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MYCN is the product of a gene frequently deregulated in childhood tumors that belongs to a small
but very famous family of transcription factors whose prototype member is c-MYC. The other
member of the family is L-MYC, identified as a gene amplified in a subset of lung cancers. c-MYC
is widely expressed in normal tissues, is the most deregulated protooncogene in human cancer, and
not surprisingly, it is the subject of intensive investigations in many laboratories worldwide. Clearly,
decoding its function in tumorigenesis and finding ways of inhibiting its oncogenic activity would
have a very large impact in terms of human health. In contrast to the broad significance of c-MYC,
the expression ofMYCN is temporally and spatially restricted during embryonal development, being
detectedmostly in cells of the developing nervous system.Thismore limited function is also reflected
in human pathology, with only a few types of tumors presenting alterations ofMYCN. These cancers
arise in the nervous system, both central and peripheral, manifesting as medulloblastomas, gliomas,
and neuroblastomas. Despite the fact that MYCN-positive tumors are relatively rare, their very
aggressive nature and the pediatric setting make therapeutic treatments a clinical challenge.

Increased expression of MYCN can be observed in cancers in the absence of overt aberrations
of its gene structure, but about half of high-risk, metastatic neuroblastomas are characterized by
amplification of the MYCN gene, leading to high mRNA and protein expression in tumor cells.
Amplification of MYCN is also detected in neoplasias of the central nervous system, although at
lower frequency than neuroblastoma. Importantly, it is now well established that MYCN is a direct
driver of pediatric cancers: transgenic expression of MYCN in the neuroectoderm, the sympathetic
tissue fromwhich neuroblastoma originates in humans, or the cerebella that causes the development
of neuroblastomas and medulloblastomas in mice (1, 2). Furthermore, other oncogenes have been
shown to transform cells of the nervous system by enhancing the expression of MYCN or by
stabilizing its protein product (3–5). The central role of MYCN in pediatric cancers renders it an
ideal candidate for gene therapy, if specific inhibitors be developed. Unfortunately, many years of
research from the private and academic sectors have made evident that it is extremely difficult
to find small molecule inhibitors targeting transcription factors such as c-MYC and MYCN. An
answer to this almost intractable problem could be the use of drugs that indirectly affected the
transcriptional activity of MYCN. For example, MYC gene expression depends on the activity of
the co-factor bromodomain and extra-terminal (BET) family member BRD4 that can be inhibited
by a cell permeable compound called JQ1. Different research teams have demonstrated that tumors
with deregulated MYCN are susceptible to JQ1 inhibition in vitro and in vivo (6, 7). The MYCN
protein requires the activity of the PI3K kinase pathway for stability. A research paper in this
topic shows that newly engineered PI3K inhibitors, PIK-75 and PW-12, are able to destroy the
MYCN protein in mouse models of neuroblastoma and medulloblastoma, suggesting that they
might be developed into useful drugs for these cancers (8). Another approach is to dissect the
signaling pathways that lie downstream and upstream of MYCN, trying to illuminate the gene
networks required for homeostasis of tumor cells with deregulated MYCN. Indeed, increased MYC
expression is known to induce oncogenic stress that requires the balancing activity of a plethora
of factors that can be exploited pharmacologically to induce “synthetic lethality.” In this regard,
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several papers in the research topic describe MYCN-activated
genes [i.e., MDM2, SKP2, ornithine decarboxylase, ATP-binding
cassette (ABC) transporters] that could be used as potential targets
for therapy (9–12). Another interesting aspect of MYCN biology
highlighted in the papers from the Perini’s and Thiele’s laborato-
ries is that the transcription factor is not only an activator of gene
expression but also a mediator of transcriptional repression (13,
14). The most recent view is that this activity might be as impor-
tant as that of transcriptional activation in tumorigenesis. Several
putative tumor suppressors have been identified as MYCN-
repressed genes, including p75, TRKA, CASZ1, and clusterin (15–
18). Notably, transcriptional repression is also achieved byMYCN
via epigenetic modifications, suggesting that epigenetic drugs
could be used in the clinic to successfully treat MYCN-amplified
tumors. In this regard, preliminary evidence in vitro and in vivo
indicates that histone deacetylase inhibitors or small molecule
drugs targeting the histone methyltransferase EZH2 might be
useful in the context of MYCN-amplified tumors (16, 18).

Last, but not least, MYCN could serve as a tumor-associated
antigen given that its expression is only marginal in postnatal

tissues. Overexpression of the MYCN protein outside the embry-
onal context could induce a break in the immunological tolerance
and expose tumor cells to the attack of the immune system. The
paper by the Pistoia’s team describes the possible role of MYCN
as a tumor-associated antigen and strategies to generate cytotoxic
T cells directed against pediatric tumors expressing the oncogene
(19). Immunological therapy with the antibody against tumor-
associated disialoganglioside GD2 has shown some success in
inducing remission in children with relapsed metastatic neurob-
lastomas (20). Other forms of immunotherapy in clinical develop-
ment are the generation of chimeric antigen receptor-engineered
T cells that can be directed against tumor cells expressing the
GD2 antigen such as neuroblastoma, sarcoma, and melanoma.
One could speculate that MYCN is an even better antigen for
immunotherapy because it is almost exclusively expressed by
tumor, but not normal, cells.

Despite pediatric cancers bearing activation of MYCN are
extremely malignant, their dependence on this oncoprotein for
proliferation and survival makes them potentially curable diseases
when more efficient ways of gene targeting will be developed.
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