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ABSTRACT 

The paper presents an innovative approach for structural health monitoring of metallic 

components under fatigue crack phenomena. The methodology is based on the evaluation of 

the information entropy of the AE data. AE testing of fatigue crack growth (FCG) is performed 

on metallic components is performed within an extremely noisy testing environment. Basic AE 

data analysis is demonstrated to be inefficient with regard to the specific testing conditions. AE 

entropy is proven to be a reliable damage-sensitive feature for real-time assessment despite 

both significant noise disturbance and complexity/randomness of the acoustic phenomena. This 

was also confirmed for (time-)discontinuous monitoring processes over random-based data 

detections. An innovative monitoring protocol is finally developed according to the 

experimental evidence also considering the recommendations of the current monitoring. The 

protocol is found to be promising for structural health monitoring of metallic fracture-critical 

components of structures under fatigue.  

KEYWORDS: structural health monitoring; acoustic emission, information entropy; fatigue 

crack; metallic components 

1. INTRODUCTION

The risk of economic and human losses related to infrastructure failure significantly increased 

in the last decades. This was essentially due to (a) the expansion of the infrastructure network, 

(b) the increased performance demands, and (c) the degradation of existing systems.1

Infrastructural systems such as bridges, pipelines, and power/communication facilities are 

among the most critical structures because of their high vulnerability.2,3 The mechanical 

degradation of one or few components of such structures is likely to cause a global performance 

deficiency, with a resulting catastrophic reduction in structural safety.4  
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Nomenclature 

a experimental coefficient (b-value analysis) 

A AE amplitude  

B sample thickness 

bAE b-value 

f cyclic frequency 

H sample height 

j number of occurred potential crack onset alarm 

k number of occurred definite crack onset alarm 

l number of occurred potential failure alarm 

m number of occurred definite failure alarm 

kΔ0 crack onset test coefficient 

kΔF failure test coefficient 

LT component structural lifetime 

n number of AE counts 

ni number of AE counts related to ith time step 

N number of AE hits 

NDW number of detection windows over the whole monitoring process 

NL sample notch length 

N̅ number of AE hits having amplitude not smaller than a certain threshold 

pi probability mass distribution vector 

P cyclic peak load 

R minimum to maximum stress ratio 

t time 

t0 crack onset time 

tf failure time 

T time interval from the end of the current detection window to the beginning of 

the following 

TDW duration of each detection window 

TT total AE detection time 

T1, T2, T3, 

T4, T5 

specific time interval values associated with different response to the crack 

onset and failure tests 

T inspection time interval vector 

SE Shannon entropy 

SE,r Kullback-Leibler or relative entropy 

W sample width 

Δ onset/failure test response vector 

ΔS entropy variation value vector 

ΔΣSE,i variation of the cumulative entropy over the whole ith detection window 

ΔΣSE,345 average of the values related to the 3rd, 4th, and 5th detection window variations 

evaluated over the entire monitoring process 

Σn cumulative number of AE counts 

Σni cumulative number of AE counts related to ith time step 

ΣTF failure alarm time 

 

The issue is particularly sensitive for metallic fracture-critical members.5,6 As an example, 

metallic bridge structures were the typology that suffered the largest number of collapses all 

over the world in the last few decades.7,8 The combination of fatigue and fracture caused most 



of those failures and typically represents the potential failure mode also in the case of existing 

bridges.9 Fatigue and fracture combination is a common cause of severe damage and 

degradation in pipelines as well.6 The early crack detection in infrastructures plays a crucial 

role in the mitigation of the risk associated with damage and collapse. In fact, fatigue crack 

growth processes can be quite slow, but the incipient critical state is often reached with reduced 

deformations10, and the failure can occur even without an evident (large-scale) plastic 

response11. 

Structural health monitoring12 (SHM) is aimed to assess the health state of infrastructures.13,14 

In the past decades, a major part of the monitoring activities was based on in-situ inspections 

and destructive testing. This approach was usually uneconomical as well as possibly 

unreliable.9,10 Several non-destructive techniques (NDTs) were recently developed to reduce 

the invasiveness/costs of the monitoring by keeping damage diagnosis and health control 

effective.15,16 Acoustic emission (AE) testing is an innovative passive NDT often used to assess 

bridges and other (infra)structures.16–19 As a passive technique, AE testing is performed by 

recording signals over the structures during their lifetime. In particular, genuine acoustic waves 

are typically generated in solids due to damage and degradation occurrence (e.g., cracking 

initiation and propagation10). The AEs propagate within the bodies interacting with the 

structural discontinuities. The detection, the processing, and the analysis of the AE activity 

allow assessing the state-of-health of the monitored component/system.1,19–22 A schematic 

representation of the testing application is shown in Fig. 1.a. AE testing can be performed by 

using either the parameter-based (or classical) or the signal-based (or quantitative) approach.18 

The two approaches are typically used in different applications. According to the parameter-

based approach, the AE activity can be described by a set of parameters of the waveforms, 

namely the AE features. The main AE features are shown in Fig. 1.b.  

The signal-based approach builds on a more comprehensive analysis of the waveforms, as well 

as on more complex post-processing phases. Therefore, this approach is not easily applicable 

to real-time monitoring. This is often used for either (post-event) localisation of the damage 

source or frequency analysis of the waveforms. The parameter-based approach is effectively 

considered for real-time monitoring of structures because of (a) the reduced amount of data to 

be stored, (b) the automated analysis implementation, (c) the proven accuracy for damage 

assessment, and (d) the availability of several data analysis/processing techniques.  



 
 

(a)  (b) 

Fig. 1. AE testing: (a) technique application scheme (by Mistras LTD) and (b) main AE 

features.23 

AE testing was widely applied in the last few decades, and several studies demonstrated the 

reliability and robustness of the technique over a wide range of laboratory and field 

applications. Some in situ applications proved that the analysis of the AE activity might 

overcome the noise disturbance due to environmental or traffic conditions. The pioneering 

study by Shigeishi et al.24 assessed AE testing for masonry and reinforced concrete bridge 

monitoring, proving that the AE analysis potentially allows detecting crack propagation as well 

as localising crack tips. Carpinteri et al.21 correlated the AE activity to the extending crack size 

of macrocracks propagating in a multistorey reinforced concrete building. AE testing was often 

applied to assess concrete, rock, and masonry, but some studies proved that the technique could 

also be reliable with regard to metallic structures subjected to fracture phenomena. Maslouhi19 

correlated direct AE features and frequency-based wave parameters to fatigue crack 

initiation/propagation occurring in aluminium alloy structures. Pascoe et al.25 supplied insights 

into the acoustic activity generated by crack propagation over a single fatigue cycle by testing 

double-cantilever beam specimens made of aluminium alloy. They stressed the potential of AE 

testing for a more robust assessment of crack propagation phenomena as well as the need to 

enhance the technique. Wisner et al.26 recently assessed the progressive failure process in a 

precipitate hardened aluminium alloy by performing AE testing combined with scanning 

electron microscope and X-ray microtomography analyses. They found clear correlations 

between the microdamage evolution and the AE data.  

The ideal application of AE testing is the (time-)continuous monitoring of the structure from 

the construction (or the beginning of the service/functioning) along with the lifetime. This 

condition is not often met in field monitoring because of (a) the high costs of the monitoring 

and the needed expertise, (b) the sensitivity of the testing equipment to environmental 

conditions and ageing, and (c) a large number of structures to be potentially monitored. Most 



experimental studies focussed on (time-)continuous or almost (time-)continuous AE data, 

simulating a lifetime-long AE testing. Both AE testing application and data analysis should 

still be improved for more efficient monitoring.27,28 Some processing techniques were recently 

developed to reduce the equipment/environmental noise typically affecting the AE data. 

However, the signal disturbance strongly depends on the specific application and monitoring 

conditions, and field monitoring is often needed to identify the noise patterns.29 Structural 

damage potentially has distinctive AE features that should be experimentally identified.29 This 

becomes quite difficult in the case of fatigue fracture assessment30,31, with particular reference 

to (a) a real structure/infrastructure under service/functioning conditions (i.e., extremely noisy 

environment)13,27,32 and (b) (time-)discontinuous or periodic data detection. Hence, novel 

approaches and methods are needed to address this critical issue.15,33 

2. DAMAGE, ACOUSTIC EMISSION, AND ENTROPY 

The damage/degradation within solids is a source of microstructural disorder and energy 

dissipation. The AE activity reflects such disorder along with the evolution of the complexity 

of an engineering system.34 The analysis of the systemic disorder has been recently proven to 

be a reliable method for damage detection of structures, with particular regard to the evaluation 

of the systemic entropy.35–37 Entropy is an extensive property of a thermodynamic system. In 

information theory, entropy describes the amount of information contained within a system, 

e.g., the potential number of microstates that the system can assume. The computation of the 

information entropy is used in statistical mechanics as a measure of the disorder of an 

engineering system. Shannon entropy38 is among the first developed formulations of the 

information entropy. This defines the measure of uncertainty contained within a random 

variable, which can be quantified by the amount of information stored by the variable. The 

information entropy of AE data is often defined as AE entropy or acoustic entropy. The 

evaluation of the acoustic entropy does not directly involve the thermodynamic entropy; 

however, the two entropy forms are correlated, and their applied formulations are substantially 

equivalent. Furthermore, acoustic entropy can be considered as a portion of the total 

thermodynamic entropy.34 

AE entropy can be a reliable feature for the assessment of structural damage. Unnthorsson et 

al.39 evaluated the Shannon entropy of acoustic data in cyclic tests of carbon fibre reinforced 

polymers. AE entropy identified the cyclic damage more efficiently than the traditional AE 

features. Kahirdeh and Khonsari31 found statistical correlations between cyclic material 

degradation, temperature, and acoustic energy dissipation. The same Authors40 assessed the 



acoustic entropy generated by cyclic bending tests on metallic and composite elements. A clear 

quantitative correlation was found between the entropy and the evolution of fatigue 

degradation. Kahirdeh et al.34 focussed on the use of AE entropy for health monitoring 

purposes. The best damage-correlated probability functions for the AE entropy evaluation were 

found by maximising the cumulative AE entropy related to cyclic tensile testing of aluminium 

samples. A measure of the relative acoustic entropy was also assessed considering the 

Kullback-Leibler divergence41, assuming that each AE event provides prior information 

regarding the consequent event. The relative entropy exhibited a clearer correlation with the 

fatigue damage than the Shannon one. Sauerbrunn et al.20 computed the AE entropy for the 

signal voltage of single AE waveforms similarly to Kahirdeh et al.33,34. The AE entropy 

evaluation resulted better correlated to the fatigue damage than the traditional AE features with 

reference to both small and large cracks. Chai et al.32 also computed the Shannon AE entropy 

considering the voltage signal of the single AE events. They characterised the different damage 

stages of fracture for both (a) fracture crack growth tests and (b) three-point bending tests. Yu 

and Modarres37 recently confirmed that the Shannon entropy of the AE activity could be 

associated with the fatigue damage better than the conventional AE features such as the counts 

and the energy. Some very recent studies enhanced the assessment of the AE entropy and 

provided criteria potentially applicable to health monitoring of metallic structures.42,43 

Even though AE Entropy is potentially reliable for damage assessment of structures, the testing 

conditions for the field monitoring of metallic fracture-critical structures have still to be 

effectively addressed. Moreover, the past experimental studies were performed in a noise-

controlled environment where the sensors were directly located on the damaging component 

without taking into account the chaotic nature of the AE phenomena. Damage criteria based on 

periodic monitoring should still be provided in the framework of standardised protocols; for 

example, some parameters of the monitoring process (e.g., time for the following inspection) 

with AE should take into account the current state of the monitored components. 

The paper presents a preliminary application of a monitoring protocol of fatigue damage in 

metallic components within a noisy testing environment. AE testing of fatigue crack growth 

(FCG) in metallic compact tension (CT) specimens was performed. The preliminary results of 

the present study were presented in a conference paper44. AE entropy is evaluated by using 

both Shannon38 and Kullback-Leibler41 equations. Experimental criteria based on AE entropy 

are established for different damage states: crack initiation, propagation, and failure. The 

efficiency of the criteria is assessed by simulating a real application with time-discontinuous 

monitoring of AE data (e.g., periodic monitoring).  



3. EXPERIMENTAL TESTING AND DATA ANALYSIS 

Constant-amplitude cyclic tests were performed on CT specimens. The plate materials were 

7075-T6 aluminium alloy (yield strength (0.2%) equal to 505 MPa, EN 485 / EN 10204 3.1) 

and S355 steel (yield strength equal to 355 MPa, EN 10025-2). AE testing was performed 

according to the parameter-based approach along with the mechanical tests. The cyclic tests 

were carried out using a servo-hydraulic actuator controlled by a modular digital system. The 

AEs were recorded by a pre-amplified ultra-low noise sensor with a resonance frequency equal 

to 300kHz (PK30I sensor). The sensor was coupled/bonded to the fixed end of the fatigue 

machine by a thin layer of silicon glue (Loctite 595), with a safety tie by adhesive tape. This 

peculiar location of the sensor was aimed to detect AE data affected by significant noise due 

to the fatigue testing equipment. The sensor location simulated an application in which the 

genuine data (i.e., damage-induced) are overlapped by significant noise, which does not have 

known patterns. The data were stored and processed by a single-channel USB AE Node system, 

using AEwin™ as a software. Both the AE equipment (including the software) and the sensor 

were produced by Mistras LTD. The experimental set-up and the sensor location are shown in 

Fig. 2.a. Both the sensitivity and the efficiency of the sensor coupling were checked by pencil 

lead break test45 prior to the main experiments. Two preliminary fatigue tests on aluminium 

7075-T6 samples were performed to select the main AE testing parameters. According to those 

tests, the AE amplitude threshold was set equal to 45dB. The peak definition time, the hit 

definition time, and the hit lockout time were set equal to 200, 800, and 1000 µs, respectively.  

The main tests included four CT specimens (Table 1 and Fig. s 2.b and 2.c).  

(a) 

 

 

(b) 

 

(c) 

Fig. 2. (a) Testing set-up and sensor location, (b) sample geometry, and (c) sample notch 

detail. The dimensions are in mm. 



Two aluminium samples with different geometry were tested under different cyclic peak loads 

P (tests A1 and A2). Two steel samples with the same geometry were tested under different 

cyclic peak loads P (tests S1 and S2). All tests were performed considering the same R ratio 

(i.e., minimum to maximum stress ratio) and cyclic frequency f. Fig. 2.b shows the geometry 

of the samples, and Table 1 reports the geometrical parameters (W, H, NL, and B) and the testing 

features (P, R, and f) related to the tests. 

Table 1. Sample geometry and loading program. 

test 

ID 

material W H NL B P R f 

[mm] [mm] [mm] [mm] [kN] [-] [Hz] 

A1 7075-T6 aluminium alloy 71 86 32 4 2.5 0.05 10 

A2 7075-T6 aluminium alloy 63 77 29 10 5 0.05 10 

S1 S355 steel 63 77 29 10 5 0.05 10 

S2 S355 steel 63 77 29 10 6 0.05 10 

 

The crack length was measured during the tests by means of a calliper, highlighting the cracks 

by dye penetrant testing46. High-resolution images of the fracture zone were regularly taken to 

evaluate the crack propagation by image post-processing as well. The crack length was 

highlighted by the crack developer, and it was clearly visible. The crack onset was 

conventionally defined by the first time in which the crack length equalled or exceeded the 

given accuracy of the measuring tools (~ 1.0 mm). The failure was conventionally defined as 

the complete fracture of the sample.  

The AE data were initially filtered according to the modified Swansong II technique23,47 in order 

to reduce the noise disturbance. This filtering criterion builds on the evidence that (a) genuine 

long-duration hits usually have higher amplitude and (b) genuine short-duration hits usually 

have lower amplitude.48 The assumed amplitude and duration filtering limits are shown in 

Table 2; they were derived from past experimental studies47 on similar components. 

Table 2. Amplitude and duration limits for the application of the modified Swansong II 

filtering. 

amplitude [dB] < 52.5 < 55.0 < 57.5 < 60.0 < 62.5 < 65.0 < 70.0 < 75.0 

duration [ms] > 0.5 > 1.5 > 2.5 > 3.5 > 4.5 > 5.5 > 6.5 > 7.0 

 

The traditional analysis of the AE was performed by means of both historical plots and 

correlation analysis.45,49 The b-value analysis was performed as a refined correlation analysis 

method.35,50 This is based on the empirical magnitude-frequency relationship proposed by 

Gutenberg and Richter51 in earthquake seismology; b-value (or bAE) is the (negative) gradient 



of the log-linear AE magnitude-frequency distribution of the AE hits. Magnitude is 

conventionally assumed to be equal to amplitude in dB (A) divided by 20. The b-value 

correlation is defined by  

log10�̅� = a − bAE
A

20
 , (1) 

where �̅� is the number of hits having the amplitude not smaller than a certain value (A in 

Equation 1), and a is a coefficient to be experimentally evaluated by data fitting. Analysis of 

b-value was widely proven to be reliable in rocks, concrete, and reinforced concrete 

elements.35,52 Few recent applications also showed that b-value could identify the damage 

evolution in metallic components under fracture.53,54 

Shannon entropy (SE) of the AE data was calculated at each time step (i) according to the 

following equation38,40: 

SE = − ∑ pilog2(pi)
n
i=1 ; (2) 

in particular, pi is the probability mass distribution vector: 

𝐩𝐢 = {
n1

Σni
;

n2

Σni
; … ;

ni

Σni
}, (3) 

where, nj is the measured number of counts and Σni is the cumulative counts related to the ith 

time instant in which acoustic activity is detected. This calculation assumes that each individual 

AE signal does not affect the previous ones.34 The Kullback-Leibler formulation41 was used to 

estimate a relative measure of the AE entropy, i.e., SE,r
34: 

SE,r = SE(pi|pi−1) = − ∑ pilog2 (
pi

pi−1
)n

i=1 . (4) 

The cumulative values of both Shannon entropy and relative entropy are defined as ΣSE and 

ΣSE,r, respectively. SE and SE,r were computed using Equations 2 and 4 respectively, for each 

testing time step defining the (time-)continuous entropy, which is consistent with a monitoring 

process continuously performed over the lifetime of the structure over cyclic loading. However, 

health monitoring is often based on (time-)discontinuous or periodic testing processes as it was 

previously discussed. Therefore, a periodic AE entropy evaluation was implemented according 

to the procedure that is described in the relevant section (par. 3.3) for the sake of clarity. 



4. RESULTS AND DISCUSSION 

4.1. Basic acoustic emission analysis 

The historical plots of counts (n) and cumulative counts (Σn) are shown in Fig. 3 for (a) A1, (b) 

A2, (c) S1, and (d) S2 cases. The counts show a different trend along with the time for the tested 

samples. Larger sample thickness (peak load) generates more AE activity, as it is evidenced by 

comparing A2 with A1 (S2 and S1). The overall AE activity is more significant in aluminium 

samples, and it might be justified by the lower fracture toughness of this material. The counts 

are correlated to the crack onset in the case of aluminium samples, especially for the A1 case: 

significant AE activity is detected after the crack onset (Fig. s 3.a and 3.b). Such a correlation 

cannot be found in the steel samples: significant AE activity is detected before the crack onset 

(Fig. 3.c and Fig. 3.d) without a clear relationship between the counts and the incipient fracture 

damage. On the contrary, the fracture failure is associated with sudden AE activity in both 

materials. The sudden change in the AE activity just prior to the failure (less relevant in the A1 

case) does not allow to predict the failure itself; therefore, this correlation is not potentially 

applicable for structural monitoring. In many cases, the occurrence of significant AE activity 

is not correlated to damage and degradation (e.g., Fig. 3.b at about 1000 s, and Fig. 3.d at about 

200 s). Such activity caused false alarms, which are typically observed in AE testing.23 

Similarly, other historical plots and (direct) AE feature correlation plots (e.g., duration versus 

amplitude) do not show univocal and reliable damage correlations; such results are not reported 

within the paper for the sake of brevity.  

Fig. 4 shows the results of the b-value analysis for the performed experimental tests. The 

analysis time ranges were selected considering the identified sub-stages of the AE data time 

histories, i.e., according to the similarities among the time-binned data (Table 3). A good 

damage correlation is found for aluminium sample cases (Fig. s 4.a and 4.b, and Table 3), 

where b-value decreases as the damage increases, and it suddenly reaches low values equal to 

about 0.6 just prior to the failure (typical value for fracture failures35). Conversely, this method 

is not efficient in the case of steel samples (Fig. s 4.c and 4.d), where such a pattern is not 

observed. It is worth noting that in these latter cases, the acoustic activity does not present large 

amplitude events during the damage evolution as well as prior to the failure. The typology of 

the tested samples might partially justify the inefficiency of the b-value analysis results. The 

crack/degradation development in metallic plates is usually a quite regular phenomenon, 

usually occurring according to a (unique) unidimensional path. The b-value analysis can be 



very efficient in case of compact composite components under fracture, such as concrete 

beams, in which stages of micro-cracking and macro-cracking use to occur.35,50 

(a) 

 

(b) 

(c) 

(d) 

 

 

Fig. 3. Historical plots of counts (n) and cumulative counts (Σn) for (a) A1, (b) A2, (c) S1, and 

(d) S2. Crack initiation and failure times are also shown. 

The results of the basic analysis demonstrate the reliability of the performed tests, i.e., 

qualitative damage correlations are representative of genuine testing. However, the analysis 

cannot univocally assess the damage because of both false alarms and missed degradation 

phases. Such inefficiency is likely to be caused by the noise/disturbance. Indeed, it is worth 

recalling that the sensor was located on the fatigue machine instead of on the sample; therefore, 

the influence of the mechanical equipment disturbance on the basic AE activity was expected. 

The mechanical noise seems to significantly affect the AE data despite the signal filtering 

actions due to (a) sensor response, (b) amplitude threshold, and (c) modified Swansong II 

filtering. The results also stress the chaotic nature of the AEs, which is expected to be more 

significant in the case of field applications. Even though the fracture damage produces acoustic 

waves that may univocally identify the damage evolution, such genuine AEs are 

partially/totally affected by the mechanical and environmental noise. Furthermore, the AE data 



interpretation becomes more complex due to the chaotic nature of both fracture damage and 

acoustic phenomena. 

(a) 

  

(b) 

(c) 

  

(d) 

Fig. 4. AE b-value analysis results for (a) A1, (b) A2, (c) S1, and (d) S2. The time ranges and 

the b-values (bAE) are reported in Table 3. 

Table 3. b-value analysis results: time intervals and b-values (bAE). 

i ta tb tc td bAE,a bAE,b bAE,c bAE,d 

[-] [s] [s] [s] [s] [-] [-] [-] [-] 

0 106 0 4 4 4.96 4.87 1.13 2.81 

1 298 723 474 405 4.01 1.97 4.27 2.61 

2 1002 2600 1740 2024 1.62 2.49 2.52 6.13 

3 1020 2950 4670 3200 0.86 2.35 2.76 3.99 

4 1043 6400 5165 3710 0.58 2.99 2.93 2.04 

5 1061 6920 5281 3760 - 1.54 - - 

6 - 7180 - - - 0.63 - - 

7 - 7235 - - - - - - 

4.2. Acoustic entropy 

Cumulative Shannon and relative entropies ΣSE and ΣSE,r are plotted in Fig. 5.a and 6.b, 

respectively, for all the performed tests along with time (t) divided by failure time (tf). The 



experimental crack onset time t0 is also shown by vertical lines. Both entropy formulations 

show a similar trend: (1) a short sub-vertical tangent stage, (2) a knee (i.e., a decrease of curve 

tangent), and (3) a long sub-horizontal tangent branch (plateau). In the test A1, the relative 

entropy significantly increases after the plateau (i.e., just before the failure). Two main 

differences can be identified between Shannon entropy and relative entropy graphs: (a) the 

knees of Shannon entropy curves are smoother than the relative entropy curve ones, and (b) the 

relative entropy curves reach a very similar value at the failure, which might be assumed as a 

failure threshold. 

(a) 

 

(b) 

Fig. 5. (a) Cumulative Shannon entropy ΣSE and (b) cumulative relative entropy ΣSE,r. 

The crack onset is well correlated to both cumulative entropies. This occurs (just) after the knee 

as well as significantly before the plateau if Shannon entropy is considered. In the case of the 

relative entropy, the crack onset is associated with the beginning of the plateau. The failure is 

identified by considering both entropy formulations: (a) onset of the plateau in the case of 

Shannon entropy and (b) threshold value in the case of the relative entropy. The failure 

correlation related to Shannon entropy curves can be considered to be more reliable and 

consistent than the relative entropy one. In the latter case, the failure threshold value assumes 

very similar values along the plateau by causing false alarms. A threshold value seems to be a 



necessary but not sufficient condition for the failure. The failure condition observed with regard 

to Shannon entropy curves is more gradual and stable, i.e., the curve tangent smoothly 

decreases along with the fracture propagation process (e.g., it can be considered to be a damage 

index). Moreover, the pattern does not depend on the sample/testing conditions, as well as this 

is not affected by the noise and the chaotic nature of the acoustic phenomena. 

Similar results were recently found by the authors with regard to tensile tests of ductile cast 

irons43,55. In particular, very similar entropy trends over the damage evolution were identified 

by considering both Shannon and Kullback-Leibler (relative) formulations, despite the 

significantly different tested material and loading conditions. This strengthens the robustness 

of the assessment approach.  

4.3. Periodic acoustic entropy 

A simple procedure was defined in MATLAB56 to generate unbiased random periodic (or time-

discontinuous) monitoring processes. Each process consisted of a number of consecutive 

discrete time-intervals in which the AE activity was assumed to be detected; such time-intervals 

were defined as detection windows. No AE signals were assumed to be detected outside the 

detection windows. The number of detection windows over the whole monitoring process 

(NDW) and the duration of each detection window (TDW) are the main features that define the 

entire (random-based) monitoring process. TDW is assumed to be constant all over the 

monitoring process; this has a quite small value if compared to the structural lifetime of the 

components (LT). The minimum time distance between the end of the ith detection window and 

the beginning of the (i + 1)th detection window is equal to 10 TDW. A large number of random 

periodic monitoring processes was generated according to the defined rules/features through 

MATLAB. Equations 2 and 4 are applied over each detection window along with the defined 

random periodic monitoring processes. The procedure was repeated a large number of times 

(i.e., each time considering a different random process) for all performed fatigue fracture tests 

to simulate unbiased random health monitoring of structures (the detection windows represent 

the (random-based) periodic inspections during which AE testing is applied). 

Fig. 6 shows representative results of (time-)discontinuous Shannon entropy evaluation over 

the random periodic monitoring processes previously defined. In particular, cumulative 

Shannon entropy was evaluated for 200 processes considering the test A2. The influence of NDW 

and TDW on the entropy evaluation was assessed. In Fig. 6.a (7.b), red, blue and green plots 

show the cumulative entropy curves (evaluated for all the random monitoring processes) 



related to TDW (NDW) equal to 10, 20, and 30 s (15, 20, and 25), respectively. The related total 

AE detection times TT over the lifetime LT were equal to 2.9, 5.7, and 8.6 % (4.3, 5.7, and 7.1 

%), respectively. The curves have the same trend of the (time-)continuous cumulative entropy 

curve (dashed line). The overall data dispersion is not significantly affected by NDW and TDW. 

The entropy values (e.g., the plateau of the curves) increase with TT. The different curves tend 

to reduce their scattering along with the time even though the random process monitoring 

curves ignore more than 90% of the recorded AE data. The time location of the detection 

windows does not affect the overall curve. The curve knee (i.e., crack onset descriptor) can be 

observed in all cases; moreover, all curves of the same set achieve approximately constant 

value before the failure (i.e., identifying the onset of the plateau). Similar results were found 

for the other considered cases. The results confirm that this approach can be reliable even 

though (a) (time-)discontinuous AE data monitoring is considered, (b) the detection windows 

are randomly (time-)spaced, and (c) the total detection time data is smaller than 10% of the 

lifetime.  

  

  

(a) (b) 

Fig. 6. Random (time-)discontinuous (or periodic) cumulative Shannon entropy (ΣSE) related 

to test A2 considering different (a) number of detection windows (NDW) and (b) duration of 

detection windows (TDW). Each series of plot (e.g., TDW = 10 s (NDW = 20, TT / LT = 2.9 %)) 

includes 200 random process curves. The (time-)continuous entropy curves are also shown. 



5. STRUCTURAL HEALTH MONITORING PROTOCOL 

This section presents the application of the above-described methodology in the framework of 

structural health monitoring. In particular, an innovative monitoring protocol is defined by 

assuming that the performed FCG tests are representative of fracture-critical components of 

structures subjected to fatigue loading. As a matter of fact, the main aspects of fatigue crack 

propagation phenomena are not typically affected by the size, and FCG tests on CT specimens 

are typically performed to assess the fatigue performance of various materials and structures 

under fatigue loading.57–59 

The protocol builds on the (time-)discontinuous evaluation of the cumulative Shannon AE 

entropy. The protocol monitoring process is defined by sequential detection windows, 

analogously to the random periodic monitoring processes previously defined. The features of 

the protocol monitoring process are more realistic than the random process ones for two 

reasons: (a) the monitoring durations and times are compatible with typical regulation/practice 

prescriptions and (b) the criteria specifications depend on the real-time entropy evaluation (e.g., 

health state results depending). The features and the criteria of the protocol are based on the 

experimental finding as well as on common practice and field research29,60  

The protocol is based on the (real-time) evaluation of the cumulative entropy (ΣSE) over the 

detection windows. The variation of the cumulative entropy over the whole ith detection 

window (ΔΣSE,i) is compared to the previous values in order to define two main damage state: 

the crack onset and the failure. The damage states are identified by means of multiple 

conditional tests, i.e., crack onset test: 

ΔΣSE,i  ≤  kΔ0 ΔΣSE,i−1, (5) 

and failure test:  

ΔΣS𝐸,𝑖  ≤  kΔF ΔΣSE,345. (6) 

The crack onset test has positive result (corresponding to the ith detection window) if the 

cumulative entropy variation over the whole ith detection window (ΔΣSE,i) is smaller than or 

equal to a threshold value, which is defined as a fraction of the value related to the previous 

detection window (ΔΣSE,i-1) by applying the crack onset set coefficient 𝑘𝛥0. The failure test has 

a positive result (corresponding to the ith detection window) if the cumulative entropy variation 

over the whole ith detection window (ΔΣSE,i) is smaller than or equal to an aliquot of ΔΣSE,345, 

obtained by applying the failure test coefficient 𝑘𝛥𝐹. ΔΣSE,345 is defined as the average of the 



values related to the 3rd, 4th, and 5th detection window variations evaluated over the entire 

monitoring process (i.e., avg{ΔΣSE,3, ΔΣSE,4, ΔΣSE,5}). The reference detection windows should 

be the earliest possible over the monitoring process since they have to interpret the least damage 

condition of the structure (e.g., beginning of structure functioning, or more generally, 

undamaged structure). However, the first two windows were not considered as a reference since 

the monitoring process becomes effective for i larger or equal to three by definition. 

Furthermore, the entropy variation associated with the very beginning of the activity detection 

is typically associated with extremely large values since the incipient entropy values are 

extremely reduced, as it can be seen in Fig. 5.a. However, the use of earlier windows to compute 

the reference entropy variation of the failure criterion might be considered with due 

consideration, even though it is discouraged by the authors. 

The test results of three consequent detection windows (considering the current ith response as 

the last of the three) define the time interval T from the end of the ith detection window to the 

beginning of the (i + 1)th one, e.g., the time to wait to perform the next AE monitoring 

inspection. The test results of three consequent windows also identify the alarms to be triggered 

with the consequent actions to be undertaken. The criteria for timing and the alarms for both 

crack onset and failure are shown in Tables 4 and 5, respectively.  

Table 4. Main criteria for the definition of inspection times, alarms, and actions to be 

undertaken related to the crack onset assessment. 

crack onset test 

𝜟𝜮𝑺𝑬,𝒊  ≤  𝒌𝜟𝟎 𝜟𝜮𝑺𝑬,𝒊−𝟏 

T alarms (actions to be undertaken) 

test response i-2 i-1 i 

0 0 0 T1 - 

0 0 1 T2 - 

0 1 0 T2 - 

0 1 1 T3 potential crack onset alarm 

1 0 0 T2 - 

1 0 1 T3 - 

1 1 0 T3 potential crack onset alarm 

1 1 1 T4 definite crack onset alarm (special inspection) 

 

The time T will decrease if the index increases (e.g., T2 < T1) because if there is the risk of 

damage in the structure, the inspections and the following AE testing should occur in a shorter 

period of time. The test response assumes a value equal to 1 (0) if the conditional test is positive 

(negative). The potential crack onset alarm and the definite crack onset alarm are caused by 

two and three consecutive positive crack onset conditional tests over the three windows 



assessed, respectively. The potential failure alarm and the definite failure alarm are caused by 

one and two (not necessarily consecutive) positive failure conditional test(s) over the three 

windows assessed, respectively. A special inspection (i.e., localised visual inspection of the 

monitored components) is required in case of definite crack onset alarm or potential failure 

alarm. If significant damage is detected during the special inspections, or in case of definite 

failure alarm, the service/functioning of the structure (or, more generally, of the monitored 

component) has to be immediately interrupted. This action would allow preventing local/global 

structural collapse, as well as it would trigger a more direct/invasive monitoring action 

focussed on the member of interest. 

Table 5. Main criteria for the definition of inspection times, alarms, and actions to be 

undertaken related to the failure assessment. 

failure test 

𝜟𝜮𝑺𝑬,𝒊  ≤  𝒌𝜟𝑭 𝜟𝜮𝑺𝑬,𝟑𝟒𝟓 

T alarms (actions to be undertaken) 

test response i-2 i-1 i 

0 0 1 T5 potential failure alarm (special inspection) 

0 1 1 - definite failure alarm (service interruption) 

1 0 1 - definite failure alarm (service interruption) 

 

The flow chart in Fig. 7 shows the main steps of the proposed monitoring protocol 

implemented. Five scalar and three vectorial indexes are considered. The scalar i indicates the 

number of the (current) inspection and the data detection window; j and k define the number 

of occurred potential and definite crack onset alarm, respectively; l and m define the number 

of occurred potential and definite failure alarm, respectively. The indexes k, l and m can be 

equal to either 1 or 0 since the related alarms can only occur one time. The vector ΔS contains 

the entropy variation values evaluated for all the detection windows up to the ith one. The vector 

T records all the time intervals (T) for all the detection windows up to the ith one; the values of 

T can be equal to T1, T2, T3, T4, and T5. The vector Δ contains all the responses of the 

onset/failure tests at all the detection windows up to the ith one. In particular, the values of Δ 

can be equal to 0 (negative test response), 1 (positive response at the onset test), and 2 (positive 

response at the failure test). Both T and Δ vectors are updated after each conditional test. All 

the scalar indexes are set equal to zero at the beginning of the monitoring process, and the 

vectorial indexes are defined by null vectors. 



 

Fig. 7. Flow chart of the developed monitoring protocol.



The monitoring criteria were applied to the performed fatigue tests. The selected timing 

parameters are reported in Table 6. Two realistic values for LT were considered: 50 and 100 

years. TDW was assumed to be equal to 0.005 LT. Realistic values T1 to T5 were chosen as a 

fraction of LT. A reasonable ordinary inspection time interval (e.g., T1) ranges between two and 

five years.60 Therefore, the assumed values of T1 can be considered on the safe side. However, 

the time parameters can be selected according to the required safety condition for the structure, 

and in compliance with local guidelines. As an example, a decrease of T1 is likely to determine 

an earlier detection of fracture onset. Similarly, a decrease of T5 would give more importance 

to the potential failure alarm. Both actions would certainly increase the safety/reliability of the 

monitoring process. 

Table 6. Selected set of timing parameters. 

LT TDW T1 T2 T3 T4 T5 

[years] 0.005 LT 0.1 LT 0.5 T1 0.5 T2 0.5 T3 0.5 T4 

[months] [years] [years] [months] [months] [days] 

50 3 5 2.5 15 7.5 112.5 

100 6 10 5 30 15 225 

 

The optimal values for the coefficients 𝑘𝛥0 and 𝑘𝛥𝐹 depend on (a) the typology and material of 

the component (e.g., metallic plate), (b) the type of damage (e.g., fatigue fracture), and (c) the 

level of target safety (e.g., time advance for failure prediction). 𝑘𝛥0 and 𝑘𝛥𝐹 were assumed 

equal to 0.80 and 0.15 as a result of an extensive calibration study on the performed 

experimental results. The level of safety (e.g., the ratio between the actual failure time and the 

failure alarm time) is the main variable for the selection of such parameters. In this case, the 

upper bound limit of the values giving the smallest delay of the crack onset alarm detection 

was chosen for 𝑘𝛥0, i.e., smaller values of 𝑘𝛥0 did not reduce (further) the alarm delay. The 

influence of 𝑘𝛥𝐹 was particularly significant on the quantitative earliness of the identification 

of the failure. The failure alarm time, i.e., time in which the failure alarm occurs (ΣTF), divided 

by the lifetime (LT), was assumed as a calibration parameter for the selection of 𝑘𝛥𝐹.  

Fig. 8 shows ΣTF / LT as a function of 𝑘𝛥𝐹 for all considered cases. The trend of ΣTF / LT over 

𝑘𝛥𝐹 was quite similar for the different cases, showing an approximately linear (decreasing) 

trend. This stable and regular response strengthens the robustness of the protocol. The assumed 

value for 𝑘𝛥𝐹 (0.15) corresponds to ΣTF / LT ranging between 0.54 and 0.66, with a mean value 

equal to 0.62, e.g., failure triggered in average 19 (38) years earlier than the experimental 

failure, if LT equal to 50 (100) years is considered. This early failure prediction does not 



represent an excessively safe condition, especially in case of critical damage mechanisms such 

as fatigue fracture in metals. The failure alarm is preferable to be triggered in the last part of 

the stable crack propagation rather than at the onset of the unstable response, therefore 

sufficiently earlier than the actual failure. In this specific case, the assumed value for 𝑘𝛥𝐹 

allowed to detect failure alarm (just) prior to the high and unstable crack growth rates (e.g., 

larger than 5×10-4 to 1×10-3 mm for the tested components/materials) leading to the component 

failure. Assuming values smaller (larger) than 0.15 would predict the failure with an 

excessively reduced (large) advance, which might be risky (expensive). 

 

 

Fig. 8. Failure alarm time (ΣTF) over the lifetime (LT) as a function of 𝑘𝛥𝐹 for all cases. 

Table 7 reports the results of the monitoring process applied to the case A1, where ΣT is the 

vector of the total time at the beginning of the inspection. The potential crack onset alarm (j = 

1) occurred at the 4th detection window (ΣT = 12.5 years). The crack onset alarm (k = 1) 

occurred at the 5th detection window (ΣT = 13.8 years). This triggered the requirement of the 

special inspection. Assumed that no significant damage was found by the special inspection, 

the monitoring process proceeded by checking the conditional failure test. Potential failure 

alarm (l = 1) was reached at the 17th detection window (ΣT = 28.8 years); as a consequence, 

the special inspection was triggered (the same assumption of no significant damage detected is 

made). The definite failure alarm (m = 1) occurred at the 18th detection window (ΣT = 29.2 

years), with the consequent interruption of the structure service. 

The application of the monitoring protocol is shown in Fig. 9 for all performed tests, 

considering the time normalised over the actual failure fatigue time. The cumulative entropy 

(solid line) is shown as well as the crack onset (triangular markers) and failure alarm occurring 

(star markers). The (time-)discontinuous entropy (dotted line) and the actual crack onset 

(vertical dashed line) are also shown, even though they are not considered for the monitoring 

process but only aimed at post-analysis comparison purposes. The reduced AE activity related 



to the first detection windows determined a small value of the entropy. If no AE activity is 

detected, the entropy cannot be evaluated (Equation 2). This condition occurred in three cases 

out of four (i.e., Fig. 9.a, Fig. 9.c, and Fig. 9.d); therefore, the monitoring process did not 

include the first detection window for all cases. The detected onset alarms (triangular markers) 

defined the crack onset just after the actual experimental occurrence (dashed vertical line). The 

late detection of the crack onset observed in Fig. 9.b was caused by the very early occurrence 

of the crack onset (i.e. between the first and second inspection). Fig. 9.a proves that if the crack 

onset occurs after the third detection window, the related alarms match with very good 

agreement the actual crack occurrence. A delay in detecting the crack onset is observed in Fig. 

9.b, in which the actual crack onset occurred between the first and the second detection 

window. In other cases (Fig. s 9.b and 9.c), the actual crack onset occurred between the second 

and the third inspection. Therefore, the protocol is more efficient if the actual crack onset 

occurs at least after the second/third inspection, or equivalently, if the monitoring process 

begins at a time 3 T1 earlier than the crack onset.  

Table 7. Results of the monitoring protocol applied to A1 case (LT equal to 50 years). 

i Δ T ΣT alarms (related index) action to be 

undertaken 

[-] [-] [-] [LT] ([years]) [years] [-] [-] 

1 - T1 0.100 (5.00) 0.00 - - 

2 0 T1 0.100 (5.00) 5.0 - - 

3 1  T2 0.050 (1.25) 10.0 - - 

4 1 T3 0.025 (0.63) 12.5 potential crack onset (j = 1) - 

5 1 T4 0.013 (1.25) 13.8 definite crack onset (k = 1) special inspection 

6 0 T3 0.025 (0.63) 14.4 - - 

7 0 T3 0.025 (0.63) 15.7 - - 

8 0 T3 0.025 (0.63) 17.0 - - 

9 0 T3 0.025 (0.63) 18.3 - - 

10 0 T3 0.025 (0.63) 19.6 - - 

11 0 T3 0.025 (0.63) 20.9 - - 

12 0 T3 0.025 (0.63) 22.2 - - 

13 0 T3 0.025 (0.63) 23.5 - - 

14 0 T3 0.025 (0.63) 24.8 - - 

15 0 T3 0.025 (0.63) 26.1 - - 

16 0 T3 0.025 (0.63) 27.5 - - 

17 2 T5 0.006 (0.31) 28.8 potential failure (l = 1) special inspection 

18 2 - - 29.2 definite failure (m = 1) service interruption 

 

The early detection of the failure alarm reflected the specific selection of 𝑘𝛥𝐹, aimed to advance 

(a) the onset of the unstable crack propagations stage, and (b) excessively large growth rates 



(e.g., larger than 5 × 10-4 to 1 × 10-3 mm). However, different selections can be made with due 

considerations, e.g., assuming different values according to Fig. 8, or performing further 

calibration studies. 

(a) 

 

  

(c) 

(b) 

 

  

(d) 

     

 

Fig. 9. Application of the proposed monitoring protocol considering the fatigue tests 

performed: (a) A1, (b) A2, (c) S1, and (d) S2. 

6. SUMMARY AND CONCLUSIONS 

An innovative approach was proposed for structural health monitoring of fracture-critical 

metallic components subjected to fatigue damage. AE testing of FCG in metallic CTs was 

performed. The tests simulated the condition of a testing environment affected by significant 

cyclic noise disturbance. The information entropy of the acoustic data was evaluated according 

to both Shannon and Kullback-Leibler (relative) formulations. Both entropies were found to be 

clearly correlated to the damage initiation/propagation and failure. The same entropy trend was 

exhibited over different sample/testing conditions. The assessment of the cumulative entropy 

allowed to detect the crack onset quantitatively and to predict the incipient fracture failure. 

Crack onset was identified by (a) a gradual decreasing of the cumulative Shannon entropy and 

(b) a null slope of the cumulative relative entropy. The accelerated fracture leading to the failure 



was correlated to (a) a sub-horizontal slope of the cumulative Shannon entropy and (b) a 

threshold value of the cumulative relative entropy. The assessment approach was found to be 

reliable even though (a) the data detection was (time-)discontinuous (or periodic), (b) the total 

duration of the monitored data was smaller than 10% of the component lifetime, and (c) the 

selection of the data to be detected and analysed was random-based. 

An innovative monitoring protocol was developed by considering the evaluation of the 

cumulative Shannon entropy over realistic monitoring processes based on (time-)discontinuous 

(or periodic) detection windows. The basic features of the protocol (e.g., duration of the 

monitoring inspections or ordinary time-interval between consecutive inspections) were 

derived by regulation prescriptions and current practice approaches. The main novelty of the 

proposed protocol is that the testing features and the damage criteria depend on the current 

state of health of the monitored structure. In other words, the assessment criteria are adjusted 

in real-time as the damage evolves.  

The protocol was applied over the performed laboratory tests, which were meant to represent 

the behaviour of fracture-critical metallic components of structures under fatigue loading 

within a noisy environment. It is recalled that FCG tests on CTs are typically performed to 

assess the fatigue and fracture performance of structures and materials (e.g., crack propagation 

of existing flaw cracks and fracture toughness). Both alarm and timing criteria were defined in 

the light of t experimental findings and current monitoring practice. Alarm criteria were aimed 

at assessing the health state of the component and trigger the alarms, whereas timing criteria 

allowed to establish the time for the next monitoring inspection, as a function of the current 

health state. The threshold values for the verification of the criteria were defined as a function 

of the ongoing entropy assessment results. The application of the protocol allowed to (a) define 

a consistent time interval for the following AE testing inspection and (b) trigger (positively) 

crack onset and failure alarms. The actual (experimental) crack onset was accurately detected 

in real-time, especially when the monitoring process had begun longer prior to the damage 

occurring (monitoring beginning when the structure is undeformed). Failure was predicted in 

time advance of about 40% of the component lifetime, as a result of the set level of safety (i.e., 

the assumed protocol features).  

The monitoring approach is flexible: the main parameters of the protocol (e.g., T1, 𝑘𝛥0, and 

𝑘𝛥𝐹) can be varied according to the required/wanted level of safety, e.g., increasing 𝑘𝛥𝐹 

corresponds to an increase of time advance for failure prediction. The definition of the 

inspection time according to the ongoing data analysis allows reducing the monitoring costs 

while keeping a high level of structural safety. The protocol application only considered single 



fracture-critical members under monitoring, but it could reasonably be extended to a set of 

simultaneously monitored components. The developed monitoring approach is promising for 

field structural health monitoring even though further tests should be performed considering 

real loading conditions, e.g. more representative of bridge components under fatigue loading. 
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