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This paper introduces capital flow to the single item stochastic lot sizing problem. A retailer can leverage business
overdraft to deal with unexpected capital shortage, but needs to pay interest if its available balance goes below zero. A
stochastic dynamic programming model maximizing expected final capital increment is formulated to solve the prob-

lem to optimality. We then investigate the performance of four controlling policies: (R,Q), (R, S ), (s, S ) and (s, Q,
S ); for these policies, we adopt simulation-genetic algorithm to obtain approximate values of the controlling parame-
ters. Finally, a simulation-optimization heuristic is also employed to solve this problem. Computational comparisons

among these approaches show that policy (s, S ) and policy (s,Q, S ) provide performance close to that of optimal
solutions obtained by stochastic dynamic programming, while simulation-optimization heuristic offers advantages in
terms of computational efficiency. Our numerical tests also show that capital availability as well as business overdraft
interest rate can substantially affect the retailer’s optimal lot sizing decisions.

Keywords: stochastic lot sizing; capital flow; business overdraft; stochastic dynamic programming; genetic
algorithm

1. Introduction

Capital shortage is a key factor affecting the growth of many small and medium enterprises (SMEs). In

contrast to large companies, due to sales volume and operation scales, it is not easy for SMEs to obtain

external capital in the form of loans or venture capital investment. In addition, SMEs usually lack the

capital to absorb large losses. A survey of 531 businesses that went bankrupt during the calendar year 1998

in Bradley (2000) pointed out that inadequate financial planning was one of main reasons for their business

failing. A report by Coughtrie, Morley, and Ward (2009) showed shortage of capital accounted for 17%

of company bankruptcies in Australia in 2008. Elston and Audretsch (2011) found that 84% of high-tech

entrepreneurs in the US had experienced a shortage of capital at some time.

Numerical experiments in Zeballos, Seifert, and Protopappa-Sieke (2013) demonstrate that the lack of

access to short-term debt drastically inflates working capital requirements and lowers cash flows. Business

overdraft is an easy and effective short-term option for many companies to solve cash shortages. It can

ensure a company has funds in place and available immediately when something unexpected happens. After

an agreement between a company and a bank is made, overdraft occurs when money is withdrawn from

a bank account when the available balance goes below zero. The company pays interest for the negative

balance at an agreed rate. A survey (Sophie Doove 2014) about SMEs in the 28 countries of the European

Union showed that SMEs preferred to use bank overdraft, bank loan and trade credit. A report by Ipsos

(2017) based on the surveys of over 1000 SMEs from 2014 to 2016 in UK revealed that business overdraft

accounted for about 20% — and ranked second — of all external finances in the three years.

Given the above account, it is important for a manager to take capital flow and external financing into
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account when making operational decisions. In this respect, we contribute to the literature on stochastic lot

sizing as follows.

• We incorporate capital flow and one kind of external financing, i.e. overdraft, in the stochastic lot

sizing problem and formulate a stochastic dynamic programming model to obtain optimal solutions.

• We discuss four inventory controlling policies for this problem and use simulation-genetic algorithm

to obtain approximate values of the controlling parameters.

• We introduce a simulation-optimization heuristic inspired by the approach originally introduced by

Askin (1981).

• We conduct a comprehensive numerical study to compare stochastic dynamic programming,

simulation-genetic algorithm and simulation-optimization heuristic.

The rest of this work is structured as follows. Section 2 reviews the related literature. Section 3 describes

the problem setting. Section 4 provides the stochastic dynamic programming model. Section 5 gives the

simulation-genetic algorithm approach and Section 6 presents the simulation-optimization heuristic. Sec-

tion 7 adopts some numerical examples to show the influence of capital flow and overdraft to optimal

policy structure. A computational study and its results are detailed in Section 8. Finally, Section 9 draws

conclusions and outlines future research directions.

2. Literature review

Due to its practical relevance, a large body of literature has emerged on the lot sizing problem over the last

few decades. After the pioneering work by Wagner and Whitin (1958) for the single item lot sizing problem

with deterministic demands, many extensions were investigated for lot sizing problems, such as multi item

settings, capacity constraints, and stochastic demand. Here we limit our discussion to key studies that are

relevant in the context of our discussion.

The stochastic lot sizing problem has been thoroughly investigated in the inventory control literature

Axsäter (2007). Under mild assumptions, Scarf (1959) proved the optimal policy takes the well-known

(s, S ) form, in which s denotes the reorder point and S is the order-up-to-level. Silver (1978) and Askin

(1981) proposed simple heuristics based on the least period cost method for the problem under penalty

cost, which are stochastic extensions of the well-known Silver-Meal’s heuristic (Silver and Meal 1973).

Bookbinder and Tan (1988) discussed three control strategies: the “static uncertainty” strategy, in which

lot sizing decisions including review intervals and order quantities for each period must be made at the

beginning of the first period; the “static-dynamic uncertainty” strategy, in which review intervals are fixed

at the beginning but order quantities for each period are not determined until this period comes; and the

“dynamic uncertainty” strategy, which allows the retailer to decide dynamically at each period whether or

not to place an order and how much to order.

Many subsequent studies focused on modeling and solving the stochastic lot sizing problem under the

three strategies introduced in Bookbinder and Tan (1988). In the context of the “static uncertainty” strat-

egy, Guan et al. (2006) developed a branch-and-cut algorithm; Tempelmeier and Herpers (2011) presented

modifications of several well-known dynamic lot sizing heuristics for solving the single item stochas-

tic problem; Koca, Yaman, and Aktürk (2015) used second order cone programming to obtain solutions

for a capacitated single item lot sizing problem with controllable processing time. In the context of the

“static-dynamic uncertainty” strategy, Tarim and Kingsman (2004) proposed a mathematical programming

approach to compute near-optimal “static-dynamic uncertainty” policy parameters under service level con-

straints; Tarim and Kingsman (2006) extended the previous study to a penalty cost setting, by using a

piecewise linear approximation of the cost function; Tempelmeier (2007) proposed a β service level con-

straint and a new computation of holding costs for the problem; Özen, Doğru, and Tarim (2012) considered

the problem with dynamic fixed-ordering, holding costs and dynamic penalty costs and proved that the

optimal policy is base-stock policy; Rossi, Kilic, and Tarim (2015) applied a new piecewise approximation

method in Rossi et al. (2014) to handle a range of service level measures as well as lost sales. The “dy-
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namic uncertainty” strategy was initially investigated in Askin (1981), who developed an early heuristic;

Federgruen and Zipkin (1984) addressed the stationary demand case, and Bollapragada and Morton (1999)

extended the previous study to handle the non-stationary demand case.

Relevant works taking capital flow or financing into account in inventory management problems are

the following. Buzacott and Zhang (2004) analyzed the importance of joint consideration of production

and financial decisions via a news vendor model. Chao, Chen, and Wang (2008) investigated a multi

period news vendor problem constrained by cash flow and proved the optimal policy is a base stock

policy. Gong, Chao, and Simchi-Levi (2014) extended the model by incorporating short term financing.

Zeballos, Seifert, and Protopappa-Sieke (2013) built a periodic review inventory problem with working

capital constraints, payment delay and multiple sources of financing. Wuttke et al. (2016) considered the

supplier’s supply chain finance adoption decisions within a diffusion model and obtained some insights

regarding a buyer’s optimal decisions regarding timing and payment terms. The above mentioned works

are not for lot sizing problem and there are no fixed ordering costs in these models. Considering capital

flow constraints, Chen and Zhang (2015) formulated a single item model for deterministic demands with

trade credit and devised a dynamic algorithm with heuristic adjustments to solve it.

Our literature survey reveals that no work has so far investigated the stochastic lot sizing problem un-

der non-stationary stochastic demand, capital flow, and external financing. This, together with our initial

discussion on the relevance of this topic, motivates our study.

3. Problem description

For convenience, the notations adopted in this paper are listed in Table 1. Relevant notations will be intro-

duced when needed.

In our problem, demand is stochastic and non-stationary. For each period t, its demand is represented by

Dt, which is a non-negative random variable with probability density function ft, cumulative distribution

function Ft, mean µt, variance σ2
t . Random demand is assumed to be independent over the periods. Unmet

demand in any given period is back ordered and satisfied as soon as the replenishment arrives. Excess stock

is transferred to next period as inventory and the sell back of excess stock is not allowed.

We assume initial capital quantity of the retailer is B0; order delivery lead time is zero; selling price of

the product is p and the retailer receives payments only when the products are delivered to its customers.

A fixed cost a is charged when placing orders, regardless of the order quantity, and Rt is a 0-1 variable

to determine whether the retailer makes order at period t; a variable cost v is charged on every order unit.

End-of-period inventory level for period t is It, and we set I+t to represent max{It, 0} and I−t to represent

max{−It, 0}. A variable inventory holding cost h is charged on every product unit carried from one period

to the next; per unit stock-out penalty cost is π; at the beginning of each period t, its present capital is Bt−1,

if its initial capital is below zero, the retailer has to pay interests with a rate of b.

The actual sales quantity in period t is min
{

Dt+ I−
t−1
,Qt+ I+

t−1

}

, where Dt+ I−
t−1

is demand plus backorder

in period t and Qt+I+
t−1

is the total available stock in period t. End-of-period capital Bt for period t is defined

as its initial capital Bt−1, plus payments by customers for the realized demand in this period p min
{

Dt +

I−
t−1
,Qt+ I+

t−1

}

, minus the payments to suppliers and this period’s fixed ordering cost, holding and backorder

costs vQt + aRt + hI+t + πI
−
t , and minus the interest paid if its initial capital is negative b max{−Bt−1, 0}. Full

expression of Bt is given by Eq. (1), and the inflows and outflows of capital from period t− 1 to period t+ 1

is detailed shown by Figure 1.

Bt = Bt−1 + p min
{

Dt + I−t−1,Qt + I+t−1

}

−
(

vQt + aRt + hI+t + πI
−
t

)

− b max{−Bt−1, 0}, (1)

As for the final capital in the whole planning horizon, we defined it as the end-of period capital BT ,

minus the interest paid if BT is negative, which is:

BT+1 = BT − b max{−BT , 0}. (2)
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p min

(

Dt−1 + I−
t−2

Qt−1 + I+
t−2

)

p min

(

Dt + I−
t−1

Qt + I+
t−1

)

p min

(

Dt+1 + I−t
Qt+1 + I+t

)

vQt−1 + aRt−1 + hI+
t−1

+πI−
t−1
− b max{−Bt−2, 0}

vQt + aRt + hI+t + πI
−
t

−b max{−Bt−1, 0}
vQt+1 + aRt+1 + hI+

t+1

+πI−
t+1
− b max{−Bt , 0}

Figure 1. Inflows and outflows of capital at periods t − 1, t, t + 1

Our aim is to find a replenishment plan that maximizes the expected final capital increment, i.e. E(BT+1)−
B0.

Table 1. Notations adopted in our paper.

Notations Description

Indices
t Period index, t = 1, 2, . . . , T

Problem parameters

B0 Initial capital
I0 Initial inventory, we assume I0 = 0
I+t max{It , 0}
I−t max{−It , 0}
p Product selling price
a Fixed ordering cost
v Unit variable ordering cost
h Unit inventory holding cost
π Unit penalty cost for back orders
b Interest rate for negative initial capital

Random variables

Dt

Random demand at period t with probability density function
ft(Dt),cumulative distribution function Ft(Dt), mean µt,
variance σ2

t

State variables

It End-of-period inventory for period t

Bt End-of-period capital for period t

Decision variables

Qt Order quantity at the beginning of period t

Rt whether the retailer orders at period t

S t
Order up to level at the beginning of period t, and
S t = It−1 + Qt

st Threshold of the inventory level for (s, S ) policy

Qt Maximum order quantity for (s,Q, S ) policy

4. A stochastic dynamic programming approach

In this section, we apply stochastic dynamic programming (SDP) to solve the problem.

States. The system state at the beginning of period t is represented by initial inventory It−1 and initial

capital quantity Bt−1. Note that It−1 and Bt−1 can be negative.

Actions. The action at period t is the production quantity Qt, given initial inventory It−1 and initial capital

quantity Bt−1.
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State transition function. The inventory and capital at the end of period t is determined by initial

inventory It−1, initial capital Bt−1, demand Dt and action Qt. The state transition of the system for Bt and It

is described by the following equations.

Bt =Bt−1 + p min
{

Dt + I−t−1,Qt + I+t−1

} − (

aδt + hI+t + πI
−
t + vQt

) − b max{−Bt−1, 0}, (3)

It =It−1 + Qt − Dt, (4)

Capital transition equation is same as the expression of end-of-period capital Bt.

Immediate profit. The immediate profit for period t is the expected capital increment during this period.

Given Bt−1, It−1 and Qt, immediate profit ∆Bt can be expressed as

∆B
Qt

t (It−1, Bt−1) = E(Bt) − Bt−1, (5)

Functional Equation. Define Ft(Bt−1, It−1) as the maximum expected capital quantity increment during

periods t, t + 1, . . . ,T , when the initial inventory and capital of period t are It−1 and Bt−1, respectively. The

functional equation is expressed as:

Ft(Bt−1, It−1) = max
Qt≥0
{∆Bt + Ft+1(Bt, It)} , t = 1, 2, . . . ,T, (6)

By the definition of final capital in Eq. (2), the boundary condition for the functional equation is:

FT+1(BT , IT ) = −b max{−BT , 0}. (7)

Our aim is to maximise the expected capital increment F1(B0, I0) over the planning horizon given initial

capital B0 and inventory I0.

4.1 A numerical example

Here we give a numerical example to show the results of SDP. Values of parameters are listed in Table 2.

For convenience, there are 3 periods in total, and two levels of demand in each period with equal probability

0.5. Details of demand levels are presented in Table 3.

Table 2. Parameter values.

B0 I0 p a v h π b

5 0 5 10 1 1 2 20%

Table 3. Demand values.

D1 D2 D3

level 1 1 1 1

level 2 2 2 2

From SDP, optimal expected final capital increment is 1.75. For 5 random demand realization samples,

results of SDP are shown by Table 4.

5. A simulation-based genetic algorithm approach

Because of states explosion, it is time consuming for stochastic dynamic programming to obtain a final

result. Therefore, we propose four inventory controlling policies based on three strategies of stochastic lot

sizing problem (Bookbinder and Tan (1988)) to solve our problem.
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Table 4. Solutions of SDP for 5 demand realization samples.

D1 D2 D3 Q1 Q2 Q3 E(BT+1) − B0

sample 1 2 1 2 0 5 0 3.8
sample 2 2 1 1 0 5 0 -2.2
sample 3 2 2 2 0 5 0 3.0
sample 4 1 1 2 0 4 0 1.4
sample 5 1 2 1 0 4 0 3.0

(1) (R,Q) policy. This is a “static uncertainty” strategy, in which the review intervals and ordering quan-

tities for replenishment periods are fixed at the beginning of planning horizon. For this policy, the

decision variables are review intervals Rt and ordering quantities Qt.

(2) (R, S ) policy. This is a “static-dynamic” strategy, in which the review intervals are fixed at the be-

ginning of the planning horizon, but the order quantities are not fixed. Order quantity Qt is related

with the inventory level at the review intervals It−1 and the fixed order-up-to levels S t, which is

max{0, S t − It−1}.
(3) (s, S ) policy. This is a “dynamic uncertainty” strategy policy: (s, S ) policy, in which the review

intervals and ordering quantity are neither fixed. If initial inventory level at period t is above st, order

nothing in this period; else order to the order-up-to level S t.

(4) (s,Q, S ) policy. This is a variant of the previous “dynamic uncertainty” strategy, in which we impose

an upper bound Q for the maximum ordering quantity.

Details of order quantity Qt in (s, S ) policy is presented by the formula below.

Qt =















0 It−1 ≥ st

max
{

0, S t − It−1

}

It−1 < st.
(8)

For the (s,Q, S ) policy, order quantity for each period t is determined by Eq. (9).

Qt =















0 It−1 ≥ st

max
{

Qt,max{0, S t − It−1}
}

It−1 < st.
(9)

Since our problem explicitly models capital flows, one may be inclined to adopt an inventory policy in

which decisions are dependent on available stock and capital at the beginning of each period. However, be-

cause end-of-period capital of each period is, in fact, solely determined by its initial capital, order quantity,

and previous demand realizations, as we will show, a control policy that only takes into account initial stock

level in each period — essentially an (s, S ) policy — and that sets an upper bound to the maximum possible

replenishment quantity is able to achieve near-optimal performances. Furthermore, even in absence of an

upper bound to the maximum possible replenishment quantity, an (s, S ) policy appears to perform well.

5.1 Genetic algorithm settings

It is difficult to obtain values of controlling parameters for these policies from mathematical optimiza-

tion directly. Therefore, we solve this problem by Monte-Caro simulation and genetic algorithm to obtain

near-optimal parameter values. Informally speaking, our approach proceeds as follows. We generate a suf-

ficiently large random demand samples and obtain values of controlling parameters by maximizing the

average final capital for these samples via genetic algorithm; then we simulate the controlling parameters

over 100,000 benchmark random demands to estimate final expected capital increment.

Genetic algorithm (GA) is a global search procedure that searches from one population of solutions to

another, in which good solutions are selected to evolve to the next generation while some mutations take

place to avoid falling into local optimum traps (Dorsey and Mayer 1995). For our problem, besides the
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lower and upper bounds of the controlling parameters, there are no extra constraints. It is not difficult for

genetic algorithm to generate feasible populations and find a good solution. Settings of genetic algorithm

we adopted are listed below; note that to assess the validity of these settings we will carry out stability

analysis (Kaut et al. 2007) in our computational study.

(1) Fitness function, bounds of variables. The fitness function is the maximum average final capital

increment of the samples. Rt is a 0-1 variable; lower bound for Qt and Qt are 0; lower bounds for st

and S t are negative enough numbers; upper bounds for Qt, Qt, st, and S t are large enough numbers.

(2) Population. Population type is double vector real coding and population size is 200. Initial popula-

tions are randomly generated between the lower and upper bounds of each controlling parameter.

(3) Fitness scaling. Fitness scaling is based on the rank of fitness scores of each individual population,

which can remove the effect of the spread of the raw scores. The rank of an individual is its position

in the sorted scores. An individual with rank r has scaled score 1/
√

r. This scaling method makes

poorly ranked individuals more nearly equal in scores.

(4) Selection. We use roulette selection method to chooses parents for the next generation based on their

scaled fitness values.

(5) Reproduction and crossover. The minimum number of elite individuals that are guaranteed to sur-

vive to the next generation is 10. Other children are produced by crossover of the selected parents.

The Crossover rate is 0.8. Crossover method is scattered, which first creates a random binary vector

and then selects the genes where the vector is a 1 from the first parent, and the genes where the vector

is a 0 from the second parent, and combines the genes to form a child.

(6) Mutation. The mutation method is Gaussian, which add a random number to the selected parents.

The random number is generated from a Gaussian distribution with mean 0 and shrinking standard

deviation. Initial standard deviation δ0 is 10 and the shrinking of standard deviation for the kth gener-

ation is shown by the following equation, in which generations is the maximum generations initially

set for the genetic algorithm to perform.

δk = δk−1

(

1 − k

generations

)

. (10)

(7) Migration. Migration takes place every 20 generations forward, and the best 20% individuals from

one subpopulation replace the worst individuals in another subpopulation.

(8) Stopping criteria. Maximum generations is 10000 and function tolerance is 0.000001. If the average

change in the fitness function value over 50 generations is less than function tolerance, the algorithm

stops.

5.2 A numerical example

For the same numerical example solved by SDP, solutions of genetic algorithm for the four controlling

policies are given by Table 5.

Table 5. Solutions of genetic algorithm.

E(BT+1) − B0

policy (s,Q, S )
s1 = −1 s2 = 0 s3 = 4 S 1 = 7 S 2 = 3 S 3 = 0

1.29
Q1 = 9 Q2 = 7 Q3 = 8

policy (s, S ) s1 = 0 s2 = 7 s3 = 0 S 1 = 5 S 2 = 3 S 3 = 3 1.29
policy (R, S ) R1 = 0 R2 = 1 R3 = 0 S 1 = 0 S 2 = 3 S 3 = 0 1.29
policy (R,Q) R1 = 0 R2 = 1 R3 = 0 Q1 = 0 Q2 = 5 Q3 = 0 0.65

For the same 5 random demand realization samples, final capital increments of four controlling policies

are provided by Table 6. It shows, policy (s,Q, S ), policy (s, S ) and (R, S ) obtain the same final expected

capital increment as SDP, while policy (R,Q) performs a little worse.
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Table 6. Expected final capital increment for 5 demand realization sam-

ples.

D1 D2 D3 (s,Q, S ) (s, S ) (R, S ) (R,Q)

sample 1 2 1 2 3.8 3.8 3.8 3.8
sample 2 2 1 1 -2.2 -2.2 -2.2 -2.2
sample 3 2 2 2 3.0 3.0 3.0 3.0
sample 4 1 1 2 1.4 1.4 1.4 -2.0
sample 5 1 2 1 3.0 3.0 3.0 0.0

6. A simulation-optimization heuristic approach

In this section, we present a simulation-optimization heuristic for our problem that is based on Silver’s

heuristic (Silver 1978). To describe the simulation-optimization heuristic, we first define the concept of

replenishment cycle.

Definition 1. A replenishment cycle (t, r) is the time interval between two consecutive replenishments exe-

cuted at period t and at period r + 1; the last replenishment cycle is (t,T ).

The idea behind Silver’s lot sizing heuristic is to view the average cost per period as a function of

the length of a replenishment cycle. Assuming this function is convex with respect to the length of the

replenishment cycle, it is possible to determine the optimal length of the next replenishment cycle. With

regard to our profit-maximization problem, we view the average capital increment per period is concave to

the replenishment cycle length. For the computation of capital increment in a replenishment cycle, we have

the following property.

Lemma 1. The expected total capital increment during replenishment cycle (t, r) given initial inventory

It−1 and initial capital Bt−1, is concave in ordering quantity Qt for Qt > 0.

Proof. Total expected capital increment in replenishment cycle (t, r) is

∆B
Qt

t,r (It−1, Bt−1) = ∆B
Qt

t (It−1, Bt−1) + ∆B0
t+1(It, Bt) + · · · + ∆B0

r (Ir−1, Br−1), (11)

For period t,

∆B
Qt

t (It−1, Bt−1) = E
(

p min
{

Dt + I−t−1,Qt + I+t−1

}

−
(

a + hI+t + πI
−
t + vQt

)

− b max{−Bt−1, 0}
)

, (12)

Given It−1 and Bt−1, it can be easily proved that the above formula is concave in Qt. For period n ∈
{t + 1, t + 2, . . . , r},

∆B0
n(In−1, Bn−1) = E

(

p min
{

Dn + I−n−1, I
+
n−1

} − (

hI+n + πI
−
n

) − b max{−Bn−1, 0}
)

. (13)

The above function is separable, and its separable items are all concave piecewise linear functions of Qt:

the first term p min
{

Dn+ I−
n−1
, I+

n−1

}

is concave in Qt, the second term −(hI+n +πI
−
n ) is concave in Qt, and the

third term −b max{−Bn−1, 0} is also concave because Bn−1 is concave. This function is therefore concave in

Qt. �

For the simulation-optimization heuristic, we use Monte-Carlo simulation to approximate E(It) in a re-

plenishment cycle by randomly generating an appropriate number of demand samples. Using this sample-

based approximation we can estimate expected total capital increment of the replenishment cycle and there-

fore develop a simulation-based extension of Silvers heuristic. We apply line search to compute the optimal

order quantity Qt for replenishment cycle (t, r) as well as the associated expected total capital increment

based on Lemma 6. We increase the value of r, starting from t, until the expected average capital incre-

ment per period first decreases. A pseudo-code of the algorithm is given in Algorithm 1. Computational
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complexity of our simulation-optimization heuristic is comparable to that discussed for the approach in

(Gutierrez-Alcoba et al. 2017), which is O(NTlog(Q/λ)), where N is the number of samples used, T is the

length of planning horizon, Q is the upper bound of ordering quantity and λ is the step length used in the

line search.

Algorithm 1: Simulation-optimization heuristic

Data: current period t, initial inventory It−1, initial capital Bt−1

Result: optimal order quantity Q∗t
1 r ← t;

2 ∆B∗ ← −∞;

3 do

4 Q← arg maxQ≥0 ∆B
Q
t,r(It−1, Bt−1);

5 ∆B← ∆B
Q
t,r(It−1, Bt−1)/(r − t + 1);

6 if ∆B ≥ ∆B∗ then

7 Q∗ ← Q;

8 ∆B∗ ← ∆B;

9 end

10 r ← r + 1;

11 while ∆B ≥ ∆B∗ and r ≤ T ;

6.1 A numerical example

In the same numerical example as SDP and genetic algorithm, expected final capital increment by

simulation-optimization heuristic is -1.25. Results of simulation-optimization heuristic for the same 5 ran-

dom demand realization samples are provided by Table 7.

Table 7. Solutions of simulation-optimization heuristic for 5 demand

realization samples.

D1 D2 D3 Q1 Q2 Q3 E(BT+1) − B0

sample 1 2 1 2 0 4 0 -1.0
sample 2 2 1 1 0 4 0 1.0
sample 3 2 2 2 0 4 0 -2.0
sample 4 1 1 2 0 3 0 -3.2
sample 5 1 2 1 0 3 0 -2.0

Compared with SDP and four controlling policies by genetic algorithm, simulation-optimization heuris-

tic performs a little worse for this numerical example.

7. Numerical examples

In this section, we illustrate the importance of modeling capital flows and business overdraft. By using a

selection of instances, we demonstrate the impact of changes in problem parameters on the structure of the

control action.

We consider 6 periods, demands in each period are independent and follow Poisson distribution. Mean

values of the demands of each period are listed in Table 8, other relevant parameter values are given by

Table 9.

If I0 = 0, B0 = 0, optimal final capital increment is -3.98. If I0 = 0, B0 = 20, optimal final capital

increment is 5.52. If demand realizations are same as expected demands, optimal policy for the two case

with different initial capital is presented by Table 10.

9



Table 8. Mean values of demands.

period 1 2 3 4 5 6

D̃t 3 4 3 5 4 3

Table 9. Parameter values.

I0 p a v h π b

0 4 12 2 1 3 20%

Table 10. Optimal solutions for two different initial capital.

t = 1 t = 2 t = 3 t = 4 t = 5 t = 6 E(BT+1) − B0

Qt (B0 = 0) 0 9 0 11 0 0 -3.98
Qt (B0 = 20) 9 0 0 12 0 0 5.52

Table 10 shows available capital may have substantial impact on the structure of the optimal policy and

maximum final capital increment. If I0 = 0, B0 = 0, but interest rate b = 5%, optimal final capital increment

is 4.90. With same demands realizations, solutions of the two cases with different interest rates are given in

Table 11.

Table 11. Optimal solutions for two different interest rates.

t = 1 t = 2 t = 3 t = 4 t = 5 t = 6 E(BT+1) − B0

Qt (b = 5%) 0 9 0 11 0 0 4.90
Qt (b = 20%) 8 0 0 13 0 0 -3.98

Results in Table 11 show interest rate can also substantially affect the structure of optimal policy. Other

combinations of parameters, e.g. “contribution margin” that is selling price minus unit variable production

cost, can also influence optimal policy. With I0 = 0, B0 = 0, b = 20%, optimal solutions for two different

margins are presented by Table 12 (for margin = 3, v = 2, p = 5; for margin = 5, v = 1, p = 6).

Table 12. Optimal solutions for two different margins.

t = 1 t = 2 t = 3 t = 4 t = 5 t = 6 E(BT+1) − B0

Qt (margin=3) 0 10 0 9 0 0 -7.94
Qt (margin=5) 8 0 0 13 0 0 44.78

The above results reveal that capital availability and interest rates impact retailer’s optimal policy struc-

ture and expected final capital increment in the stochastic lot sizing problem.

8. Computational study

In this section we present an extensive computational study to investigate the effectiveness of our ap-

proaches.

8.1 Test bed

The test beds are adopted from Rossi, Kilic, and Tarim (2015). There are 10 demand patterns for numerical

analysis: 2 life cycle patterns (LCY1 and LCY2), 2 sinusoidal patterns (SIN1 and SIN2), 1 stationary

pattern (STA), 1 random pattern (RAND), 4 empirical patterns (EMP1, EMP2, EMP3, EMP4). To ensure

SDP can solve these instances in reasonable time, we rescale original demands in Rossi, Kilic, and Tarim

(2015) and select 6 successive periods for testing. The values of expected demands for different patterns

are given by Table 13 and Figure 2, respectively.
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Table 13. Expected demands of different patterns.

demand
pattern

1 2 3 4 5 6 Total

STA 7 7 7 7 7 7 42

LCY1 8 7 6 5 4 3 33

LCY2 2 3 4 5 6 7 27

SIN1 8 5 2 1 2 5 23

SIN2 5 6 7 8 7 6 39

RAND 8 4 1 3 1 3 20

EMP1 1 3 8 4 8 7 31

EMP2 1 4 7 3 5 8 28

EMP3 3 8 4 4 6 2 27

EMP4 3 1 5 8 4 4 25
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Figure 2. Demand patterns in our computational analysis.

In our tests, demands follow Poisson distribution. Two possible levels are set for each parameter as listed

by Table 14, except unit holding cost h, which is fixed to be 1. The values of parameters are set to make most

numerical instances encounter capital shortage in the first three periods. For each set of those parameters

combinations, 10 demand patterns are tested. Therefore, There are 640 numerical cases in total.
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Table 14. Parameter values.

B0 p a v π b

level 1 0 5 10 1 2 0.05

level 2 20 10 15 2 4 0.2

8.2 GA Stability test

We assess stability of solutions obtained by genetic algorithm on random samples by analysing in-sample

and out-of-sample stability. In-sample stability means the final capital increment of genetic algorithm

should not vary across demands scenarios of the same size. Out-of-sample stability refers to that when

the solutions are simulated on the benchmark demands, the expected final capital increment should be

same among all demands scenarios (Kaut et al. 2007).

We randomly select 32 cases from the test beds to do stability tests. For a given size of scenarios for each

case, we run genetic algorithm for 10 different samples. Like Sexton, Dorsey, and Johnson (1998), mean of

standard deviation (STD) and mean of root mean square error (RMSE) of the 32 cases are adopted as the

stability criteria. Results of stability tests are presented by Table 15 and Figure 3.1

Table 15. In-sample and out-of-sample tests results

scenarios

In-sample test Out-of-sample test

Mean STD Mean RMSE Mean STD Mean RMSE

(sQS ) (sS ) (RS ) (RQ) (sQS ) (sS ) (RS ) (RQ) (sQS ) (sS ) (RS ) (RQ) (sQS ) (sS ) (RS ) (RQ)

100 0.93 1.19 1.66 2.40 3.24 2.60 6.22 11.65 1.64 1.29 1.45 1.34 3.24 2.99 5.48 11.21

500 0.70 0.87 1.21 1.49 3.94 2.77 6.26 11.74 1.40 1.06 1.17 1.15 3.39 2.80 5.41 11.14

1000 0.56 0.64 1.21 1.44 3.92 2.70 6.20 11.59 0.65 0.75 1.19 1.35 2.53 2.65 5.36 10.97

1500 0.55 0.65 1.32 1.52 4.09 2.84 6.24 11.78 0.52 0.72 1.31 1.35 2.35 2.63 5.37 11.21
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(a) Mean STD for different number of scenarios.
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(b) Mean RMSE for different number of scenarios.

Figure 3. Stability test results for different number of scenarios.

The results of stability test show when the number of scenarios is 1000 or more, both mean STD and

mean RMSE of genetic algorithm for the four controlling policies tend to be stable. Therefore, we select

1000 scenarios as the number of samples for genetic algorithm to solve our problem.

1In Figure 3, ”in” means in-sample, ”out” means out-of-sample
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8.3 Results and discussion

In this section we present an extensive comparison of SDP, simulation-genetic algorithm and simulation-

optimization heuristic pivoting on the test bed. Results are given by Table 16 and Table 17. As performance

criterion, we adopt root mean square error (RMSE) and mean absolute percentage error (MAPE) between

the optimal capital increment and the simulated capital increment under each given policy. Both RMSE and

MAPE are employed because RMSE does not show as clearly as MAPE on how close simulated results

are to optimal, while MAPE may result in some high percentage errors when optimal capital increments

are near 0 even though optimal value and simulated values are close. The simulation confidence level is

95%; details about the confidence intervals in the computational study for RMSE and MAPE are provided

in Appendix 1.

Table 16. Pivot table for the computational study—RMSE.

Root Mean Square Error (RMSE)
Cases

Sim-opt GA-sQS GA-sS GA-RS GA-RQ

Ini capital

0 14.30 2.31 2.23 6.64 16.20 320

20 12.80 3.96 3.88 5.89 15.60 320

Interest rate

0.05 13.60 3.24 3.22 6.24 15.40 320

0.2 13.61 3.25 3.11 6.31 16.40 320

Selling price

5 11.70 2.36 2.22 5.40 14.30 320

10 15.30 3.94 3.89 7.04 17.40 320

Fixed order cost

10 11.00 2.87 2.83 6.26 16.40 320

15 15.80 3.59 3.47 6.29 15.40 320

Vari order cost

1 13.70 3.31 3.29 6.24 15.10 320

2 13.50 3.18 3.04 6.32 15.70 320

Penalty cost

2 13.90 3.79 3.68 5.46 15.40 320

4 13.30 2.58 2.56 6.99 16.40 320

Demand pattern

EMP1 16.10 3.01 4.68 5.13 15.10 64

EMP2 15.40 3.19 4.32 5.63 15.20 64

EMP3 8.18 2.83 3.69 5.43 15.50 64

EMP4 16.10 3.33 2.19 7.28 15.50 64

LCY1 16.40 1.81 2.75 8.64 16.00 64

LCY2 18.60 1.74 3.26 4.44 15.20 64

RAND 11.40 4.37 1.64 8.57 15.50 64

SIN1 10.60 4.06 1.82 8.78 15.50 64

SIN2 12.20 4.55 3.19 7.38 15.70 64

STA 4.06 2.04 2.84 7.11 15.60 64

General 13.60 3.25 3.17 6.28 15.90 640

Aver. Time(s) 0.04 194.39 184.88 42.31 46.91

Table 16 and Table 17 both show that policies (s, S ) and (s,Q, S ) solved by genetic algorithm, in gen-

eral perform better than other approaches (RMSE: 3.17 and 3.25, respectively; MAPE: 5.68% and 5.59%,

respectively), followed by policy (R, S ) (RMSE: 6.28, MAPE: 26.72%), simulation-optimization heuris-

tic (RMSE: 13.60, MAPE: 53.67%) and policy (R,Q) (RMSE: 15.90, MAPE: 66.63%). Considering the

confidence levels, performance of policy (s, S ) and policy (s,Q, S ) are essentially identical. For the four

controlling policies, it can be concluded that their performance is related with their flexibility. Since policy

(s, S ) and policy (s,Q, S ) are based on ”dynamic uncertainty” strategy, which is most flexible, they perform

best for the problem, while the least flexible policy (R,Q) has worst performance. It is however surpris-

ing that enforcing a maximum order quantity Q does not seem to be beneficial, and that an (s, S ) policy
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Table 17. Pivot table for the computational study—MAPE.

Mean Absolute Percentage Error (MAPE)
Cases

Sim-opt GA-sQS GA-sS GA-RS GA-RQ

Ini capital

0 67.31% 4.42% 4.78% 31.43% 74.77% 320

20 40.04% 6.95% 6.39% 22.02% 58.49% 320

Interest rate

0.05 44.57% 4.84% 5.02% 22.42% 50.05% 320

0.2 62.78% 6.53% 6.16% 31.02% 83.22% 320

Selling price

5 98.88% 9.37% 9.16% 49.39% 123.30% 320

10 8.47% 2.00% 2.02% 4.06% 9.97% 320

Fixed order cost

10 33.64% 3.37% 3.93% 15.51% 42.06% 320

15 73.71% 8.00% 7.25% 37.94% 91.20% 320

Vari order cost

1 16.14% 2.77% 2.8% 7.77% 19.06% 320

2 91.21% 8.60% 8.37% 45.67% 114.20% 320

Penalty cost

2 34.43% 5.00% 4.91% 15.15% 40.17% 320

4 72.92% 6.37% 6.27% 38.30% 93.09% 320

Demand pattern

EMP1 2.52% 1.76% 1.68% 6.06% 19.88% 64

EMP2 104.25% 10.29% 9.67% 18.82% 63.27% 64

EMP3 26.38% 2.44% 2.25% 11.18% 31.43% 64

EMP4 6.82% 2.39% 2.20% 8.19% 21.95% 64

LCY1 92.92% 5.15% 4.51% 61.07% 123.76% 64

LCY2 31.74% 7.00% 5.00% 89.91% 193.40% 64

RAND 29.04% 5.14% 6.01% 5.48% 23.29% 64

SIN1 39.55% 7.72% 8.08% 10.54% 35.18% 64

SIN2 23.44% 8.02% 6.73% 11.13% 46.73% 64

STA 180.06% 6.99% 9.56% 46.15% 107.43% 64

General 53.67% 5.68% 5.59% 26.72% 66.63% 640

Aver. Time(s) 0.04 194.39 184.88 42.31 46.91

with parameters carefully selected seems to provide competitive performances. Conversely, a simulation-

optimization heuristic similar to that originally proposed by Silver and Meal (1973) — which proved to be

effective when the item is perishable (Gutierrez-Alcoba et al. 2017) — performs poorly under capital flow.

The performance of different approaches does not seem to be affected by different parameter levels under

the criterion RMSE; however, it is affected by the margin of product — selling price and unit variable

ordering cost under the MAPE criterion. Finally, the performance of the simulation-optimization heuristic

varies substantially across different demand patterns.

In terms of computation times, the simulation-optimization heuristic runs faster than genetic algorithm,

with average computation time less than one second (0.04s). Among the policies solved via genetic algo-

rithm, policy (R, S ) runs fastest (42.31s), followed by policy (R,Q) (46.91s), policy (s, S ) (184.88s), policy

(s,Q, S ) (194.39s).

9. Conclusion

In this paper, we discussed a stochastic lot sizing model considering capital flow and business overdraft.

In addition to obtaining optimal solutions via stochastic dynamic programming, we presented four control-

ling policies whose parameters have been computed via genetic algorithm, and a simulation-optimization

heuristic. Our computational study demonstrate that policies (s, S ) and (s,Q, S ) feature the smallest RMSE
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and MAPE with respect to the optimal solutions obtained by stochastic dynamic programming, followed

by policy (R, S ), simulation-optimization heuristic and policy (R,Q). Simulation-optimization heuristic is,

however, the fastest approach. Numerical examples illustrate that capital availability, sales contribution

margin and interest rates may substantially impact the optimal policy structure. These factors should be

therefore taken into account by managers when making lot sizing decisions.

Future research could proceed in several directions. When banks provide business overdraft, there is

usually an upper limit for the borrowing capital in each period or floating interest rates for different amounts

of borrowing capital; this is an extension that is worth investigating. Other extensions may consider different

financing behaviors, such as trade credit, long term loans, and leasing. Finally, the optimal policy structure

under capital flow constraints may also be explored.
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Appendix A. Confidence levels for the computational study.

Table A1 provides details of confidence levels in our computational study under criterion RMSE and Table

A2 gives the confidence intervals under criterion MAPE.

Table A1. Details of confidence levels for the computational study—RMSE.

0.95 Confidence intervals—RMSE
Cases

Sim-opt GA-sQS GA-sS GA-RS GA-RQ

Ini capital

0 [13.30,15.60] [2.15,2.50] [2.07,2.42] [6.16,7.20] [15.08,17.60] 320
20 [11.89,13.90] [3.68,4.29] [3.60,4.21] [5.47,6.38] [15.46,16.90] 320

Interest rate

0.05 [12.61,14.70] [3.01,3.51] [2.99,3.49] [5.79,6.76] [14.34,16.70] 320
0.2 [12.63,14.80] [3.02,3.52] [2.89,3.37] [5.86,6.84] [15.19,17.70] 320

Selling price

5 [10.85,12.70] [2.19,2.56] [2.06,2.41] [5.01,5.85] [13.29,15.50] 320
10 [14.17,16.60] [3.65,4.27] [3.61,4.21] [6.53,7.63] [16.11,18.80] 320

Fixed order cost

10 [10.23,11.90] [2.66,3.11] [2.63,3.07] [5.81,6.78] [15.20,17.70] 320
15 [14.63,17.10] [3.33,3.89] [3.22,3.76] [5.84,6.82] [14.33,16.70] 320

Vari order cost

1 [12.68,14.80] [3.08,3.59] [3.05,3.57] [5.79,6.76] [14.04,16.40] 320
2 [12.65,14.70] [2.95,3.44] [2.82,3.29] [5.86,6.85] [16.46,18.10] 320

Penalty cost

2 [12.86,15.00] [3.52,4.11] [3.41,3.98] [5.07,5.92] [14.34,16.70] 320
4 [12.38,14.50] [2.40,2.80] [2.37,2.77] [6.49,7.58] [15.19,17.70] 320

Demand pattern

EMP1 [13.76,19.50] [2.57,3.64] [3.99,5.66] [4.37,6.20] [12.90,18.30] 64
EMP2 [13.12,18.60] [2.73,3.86] [3.68,5.22] [4.80,6.81] [12.92,18.30] 64
EMP3 [6.98,9.90] [2.41,3.42] [3.15,4.46] [4.63,6.57] [13.22,18.70] 64
EMP4 [13.75,19.50] [2.84,4.03] [1.87,2.65] [6.21,8.80] [12.95,18.40] 64
LCY1 [14.01,19.90] [1.54,2.18] [2.35,3.33] [7.37,10.40] [13.67,19.40] 64
LCY2 [15.88,22.50] [1.49,2.11] [2.78,3.94] [3.78,5.37] [12.94,18.30] 64
RAND [9.73,13.80] [3.73,5.29] [1.39,1.98] [7.31,10.40] [13.25,18.80] 64
SIN1 [9.05,12.80] [3.46,4.91] [1.55,2.20] [7.49,10.60] [13.20,18.87] 64
SIN2 [10.42,14.80] [3.88,5.50] [2.72,3.86] [6.29,8.92] [13.42,19.00] 64
STA [3.47,4.91] [1.74,2.47] [2.42,3.43] [6.06,8.60] [13.58,19.30] 64

General [12.89,14.40] [3.07,3.44] [3.00,3.35] [5.95,6.64] [15.09,16.80] 640
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Table A2. Details of confidence levels for the computational study—MAPE.

0.95 Confidence intervals—MAPE
Cases

Sim-opt GA-sQS GA-sS GA-RS GA-RQ

Ini capital

0 ±36.63% ±1.26% ±2.00% ±15.36% ±32.11% 320
20 ±14.58% ±1.87% ±1.39% ±12.49% ±32.08% 320

Interest rate

0.05 ±16.44% ±1.52% ±1.13% ±10.62% ±17.70% 320
0.2 ±35.86% ±1.94% ±2.17% ±16.69% ±41.74% 320

Selling price

5 ±38.83% ±2.19% ±2.38% ±19.49% ±44.55% 320
10 ±0.49% ±0.11% ±0.10% ±0.18% ±0.33% 320

Vari order cost

1 ±2.25% ±0.30% ±0.27% ±0.94% ±1.65% 320
2 ±38.98% ±2.20% ±2.39% ±19.57% ±44.77% 320

Penalty cost

2 ±15.23% ±1.05% ±0.94% ±8.92% ±19.49% 320
4 ±36.30% ±2.01% ±2.26% ±17.59% ±40.81% 320

Demand pattern

EMP1 ±0.58% ±0.13% ±0.15% ±1.86% ±4.23% 64
EMP2 ±63.98% ±5.53% ±5.31% ±10.09% ±33.15% 64
EMP3 ±8.11% ±0.30% ±0.21% ±3.33% ±8.90% 64
EMP4 ±0.97% ±0.37% ±0.34% ±3.52% ±5.96% 64
LCY1 ±72.12% ±3.04% ±1.94% ±48.27% ±100.05% 64
LCY2 ±14.39% ±3.26% ±2.00% ±75.57% ±170.44% 64
RAND ±10.12% ±1.78% ±2.32% ±1.31% ±8.03% 64
SIN1 ±17.08% ±5.98% ±3.89% ±4.35% ±13.87% 64
SIN2 ±9.49% ±4.44% ±3.16% ±3.79% ±17.49% 64
STA ±169.98% ±4.38% ±9.23% ±40.71% ±105.10% 64

General ±19.69% ±1.13% ±1.22% ±9.88% ±22.64% 640
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