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Abstract: We believe that there is sufficient evidence from basic science, longitudinal cohort studies
and randomised controlled trials which validates the low-density lipoprotein cholesterol (LDL-C)
or lipid hypothesis. It is important that we can communicate details of the cardiovascular disease
(CVD) risk reduction that the average patient could expect depending on the scale of LDL-C decrease
following lipid lowering therapy. It is also essential that residual risk (ResR) of CVD be highlighted.
To achieve this aim by using existing trial evidence, we developed mathematical models initially
for relative risk reduction (RRR) and absolute risk (AR) reduction and then showed that despite
optimising LDL-C levels, a considerable degree of ResR remains that is dependent on AR. Age
is significantly associated with AR (odds ratio: 1.02, 95% confidence intervals: 1.01–1.04) as was
previously demonstrated by analysing the Whickham study cohort using a logistic regression model
(age remaining significant even when all the other significant risk factors such as sex, smoking,
systolic blood pressure, diabetes and family history were included in the regression model). A
discussion of a paper by Ference et al. provided detailed evidence of the relationship between age
and AR, based on lifetime LDL-C exposure. Finally, we discussed non-traditional CVD risk factors
that may contribute to ResR based on randomised controlled trials investigating drugs improving
inflammation, thrombosis, metabolic and endothelial status.

Keywords: mathematical modelling; residual cardiovascular risk; age and cardiovascular disease;
low density lipoprotein cholesterol exposure; non-LDL-C cardiovascular risk factors

1. Introduction

Cardiovascular disease (CVD) owing to atherosclerosis is globally one of the most
common causes of mortality with the World Health Organisation (WHO) estimating that
17.9 million lives are lost each year to CVD [1]. Although CVD rates have been decreasing
in Western Europe, they still remain high; the rates in 2019 with median (interquartile
range, IQR) values per 100,000 individuals were 469.0 (459.9–480.4), 5249 (5006–5391),
and 196.2 (183.3–228.8) for incidence, prevalence and age standardized mortality rate,
respectively [2].

Various risk factors for CVD, both modifiable and non-modifiable, have been identified
from prospective studies such as the Framingham Heart Study, the prospective cardio-
vascular Münster (PROCAM) study, the Systematic COronary Risk Evaluation (SCORE
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project) with SCORE2 and SCORE2-OP algorithms published recently and QRISK based on
the UK QRESEARCH database; these risk factors include age, male gender, elevated blood
pressure, diabetes, smoking, dyslipidaemia and others [3–8]. In the United Kingdom, the
National Institute for Health and Care Excellence (NICE) guidelines suggest that primary
care uses the QRISK risk calculator, an algorithm including a combination of traditional
risk factors (age, blood pressure, cholesterol etc.) and newer variables (family history, body
mass index, erectile dysfunction and ethnicity etc.) with treatment thresholds based on a
predicted absolute CVD risk [8].

The data for this present review originated from a 2020 narrative review through a
PubMed search for CVD risk algorithms and randomised controlled trials using LDL-C
reducing agents (all the statin trials had been included in the CTT collaboration) [9]. A
search (using PubMed) was conducted to identify any publications with CVD risk reduction
and randomised controlled trials (RCTs) as keywords. Papers that described randomised
controlled trials examining CVD risk reduction via non-LDL-C reducing agents were
selected. Any trial attributing the CVD risk reduction to LDL-C reduction was excluded.
Papers addressing RCTs that were considered to be of interest regarding mechanisms that
may contribute to residual risk (ResR) were selected and described in this review.

Absolute risk (AR) is the risk at a one very specific time point during follow-up (e.g.,
after 5 years of follow-up). Age is the most important risk factor of AR in every CVD
predictive algorithm [3–8].

The above-mentioned algorithms are not recommended in individuals at high risk of
CVD such as those with established CVD, peripheral vascular disease, familial hypercholes-
terolaemia (FH) and aortic aneurysm (secondary prevention) [9]. Heterozygous FH is an
inherited monogenic disease (prevalence ranging from 0.25–0.52%) [10], and without low
density lipoprotein cholesterol (LDL-C) lowering therapy, around 50% of men and 30% of
women are seen to develop coronary heart disease by the age of 60 years [11]. Hence, age
does not play a part in treatment decisions in these high-risk patients. There is some debate
whether CVD is best reduced with LDL-C reducing agents by using AR thresholds such as
the QRISK algorithms or life-time risk reduction, which suggests earlier lipid lowering to
prevent individuals attaining a high risk [12].

The aim of this brief review is to develop methods that can be used to communicate
CVD risk indices to patients. This would take into account AR, absolute risk reduction
(ARR), relative risk reduction (RRR) and finally ResR, as well as how these indices vary
with the age of the patient. Following this, we briefly review possible mechanisms which
may contribute to ResR.

2. Review of the Lipid Hypothesis

The LDL-C (or lipid) hypothesis is based on randomised controlled trials (RCTs)
demonstrating associations between LDL-C reduction with agents such as resins, statins,
ezetimibe and more recently Proprotein Convertase Subtilisin/Kexin Type-9 inhibitors
(PCSK9) and a decrease in CVD [9]. This review details all the RCTs that provided evi-
dence validating the lipid hypothesis and will not be repeated in this review. The Lipid
Research Clinics Coronary Primary Prevention Trial demonstrated a reduction of CVD
following LDL-C reduction with the resin, cholestyramine, pointing initially at the lipid
hypothesis [13]. Pivotal evidence for the lipid hypothesis came from the Scandinavian
Simvastatin Survival Study in 1994, which was subsequently confirmed by numerous RCTs
as seen in the Cholesterol Treatment Trialists’ (CTT) Collaboration [14]. It appeared that
each subsequent study showed benefit in lower-risk cohorts with varying characteristics.
The CTT collaboration included 5 trials (39,612 patients) comparing greater vs. lesser effica-
cious statins (either in type or dose) and 21 trials (129,526 patients) comparing statins with
placebo [14]. Both types of RCTs were combined and a similar relative risk reduction (RRR)
of 22% (rate ratio = 0.78) in CVD per 1.0 mmol/L LDL-C reduction was observed (rate ratio:
0.78, 95% CI: 0.76–0.80; p < 0.0001) [14]. RRR is the ratio of two absolute risks. Hence, a rate
ratio of 0.78 indicates that the incidence rate is reduced by 22% or also that the risk is re-
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duced by 22%. Further, non-statin trials with ezetimibe (SHARP, IMPROVE-IT) [15,16] and
Proprotein Convertase Subtilisin/Kexin Type-9 inhibitors (FOURIER, ODESSEY) [17,18],
lowering LDL-C via different mechanisms, also reduced CVD risk, with the decrease being
in keeping with the RRR observed in the CTT Collaboration [14]. It is important to note that
although statins have been seen to reduce CVD in both primary and secondary prevention,
rate ratios in statin trials are often lower in primary prevention trials than in secondary
prevention trials. However, this was not evident in the CTT Collaboration; rate ratios
(95% confidence intervals) were 0.79 (0.76–0.82), 0.81 (0.71–0.92) and 0.75 (0.69–0.82) in
individuals with coronary heart disease, vascular disease other than coronary heart disease
and no CVD, respectively [14].

Despite optimizing CVD risk management, a significant risk of CVD remains, i.e.,
ResR. Thus, it is essential to gain an understanding of factors associated with ResR to further
reduce CVD events. In this paper we examine the association between age and ResR.

3. Calculation of Residual Risk

We use the accrued evidence that led to the lipid hypothesis to calculate ResR. The CTT
collaboration, which is widely quoted, was a comprehensive review of the statin RCTs with
rate ratios of the subgroups (apart from age categories which is addressed in a subsequent
section) very similar to the overall rate ratio [14].

ResR can be defined as the difference between AR and absolute risk reduction (ARR)
following intervention. As stated above, the CTT collaboration suggests that a 1 mmol/L
decrease in LDL-C is associated with a near 22% relative reduction (rate ratio = 0.78) in
CVD risk [14]. Thus, ResR can be estimated from the following equations.

RRR = 1 − 0.78α (1)

where α is the LDL-C reduction. Figure 1 illustrates the percentage RRR that would be
expected using the CTT collaborative rate ratio of 0.78 vs. α (continuous variable) using
the above-mentioned equation.

ARR = AR ∗ RRR (2)

ResR = AR − ARR= AR − AR ∗ RRR = AR ∗ (1 − RRR)= AR ∗ 0.78α (3)
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4. Association between Age and Absolute Risk

As seen above, ResR post-LDL-C reduction is dependent on AR and LDL-C reduction
as seen in Equation (3). It appears clear that any factor will be expected to influence
ResR if it is associated with AR. All the risk algorithms calculating AR include age as a
predictive variable [3–8]. The Whickham Study comprised of 2471 individuals recruited in
the Northeast of England between 1972 and 1974 [19]. Age was found to be significantly
associated with AR (odds ratio: 1.02, 95% confidence intervals: 1.01–1.04) as was previously
demonstrated by analysing the entire Whickham study cohort using a logistic regression
model [9]. Age remained significant even when all the other significant risk factors (sex,
smoking, systolic blood pressure, diabetes and family history were included in a single
logistic regression model). Known measurable CVD risk factors (Table 1) were documented
at recruitment and coronary heart disease (CHD) status was recorded as an outcome
at the end of the follow-up period of 20 years. Thus, statin therapy was not routinely
available (pre 4S [20]) during the follow-up period [19]. In 2000, using the data from the
Whickham Study, we confirmed that the AR of CHD in individuals where the Framingham
algorithm was applicable (1700 men and women without CVD aged 35–70 years) was
only acceptable when the annual AR (observed event rate) for CHD was >1.5% [19].
However, when the AR was <1.5%, the Framingham algorithm underestimated CHD
risk [19]. Our results were cited in the 2014 National Institute for Health and Care Excellence
(NICE) guidelines; CG 181 (Figure 7 of the document titled Lipid Modification) (https:
//www.ncbi.nlm.nih.gov/books/NBK248067/pdf/Bookshelf_NBK248067.pdf (accessed
on 1 April 2023)). Baseline age was seen to be significantly associated with CHD during the
follow-up period of 20 years [9,19].

Table 1. A brief description of the principal studies described in this review.

Evidence Main Finding Reference

LDL-C
reduction

Review of RCTs by Ramachandran et al. Validity of the LDL-C (lipid) hypothesis [9]

CTT Collaboration (review of 26 RCTs
using statins)

Establishing a relative CVD risk reduction of 22%
per mmol/L decrease in LDL-C [14]

RCTs using Ezetimibe

CVD decrease in line with the CTT Collaboration

[15,16]

RCTs using Proprotein Convertase
Subtilisin/Kexin Type-9 inhibitors [17,18]

Residual Risk Rate ratio of 0.78 from the CTT Collaboration Calculation of RRR, ARR and ResR [14]

Age

Framingham Heart Study

Age is a significant risk factor in CVD
predictive algorithms

[3,4]

PROCAM Study [5]

SCORE Project [6,7]

QRISK [8]

Whickham Study [19]

LDL-C
exposure Analysis of trials by Ference et al. Cumulative LDL-C exposure is related to CVD [21]

Inflammatory
Risk

JUPITER RCT Decrease in high sensitivity C-reactive protein
was associated with lower CVD

[22]

PROVE-IT TIMI 22 RCT [23]

CANTOS RCT Moderate dose (not lower or higher) of
canakinumab was associated with lower CVD [24]

https://www.ncbi.nlm.nih.gov/books/NBK248067/pdf/Bookshelf_NBK248067.pdf
https://www.ncbi.nlm.nih.gov/books/NBK248067/pdf/Bookshelf_NBK248067.pdf
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Table 1. Cont.

Evidence Main Finding Reference

Thrombotic
Risk

Antithrombotic Trialists’ Collaboration RCT Aspirin reduced CVD [25]

PEGASUS-TIMI 54 RCT Combination of spirin and ticagrelor therapy
reduced CVD

[26]

THEMIS-PCT RCT [27]

ATLAS ACS 2-TIMI 51 RCT Combination of rivaroxaban and antiplatelet
therapy reduced CVD

[28]

COMPASS RCT [29]

Metabolic Risk

INTERHEART Study High lipoprotein (a) levels associated with
increased CVD [30]

REDUCE-IT RCT Eicosapentanoic acid associated with lowering
of CVD [31]

Dallas Heart Study HDL-C levels were not associated with CVD [32]

AIM-HIGH RCT HDL-C increase following niacin treatment was
not associated with CVD decrease [33]

ILLUMINATE RCT HDL-C increase following torcetrapib treatment
was not associated with CVD decrease [34]

Helsinki Heart Study
Gemfibrozil treatment was associated with

lower CVD

[35]

Veterans Affairs High-Density Cholesterol
Intervention Trial [36]

Bezafibrate Infarction Prevention study Bezafibrate treatment was not associated with
lower CVD [37]

Fenofibrate Intervention and Event Lowering
in Diabetes Fenofibrate treatment was not associated with

lower CVD

[38]

Action to Control Cardiovascular Risk in
Diabetes—LIPID [39]

Analysis by Bruckert et al. of fibrate RCTs CVD was significantly lower in patients with
high triglycerides and low HDL-C [40]

EMPA-REG OUTCOME RCT Empagliflozin treatment reduced CVD [41]

Endothelial
Dysfunction

HOPE RCT

Antihypertensives reduced CVD

[42,43]

CAPP RCT [44]

ABCD RCT [45]

König et al. case-control study Lower peak systolic velocity was associated
with CHD [46]

5. Association between Age and Residual Risk Seen in RCTs Using LDL-C Reducing
Agents—Trials Included in the CTT Collaboration Stratified by Age

The Whickham Study showed that the probability of CHD over 20 years (AR over
20 years) was positively associated with age [9,19]. Equation (3) states that ResR is positively
associated with AR, and thus we can infer that ResR is also positively associated with
age. Hence, the older the individual, the greater the ResR. Subgroup analyses of the
CTT collaboration by age showed rate ratios (95% confidence intervals) of 0.78 (0.75–0.82),
0.78 (0.74–0.83) and 0.84 (0.73–0.97) for ≤65, >65 to ≤75 and >75 years, respectively [14].
Hence, it appears that in individuals aged > 75 years, in addition to an increasing AR, the
RRR would be lower in view of the relative risk of 0.84. This is consistent with the view
that the effect of exposure for several decades cannot be simply undone by a few years
of cholesterol lowering, and this combination would exaggerate the increase in ResR in
older patients.
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6. Review of Atherogenesis and Cumulative LDL-C Exposure

Ference et al. in 2018 carried out research on the cumulative effect of LDL-C on CVD
and the timing of optimizing LDL-C levels [21]. Their paper outlined a cumulative LDL-C
exposure threshold that had to be breached for the risk of myocardial infarction to become
reality (5000 mg years) and another cumulative LDL-C threshold that was associated with
the mean age of developing a myocardial infarction (8000 mg years). They showed that
the risk of myocardial infarction increases after the individual breaches the first threshold
showing an exponential pattern (linear when the myocardial risk is presented on a log-
scale). This scheme suggests that lower LDL-C (either untreated or following LDL-C
lowering therapy) would decrease the time related LDL-C exposure, thus reducing the
AR of CVD and delay an individual breaching both thresholds. It would be interesting to
ascertain whether the thresholds described by Ference et al. would be altered by other risk
factors of CVD, e.g., exposure to diabetes, hypertension, smoking, etc. [21]. Nonetheless,
it is clear that earlier treatment with LDL-C-reducing therapies (resins, statins, ezetimibe
PCSK9 inhibitors, etc.) would reduce ResR by virtue of reducing AR of CVD.

7. Possible Reasons That the Rate Ratio of 0.78 Seen in the CTT Collaboration Is
Preserved in the Subgroups

It is interesting that LDL-C reduction was significant in all the subgroups in the CTT
collaboration with comparable rate ratios and overlapping confidence intervals [14]. This
raises the possibility that LDL-C exerts a crucial effect on atherogenesis regardless of the
presence or absence of other proven CVD risk factors. For example, current smokers
(rate ratio: 0.78, 95% confidence intervals: 0.75–0.82) and non-smokers (rate ratio: 0.78,
95% confidence intervals: 0.73–0.84) had identical rate ratios. This is reassuring as lipid-
lowering agents such as statins, ezetimibe, bempedoic acid, PCSK9 inhibitors, inclisiran
and resins, either used alone or in combination, offer great efficacy. However, as seen in
Figure 1, considerable ResR remains, perhaps owing to other factors, and is also crucial
in atherogenesis.

In the above sections, despite demonstrable benefit following LDL-C reduction, there
remains significant ResR of CVD. Using published data, we derived mathematical al-
gorithms that would enable an estimation of the RRR, which can be useful to patients
considering lipid lowering therapy. Our modelling also shows that ResR is dependent on
AR as well as RRR. The rate ratios seen in the CTT collaboration [14] when the cohort was
stratified by age hint that ResR may increase in patients > 75 years of age. This review has
the potential to help clinicians identify and treat risk factors that may be contributing to the
ResR of CVD. In the next section, we will highlight some of these factors.

8. Review of Additional Non-Traditional Risk Factors That May Contribute to
Residual Risk

Dhindsa et al. in 2020 neatly categorised some of the pathways with trial evidence
that could be contributing to ResR [47]. These included inflammatory, thrombotic and
metabolic risks; to this aetiology-based stratification we will add endothelial dysfunction.

a. Potential Inflammatory Risk

Statins may reduce inflammation (a pleiotropic effect), and a decrease in high sen-
sitivity C-reactive protein was also observed in the JUPITER trial, related to reduced
CVD [22]. These findings add some credence to the proposition that inflammatory pro-
cesses contribute to atherogenesis. However, the association between a reduction in CVD
and high sensitivity C-reactive protein was not independent of a decrease in LDL-C [22].
The Pravastatin or Atorvastatin Evaluation and Infection Therapy-Thrombolysis in My-
ocardial Infarction 22 (PROVE-IT TIMI 22) trial showed that individuals achieving a high
sensitivity C-reactive protein < 2 mg/L experienced reduced CVD [23]. The Canakinumab
Antiinflammatory Thrombosis Outcome Study (CANTOS) trial studied the impact of 50 mg,
150 mg and 300 mg of canakinumab (which importantly had no effect on LDL-C levels)
on CVD risk in patients with a prior myocardial infarction and high sensitivity C-reactive
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protein values ≥ 2 mg/L [24]. Inexplicably, CVD risk reduction was only significant in
patients on 150 mg of canakinumab (as opposed to 50 mg or 300 mg). Further, research is
required to move the inflammatory risk pathway from an observed association to causality.

b. Potential Thrombotic Risk

There is also some confusion as to the contribution of thrombotic risk to ResR as a
benefit following antiplatelet therapy appears restricted to individuals with established
CVD as seen in the analyses of 17,999 individuals partaking in 16 RCTs by the Antithrom-
botic Trialists’ Collaboration; importantly, aspirin was found to reduce serious vascular
events [25]. Interestingly, RCTs such as the Prevention of Cardiovascular Events in Pa-
tients with Prior Heart Attack Using Ticagrelor Compared to Placebo on a Background of
Aspirin–Thrombolysis In Myocardial Infarction 54 (PEGASUS-TIMI 54) and The Effect of
Ticagrelor on Health Outcomes in Diabetes Mellitus Patients Intervention (THEMIS-PCI)
studies investigating combination treatment of dual antiplatelet treatment of aspirin and
ticagrelor (a platelet P2Y12 inhibitor) suggested significant reduction in major adverse
cardiac events [26,27]. However, the risk of bleeding with dual antiplatelet therapy was
seen to increase.

The combination of the low dose anticoagulant rivaroxaban and antiplatelet therapy
was investigated in the Anti-Xa Therapy to Lower Cardiovascular Events in Addition to
Standard Therapy in Subjects with Acute Coronary Syndrome–Thrombolysis in Myocardial
Infarction Trial 51 (ATLAS ACS 2-TIMI 51) and Cardiovascular Outcomes for People Using
Anticoagulation Strategies (COMPASS) trials; the combination treatment was associated
with reduced CVD [28,29]. Once again, there was an increased incidence of bleeding.

c. Potential Metabolic Risk

There are many factors that could contribute to the metabolic risk that is not ad-
dressed by LDL-C reduction. Elevated lipoprotein (a), a particle similar to low den-
sity lipoprotein, appears to be a strong predictor of CVD [30]. It is essential to estab-
lish whether lipoprotein (a) is just a predictive marker of CVD or actively contributes
to atherogenesis. The role of triglycerides and the cholesterol enriched remnant parti-
cles of very low-density lipoprotein and chylomicrons are of importance, especially as
eicosapentaenoic acid has been recommended in the United Kingdom by NICE (https:
//www.nice.org.uk/guidance/TA805/chapter/1-Recommendations (accessed on 1 April
2023)). The Reduction of Cardiovascular Events with Icosapent Ethyl–Intervention Trial
(REDUCE-IT) showed that eicosapentaenoic acid was associated with lowering triglyc-
erides, CVD and cardiovascular deaths in individuals > 45 years of age with established
CVD or individuals > 50 years of age with diabetes and one or more additional CVD risk fac-
tor(s) and who had elevated fasting triglyceride levels of 135–499 mg/dL (1.5–5.6 mmol/L),
LDL-C at 41–100 mg/dL (1.06–2.6 mmol/L) whilst being on a stable dose of a statin for
≥4 months [31]. It must be stated that the impact of icosapent ethyl on ischemic car-
diovascular disease is not predominantly mediated by a reduction of apo B-containing
lipoproteins but rather is perhaps multifactorial and not only via a reduction of apo B-
containing lipoproteins.

Although the association between HDL-C levels and atherogenesis has been evident
for a long period, there appears to be some confusion, and it will be described briefly. The
impact of HDL on ischemic cardiovascular disease is essentially unproven. The matter
is complex because low HDL is often a marker of delayed metabolism of triglyceride-
rich lipoproteins and of inflammation. The Framingham Heart Study demonstrated an
inverse relationship between HDL-C and CVD, but this association was not evident in
the Dallas Heart Study where cholesterol efflux as opposed to HDL-C was associated
with CVD [4,32]. Further, RCTs with niacin [33] and torcetrapib [34] both elevated HDL-
C but failed to decrease CVD. RCTs investigating fibrates, other than gemfibrozil, have
presented non-significant CVD outcomes [40,48]. Whilst the Helsinki Heart Study [35]
and the Veterans Affairs High-Density Cholesterol Intervention Trial [36], both using
gemfibrozil, reduced CVD, this was not observed in the three subsequent studies not using

https://www.nice.org.uk/guidance/TA805/chapter/1-Recommendations
https://www.nice.org.uk/guidance/TA805/chapter/1-Recommendations
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gemfibrozil (Bezafibrate Infarction Prevention study [37], Fenofibrate Intervention and
Event Lowering in Diabetes [38] and Action to Control Cardiovascular Risk in Diabetes–
LIPID [39]). However, in a subgroup of individuals with dyslipidaemia characteristic of
the metabolic syndrome, lower CVD appeared associated with fibrate therapy. Bruckert
et al. showed a statistically significant reduction of 28% in CVD in individuals with HDL-C
and triglyceride values closest to those of the metabolic syndrome (HDL-C < 0.91 mmol/L
and triglycerides > 2.2 mmol/L in the above trials [40]. In contrast, the complementary
group showed only a non-significant 6% risk reduction. Further, a meta-analysis of 18 RCTs
with fibrate therapy by Jun et al. demonstrated significant reduction (rate ratio: 0.87, 95%
confidence intervals: 0.81–0.93) of CVD [49].

Two of the newer classes of drugs, glucagon like peptide 1 receptor agonists (GLP-
1RA) and sodium-glucose cotransporter 2 (SGLT2) inhibitors, used in type 2 diabetes
treatment, have been seen to reduce ResR [41,50–54]. Interestingly in the Empagliflozin,
Cardiovascular Outcomes, and Mortality in Type 2 Diabetes (EMPAREG-OUTCOME) trial
a high proportion of patients were on antihypertensives, statins and aspirin, despite that
ResR was high in the placebo group [41]. Further study of potential anti-atherogenic
mechanisms of these 2 drug classes must be conducted to develop further strategies that
lower ResR.

d. Potential Risk Associated with Endothelial Dysfunction

Another interesting factor that could potentially contribute to atherogenesis is endothe-
lial dysfunction [55]. Atherogenesis is associated with vessel wall injury and other local
and systemic risk factors and appears to be related to reduced nitric oxide synthase syn-
thesis, which leads to altered arterial wall shear stress, vasodilation and cell repair [56,57].
Traditional CVD risk predictors such as diabetes, dyslipidaemia, smoking and hyperten-
sion lead to endothelial cell dysfunction [58]. The Heart Outcomes Prevention Evaluation
(HOPE) [42,43], Captopril Prevention Project (CAPP) [44] and Appropriate Blood Pressure
Control in Diabetes (ABCD) [45] RCTs suggested that antihypertensives reduced CVD, with
this decrease often exceeding the risk reduction that could be attributed to the lowering
of blood pressure. Further, longitudinal cohort studies have demonstrated that Phospho-
diesterase type 5-inhibitors reduce risk of both myocardial infarction [59] and all-cause
mortality [60,61].

In view of this, our group compared differences in blood flow data and computational
flow dynamics in 27 subjects with established CHD and 30 individuals without any symp-
toms of CHD [46]. Our analyses hinted that peak systolic velocity may be a predictive
factor of CHD; despite the modest cohort numbers, a significant difference was observed
(patients without CHD, mean (SD): 62.8 (16.1) cm/s, patients with CHD, mean (SD): 53.6
(17.3) cm/s, p = 0.042). Further, factors such as wall shear stress were associated with
peak systolic velocity [61]. We speculated that peak systolic velocity could be a composite
surrogate factor as it may be associated with many of the risk factors altering atherogenicity
of the vessel wall.

The impact of all these potential risk factors may be additive and cumulative and thus
age related. The combination of these and other undetermined risk mechanisms associated
with age may lead to increased AR in older individuals and, as shown above, higher ResR
as well.

9. Discussion

All CVD risk algorithms have age as a significant risk factor. The various RCTs have
shown ResR to be significant despite significantly lowering LDL-C. We have explored the
relationship between RRR, ARR, AR and ResR using mathematical equations and have
demonstrated that ResR was a function of AR and LDL-C reduction. We also recognise that
the performance of risk prediction models entails discrimination and calibration; hence,
all models are limited. Further, we are aware that whilst interventions to some extent,
delay events and deaths, they can never prevent death itself. We have also identified
several possible non-traditional risk factors that may contribute to ResR and discussed
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RCTs providing some evidence for future treatments. However, no clear consensus exists
at this moment for these interventions to be included in guidelines. Data from further
research will determine whether therapies addressing non-traditional risk factors will be
used in addition to LDL-C lowering agents. Figure 2 outlines a practical proposal for the
discussion of CVD risk, risk reduction, ResR and possible causes between the health care
professional and the patient.
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Figure 2. A proposal for the discussion of CVD risk, risk reduction, ResR and possible causes between
the health care professional and the patient.

There is some evidence that the lowering of apo B (found in LDL, intermediate
density lipoprotein (IDL) and very low-density lipoprotein (VLDL) particles) may be better
than LDL-C in risk assessment models. In 2019 the European Society of Cardiology and
the European Atherosclerosis Society, using data from prospective observational studies,
Mendelian randomisation studies and statin trials meta-analyses, suggested that apo B
is a more predictive marker than LDL-C of CVD risk and treatment efficacy to reduce
cardiovascular risk [62]. It is perhaps even better in individuals with hypertriglyceridaemia,
obesity, diabetes and the metabolic syndrome where high levels of VLDL and IDL particles
may also contribute to CVD risk in addition to LDL particles [63]. Prior to routine clinical
use and inclusion in guidelines, standardisation of apo B assays is essential. Currently, apo
B assays are both accurate and precise over wide concentration levels and take into account
LDL and the other atherogenic lipoprotein particles [63]. There will be cost implications for
healthcare systems to switch over from LDL-C to apo B as a risk predictor. There would
have to be more research to establish rate ratios per unit reduction in apo B such as was
evident in the CTT collaboration [14]. Thus, it is our clinical practice to measure apo B in
patients with high triglyceride levels to provide additional information to that offered by
LDL-C. However, we are aware that Equations (1)–(3) can be adapted easily from LDL-C to
apo B reduction with appropriate rate ratios.

Heterogeneity in presentation and outcomes following treatment is common in pa-
tients with chronic diseases [64]. Regression of atheroma may be at odds with ResR
calculation, which can never reach 0% as evident from Equation (3). The ASTEROID study
using rosuvastatin 40 mg/d for 24 months achieved an average LDL-C of 1.57 mmol/L
(60.8 mg/dL) and resulted in significant regression of atherosclerosis in many individuals
for prespecified intravascular ultrasound (IVUS) measures of atheroma [65]. Similar results
were observed in the SATURN study in individuals on atorvastatin 80 mg and rosuvas-
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tatin 40 mg after 104-week s of treatment [66]. Mean LDL-C values at study end were
1.82 mmol/L (70.2 mg/dL) and 1.62 mmol/L (62.6 mg/dL) in the atorvastatin and rosuvas-
tatin study arms respectively. Regression was observed in percent atheroma volume (63.2%
and 68.5% of patients on atorvastatin and rosuvastatin respectively) and total atheroma
volume (64.7% and 71.3% of patients on atorvastatin and rosuvastatin respectively) on
IVUS [66]. It must be emphasized that the ASTEROID and SATURN studies used IVUS
measurements as outcomes and not hard endpoints as in the CTT Collaboration. Thus, it
is essential that association between atheroma plaque progression/regression is studied
in detail as suggested by Dawson et al. in 2022 [67]. They suggested that in the event of
outcome data being associated with plaque regression, monitoring coronary plaque may
replace surrogate markers like CVD risk algorithms and lipid/lipoprotein levels.

As mentioned previously, we have shown lower peak systolic velocity via non-invasive
portable ultrasound equipment was associated with coronary artery disease [46]. It is
also important that associations between markers such as peak systolic velocity, IVUS
parameters and major adverse cardiovascular events are established before they can be
used to address outcome heterogeneity following lipid lowering and other CVD risk
reduction therapies. It is only at that point that markers such as peak systolic velocity can
be offered routinely. All the main studies covered in this review are stratified by topic and
summarised in Table 1.

10. Conclusions

As ResR is a function of AR and LDL-C reduction, we can conclude that in addition to
an increasing AR, the RRR would be lower in view of a higher relative risk in individuals
aged > 75 years. This supports the adopted understanding that the effect of exposure for
several decades cannot be simply undone by a few years of cholesterol lowering treatment.
This, together with an exaggerated increase in ResR in older patients, underlines the need
for early intervention, be that lifestyle or therapy. The included Figure 1 demonstrating
ResR could be used by healthcare professionals to discuss CHD risk and the benefits of
lifetime risk reduction as opposed to ARR. Whilst we discussed the non-LDL-C risk factors
such as inflammation, thrombosis, metabolic and endothelial status, and the potential
cardiovascular benefits of improving these with therapeutic agents, future efforts should be
directed towards aiding clinicians to identify and treat risk factors that may be contributing
to the ResR of CVD. The novel elements of our work used mathematical modelling to
demonstrate to clinicians and patients the ResR post LDL-C reduction to facilitate recog-
nition of the potential factors associated with ResR to be addressed. Our system can be
extended with the addition of future models estimating non-LDL-C based relative risk
reduction. We hope that this paper may help professionals to further understand ResR and
also emphasise the importance of non-lipid lowering agents such as eicosapentaenoic acid,
SGLT2 inhibitors and GLP1RA that are currently available in the United Kingdom.
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