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Abstract: Although the rise in antimicrobial resistance has been attributed mainly to the extensive
and indiscriminate use of antimicrobials such as antibiotics and biocides in humans, animals and on
plants, studies investigating the impact of this use on water environments in Africa are minimal. This
study quantified selected antibiotics, heavy metals, and biocides in an urban wastewater treatment
plant (WWTP) and its receiving water body in Kwazulu-Natal, South Africa, in the context of the
predicted no-effect concentrations (PNEC) for the selection of antimicrobial resistance (AMR). Water
samples were collected from the WWTP effluent discharge point and upstream and downstream
from this point. Heavy metals were identified and quantified using the United States Environmental
Protection Agency (US EPA) method 200.7. Biocides and antibiotic residues were determined using
validated ultra-high-performance liquid chromatography with tandem mass spectrometry-based
methods. The overall highest mean antibiotic, metal and biocide concentrations were observed
for sulfamethoxazole (286.180 µg/L), neodymium (Nd; 27.734 mg/L), and benzalkonium chloride
(BAC 12) (7.805 µg/L), respectively. In decreasing order per sampling site, the pollutant concentra-
tions were effluent > downstream > upstream. This implies that the WWTP significantly contributed
to the observed pollution in the receiving water. Furthermore, most of the pollutants measured
recorded values exceeding the recommended predicted no-effect concentration (PNEC) values, sug-
gesting that the microbes in such water environments were at risk of developing resistance due to
the selection pressure exerted by these antimicrobials. Further studies are required to establish such
a relationship.

Keywords: environmental stressors; antimicrobial resistance; selective pressure; biocides; heavy
metals; antibiotic residues; aquatic environment; PNEC

1. Introduction

The current high use of antimicrobials in humans, animals and plants has spilt over
into the environment in the form of antimicrobial residues with the subsequent selection
pressure for the emergence and proliferation of drug-resistant microorganisms and an-
timicrobial resistance genes (ARGs) [1,2]. Furthermore, emissions from industrial-scale
production of antimicrobials expose environmental bacterial communities to unprecedented
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selection pressures where concentrations exceed the predicted no-effect concentrations
PNEC), resulting in the rapid development of antimicrobial resistance (AMR) [3].

Antimicrobials such as antibiotics, heavy metals and biocides are introduced into
the environment via discharges from pharmaceutical industries, hospital effluents, di-
rect excretion from humans and livestock, and runoff from farms [4]. Antibiotics that
have been reported in wastewater and surface water bodies include sulfamethoxazole
(SMX), tetracycline (TET), erythromycin (ERY), ciprofloxacin (CIP), amoxicillin (AMX),
and trimethoprim (TMP) [4–9]. For example, in hospital wastewater in Ghana, the most
detected antibiotics were CIP (15 µg/L) and SMX (7.2 µg/L) [10], while in Tunisia, over
1100 µg/L of erythromycin was detected [11].

Heavy metals in the environment could originate from geological sources like weath-
ering of rocks and soil deposition of particulates. However, elevated concentrations usually
come from anthropogenic sources such as industry, mining, and domestic discharges. Most
of these heavy metals end up in surface waters (rivers and estuaries) or sediments, creating
environmental reservoirs of these pollutants [12]. Many studies have reported varying
concentrations of heavy metals in aquatic systems in different parts of Africa. For example,
copper was detected at concentrations reaching 1070 µg/L in river water in Ethiopia [13].
Similarly, Diop et al. (2015) investigated the presence of heavy metals in coastal and estuary
sediments in Dakar, Senegal, and recorded up to 1308 mg/kg of lead in sediments [14].
Furthermore, in South Africa, a study found aluminium concentrations ranging between
1.01–9.644 mg/L (water) and 4296–5557 mg/kg (sediments) in the Mvudi River [15], while
another study in a wastewater treatment plant recorded high values of iron (69.789 mg/kg
in sludge) and copper (6.588 mg/L in wastewater), exceeding local and international
standards [16].

The Biocide Product Directive 98/8/EC of the European Commission describes bio-
cides as “active substances or preparations containing one or more active substances used
directly or in forms that can be applied or supplied to destroy, render harmless, prevent
the action or otherwise exert a controlling effect on harmful organisms, by either chemi-
cal or biological means” [17–19]. While some biocides like hexachlorophene that causes
skin disorder have been prohibited, others like triclosan are still widely used in diverse
consumer and healthcare products, such as soaps, scrubs, gels, toothpaste, deodorants,
hospital, and disinfectants. Similarly, benzalkonium chloride (BAC), a quaternary am-
monium compound (QAC), is used extensively as an active ingredient in preservatives,
medical disinfectants and ophthalmic systems [20–25]. These substances have also been
reported in the environment. Studies have detected various biocides in varying concen-
trations in different parts of the world, ranging from 50 ng/L in Germany to 13 µg/L in
South Africa [23,26–32].

Concentration limits have been set for these substances in different environments by
governments and regulatory agencies, and their concentrations are expected to be below
these acceptable limits. These limits are mostly set as predicted no-effect concentration
(PNEC), which are levels presumed to exert no selection pressure on bacteria from the sub-
stances [1,33]. However, these substances are frequently discharged into the environment
at concentrations greater than these limits, especially in most low- and middle-income
countries, where treatment facilities function sub-optimally or are completely absent. The
harmful effects and the potential to trigger antimicrobial resistance warrant the constant
monitoring of these pollutants, especially in aquatic environments. Furthermore, studies
addressing this topic are limited in Africa. With compromised sanitation facilities, these
chemicals could easily find their way into different environments, including water bodies
used by communities in resource-poor settings without access to potable water. Therefore,
this study evaluated the presence and concentrations of selected antibiotics, heavy metals,
and biocides in a WWTP’s effluent and its receiving water body in KwaZulu-Natal, South
Africa. KwaZulu-Natal is the second largest province in South Africa, with a population
of close to nine million inhabitants, living in a mix of rural, periurban and highly indus-
trialised areas. Thus, the province represents the typical demographics of the country.
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In addition, the observed concentrations were compared to existing limits to infer their
potential to exert selection pressure on environmental bacteria, leading to AMR.

2. Results
2.1. Distribution of Heavy Metals

Thirty-eight metals were detected across all the samples (Figure 1). Of these, the
highest mean metal concentration was observed for Nd (27.734 mg/L), while the least was
for Fe (0.001 mg/L) (Table S1; Supplementary Material). Summing up the metal concen-
trations at each of the three sampling points over the entire study period, there was an
overall higher combined metal concentration in the effluent samples (178,473 mg/L) than
in the downstream (105,354 mg/L) and upstream (35,071 mg/L) samples. However, only
Ca (p = 0.038), Mg (p = 0.002), Ni (p = 0.025), Os (p = 0.036), Si (p = 0.009), Sr (p = 0.022), and
Ti (p = 0.017) were statistically significantly different across the sites (Table S2; Supplemen-
tary Materials).
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Figure 1. Heavy metal distribution across sampling points.

2.2. Distribution of Antibiotics

A total of 13 antibiotics were detected across the samples, with sulfamethoxazole
being the most detected (286.180 µg/L) and penicillin being the lowest (2.2 µg/L) (Table 1;
Table S3; Supplementary Materials).

Overall, the highest total antibiotics concentration was observed in the WWTP ef-
fluent samples (1335.400 µg/L), followed by downstream (846.830 µg/L) and upstream
(724.120 µg/L) (Table S3, Supplementary Materials), with the difference being statistically
significant for all the antibiotics identified except for Sulfamonomethoxine (p = 0.131) and
penicillin (p = 0.131) (Table S4; Supplementary Materials). Some antibiotics, like tetracycline
and sulfapyridine, were only detected in effluent and downstream samples.

2.3. Distribution of Biocides

Benzalkonium chloride (BAC) 12 had the highest mean concentration (7.805 µg/L),
while the least detected was BenthEZ (0.035 µg/L) (Table S5; Supplementary Materials).
However, the single highest concentration (29.58 µg/L) was recorded in the upstream
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sample in the afternoon sampling period. Additionally, BAC14 was only detected in the
downstream samples, while BAC14 and DDAC were not detected in the upstream samples.

Table 1. Antibiotic concentrations across sampling sites in the study.

ANTIBIOTICS PNEC (Resistance Selection) #
Mean Environmental Concentrations (µg/L)

Upstream Effluent Downstream

Sulfadimidine NA 0.95 3.92 1.01
Sulfamethazine NA 0.79 1.74 0.73

Sulfamonomethoxine NA 0.00 0.00 3.25
Sulfamethoxazole * 16 11.63 144.41 32.33

Sulfapyridine NA 0.00 5.17 0.32
Oxytetracycline * 0.5 18.79 18.70 18.71

Tetracycline * 1 0.00 10.05 19.73
Doxycycline * 2 5.75 6.68 5.60
Lasalocid A NA 3.42 1.69 3.34
Monensin NA 0.80 1.81 1.28

Lincomycin * 2 3.91 7.95 7.81
Penicillin NA 0.00 0.00 0.55

Amoxycillin * 0.25 62.31 59.73 52.45

Values below the limit of detection are represented as zero. NA represents antibiotics for which PNEC values are
unavailable. * Antibiotics with at least one mean value above the PNEC recommended limit. # [1].

3. Discussion

This study quantified selected antibiotics, heavy metals, and biocides in an urban
WWTP and its receiving water body in Kwazulu-Natal, South Africa, comparing them to
the PNEC for the selection of AMR. Heavy metals were identified and quantified using the
US EPA method 200.7. Biocides and antibiotic residues were determined using validated
ultra-high-performance liquid chromatography with tandem mass spectrometry-based
methods. The highest antibiotic, metal and biocide concentrations were observed for
sulfamethoxazole, neodymium, and BAC 12, respectively. In decreasing order per sampling
site, the pollutant concentrations were effluent > downstream > upstream. Most of the
pollutants measured recorded values exceeding the recommended PNEC values.

3.1. Heavy Metals

A total of 69 heavy metals were screened, of which 26 heavy metals were detected,
with seven having concentrations above the recommended World Health Organization
(WHO) (WHO 2008) and South African National Standard (SANS) [34] limits. Although
Al (3.43 mg/L) and Zn (0.078 mg/L) were higher than the SANS limits (Al—0.3 mg/L;
Zn—0.005 mg/L), other heavy metals (As, Ag, Au, Ba, Be, Cd, Co, Cr, Hg, Mo, Ni, Pb, Sb, Se,
U, V) were detected at very low concentrations (Table S2). Previous South African studies
had reported low heavy metal concentrations in some South African aquatic ecosystems and
suggested that the studied water bodies were not heavily impacted, especially by industries
and metal works [15,35]. However, for some heavy metals, like Cd, Pb, Al, Fe, and As, the
concentrations reported were lower than those reported in previous studies [36,37]. The
differences could be due to the anthropogenic activities surrounding the various water
bodies in the different studies. High Cd and As environmental concentrations, for example,
have been associated with the heavy use of agricultural chemicals like in fish farming [38],
which were not practised in our study area. Additionally, this study only focused on surface
water, while Letsoalo et al. [37], for example, analysed both surface and sediment samples
(sediments can absorb more heavy metals), which could have increased their chances of
isolating higher metal concentrations.

Comparing the different sampling sites in this study revealed that the WWTP effluent
samples had a statistically significantly higher heavy metal concentration than the down-
stream and upstream samples. This could be associated with reduced treatment plant
efficiency in removing inorganic pollutants. Similar findings had previously been reported
in South Africa. For example, Agoro et al. [16], in a study conducted on the evaluation of
heavy metals in wastewater and sludge in selected WWTPs in the Eastern Cape Province,
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South Africa, reported that the removal efficiency for heavy metals like Cu and Zn was very
low in all studied WWTPs, resulting in poor wastewater effluent quality regarding heavy
metals. The authors concluded that this resulted in contamination of the downstream
sites and suggested that the effluent was unsuitable for irrigation. The downstream site
in this study also had a higher metal concentration than the upstream site, indicating that
the WWTP significantly influenced the presence of pollutants in the receiving water body.
Although in our study, we observed low concentrations of most heavy metals downstream
compared to the SANS values, several authors have indicated the ability of sub-inhibitory
concentrations of heavy metals to select for resistance genes in microbes and that they
could still be toxic to humans and other aquatic organisms [16,37,39]

Heavy metals, even at low concentrations, can alter bacterial efflux pump system
expression, promoting cross-resistance to antibiotics and contributing to the development
of multidrug-resistant bacterial species [39]. For example, in a laboratory experiment to
determine the effect of sub-lethal concentrations of two heavy metals (Cu and Zn) on the
development of multiple antibiotic resistance in bacteria in liquid media, Xu et al. [39]
observed that exposure of E. coli to these heavy metals resulted in the upregulation of efflux
pump genes that also favoured antimicrobial resistance. Similarly, an earlier study on river
water exposed to nickel or cadmium stressors resulted in increased antibiotic-resistant
bacteria [40]. Li et al. [41] observed that sub-minimum inhibitory concentrations of silver
(Ag2+), zinc (Zn2+) and copper (Cu2+) increased the mutation rates of exposed microbes,
and the mutants exhibited significant resistance to multiple antibiotics. Furthermore,
Chen et al. [42] observed that the sul2 gene responsible for resistance to sulphonamides
co-occurred with metal resistance genes in their studied bacteria, suggesting a co-selection
of resistance. Based on the above studies, it could be speculated that the sub-lethal heavy
metal concentrations recorded in this study might present a potential for antimicrobial
resistance development in the studied environment. However, such speculations could be
verified through exposure experiments to the observed environmental concentrations to
ascertain if such exposure would induce phenotypic and genotypic AMR in environmental
bacteria within the studied aquatic ecosystem.

3.2. Antibiotics

Antibiotics are extensively used in human and animal medicine for treatment and
prophylaxis. However, approximately 75 to 95% of the antibiotics used in food animals
are excreted unmetabolised or partially metabolised [43]. As a result, these antibiotics and
their residues end up in waterways, mainly through WWTPs, and it has been shown that
WWTPs are hotspots for the dissemination of antibiotics into the environment, especially
aquatic ecosystems [44–46]. Due to their potential to adversely affect human, animal and
environmental health, international (PNEC) and local (SANS) guideline values have been
set for allowable environmental concentrations. In this study, a total of 24 antibiotics were
targeted, and we detected 14 across all samples, with the WWTP effluent samples recording
the overall highest total antibiotic concentration compared to the other sites. This confirms
the role of WWTPs as hotspots for the discharge of antibiotics into receiving water, as
previously mentioned. This argument is further strengthened by the higher antibiotic
concentrations observed in the downstream samples compared to the upstream samples
(Figure 2; Table S3).

Sulfapyridine is a sulphonamide with allergenic properties and a by-product of sul-
fasalazine. The use and manufacture of this drug ended in 1990, and it is a known
environmental pollutant [47]. However, the drug is still used in veterinary medicine
to treat diarrhoea in dogs [48]. Sulfapyridine is not registered for use in South Africa
(www.sahpra.org.za), indicating that its identification in this study, like in another recent
South African study, suggests possible illegal use within the country [49]. Sulfamethoxazole
is widely used in treating chronic bronchitis, urinary tract infections, enteric infections as
well as pneumocystis pneumonia (PCP), which is an opportunistic infection in immunocom-
promised people such as HIV patients; it is also used in livestock animals treatment [50].

www.sahpra.org.za


Antibiotics 2023, 12, 1166 6 of 14Antibiotics 2023, 12, x FOR PEER REVIEW 6 of 15 
 

 
Figure 2. The overall distribution of biocide across sampling sites. Error bars represent the standard 
error of the mean. 

Sulfapyridine is a sulphonamide with allergenic properties and a by-product of sul-
fasalazine. The use and manufacture of this drug ended in 1990, and it is a known envi-
ronmental pollutant [47]. However, the drug is still used in veterinary medicine to treat 
diarrhoea in dogs [48]. Sulfapyridine is not registered for use in South Africa (www.sa-
hpra.org.za), indicating that its identification in this study, like in another recent South 
African study, suggests possible illegal use within the country [49]. Sulfamethoxazole is 
widely used in treating chronic bronchitis, urinary tract infections, enteric infections as 
well as pneumocystis pneumonia (PCP), which is an opportunistic infection in immuno-
compromised people such as HIV patients; it is also used in livestock animals treatment 
[50]. 

In reviews conducted on antibiotics in African waters [7,50,51], it was reported that 
sulfamethoxazole was the most detected drug, as was the case in this study. This can be 
explained by the fact that South Africa has a high HIV prevalence rate, estimated at over 
13%, translating to over 8 million people living with the infection [52], thus the extensive 
use of the drug within the country for PCP prophylaxis. 

Most of the antibiotic concentrations detected in our study were comparable to those 
detected across Africa [9,50,53–56]. However, other antibiotics like tetracycline, doxycy-
cline, amoxicillin, and lincomycin were detected at concentrations higher than those re-
ported in other African countries [7,57,58]. Most importantly, some of these concentrations 
were higher than the recommended PNEC values, as observed for sulfamethoxazole tet-
racycline, oxytetracycline, lincomycin, and amoxicillin (Table 1). These high values indi-
cate that the water environment may facilitate the selection of antimicrobial resistance in 
microbial communities. However, further studies would be required to establish such 
risk. 

3.3. Biocides 
Biocides have been widely used in different applications such as human medicine 

[59], water distribution pipelines to prevent microbially associated corrosion [60], water 
chemistry [61], antibiofilm coatings [62], and domestic/household products [63]. This has 

0

1

2

3

4

5

6

7

8

9

BAC 10 BAC 12 BAC 14 BAC 16 BenthEZ DDAC DADMAC
10

DADMAC
12

C
on

ce
nt

ra
tio

n 
(µ

g/
L)

Biocide

Upstream Effluent Downstream

Figure 2. The overall distribution of biocide across sampling sites. Error bars represent the standard
error of the mean.

In reviews conducted on antibiotics in African waters [7,50,51], it was reported that
sulfamethoxazole was the most detected drug, as was the case in this study. This can be
explained by the fact that South Africa has a high HIV prevalence rate, estimated at over
13%, translating to over 8 million people living with the infection [52], thus the extensive
use of the drug within the country for PCP prophylaxis.

Most of the antibiotic concentrations detected in our study were comparable to those
detected across Africa [9,50,53–56]. However, other antibiotics like tetracycline, doxycycline,
amoxicillin, and lincomycin were detected at concentrations higher than those reported
in other African countries [7,57,58]. Most importantly, some of these concentrations were
higher than the recommended PNEC values, as observed for sulfamethoxazole tetracycline,
oxytetracycline, lincomycin, and amoxicillin (Table 1). These high values indicate that
the water environment may facilitate the selection of antimicrobial resistance in microbial
communities. However, further studies would be required to establish such risk.

3.3. Biocides

Biocides have been widely used in different applications such as human medicine [59],
water distribution pipelines to prevent microbially associated corrosion [60], water chem-
istry [61], antibiofilm coatings [62], and domestic/household products [63]. This has
therefore led to their continuous discharge into the environment. Eight of the 10 targeted
biocides detected in this study had quantifiable values (Table S5). Benzalkonium chloride
(BAC) 12 had the highest detected concentration, while BenthEZ was the most detected in
75% of the samples. BAC 14 and DDAC were only detected in the effluent and downstream
samples, again pointing to the role of WWTPs in surface water pollution. Additionally, the
BAC 12 concentrations were higher than those reported in other studies [32,64–68]. This can
be explained by the extensive use of BAC and its derivatives in detergents, disinfectants,
hair shampoos and most personal care products [20–25]. Due to their potential deleterious
effects, biocides have been included with detergents and regulated in South Africa by the
National Regulator for Compulsory Specifications (NRCS) [69].

The concept of co-resistance is relatively broad depending on the specific study, al-
though in its basic forms, it would imply the ability of an organism to harbour multiple
resistance traits [70]. On the other hand, cross-resistance is resistance to several distinct
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antimicrobials mediated by the same or one molecular mechanism [71]. Despite their
usefulness, biocides have been associated with the induction and co-selection of antimi-
crobial resistance through co- and cross-resistance mechanisms [72], leading to the use
of many of them being discouraged. For example, triclosan and triclocarban had values
below the limits of quantification, indicating that these products are now being replaced
as recommended by WHO in most household products in South Africa, even though they
are not banned in South Africa. However, a previous study had reported higher values
in South African water bodies [28], although it has been reported that QACs are more
widely used in products within the WWTP catchment area. So the low concentration can
be due to the effectiveness of the WWTP and the lack of particulate matter, as most biocides
are not entirely solubilised in the aqueous state but can adhere to particulate matter and
carbon-rich sediments [73,74]. Nevertheless, given that chemical adhesion to particulate
matter was not investigated in the current study, further research is needed to understand
the dynamics of these pharmaceuticals in the aquatic environment.

Notably, most of the biocides identified in the current study had higher concentrations
than the recommended PNEC value of 0.01 µg/L [75]. The WWTP effluent point has
the higher detection concentrations and serves as the point of greatest impact into the
WWTP catchment area. This indicates that more effort needs to be applied, especially in
the treatment plant, to reduce/remove them from the water.

4. Materials and Methods
4.1. Study Area and Sampling Site

The study was conducted at a WWTP serving the uMsunduzi Municipality that
discharges water directly into the uMsunduzi River. The study site and a description
of the study area have previously been described [76]. Samples were collected from the
final effluent discharged into the river and upstream and downstream from the WWTP
discharge point (Figure 3). These points were selected to provide insight into the potential
role of the WWTP on the abundance of pollutants in the receiving water body.

4.2. Sample Collection, Processing, and Analysis

Samples were collected in February and March 2020. Triplicate grab water sam-
ples were collected hourly between 8 am and 2 pm on each sampling day into sterile
500 mL sample bottles. Samples were then pooled into the morning (8–11 am) and evening
(1–4 pm) composite samples per sampling round. These samples were immediately frozen
and shipped to the Agricultural Research Council, Pretoria (antibiotics and biocides analy-
sis) and WaterLab (Pty) Ltd., Pretoria, South Africa (heavy metals analysis).

4.3. Metal Analysis
4.3.1. Digestion of Water Samples for Metal Analysis

The United States Environmental Protection Agency, US EPA method 2007:7 [77]
for the digestion of water samples was used with slight modifications. Briefly, 3 mL of
concentrated nitric acid (HNO3) was added to 50 mL of the water sample in a beaker. The
solution was heated at approximately 85 ◦C to less than 10 mL on a hot plate in a fume
hood. The solution was allowed to cool, after which 5 mL of concentrated HNO3 was
added, and the mixture was heated until digestion was complete. Following cooling, 10 mL
of 1:1 HCl: HNO3 and 15 mL of deionised water were added. The solution was then heated
for 15 min. The walls of the beaker and watch glass were rinsed with deionised water. The
solution was filtered using a Whatman No 1 filter paper (Cytiva, MA, USA) into a 100 mL
volumetric flask and made up to 100 mL mark with distilled water.

4.3.2. Inductively Coupled Plasma-Optical Emission Spectrometry (ICP-OES) Analysis of
Heavy Metals

The digested samples were analysed for heavy metals using inductively coupled
plasma-atomic emission spectrometry (ICP-OES) iCAP 6500 DUO (Thermo Scientific,
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Waltham, MA, USA). The ICP-OES operating conditions used for the determination were
0.7 L/min nebuliser flow, 0.5 L/min auxiliary flow, 1.5 mL/ min sample uptake rate,
1150 W Radio Frequency power, plasma stabilisation time of 10 min and 12 L/min coolant
gas flow. Heavy metal determination was achieved using Duo view, while 2-point back-
ground correction and three replicates were used to measure the analytical signal. The
emission intensities were obtained for the most sensitive lines free of spectral interference.
The calibration standards were prepared by diluting the 50 mg/L stock solution of a multi-
element standard solution. The detection limit for each metal was obtained following the
procedure outlined in the US EPA method 200.7 [77].
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pm) composite samples per sampling round. These samples were immediately frozen and 
shipped to the Agricultural Research Council, Pretoria (antibiotics and biocides analysis) 
and WaterLab (Pty) Ltd., Pretoria, South Africa (heavy metals analysis). 

4.3. Metal Analysis 
4.3.1. Digestion of Water Samples for Metal Analysis 

The United States Environmental Protection Agency, US EPA method 2007:7 [77] for 
the digestion of water samples was used with slight modifications. Briefly, 3 mL of con-
centrated nitric acid (HNO3) was added to 50 mL of the water sample in a beaker. The 
solution was heated at approximately 85 °C to less than 10 mL on a hot plate in a fume 
hood. The solution was allowed to cool, after which 5 mL of concentrated HNO3 was 
added, and the mixture was heated until digestion was complete. Following cooling, 10 
mL of 1:1 HCl: HNO3 and 15 mL of deionised water were added. The solution was then 
heated for 15 min. The walls of the beaker and watch glass were rinsed with deionised 

Figure 3. Map of the Wastewater Treatment Plant serving the uMsunduzi Municipality. (a) Study area
and (b) Sampling points for this study (A) Upstream (29◦36′02.60′′ S 30◦25′49.61′′ E) (B) Downstream
(29◦36′27.54′′ S 30◦27′0.76′′ E) (Afzelia Environmental Consultants cc. https://sahris.sahra.org.
za/sites/Darvill/WWTP.pdf) (Location of Msunduzi Local Municipality within KwaZulu-Natal
Coordinates: 29◦37′ S 30◦23′ E).

4.3.3. Antibiotics and Biocides Analysis

High purity (>97%) analytical standards of targeted analytes were used in this study.
All methods were developed and optimised in-house.

4.3.4. Standard Preparation

Water samples were tested for the following sulphonamides: sulfadiazine, sulfathia-
zole, sulfamethazine, sulphapyridine, sulfamerazine, sulfamethoxypyridazine,
sulfachloropyridazine, sulfadoxine, sulfaquinoxaline, sulfamethoxazole and sulfadimethox-
ine; four tetracyclines including, tetracycline, oxytetracycline, chlortetracycline and doxycy-

https://sahris.sahra.org.za/sites/Darvill/WWTP.pdf
https://sahris.sahra.org.za/sites/Darvill/WWTP.pdf
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cline; two ionophores: lasalocid-A, monesin; one lincosamide: lincomycin; three
β-lactams: penicillin, ampicillin and amoxicillin; two anthelmintics: oxfendazole and
fenbendazole and one beta agonist: Clenbuterol (Sigma Aldrich, Kempton Park South
Africa). For biocides, ammonium acetate and ten biocide standards were used, which
included benzyldimethyldecyl-ammonium chloride (BAC-C10), benzyldimethyldodecyl-
ammonium chloride (BAC-C12), benzyldimethyltetradecyl-ammonium chloride (BAC-
C14), benzyldimethylhexadecyl-ammonium chloride (BAC-C16), benzethonium chloride
(BenzEth), didecyldimethyl-ammonium chloride (DDAC), didodecyldimethyl-ammonium
bromide (DDAB), dodecyltrimethyl-ammonium bromide (DTAB), triclosan and triclocar-
ban (Sigma-Aldrich, Kempton Park, South Africa).

A 1.0 mg/L multi-residue stock solution containing a mixture of all antibiotic standards
was prepared in methanol and kept at −20 ◦C throughout the analysis. From the stock
solution, working standard solutions in the range of 0.5–100 µg L−1 were prepared and
stored at 4 ◦C throughout the analysis [78]. A 10-mg/L stock solution containing the
combination of the ten biocide standards was prepared in methanol. The solution was kept
at −20 ◦C and was used to prepare 10 µg/L and 1000 ng/L working standard solutions in
methanol. These operational standards were further used to prepare an 8-point calibration
curve of 1 µg/L to 100 µg/L concentrations.

4.3.5. Sample Preparation and Extraction

Sample preparation and extraction of antibiotics followed a modified solid-phase
extraction (SPE) method described previously [78]. Briefly, 500 mL of each water sample
was first filtered through a 0.45 µm non-pyrogenic syringe filter (Sarstedt, Numbrecht,
Germany) and then centrifuged at 8000 rpm at 4 ◦C for 10 min. After that, Hydrophile
Lipophile Balance (HLB) Solid Phase Extractor (SPE) cartridges (Waters, Milford, MA,
USA) were activated and conditioned using 5 mL of methanol, followed by 5 mL deionised
water at an approximate flow rate of 5 mL/minute. The samples were passed through
the cartridges at a slow flow rate of approximately one drop per second. Next, the car-
tridges were eluted with 5 mL methanol and 3 mL ethyl acetate. The eluents were then
evaporated under a gentle stream of nitrogen to incipient dryness and reconstituted with
1 mL of methanol. These were then filtered into an autosampler vial through a 0.22 µm
nylon membrane syringe filter. Three matrix blanks were prepared using deionised water,
and a six-point matrix-matched calibration curve, fortified with 0.5 ng/mL, 2 ng/mL,
10 ng/mL, 50 ng/mL, 100 ng/mL, 150 ng/mL, 200 ng/mL and 400 ng/mL were included
and processed like the samples.

Five hundred millilitres (500 mL) of water sample were filtered through a 0.45 µm
non-pyrogenic syringe filter into a separating funnel to extract biocides. The samples
were extracted by solid phase extraction using 6 mL Oasis WCX cartridges (500 mg,
60 µm) (Waters, Milford, MA, USA). First, the cartridge was conditioned with 5 mL each
of methanol and deionised water (resistivity of 18.2 Ω). Then, the samples were loaded
onto the cartridge at a steady flow rate of approximately 5 mL/min. Next, the cartridge
was dried under a vacuum and eluted with 5 mL of 1% formic acid in acetonitrile. The
eluate was then concentrated to incipient dryness under a gentle stream of nitrogen at 40 ◦C
and reconstituted in 1 mL of 10 mM ammonium acetate in methanol and filtered through
0.22 µm nylon syringe filter into an HPLC vial.

Deionised water was used to prepare three matrix blanks and an eight-point matrix-
matched calibration curve, fortified with 1 ng/mL, 5 ng/mL, 10 ng/mL, 20 ng/mL,
30 ng/mL, 40 ng/mL, 50, ng/mL and 100 ng/mL, following the same procedure as the
sample preparation.

4.3.6. Instrumental Analysis

The chromatographic separation of target analytes was achieved using a PerkinElmer®

LX-50 UHPLC system (Perkin Elmer, Waltham, MA, USA), equipped with a PerkinElmer®

Brownlee SPP (Superficially Porous Particles) C18 (2.7 µm: 100 × 2.1 mm) column. The
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column oven temperature was set at 40 ◦C. Separation was attained using 0.1% formic acid
in water (solvent A) and acetonitrile (solvent B) as the mobile phases at a constant flow rate
of 0.4 mL/min and a sample injection volume of 10 µL. The total run time was 17.2 min,
with an equilibration time of 3.5 min between runs.

Chromatographic separation of biocides was achieved using the same PerkinElmer
LX-50 UHPLCequipped with a 2.1 × 100mm, 1.7 µm Phenomenex® Kinetex® C18 column
(Phenomenex, Torrance, CA, USA). The column oven temperature was set at 50 ◦C, while
10 µL of the sample was injected. The biocides were separated using a linear gradient of
10 mM ammonium acetate in water (solvent A) and methanol (solvent B). These were
eluted at a constant flow rate of 0.8 mL/minute. An initial flow of 90% A was held for
5 min, then decreased to 20% for 4.1 min. Following this, the flow was held at 100% B for
3.1 min and then changed to 90% A for 0.1 min, bringing the total run time to 12.3 min.
This was followed by 3.5 min of equilibration.

Target antibiotics were identified and quantified using a PerkinElmer® Qsight™
220 triple quadruple mass spectrometer (TQMS) (PerkinElmer South Africa (Pty) Ltd.,
Midrand, South Africa) in the positive and negative electrospray ionisation mode. The
electrospray voltage was set at 5000 V, with nitrogen as the nebuliser and drying gas at 200
and 120, respectively. The ion source temperature was set at 400 ◦C, while the Hot-Surface
Induced Desolvation (HSID) temperature was set at 320 ◦C. A time-managed multiple
reaction monitoring (MRM) mode was used to acquire the different analytes. At least two
MRM transitions were used to positively identify and confirm the presence of the analytes
in a sample. The entrance voltages (EV), collision energies (CE) and cell exit potential (CXP)
were optimised for each analyte individually. Instrumental data were acquired using Perkin
Elmer Simplicity™ 3Q software (version 1.4.1806.29651) (PerkinElmer, Buckinghamshire, UK).

Each biocide was identified and confirmed with a PerkinElmer® Qsight™ 220 TQMS
(Waltham, MA, USA) operated in both the positive and negative electrospray ionisation
modes. Nitrogen was used as the nebuliser and drying gas for both the positive and
negative modes, and these were set at 60 and 120 arbitrary units, respectively. The ion
source temperature was kept at 450 ◦C, and the optimised HSID temperature was set at
320 ◦C. The electrospray voltage was set at −3000 V for the negative and 2500 V for the
positive ionisation modes. A time-managed MRM mode was used to acquire biocides. The
CE, EV and CXP were individually optimised in-house for each analyte.

4.4. Statistical Analysis

A one-way analysis of variance (ANOVA) with a Games-Howell posthoc test was
performed to compare the mean concentrations of the various parameters between the
sampling points. Concentrations below the limits of quantification (LOQ) were treated as
zero. All statistical analyses were performed using the Statistical Package for the Social
Sciences (SPSS) Version 27 and were considered significant at p ≤ 0.05.

5. Conclusions

This study evaluated the concentration of antibiotics, heavy metals, biocides, and
antibiotic-resistant bacteria in a WWTP and its receiving water body and observed that
most of the chemical pollutants were higher than the maximum allowable environmen-
tal concentrations and the PNEC as applicable. In addition, sulphonamides, β-lactams
and tetracyclines were the most detected antibiotics and targeted QACs were detected
at significant concentrations, indicating anthropogenic pollution. Furthermore, higher
concentrations were observed in the effluent and downstream samples compared to the up-
stream, suggesting that the WWTP significantly contributed to the downstream pollution.
However, while the current study provides valuable information regarding the presence
of metals, antibiotics and biocides in the environment, some of which had concentrations
above acceptable levels, these results should not be generalised as the sampling regime
was not robust enough. For example, some unexplained occurrences like the presence
of some pollutants like penicillin in the downstream samples, albeit their absence in the
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upstream and effluent samples. These could be due to natural occurrences in the environ-
ment, although the extremely low concentrations could be due to the sensitivity of the
instrumentation used. Nevertheless, more robust studies involving extensive sampling
and exposure experiments are needed to ascertain if the observed environmental pollutant
concentrations could induce resistance to antimicrobials in previously susceptible bacteria.

Supplementary Materials: The following supporting information can be downloaded at:
https://www.mdpi.com/article/10.3390/antibiotics12071166/s1, Table S1: Overall distribution
of metals at the study site; Table S2: Comparison of metal concentrations between sampling points;
Table S3: Antibiotics distribution across all sampling points; Table S4: Comparison of antibiotic
concentrations between sampling points; Table S5: Concentration of biocides at sampling sites.
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