatively, additional cooling power from the 

supplementary AC has been applied to cool down the servers as an 

emergency option. As the figure illustrated, combined with the MPC control the 

server temperature has been significantly reduced from 28°C to 26°C, followed 

by a gradual rise resulting from accumulated heat, which nevertheless 

remained below the upper-temperature threshold. 

 

Figure 6-15 illustrates the PUE movements following the adjustment of ACs 

temperature settings. Given the VAR model's prediction that the temperature 

Figure 6-14 Temperature of the heavily loaded server with two and three 

supplementary Air Conditioning Units Applied  
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of the heavily loaded server would surpass the threshold at the 11th hour, 

mitigation measures to activate additional air conditioning must be 

implemented to curtail the temperature. The figure presents compelling 

evidence that the incorporation of supplementary air conditioning yielded a 

substantial increase in the PUE metric, rising from 1.4 to 2.2 in the initial hour 

of operation. However, through the utilisation of MPC control, the PUE value 

has been progressively reduced to 1.7 by the end hour of operation. 

Furthermore, the PUE readings remained stable from the ninth (physical time 

32400s) to the twelfth (physical time 43200s) hour, indicating that the MPC 

control strategy is capable of reducing PUE by 0.5 within a span of 7 hours, 

particularly under critical server temperature conditions. 

 

Figure 6-15 ACs setpoints and PUE movements with the additional AC 
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6.4.4 Scenario with additional server racks  

Based on the modification of AC units in the previous section, the following 

section will introduce the scenario of adding servers to the existing 

infrastructure. To accommodate the additional servers, an AC airway will also 

be installed to facilitate the efficient inlet of air to the server room. This 

alteration aims to evaluate the capability of the proposed control strategy to 

adapt to changes in the infrastructure, specifically those that involve significant 

alterations to the geometry. Additionally, the incorporation of additional servers 

will function as a stress test for the control strategy, as it will be required to 

adapt to the amplified thermal loads and energy consumption. This highlights 

the significance of the capability if the control strategy in response to changes 

in infrastructure, emphasising its crucial role in managing the efficient 

operation of the system. 

6.4.4.1 Geometry Mesh Design and Sensitivity Analysis 

(1) Geometry changes and mesh designing 

Figure 6-16 depicts the 3D view of the geometry layout of the server room with 

additional servers and airways.  
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The adequacy of the mesh design has been demonstrated through the 

creation of a mesh based on geometric principles Figure 6-17 and its 

Figure 6-17 Mesh of the server room with server added.  

Figure 6-16 3Dview of the server room with additional servers and airway  
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subsequent sensitivity testing. 

(2) Mesh sensitivity analysis 

Table 6-3 presents the mesh quality in terms of a numerical index ranging from 

0.000001 to 1, with higher values indicating better quality and lower values 

indicating poorer quality.   

 

Table 6-3 Volume change statistics of the mesh 

Volume change range 
Number of 
elements 

Quality 
Index 

Volume change<1.000000-06 0 0.000% 

0.000000e+00<=Volume 
change<1.000000-06 

0 0.000% 

0.000000e+00<=Volume 
change<1.000000-05 

0 0.000% 

0.000000e+00<=Volume 
change<1.000000-04 

0 0.000% 

0.000000e+00<=Volume 
change<1.000000-03 

0 0.000% 

0.000000e+00<=Volume 
change<1.000000-02 

0 0.000% 

0.000000e+00<=Volume 
change<1.000000-01 

207 0.001% 

0.000000e+00<=Volume 
change<1.000000-00 

598928 99.965% 

 

Additionally, the result of sensitivity analysis yielded an optimal mesh selection 

with a face value of 599136 and vertices of 577568, which refer to the 2D 

polygons that constitute the surface of the 3D object being meshed. The faces 

and vertices together define the geometry of the mesh. Furthermore, the mesh 

validity results indicated that the mesh is topologically valid, with no negative 

volume cells. This evaluation process ensured that the mesh was of high 
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quality and suitable for use in the CFD simulations. 

 

6.4.4.2 Analytical results  

The current layout of the server room has been assessed to test the 

adaptability of the proposed control strategy in response to the modifications. 

The simulation temperature distribution and fluid contour have been depicted 

and shown in Figure 6-18, demonstrating the temperature and fluid 

movements when the door is appropriately closed. Due to the relatively narrow 

space on the right-hand side of the server room, the temperature is 

comparatively higher than in other spaces in the server room. 

 

Figure 6-18 Temperature distribution and fluid contour with additional server and 

airway 
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Figure 6-19 shows the temperature changes of servers in a server room after 

the addition of six server racks and one cooling airway. The simulation results 

demonstrate that even with the increased number of servers and airflow 

changes, the servers' temperatures are maintained within an acceptable range 

during 12 busy hours of operation. The servers were operated at relatively 38% 

of the total load, and their temperature did not exceed the upper boundary 

during this period. 

 

 

Figure 6-20 displays the ambient temperature of the server room after servers 

were added. As shown in the figure, the ambient temperature has remained 

below the upper boundary. By taking into account the server temperature, it 

can be inferred that the servers' and the room's temperatures have gradually 

stabilized in the last three hours. 

Figure 6-19 servers’ temperature control after adding server racks 
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Figure 6-21 demonstrates the PUE movements following the adjustment of 

ACs temperature settings. It can be illustrated that the PUE has been 

significantly reduced from 2.3 to 1.6 with the temperature setpoints changes of 

the ACs. 

Figure 6-20 The ambient temperature after adding server racks  
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6.4.5 Door-open scenario  

In this section, the evaluation of the effectiveness of the control strategy in 

managing unforeseen occurrences in a DC is conducted through scenario 

testing. The focus of the testing is to investigate the impact of leaving the 

server room door accidentally open and its effects on the server room 

environment, while simultaneously assessing the response capabilities of the 

control strategy. The purpose of the testing is to provide a comprehensive 

analysis of the control strategy's capacity to maintain a stable and dependable 

operating environment for the servers, especially in situations where 

unanticipated events arise. Figure 6-22 depicts the temperature distribution 

and Fluid contour of the open-door scenario. The figure highlights that the fluid 

moves towards the door, turbulence is present, and cold air leaks from the 

Figure 6-21 AC setpoints and PUE movements after adding server racks 
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open door, leading to energy inefficiency. 

 

 

Figure 6-24 and Figure 6-23 illustrate the temperature movements of the 

servers and the ambient surroundings during a one-hour duration, where an 

accidental opening of the server room door occurred at the 1800-second mark. 

As evident from the figures, the server temperature experienced a sudden 

increase of over 0.5 ℃ within 600 seconds, while the ambient temperature 

underwent a significant surge of 4 ℃ within the same time frame. The 

implementation of the MPC control strategy facilitated the restoration of the 

stable temperature environment. Within 100 seconds of detecting the 

temperature increase, the MPC effectively curbed the upward trend, leading to 

Figure 6-22 Temperature distribution and Fluid contour of the opening-door 

scenario 
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a gradual decrease in server temperature in 400 seconds. The ambient 

temperature was also significantly reduced by 1.5 ℃ within 600 seconds, which 

is attributed to the effective application of the MPC control strategy. 

In order to enhance the control strategy, an alarming system was incorporated 

into the controller design. This system triggers a response when the server 

temperature undergoes a change of more than 0.5 ℃ within 600 seconds, or 

when the ambient temperature changes by more than 2 degrees without any 

  

Figure 6-24  Servers temperatures under the open-door scenario 

Figure 6-23 Ambient temperature under the open-door scenario 
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intervention. The control system is then adjusted to impose larger penalty 

values on both the server and ambient temperature constraints. Additionally, 

the maximum velocity of the MPC control is increased to 12 degrees, which 

represents the largest step length, to improve the efficiency of the control. 

6.4.6 Summary of Scenarios and Main Finings 

In the previous sections, five scenarios have been examined under simulated 

environments. provides a summary of the key findings from each scenario, 

demonstrating the versatility of MPC control across various conditions. 

Table 6-4 provides a summary of the key findings from each scenario, 

demonstrating the versatility of MPC control across various conditions. 

Table 6-4 Summary of outcome under scenarios 

Scenario Description  Main Findings 

Scenario 1: Baseline Stable system performance 
observed under normal operating 
conditions.  

Low temperature settings lead to 
over-cooling underscores the 
necessity for implementing an 
energy-efficient strategy. 

Scenario 2: Workload Variation The MPC control effectively 
regulates ambient temperature 
under workload variations. Despite 
optimisation efforts, heavily loaded 
servers approach upper-
temperature limits when CPU usage 
reach 67.31%, signalling the need 
for additional cooling capacity. 

Scenario 3: Adding Cooling Unites Under MPC framework, adding 
cooling unites effectively reduced 
server temperatures, mitigated 
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potential overheating risks, and 
improved PUE metrics by 
progressively decreasing from 2.2 to 
1.7 over the course of operation. 

Scenario 4: Adding Sever Racks The addition of six server racks and 
one cooling airway in the server 
room, coupled with adjustments in 
AC temperature settings, 
maintained server temperatures 
within acceptable ranges during 12 
busy hours of operation, stabilizing 
gradually, and reducing Power 
Usage Effectiveness (PUE) from 2.3 
to 1.6, indicating a good adaption of 
MPC framework to the infrastructure 
and server room layout changes. 

Scenario 5: Door-Open  The accidently opening of the server 
room door led to rapid increases in 
both server and ambient 
temperatures. The integration of an 
alarming system with heightened 
penalties on temperature constraints 
and increased maximum velocity of 
the MPC control significantly 
improved stability, swiftly mitigating 
temperature fluctuations within 100 
seconds and gradually reducing 
server temperature in 400 seconds. 

 

6.5 Adaptability evaluation of MPC control 

To test the effectiveness of the MPC model in regulating the cooling system in 

DCs, it is crucial to evaluate its adaptive capacity in response to changes in 

the infrastructure, particularly those related to physical modifications of the 

server room. The addition of servers, for instance, can significantly alter the 

thermal loads and energy consumption, necessitating an adjustment in the 

cooling system's operation to maintain the desired temperature setpoints. The 

following evaluation demonstrated the performance of the proposed MPC 
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control strategy in controlling the environment.  

6.5.1 The simplicity of system model adjustment 

The alterations in the number of ACs and servers, as well as modifications to 

the server room layout, merely lead to the inclusion of additional VAR variables. 

The proposed approach has the advantage of being relatively straightforward 

to implement. It does not require significant changes to the structure of the 

model, or the mathematical algorithms used to analyse the data. Instead, the 

new variables can be added to the existing model and the data can be re-

estimated using the same techniques as before. The new data estimation and 

modelling cost 30 minutes in total including data collection and model 

adjustment. The following indices can be utilised to evaluate the VAR model's 

goodness of fit before and after the infrastructure changes: 

• Akaike Information Criterion (AIC): The AIC is a metric used to measure 

the goodness of fit of a model, taking into account the number of parameters 

in the model. Lower values of AIC indicate a better model fit. 

• Bayesian Information Criterion (BIC): Similarly, the BIC is a measure of 

the model's goodness of fit, however with a stronger penalty for model 

complexity. Lower BIC values also indicate a better model fit. 

• Root Mean Squared Error (RMSE): RMSE is the square root of Mean 

Squared Error (MSE), providing a measure of the average deviation of the 

predicted values from the actual values. A lower RMSE value indicates a better 

model fit. 
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• Granger causality test: The Granger causality test is used to evaluate 

the causal relationships between the variables in the model. A significant 

Granger causality test result indicates that one variable can be used to predict 

another variable, which suggests a good fit for the model. 

The evaluation of the model's adaptability to changes in the server room 

infrastructure is presented in Table 6-5. The indices used for the comparison 

are computed under different scenarios in terms of the infrastructure changes 

to assess the model's performance. The comparison of these indices provides 

insights into the effectiveness of the model in adapting to changes in the server 

room infrastructure. 

 

Table 6-5 Goodness of fit evaluation of system model under the scenarios 

involving infrastructure changes 

Evaluation 
Metric 

Baseline Adding ACs Adding 
Servers 

AIC 1246 1290 1310 

BIC 1431 1450 1460 

RMSE 0.043 0.038 0.039 

Granger 
Causality  

p-value=0.0327 p-value=0.0290 p-value=0.0318 

 

The evaluation of the system model's goodness of fit under the scenarios with 

infrastructure changes revealed that the addition of more servers had a 

relatively minor impact on the model's performance. Despite a slight increase 

in the AIC and BIC values after the change, indicating a small reduction in 
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model fit due to the increase in complexity, the increase of AIC and SC were 

not significant and can be considered acceptable. The slight decrease in 

RMSE after the change suggests a minor improvement in the model's 

predictive accuracy. Additionally, the statistically significant Granger causality 

test results both before and after the change indicate that the causal 

relationships between the variables in the model were strong in both cases. 

Overall, these findings suggest that adding more servers to the model was a 

reasonable adjustment that did not compromise the model's performance to a 

significant extent. 

Overall, based on these results, it appears that the model was able to adapt 

relatively well to the changes in the server room infrastructure, with only minor 

changes in performance metrics observed after the addition of more servers 

to the model.  

6.5.2 Optimisation performance evaluation 

The average convergence rate and objective values during the MPC controlled 

period will be used to evaluate the performance of PSO optimisation under 

different scenarios. The comparison is shown in Table 6-6. 

 

Table 6-6 PSO performance comparison under scenario involving 

infrastructure changes  

Evaluation 
Metric 

Baseline Server-
load 
variation 

Adding 
ACs 

Adding 
Servers 

Door 
open 
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Convergence 
rate (number 
of iterations) 

 123  132  129 131  127 

Objective 
function value 

6.55855 6.60367 6.04120 6.03367 6.04450 

 

The comparative results suggest that the convergence rate exhibited a slight 

increase following the modifications, which may indicate a longer time required 

for the PSO algorithm to reach an optimal solution. The server-load variation 

scenario resulted in a slightly higher number of iterations needed for the PSO 

algorithm to converge to a solution. This could indicate a slight effect of 

workload variation on the algorithm's performance. However, the difference in 

convergence rate was relatively minimal, indicating that the PSO algorithm's 

performance was not significantly impacted by the changes of the servers’ 

workload. 

In terms of the objective function value with the other scenarios, the results 

indicate a significant decrease in the objective function value under the 

scenarios with the additional ACs, which suggests that the PSO algorithm was 

more effective in minimising PUE with more sufficient cooling capacity. The 

objective function value also increased slightly within the acceptable range 

under the scenario where additional servers were added, indicating that the 

PSO algorithm was still able to maintain good performance even with a higher 

workload. Ultimately, the PSO algorithm exhibited a similar objective function 

value in the door open scenario as in the adding servers scenario, despite the 

sudden temperature increase caused by the open door. This suggests that the 
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algorithm was able to adapt well to the changing conditions and that the MPC 

control was able to quickly mitigate the effect of the open door on the room 

temperature.  

Overall, the robustness and high performance of the PSO algorithm are 

evident in various scenarios, such as server load variations, adding air 

conditioners, and adding servers. Although there are slight differences in 

convergence rates, the algorithm consistently minimises the PUE in all 

scenarios. In the door open scenario, the PSO algorithm shows excellent 

adaptability by promptly responding to temperature changes, and it maintains 

a similar objective function value to that of the adding servers scenario, 

demonstrating its ability to handle unexpected disturbances. 

6.5.3 System running time 

The results indicate that the average system running time increased from 5.21 

minutes to 5.35 minutes following the modifications to the server room 

infrastructure. While this increase in running time may seem concerning, it is 

important to consider that these computations were carried out on a 

conventional computing device, which may not have the same computational 

capability as dedicated supercomputing power devices that would be used in 

an actual DC environment. Therefore, the current running time may be 

acceptable for a proof-of-concept or testing phase of the control system, as it 

provides an estimate of the computational resources required to run the 

system. Once the control system is deployed in an actual DC, more powerful 

computing resources could be allocated to reduce the running time. It is also 

worth noting that computational time is often a trade-off between accuracy and 
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speed. In this case, a longer running time may allow for a more accurate 

optimisation of the AC setpoints, resulting in lower energy consumption and 

better control of the temperature range it is rational to expect an acceptable 

increase in the system's computation time as a result of the growing complexity 

within the system. 

 

6.5.4 MPC control performance and stability 

The performance and stability of the MPC control system in reducing PUE 

through temperature adjustment were evaluated under several different 

scenarios. Table 6-7 shows the evaluation metrics of MPC temperature control 

performance under different scenarios. The matrices adopted for the 

evaluation are as the following: 

• Robustness Margin (RM): This metric is a measure of the MPC 

controller's ability to maintain stable control, a higer RM value indicates 

greater stability and robustness, meaning the controller can handle 

larger disturbances without deviating too far from the desired 

temperature setpoint. 

• Standard deviation (Std.dv) under static state: This metric measures the 

variability of the temperature readings when the temperature is in a 

static state. A lower standard deviation indicates that the MPC controller 

can maintain more consistent and stable temperature control. 

• Temperature Static Time: This metric measures the time it takes for the 
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temperature to reach a static state. A shorter static time indicates that 

the MPC controller is able to quickly respond and bring the temperature 

back to a stable state, indicating a faster and more effective temperature 

control response. 

The results indicate that the MPC algorithm exhibits good control capability, as 

demonstrated by the consistent RM values across all scenarios, The addition 

of ACs has the greatest positive impact on the controller's ability to maintain 

stable control. However, the stability margin is slightly reduced when additional 

servers are added, likely due to the increased complexity of the system. In 

addition, the scenario with server workload variation has presented increased 

difficulties for the controllers to maintain the desired temperatures However, 

the Robustness Margin (RM) values for this scenario still fall within an 

acceptable range, indicating that the controllers have a good level of 

adaptability to handle varying workload conditions. Moreover, it can be 

observed that the standard deviation (Std.dv) values under static state are 

relatively low, suggesting that the temperature control is stable across all 

scenarios, with the exception of a slight variation observed in the server-load 

variation scenario. Furthermore, the table also presents the temperature static 

time (S) for each scenario, which provide an indication of the time required for 

the temperature to reach a steady state. It can be observed that the time 

consuming are relatively short for all the scenarios, indicating that the MPC 

control is able to quickly adjust to changes in the system and maintain stable 

temperature control. 
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Table 6-7 Performance evaluation of MPC temperature control 

Metrics Baseline Server-load 
variation 

Adding 
ACs 

Adding 
servers 

Open 
door 

Robustness 
Margin (RM) 

+/-0.88 +/-0.79 +/-0.92 +/-0.84 +/-0.76 

Std.dv under 
static state 

0.433 0.528 0.397 0.416 0.407 

Temperature 
Static Time (S) 

2538 2670 2321 2572 2651 

 



 

 

 

 

In this final chapter, the emphasis is on evaluating the performance of the 

proposed framework for optimal cooling system control in data centres (DCs), 

as well as summarizing the methodological advantages of the approach based 

on empirical evidence. The chapter provides a comprehensive overview of the 

research findings, which include results from both field experiments and 

simulations. Furthermore, the chapter examines the potential implications of 

the proposed framework for the DCs industry and discusses possible future 

directions for further research. 
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7.1 Problems restatement and contributions of the study 

Data centres (DCs) require a significant amount of energy to maintain the 

optimal environmental conditions for their servers, resulting in a considerable 

impact on operational costs and the environment. The Power Usage 

Effectiveness (PUE) metric has been established to evaluate DCs efficiency, 

and a lower PUE signifies a more efficient operation, leading to cost savings 

and environmental benefits. As such, reducing the PUE has emerged as a 

crucial challenge for DCs operators. While several techniques, such as cooling 

optimisation, air management, and equipment upgrades, have been proposed 

to reduce PUE, their implementation is often static and does not consider the 

dynamic relationships among variables in the server room. Moreover, these 

techniques may require significant investments in new equipment or 

infrastructure, thereby limiting their accessibility to the DCs, especially small 

and medium-sized ones. 

One of the main challenges in managing DCs is to maintain a low PUE value 

while ensuring that the servers are running efficiently and reliably. This requires 

a careful balance of cooling and power supply systems to match the IT load 

and minimise energy waste. To address the problem of energy waste in DCs, 

a managerial solution is needed that optimises energy consumption while 

maintaining the required level of service quality. 

The proposed VAR-PSO-MPC framework presents a novel solution to the 

challenge of achieving optimal cooling system control in DCs without requiring 

significant investments in new equipment or infrastructure. The integration of 

VAR modelling, PSO optimisation, and MPC control in the framework was 
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found to be crucial for achieving optimal cooling system control in DCs. The 

VAR model was able to capture the dynamic relationships among the variables 

in the server room, while the PSO algorithm was able to optimise the setpoints 

for the air conditioners in real-time. The MPC control framework was able to 

use the optimised setpoints to achieve the desired cooling system 

performance while maintaining the server inlet temperature within the desired 

range. Through the integration of the three techniques, the framework can 

address the dynamic relationships among the variables in the server room and 

achieve optimal control of the cooling system. 

Moreover, the flexibility and adaptability of the proposed control framework 

enable it to be customised to different DC environments, without adding 

additional costs for renewing the facilities. This makes it a cost-effective 

solution for improving energy efficiency and reducing operating costs in 

existing DCs. By providing DC operators with an accessible and practical 

framework for optimizing their cooling systems, this approach has the potential 

to significantly reduce energy consumption and environmental impact in the 

DCs industry. 

7.2 Summary of research findings 

The proposed VAR-PSO-MPC framework was tested through a combination 

of field experiments and simulation studies. The field experiment was 

conducted in a small-sized DC over 4 weeks, and the simulation studies were 

conducted based on an environment built by Computational Fluid Dynamic 

(CFD) simulation tool. The results of the study are summarised as follows: 
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(1) The VAR-PSO-MPC framework was proven effective in decreasing 

PUE in both field experiments and simulation studies. The framework 

resulted in an average reduction of PUE of 15.57% (from 2.20 to 1.86) 

compared to the baseline scenario in the field experiment, while in 

simulation studies, it achieved an average reduction of PUE of 17.39% 

(from 2.30 to 1.90) over 3 hours with constant server workload and a 

reduction of 25% (from 1.90 to 1.42) over 8 hours with varying server 

workload. 

(2) The VAR-PSO-MPC framework is highly effective in maintaining 

optimal server performance and preventing hardware failures by 

regulating the server inlet temperature within the desired range. In the 

field experiment, the framework maintained the server inlet temperature 

within the desired range at 100% of the time, compared to 93.7% for 

the baseline scenario. Additionally, during simulation studies, the 

framework was able to keep the server inlet temperature below the 

upper boundary of 32°C, provided that the cooling capacity was 

sufficient.  

(3) The experiment is also successful in predicting and avoiding over-

heated. The result suggested that the baseline capacity of cooling is 

insufficient when the workload exceeds 67%, additional cooling 

capacity would be required. Illustrated the crucial role of the control 

framework in maintaining optimal server performance and preventing 

hardware failures. 

(4) The field experiment provided evidence that the implementation of the 

suggested control framework has resulted in a significant reduction in 
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power consumption and greenhouse gas emissions, demonstrating a 

remarkable positive environmental impact. When comparing the before 

and after scenarios, a significant reduction of 20.65 kWh, equivalent to 

a 32.5% decrease in energy consumption, was observed. This resulted 

in a potential annual energy saving of 307,505 kW and a cost reduction 

of 1,537,524 THB (equivalent to 35,982 GBP). In addition, the decrease 

in power consumption contributed to a reduction of 405,906 lbs of 

greenhouse gas emissions, indicating a positive impact on the 

environment. 

(5) The results of the study also suggested that increasing the frequency of 

control would result in an even better performance of the control 

framework. The study showed that the VAR-PSO-MPC framework was 

effective in regulating the server inlet temperature and reducing PUE, 

but a higher frequency of control could further optimise the performance 

of the system. By increasing the frequency of control, the framework 

would be able to respond to changes more quickly in server workload 

and environmental conditions, as well as maintain optimal performance 

with greater accuracy. Therefore, implementing a more frequent control 

schedule would be beneficial in maximising the efficiency and 

effectiveness of the VAR-PSO-MPC framework. 

(6) The VAR-PSO-MPC control framework demonstrated its ability to adapt 

to changes in the infrastructure, including modifications to the cooling 

system or server configuration. For instance, the framework 

automatically adjusted the cooling system to maintain optimal 

performance when a new server was added to the system. In addition, 
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the framework responded swiftly to unexpected conditions, such as an 

open door or a cooling system malfunction. The control framework 

detected temperature changes and compensated for heat gain by 

increasing cooling capacity in the event of an open door. Furthermore, 

in case of a cooling system malfunction, the framework promptly notified 

the maintenance team to prevent a significant impact on server 

performance. 

 

In conclusion, the VAR-PSO-MPC control framework can bring significant 

benefits in terms of energy efficiency, cost reduction, and environmental 

impact, making it a promising solution for DCs operators looking to improve 

their operations. 

 

7.3 Discussion based on empirical studies 

This study proposes operational strategies for reducing energy consumption 

in DCs, focusing on managerial strategies rather than hardware innovations. 

Table 7-1 presents empirical studies grouped into three main categories: 

cooling configuration design, IT design, and thermal management, with this 

study introducing a new category focusing on operational management 

presented in the end as the fourth category. 
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Table 7-1 Existing approaches to energy efficient data centres 

Area Exemplary Approaches Reference 

Cooling configuration 

design 

A free cooling technology  Daraghmeh and 

Wang (2017) 

Liquid cooling technology  Carbó et al. (2016b) 

The two-phase flow 

technology  

Riofrío et al. (2016) 

The building envelope 

technology  

Akeiber et al. (2016) 

IT design Server consolidation  Verma et al. (2009) 

Server virtualization  Schulz (2011) 

Storage consolidation  Zhang et al. (2018) 

Decommissioning the idle 

servers  

Pöyhönen et al. 

(2021) 

Thermal 

management 

Adapting the server racks to 

the hot /cold aisle layout as 

well as the containment and 

enclosure methods 

(Niemann et al. 

2013) 

The optimal layouts of the 

cooling devices according to 

the thermal dynamics 

(Stahl & Sullivan 

2001),(Patel et al. 

2002) 
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Operational 

Management 

Implemented managerial 

strategies to decrease energy 

consumption in the DCs by 

actively adjusting ACs’ 

temperature settings, without 

necessitating any 

infrastructure alterations. 

This Study 

 

Although there are remarkable breakthroughs in the field of the DCs’ hardware 

innovations, one of the common disadvantages of the existing approaches is 

the complexity and high cost of upgrading and replacing the existing 

infrastructure. Existing new technologies require additional time to verify, 

improve and mature before applying to the practical DCs. The high cost of 

replacing the existing facilities is also crucial for realising the energy-saving 

goal of the DCs through hardware renovations and replacement. The report 

from Forbes Technology Council (R. Danilak 2020) evaluated that would be 

hardly seen some essential improvements in the above areas in the next five 

years since a benefit from the adoption of new energy-efficient techniques for 

DCs would be easily compromised by the cost of renewing the DC 

infrastructures, this essentially became one of the barriers to realising the 

facilities renovations. Therefore, this circumstance sparks our motivation to 

investigate managerial strategies instead of changing the existing facilities in 

DC to reduce energy cost. 

By adopting the proposed MPC framework, the DCs can optimise their 



Chapter 8     Research Findings and Discussion 

207 
 

operational efficiency without the need for hardware modifications. Although 

the general advantages of MPC are significant, we have taken the additional 

step of addressing some of its limitations, thereby filling a crucial gap in the 

technology's capabilities. Some academics argued that the additional 

computing load brought by the design cannot be overlooked even though the 

system performance is rigorously guaranteed by theory (XI et al. 2013). This 

is also the main reason that the application field questioned the feasibility of 

MPC theories. In response to this issue, we adopted the technique of "offline 

design, online synthesis" in the qualitative synthesis of predictive control. By 

converting part of the online calculation of the integrated control law into the 

offline calculation, the purpose of reducing the amount of online calculation is 

achieved. The joint implementation of offline and online largely saved 

computational time and effort, allowing the proposed MPC framework to be 

applied in a real-time industrial environment. 

Furthermore, the general MPC requires plant models, to deeply understand 

and model the nature of the environment. General plant models that are based 

on the first principles (physics-based models) can be laborious and 

computationally expensive due to the complexity of the environment (Behrooz 

et al., 2018). There is a wide range of literature that provides additional insight 

into the development of first principles models. Take an example of the work 

conducted by Rehrl and Horn (2011) on HAVC temperature control systems, 

several separated plant models have been derived from the thermal dynamic 

principles. To simulate the plant dynamics, physics-based models for the valve 

gear, hydraulics, cooling coil, and temperature sensor have been developed. 

Although the results show a good performance index with the adoption of MPC 
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controller and the feedback linearisation, the substantial computational cost 

and the effort required to fully comprehend the characteristics of the system 

devices cannot be overlooked. In comparison, data-driven models have higher 

precision than physics-based models (Perera, Pfeiffer and Skeie, 2014).  In 

this study, the effort of studying the plant has been avoided and the adoption 

of the data-driven model VAR ensures the nature of the environment can be 

captured in real-time. Due to the benefits of VAR, we successfully handled the 

multiple control variables and the large size of the parameter, the disadvantage 

of large computational load in general MPC industrial examples has been 

largely reduced in our study.  

Moreover, the approach proposed in this study not only offers an energy-

efficient solution and addresses the limitations of conventional MPC, but also 

holds significant implications for the field of optimisation. As the magnitude of 

data increases and hardware capabilities improve, optimisation issues tend to 

be tied to more and more scenarios, and the dimensions of the algorithms grow 

proportionately. One way to solve such high-dimensional data is to impose 

certain structural constraints on the problem from the perspective of parameter 

estimation, which is often non-convex. Correspondingly, the objective 

functions of such optimisation problems are also non-convex. Non-convex 

objective functions and constraints can model the problems more accurately, 

however tackling such problems might be difficult. Solving the objective 

function by traditional mathematical programming approach is mostly NP-hard, 

and addressing approximation solutions is also likewise NP-hard (Jain & Kar 

2017). Academic research demonstrates that solving optimisation problems in 

high dimensions (large candidate solutions) can be challenging because it is 
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time-consuming and computationally expensive during calculation by 

mathematical evolution algorithms (Tomassetti & Cagnina 2013) and nonlinear 

algorithms (Du & Chen 2000). R.Urbanucci (2018) categorised the 

optimisation solutions for energy polygeneration systems into three types, 

including optimum synthesis, design, and operations, in which MILP (Mixed 

Integer Linear Programming) is the approach for operations with the main 

advantage in finding the global optimal solution to the problem and easy to be 

solved by many commercial solvers. However, in the complex industrial 

practice, MILP also has limitations. D.Steen (2015) derived a thermal storage 

model for energy-saving by MILP and confirmed that because of the existence 

of the endogenous problem in the thermal environment, the temperature 

storage cannot be tracked by MILP for the whole timeline horizon but only a 

single time step. To address these issues, our proposed method integrates 

endogenous variables and exogenous variables by the VAR model. In a real-

time industrial circumstance, the data-driven model is more flexible to adapt to 

the changing environment compared to general mathematical models. 

Additionally, the MPC control strategy has broken down complex high-

dimensional optimisation problems into linear problems with a shorter time 

horizon. Because of the finite control horizon and a fixed moving window, linear 

control problems under MPC control are easy to be transferred to quadratic 

programming problems, which is more computationally efficient(Rao et al. 

2001). 

The following context summarises the key advantages over other similar 

studies in optimising cooling systems in DCs. This section summarises these 

advantages and compares them to other existing studies. 
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(1)  Real-Time Adaptability 

Based on the comparison to similar studies in the literature, the proposed VAR-

PSO-MPC approach offers a significant advantage over traditional control 

methods and other MPC-based approaches in terms of real-time adaptability. 

Specifically, the use of a VAR model and PSO optimisation enables the system 

to quickly adapt to changes in server workload and environmental conditions, 

leading to improved system performance and energy efficiency. In comparison, 

traditional control methods such as On/Off control and PID control rely on 

predetermined setpoints and fail to adapt to changing conditions, resulting in 

unnecessary energy consumption and decreased system performance. 

Additionally, similar studies that rely on linear models and predetermined 

setpoints, such as the approach by Liu et al. (2016), are also limited in their 

real-time adaptability when compared to the proposed VAR-PSO-MPC 

approach. 

(2) Data-driven characteristic 

Another advantage of the proposed approach is its data-driven characteristic. 

The VAR model used in the approach is based on machine learning techniques 

and uses historical data to predict future system behaviour. This data-driven 

approach allows for more accurate predictions and more effective control 

inputs, leading to improved energy efficiency and system performance. In 

contrast, traditional control methods such as On/Off control and PID control 

rely on pre-determined setpoints and do not consider the dynamic relationship 

between the cooling system and server performance. Zhao et al. (2020) also 
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employed machine learning techniques to optimise cooling systems in DCs. 

However, their method utilizes a combination of a neural network (NN) and 

genetic algorithm (GA), which differs from the VAR-PSO-MPC approach 

proposed in this study. In comparison, the proposed approach demonstrates a 

more data-driven strategy as it uses historical data to forecast future system 

behaviour through the VAR model. This enhances the accuracy of predictions 

and control inputs, thus leading to improved energy efficiency and system 

performance. In contrast, the neural network employed by Zhao et al. (2020). 

is only trained on present data, which may limit its ability to forecast future 

behaviour effectively. Moreover, the GA algorithm applied in Zhao et al. 

(2020)’s. study may not be as proficient in finding optimal control inputs as the 

PSO optimisation used in the proposed approach. 

(3) Nonlinear Problem Handling 

A comparable study has been conducted by Li et al. (2020) who proposed an 

optimal control approach for dynamic cooling management in DCs that utilizes 

MPC control. However, their approach does not explicitly consider the non-

linear relationship between the cooling system and server performance. In 

comparison, the proposed VAR-PSO-MPC approach integrates a VAR model-

based approach capable of handling non-linear problems. The VAR model 

allows for the possibility of lagged variables influencing the current state of the 

system, capturing dynamic relationships between variables, including any non-

linear relationships that may exist. Therefore, the proposed approach accounts 

for the complex interactions between the cooling system and server 

performance, resulting in improved energy efficiency and system performance. 
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Moreover, It is worth noting that traditional control methods, such as PID 

control or On/Off control, rely on linear models and may not be effective in 

handling non-linear relationships between variables. This highlights the 

superiority of the proposed VAR-PSO-MPC approach, which incorporates a 

VAR model-based approach capable of handling non-linear problems by 

capturing dynamic relationships between variables, including any non-linear 

relationships that may exist. Consequently, the proposed approach can 

provide more accurate predictions and control inputs, leading to improved 

energy efficiency and system performance in complex DC cooling systems. 

(4) The use of PSO optimisation 

The use of PSO optimisation in the proposed VAR-PSO-MPC approach is a 

notable advantage over other comparable studies. This optimisation technique 

allows for the efficient identification of optimal control inputs, resulting in 

improved energy efficiency and system performance. The effectiveness of 

PSO optimisation can also be attributed to the incorporation of the VAR model, 

which enables accurate predictions of the system behaviour. By utilising the 

VAR model in the proposed VAR-PSO-MPC approach, PSO optimisation is 

more effective in identifying optimal control inputs, leading to improved energy 

efficiency and system performance. In contrast, many existing studies rely on 

traditional optimisation techniques such as linear programming, which can be 

time-consuming and less effective in complex DC cooling systems. One such 

comparable study proposed by Heidarzadeh et al. (2018) also utilises MPC 

control in DC cooling systems. However, this study employs a modified genetic 

algorithm (GA) to optimise control inputs, which may not be as effective as 
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PSO optimisation. Genetic algorithms may struggle to find optimal control 

inputs in complex DC cooling systems, leading to reduced energy efficiency 

and system performance. In contrast, PSO optimisation is based on swarm 

intelligence, allowing multiple particles to simultaneously search the solution 

space for faster and more accurate identification of optimal control inputs. 

(5)  Greenhouse Gas Emissions Reduction 

The proposed VAR-PSO-MPC approach has shown significant reductions in 

greenhouse gas emissions, which is another advantage over other similar 

studies. The approach achieves these reductions by maintaining optimal 

server performance and preventing hardware failures. This capability leads to 

improved energy efficiency and reduced greenhouse gas emissions in DC 

cooling systems. A comparable study to our proposed VAR-PSO-MPC 

approach is conducted by Ma et al. (2018). However, while this study also 

employs MPC control in DC cooling systems, it does not explicitly focus on 

addressing the environmental impact of DC operations. The proposed VAR-

PSO-MPC approach considers the dynamic relationship between the cooling 

system and server performance, leading to improved energy efficiency and 

reduced greenhouse gas emissions, while Ma (2018) focused solely on 

temperature control in DCs without considering the impact on server 

performance, potentially resulting in suboptimal energy efficiency and higher 

greenhouse gas emissions. 

(6) Comprehensive Approach 

The proposed VAR-PSO-MPC approach is a comprehensive approach to 
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handling complex DC cooling systems. The joint use of VAR, PSO optimisation, 

and MPC control allows for the advantages of each method to be leveraged, 

providing a more comprehensive approach to handling non-linear complex 

problems. In contrast, many existing studies have relied on a single control 

method, such as MPC or On/Off control, leading to suboptimal energy 

efficiency and system performance. A comparable study by Mohan et al. (2016) 

also utilises MPC control in DC cooling systems, but it only focuses on 

optimising the cooling system's performance and does not consider the overall 

system's energy efficiency. In contrast, the study by Mohan et al. (2016) solely 

relies on a thermal model and a deterministic algorithm that utilises linear 

algebra to iteratively enhance a single solution, without incorporating any 

dynamic system model or advanced optimisation techniques to further 

enhance the control's performance. This approach may be less efficient 

compared to the proposed VAR-PSO-MPC approach, which utilises a 

combination of advanced techniques to handle non-linear complex problems 

in DC cooling systems. Hence, the proposed VAR-PSO-MPC approach offers 

a more comprehensive and effective solution for handling complex DC cooling 

systems when compared to existing studies that rely on a single control 

method. 

7.4 Managerial implications 

Motivated by the discussions surrounding the critical energy consumption in 

DCs and recognising the existing gaps in current energy-efficient solutions, our 

research is dedicated to advancing the discourse on energy efficient DCs 

across three pivotal dimensions: theoretically, methodologically, and practically. 
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In a theoretical context, our focus lies in developing a managerial strategy to 

minimise energy consumption within DCs, particularly targeting the 

predominant energy usage by cooling devices. This involves an active 

intervention in the ACs temperature setpoints, presenting a cost-effective 

alternative to extensive hardware innovations.  

Methodologically, our approach offers a flexible, real-time adaptable, and 

computationally inexpensive solution, contrasting with existing methods that 

require a deep understanding of system physics, extensive design efforts, and 

high computational costs. By introducing this methodology, we have paved the 

way for an efficient industry management solution that can be implemented 

with greater ease and at reduced costs compared to traditional approaches. 

Most importantly, its adaptability, scalability and flexibility ensure that a broader 

adoption of the proposed methodology to other complex industrial practices. 

In practical terms, the proposed framework has achieved a reduction in energy 

costs to a desired level and ensured the safe operation of devices within the 

DC environment. Moreover, the potentially saved budget has been 

rescheduled to be used to innovate the hardware of the DC. By applying 

managerial strategies, the DC can reduce the significant cost of cooling energy 

consumption. This opens up the possibility of upgrading the hardware and 

implementing an advanced control system, resulting in more efficient 

operations and management. Furthermore, the positive result in energy saving 

of the DC encourages the relevant personnel to pursue green operations. Due 

to its tropical location and year-round low-temperature control, the data centre 

uses a lot of electrical power in cooling. Our proposed experiment shows 
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considerable energy-saving potential in the DC, this encourages the DCs to 

pursue energy-saving goals by controlling the AC's temperature setpoints 

rather than changing the hardware of the DC. 

Notably, the statistics arouse the environmental awareness of global DC 

operators. The Proposed experiment shows the potential of global green gas 

reduction of 405,906 lbs, which is a substantial amount that addresses the 

importance of environmental awareness and sustainable green operations in 

the DC industries. 

 

7.5 Limitations and future direction 

This section aims to discuss the limitations of the present study and highlight 

potential avenues for future research.  

(1) There is a possibility of reducing the implementation time by simplifying 

the algorithm, slowing down the weight update rules, adjusting the 

parameter weights, reducing the size of input data, and other means. 

However, further experimentation is required to validate these 

approaches. 

(2) Further research is necessary to explore the applicability of the 

proposed methodology to various types of DCs and cooling systems, 

such as water cooling, liquid immersion cooling, chilled water systems 

and other economisers. The generalisability of the approach should be 

thoroughly investigated to provide a comprehensive understanding of 
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its potential benefits and limitations in diverse contexts. 

(3) In the field experiment, the installation of temperature sensors on every 

server is not feasible due to the limited number of sensors available. 

Thus, it is highly recommended that DCs closely monitor the inlet 

temperature of all servers to improve accuracy control and prevent 

server overheating. To further enhance the accuracy and precision of 

the control system, it is advisable to incorporate more advanced sensor 

technology and data analytics. 

(4) In the simulation environment, the feasibility of the MPC control was 

tested by manually adjusting the server workload in the CFD simulation 

environment. While it demonstrated good performance in maintaining 

temperature and PUE, it is anticipated that applying an AI-controlled 

workload variation to the simulation environment would further test the 

response speed and performance of the control framework. 

(5) To enhance the effectiveness of the control framework and lower 

computational costs, future research directions will be directed towards 

accuracy control and exploring the use of servers' inlet temperature 

alarm mechanics. Achieving more precise control over the cooling 

system while reducing computational costs would require the 

development of advanced control algorithms that can process large 

amounts of data in real-time.  

(6) As a potential avenue for future research, it is suggested that the 

proposed MPC control framework be expanded to incorporate more 
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variables while maintaining computational efficiency and model fitness, 

in response to the increased usage of advanced sensor technology and 

additional sensor networks. Additionally, it is imperative to investigate 

the feasibility of implementing a closed-loop MPC control system that 

incorporates direct feedback from sensors to further enhance system 

control and optimisation. An improvement in the efficiency, accuracy, 

and robustness of the control framework is highly anticipated in the 

future. 

(7) Future studies can investigate the impact of workload allocation on the 

performance of the MPC control framework. This can include exploring 

the optimal allocation of workloads to servers based on their capacity, 

utilisation, and energy consumption. Additionally, research can be 

conducted on optimising the fan speed of the servers to further improve 

cooling efficiency and reduce energy consumption. 

(8) To achieve more precise density control, the MPC control system 

should be further enhanced to operate as an AI control system instead 

of relying solely on manual adjustments. Moreover, the development of 

better computational capabilities would be crucial in achieving more 

effective control. Further testing and validation of the proposed 

methodology in industrial settings are also necessary to assess its 

effectiveness and potential for improvement. 
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This appendix includes supplementary materials for the proposed research. 

The materials presented in this appendix provide additional details on the 

experiment code for the VAR-PSO-MPC control framework, the collaboration 

letter, and the result confirmation letter from the research partner. These 

documents are essential to understanding the methodology, collaboration, 

and validation process of the research. The experiment code presents a 

comprehensive overview of the technical implementation of the VAR-PSO-

MPC control framework used in the study. The collaboration letter outlines 

the collaboration agreement between the research team and the research 

partner, while the result confirmation letter validates the findings of the 

research from the field experiment. These supplementary materials aim to 

provide readers with a complete understanding of the research process and 

results. 
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Experimental code 

The experiment code presented in this appendix provides a detailed overview 

of the technical implementation of the VAR-PSO-MPC control framework used 

in the research study. The code includes all the necessary steps involved in 

implementing the framework, such as data pre-processing, model training, and 

optimisation. The code has been carefully commented on and structured to 

enhance comprehensibility and facilitate reproducibility. The provision of the 

experiment code in this appendix aims to contribute to the efforts of the 

scientific community towards promoting open and transparent research 

practices and facilitates the adoption of the VAR-PSO-MPC control framework 

in practical applications, thereby promoting the advancement of the field. 
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Experimental Code 
load packages 

library(dplyr) 

##  
## Attaching package: 'dplyr' 

## The following objects are masked from 'package:stats': 
##  
##     filter, lag 

## The following objects are masked from 'package:base': 
##  
##     intersect, setdiff, setequal, union 

library(tseries) 

## Registered S3 method overwritten by 'quantmod': 
##   method            from 
##   as.zoo.data.frame zoo 

library(writexl) 
library(openxlsx) 
library(forecast) 
library(vars) 

## Loading required package: MASS 

##  
## Attaching package: 'MASS' 

## The following object is masked from 'package:dplyr': 
##  
##     select 

## Loading required package: strucchange 

## Loading required package: zoo 

##  
## Attaching package: 'zoo' 

## The following objects are masked from 'package:base': 
##  
##     as.Date, as.Date.numeric 

## Loading required package: sandwich 

## Loading required package: urca 

## Loading required package: lmtest 

library(control) 

## Warning: package 'control' was built under R version 4.2.3 

##  
## Attaching package: 'control' 

## The following object is masked from 'package:stats': 
##  
##     step 

## The following object is masked from 'package:base': 
##  
##     append 

library(nloptr) 
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## Warning: package 'nloptr' was built under R version 4.2.3 

library(psoptim) 

Insert initial data 

#'Data 
library(readxl) 
data <- read_excel("C:/Users/89776/Desktop/NavyDC_full/initial_data.xls
x", 
     col_types = c("numeric", "numeric", "numeric",  
        "numeric", "numeric", "numeric",  
         "numeric", "numeric"))  

insert latest sensors data 

# set inputs for new iteration 
#Define empty matrix for SPs 
 
latest_data <- read_excel("C:/Users/89776/Desktop/NavyDC_full/latest_da
ta.xlsx",  
    col_types = c("numeric", "numeric", "numeric",  
        "numeric", "numeric", "numeric",  
         "numeric", "numeric")) 

ARIMA models for predicting CPU and outdoor temperature 

# ARIMA model for outside temperature 
 
arima_t_outside <- function(data) { 
  library(forecast) 
  l_outside_temp <- log(data[, 4]) 
  arima_model <- auto.arima(ts(l_outside_temp, frequency = 24), stepwis
e = FALSE) 
  forecast_values <- forecast(arima_model, h = 24) 
  T_outside_fcst_matrix<-as.matrix(exp(forecast_values[["mean"]]), ncol
 = 1, dimnames =    list(NULL, "T-Outdoor")) 
 return(T_outside_fcst_matrix) 
} 
 
# ARIMA model for CPU temperature 
arima_cpu <- function(data) { 
  library(forecast) 
  l_cpu <- log(data[, 3]) 
  arima_model <- auto.arima(ts(l_cpu, frequency = 24), stepwise = FALS
E) 
  forecast_values <-forecast(arima_model, h = 24) 
  CPU_fcst_matrix<-as.matrix(exp(forecast_values[["mean"]]), ncol = 1, 
dimnames = list(NULL, "CPU")) 
  return(CPU_fcst_matrix) 
} 

VAR Function to predict PUE and evaluate error. 

 # Prepare Old data for VAR 
 var_data <- as.matrix(data) 
  endo_data <- var_data[, 5:8] 
  exo_data <- var_data[, 1:4] 
  l_endo <- log(endo_data) 
  l_exo <- log(exo_data) 
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   # prepare new_data for new VAR 
  new_data<-rbind(var_data,latest_data) 
    new_var_data <- as.matrix(tail(new_data, 167)) 
    new_endo_data <- new_var_data[, 5:8] 
    new_exo_data <- new_var_data[, 1:4] 
    new_l_endo <- log(new_endo_data) 
    new_l_exo <- log(new_exo_data) 
   
var_model <- function(data, latest_data) { 
  library(vars) 
   
  var_model <- VAR(l_endo, type = "const", season = 24, exogen = l_exo, 
                    ic = c("AIC", "HQ", "SC", "FPE"))  #' VAR model 
   
  var_pred_endo <- log(latest_data[, 5:8]) 
  sp_values<-latest_data[,1:2] 
  sp_future <- matrix(as.numeric(sp_values), nrow = 24, ncol = 2, byrow
 = TRUE) 
  colnames(sp_future) <- c("SP1", "SP2") 
  var_pred_exo <-as.data.frame(cbind((sp_future), arima_cpu(data), arim
a_t_outside(data))) 
#Convert all list columns to numeric columns 
 var_pred_exo[] <- lapply(var_pred_exo, unlist) 
 # Apply logarithm to each column except column names 
 var_pred_exo[] <- apply(var_pred_exo[], 2, log) 
 
  # initail forecast VAR 
     #' Get the names of the exogenous variables in the VAR model 
exogen_names <- names(var_model$model$y_exo) 
 
     #' Rename the columns of var_pred_exo to match the exogenous varia
ble names 
colnames(var_pred_exo) <- exogen_names 
 
    #' Predict with the modified dumvar 
forecast_values <- predict(var_model, newdata = var_pred_endo, dumvar =
 var_pred_exo, n.ahead = 24, ci = 0.95) 
 pue_matrix <- forecast_values[["fcst"]][[which(names(forecast_values
[["fcst"]]) == "PUE")]] 
pue_fcst <- as.matrix(exp(pue_matrix[,1])) 
colnames(pue_fcst) <- "PUE" 
 
   
  # Check previous forecast against latest actual sensor data 
  latest_pue <- exp(latest_data$PUE) 
  prev_forecast <- pue_fcst[1] 
  current_rmse <- sqrt(mean((latest_pue - prev_forecast)^2)) 
   
  # Check if RMSE is greater than 0.4 and update VAR model if necessary 
  if (current_rmse > 4) { 
   #New VAR model 
    new_var_model <- VAR(new_l_endo, type = "const", season = 24, exoge
n = new_l_exo, 
                      ic = c("AIC", "HQ", "SC", "FPE")) 
    new_var_pred_endo <- log(latest_data[, 5:8]) 
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    new_var_pred_exo <- log(cbind(sp_future,arima_cpu(new_var_data), ar
ima_t_outside(new_var_data))) 
     
    #Get the names of the exogenous variables in the VAR model 
            exogen_names <- names(new_var_model$model$y_exo) 
 
    # Rename the columns of var_pred_exo to match the exogenous variabl
e names 
colnames(new_var_pred_exo) <- exogen_names 
 
    #Forecast new VAR 
    new_forecast_values <- predict(new_var_model, newdata = new_var_pre
d_endo,dumvar = new_var_pred_exo, n.ahead = 24, ci = 0.95) 
    # Forecast PUE value 
   new_pue_matrix <- new_forecast_values[["fcst"]][[which(names(new_for
ecast_values[["fcst"]]) == "PUE")]] 
new_pue_fcst <- as.matrix(exp(new_pue_matrix[,1])) 
colnames(new_pue_fcst) <- "PUE" 
     
# Check if the new model actually improves the RMSE 
    new_rmse <- sqrt(mean((latest_pue - new_pue_fcst[1])^2)) 
    if (new_rmse < current_rmse) { 
      # Use the new model for prediction 
      var_model <- new_var_model 
      forecast_values <- new_forecast_values 
      pue_fcst <- new_pue_fcst 
    } 
  } 
   
  return(list("forecast_values" = forecast_values, "pue_fcst" =pue_fcs
t)) 
  return(New_data) 
} 

Constraints 

# Define constraints function 
#constraints function 
constraints <- function(sp_values, r_temp_min = 18, r_temp_max = 27, pu
e_min = 1.5, pue_max = 2.5 , HG_min = 15, HG_max = 32) { 
  forecast_values <- var_model(data, latest_data)$forecast_values 
  r_temp <- forecast_values$T_Ambient 
  pue <- forecast_values$PUE 
  HG<-forecast_values$HG 
  g1 <- r_temp >= r_temp_min 
  g2 <- r_temp <= r_temp_max 
  g3 <- pue <= pue_max 
  g4 <- pue >= pue_min 
  g5<- HG <= HG_max 
  g6<- HG <= HG_min 
  c(g1, g2, g3, g4, g5, g6) 
} 

#Higher penalty constraints 

#constraints function 
constraints <- function(sp_values, r_temp_min = 18, r_temp_max = 27, pu
e_min = 1.5, pue_max = 2.5 , HG_min = 15, HG_max = 32, HG_penalty_facto
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r = 9) { 
  forecast_values <- var_model(data, latest_data)$forecast_values 
  r_temp <- forecast_values$T_Ambient 
  pue <- forecast_values$PUE 
  HG<-forecast_values$HG 
  g1 <- r_temp >= r_temp_min 
  g2 <- r_temp <= r_temp_max 
  g3 <- pue <= pue_max 
  g4 <- pue >= pue_min 
  g5<- HG <= HG_max 
  g6<- HG <= HG_min 
   
  # add higher penalty weight to HG constraints 
  constraints_violations <- sum(g1, g2, g3, g4, g5*HG_penalty_factor, g
6*HG_penalty_factor)#'add a higher penalty value for violations of the 
HG_min and HG_max constraints. 
   
  return(constraints_violations) 
} 

#Fitness function 

  # create an empty vector to store fitness values 
  fitness <- function(sp_values) { 
  # calculate the fitness value for the current particle 
  constraints_violations <- sum(constraints(sp_values, r_temp_min = 18,
 r_temp_max = 27, pue_min = 1.5, pue_max = 2.5)) 
  if (constraints_violations > 0) { 
    fitness_value <- 100 
  } else { 
    forecast_values <- var_model(data, latest_data)$pue_fcst 
    fitness_value <- sum((forecast_values - 1.5)^2) 
  } 
  return(fitness_value) 
} 

PSO solver 

library(psoptim) 
# Define PSO parameters 
n_particles <- 14 
n_iterations <- 14 
w <- 0.729   # inertia weight 
c1 <- 1.494  # cognitive weight 
c2 <- 1.494  # social weight 
xmin <- c(16, 16) # update the minimum bounds 
xmax <- c(28, 28) # update the maximum bounds 
 
# create a logical vector to indicate which dimensions to constrain 
vmax_constrained <- c(TRUE, TRUE,TRUE,TRUE, TRUE) 
 
# set the maximum velocity for the constrained dimensions 
vmax_values <- rep(5, 2) 
 
# pass the vmax_values to the psoptim function 
result <- psoptim::psoptim(FUN=fitness, n=n_particles, max.loop=n_itera
tions, w=w, c1=c1, c2=c2, xmin=xmin, xmax=xmax, vmax=vmax_values, seed=
473, anim=FALSE) 
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#Result 

# Extract the optimal setpoint values and the minimized fitness value 
SP_optimal <- result$sol 
 
fitness_optimal <- result$val 
 
SP_optimal 

##            x1       x2 
## [1,] 25.20618 23.62396 

fitness_optimal 

## [1] 6.177956 

Apply control signal to HVAC system 

# … 

Record results 

# … 

Wait for one hour before running loop again 

Sys.sleep(3600) } 
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Collaboration letter  

The collaboration letter included in this appendix outlines the importance of 

data confidentiality, intellectual property, and ethical considerations in the 

research partnership between the two parties. The letter aims to demonstrate 

the researchers' commitment to ethical and responsible research practices and 

establish a foundation for a successful collaboration. By outlining the roles, 

responsibilities, objectives, and expected outcomes of the partnership, the 

letter promotes transparency in the research process. The collaboration letter 

also ensures that the research process adheres to ethical and legal guidelines, 

thereby fostering trust and confidence between the research partner and the 

scientific community. 
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Result confirmation letter 

The result confirmation letter included in this appendix validates the research 

findings and confirms their accuracy and validity. The letter highlights the 

methods used to validate the research results, including statistical analysis, 

and confirms that the results are reproducible. The confirmation letter provides 

independent verification of the research findings and serves as a testament to 

the scientific rigour of the study. 
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