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A B S T R A C T

Accurate determination of fuel properties of complex mixtures over a wide range of pressure and temperature
conditions is essential to utilizing alternative fuels. The present work aims to construct cheap-to-compute
machine learning (ML) models to act as closure equations for predicting the physical properties of alternative
fuels. Those models can be trained using the database from MD simulations and/or experimental measurements
in a data-fusion-fidelity approach. Here, Gaussian Process (GP) and probabilistic generative models are adopted.
GP is a popular non-parametric Bayesian approach to build surrogate models mainly due to its capacity to
handle the aleatory and epistemic uncertainties. Generative models have shown the ability of deep neural
networks employed with the same intent. In this work, ML analysis is focused on two particular properties,
the fuel density and diffusion, but it can also be extended to other physicochemical properties. This study
explores the versatility of the ML models to handle multi-fidelity data. The results show that ML models can
predict accurately the fuel properties of a wide range of pressure and temperature conditions.
1. Introduction

Fossil fuels have been playing a major role in energy supply and
liquid fossil fuels have dominated the energy use in transport, which
will continue to be so for many decades to come, especially for sectors
that are difficult to decarbonize [1,2]. With the pressing needs of
decarbonization and sustainable energy utilization, renewable fuels
and biofuels are becoming increasingly important [3,4]. For instance,
synthetic fuels like Oxymethylene Dimethyl Ethers (OMEs) have shown
high potential for low-carbon transport applications due to their ca-
pacity to avoid soot formation [5]. However, the physicochemical
properties of these fuels must be known for their rapid integration
into current infrastructures for storage, transport and direct injection
in combustion engines. This represents a significant challenge, due to
the fact that practical fuels are often composed by complex mixtures
and vary widely in their chemical compositions depending on the
production source and process [3]. For example, petroleum diesel is a
complex mixture involving molecules with carbon chains that typically
contain between 9 and 25 carbon atoms per molecule. To simplify
the complex chemical compositions of these fuels, surrogate models
have been used to represent the chemical composition and combustion

∗ Corresponding author.
E-mail address: xi.jiang@qmul.ac.uk (X. Jiang).

characteristics in practical applications [6,7]. In addition, modern com-
bustion engines have to operate at high pressure conditions in order to
improve the energy conversion efficiency. Fuel properties at extreme
conditions such as high pressure and high temperature conditions, are
very difficult to measure and predict [5], leading to an additional
challenge.

Accurate determination of fuel properties of complex mixtures over
a wide range of pressure and temperature conditions is essential to
adapt the system operation to alternative fuels. In recent years, molec-
ular dynamics (MD) simulations have been used to predict the physic-
ochemical properties of practical fuels including transport properties
at supercritical conditions [8]. By using equilibrium molecular dy-
namics (EMD) and nonequilibrium molecular dynamics (NEMD), Yang
et al. [9,10] predicted the viscosity and thermal conductivity of alkanes
(n-decane, n-undecane and n-dodecane). Kondratyuk et al. [11–13] per-
formed a serial of MD simulation to study the viscosity of hydrocarbons
(1-methylnaphthalene, methylcyclohexane and 2,2,4-trimethylhexane)
in high pressure conditions up to 1000 MPa. Caleman et al. [14] tested
the capacity of existing force fields on prediction of properties (density,
enthalpy of vaporization, surface tension and heat capacity etc.) of
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Nomenclature

Abbreviations

ANN Artificial neural network
CFD Computational Dluid Dynamics
CN Cetane number
EMD Equilibrium Molecular Dynamics
EoS Equation of State
FAME Fatty acid methyl ester
GANs Generative Adversarial Networks
GP Gaussian Process
MD Molecular dynamics
ML Machine learning
MLPNNs Multilayer Perceptron Neural Networks
NARGP Nonlinear autoregressive multifidelity

Gaussian Process
NEMD Nonequilibrium Molecular Dynamics
NIST National Institute of Standards and Tech-

nology
OMEs Oxymethylene Dimethyl Ethers
TraPPE Transferable Potential for Phase Equilibria
VAE Variational auto-encoders

Greek letters

𝛽 Residual penalty parameter
𝜽 A vector of hyper-parameters
𝛾 A generic property
𝜆 Entropy regularization parameter
𝜇 Expected value
𝜙 A vector of parameters
𝜌 Density
𝜎 Standard deviation
𝜉 A potential noisy

Latin letters

𝐱, 𝐲 Input and output vectors
cv Coefficient of variation
𝐶 Number of atoms of carbon
𝐷 Diffusion coefficient
𝑓 Gaussian function
𝑔 Mapping function
𝐾 Covariance matrix
𝑘 A kernel function
𝑙 Correlation length
𝑛 Dimension of the input and output
𝑁𝑠 Number of samples
𝑃 Pressure
𝑝 Probability distribution
𝑃𝑐 Critical pressure
𝑇 Temperature
𝑡 Time
𝑇𝑐 Critical temperature
𝑧 Latent variable

organic liquids. Although MD simulations provide molecular details
that can be potentially used to accurately predict fuel properties, they
are generally expensive in terms of computational costs (CPU time
2

and memory). In addition, MD predictions also need to be validated
against experimental measurements, which can be even more costly
especially at extreme conditions. Accordingly, it is not feasible to
establish complete and detailed fuel property databases consisting of
a wide range of pressure and temperature conditions using either MD
simulations or experiments.

Machine learning has great potentials to discover the relation be-
tween inputs and outputs in a thermodynamic system directly from
the data of complex systems [15] and for predicting the properties of
materials based on their composition [16]. ML can be a powerful tool to
predict fuel properties from chemical compositions of the fuel mixture
and/or chemical structures of the fuel molecules. Several works have
been devoted to designing ML models capable of predicting complex
fuels properties from experimental data. In this regard, ML models
obtained accurate predictions of cetane number (CN) compared to
experimental data [17–19]. A satisfactory ML approach for modeling
the CN of biodiesel based on four operating conditions given by iodine
volume (IV), carbon number, double bounds, and saponification value
was proposed [20]. Recently, an artificial neural network (ANN) was
applied to predict and identify the underlying links between the fuel
properties and the octane number (ON) [21]. Moreover, ML models
were tuned with evolutionary algorithms to predict the CN of biodiesel
as a function of its fatty acid methyl ester (FAME) profile [22,23].
The predictability, i.e. the ability to predict, of the ML approaches
also can be improved by using different optimization algorithms for
the training and/or hyperparameter search such as teaching–learning
based optimization (TLBO), backpropagation, Quasi-Newton and par-
ticle swarm optimization (PSO) [24–26]. Also, ML models have been
used for modeling the kinematic viscosity of diesel-derived fuels as a
function of their FAMEs profiles [27–29]. In the last years, Multilayer
Perceptron Neural Networks (MLPNNs) have been successfully built
to estimate the physicochemical characteristics of biodiesel [30–33]
combining different parameters of model inputs. Furthermore, ML mod-
els based on state variables such as temperature and pressure showed
high potential to obtain physicochemical properties of biodiesel/diesel
fuels more accurately [34–36]. In particular, ML models have been de-
veloped to predict thermodynamic properties such as critical pressure
and temperature, vapor pressures, and densities of pure fluids [37].
Moreover, approaches combining MD simulations and ML have been
applied to modeling the diffusion of pure liquids [38,39]. Following the
same context, a ML approach based on support vector regression (SVR)
was proposed by [40] for predicting the PVT properties of pure fluids
(H2O, CO2, and H2) and their mixtures, where the training database is
provided by the National Institute of Standards and Technology (NIST)
and MD simulations. Also, an ML approach was proposed to assess the
macroscopic Engine Combustion Network (ECN) Spray-A characteris-
tics and predictions of fluid properties for the thermodynamic states
found in such conditions [41]. Yet, from our knowledge, little work
has been dedicated towards exploring the thermodynamic properties
of practical fuels combining MD simulations and ML models. ML can
be a powerful tool to predict fundamental fuel properties directly from
the chemical compositions of the fuel mixture by using databases from
MD simulations or available experimental measurements.

The aim of the study was to demonstrate and validate a ML-
MD methodology to predict fundamental properties of liquid fuels. In
this approach, the ML models are built from data provided by MD
simulations, while a combination of MD and NIST data is used for
model assessment and validation. This study is the first attempt of using
ML models with Gaussian process regression [42] and probabilistic
conditional generative learning [43,44] for the property predictions of
single-compounds. The ML analysis is focused on fuel density in this
study as one of fundamental properties of liquid fuels, though it can
easily be extended to other physicochemical properties of relevance for
practical applications like diffusion coefficient, viscosity, conductivity
or surface tension.

The rest of the paper is organized as follows. Section 2 presents
the ML models and the molecular dynamics simulation methodology.
Section 3 describes the ML results for typical fuel surrogates of diesel.
Finally, Section 4 concludes the study with recommendation for further

investigations.
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2. Methodology: Building machine learning models to describe
physicochemical properties

In order to reduce energy consumption and pollutant formation,
supercritical combustion has been increasingly explored in the context
of high pressure internal combustion engines and rocket engines [45].
Specifically, in supercritical conditions, the devices operate with pres-
sures and temperatures higher than the critical values, which implies
that physicochemical properties of fluids are quite different from those
at liquid conditions [46]. In such scenarios, the design of devices
become more complex, specially due to limitations of replicating flow
and combustion in controlled laboratory environments. In order to cope
with these challenges, computational models can provide adequate
tools for obtaining more accurate predictions of state variables and
increase cycle performance in transcritical conditions.

From a computational fluid dynamics (CFD) perspective, combus-
tion models are built upon the combination of solid and reliable
physico/chemical principles with closure models, typically describing
physicochemical properties of the fuels and their mixtures using ap-
proaches that normally entail uncertainties. The use of numerical simu-
lations for practical applications encompass a wide range of conditions,
resulting in different fundamental problems depending on the nozzle
geometry, engine architecture or thermodynamic conditions. A good
example is the database from the Engine Combustion Network [47]
for which different sprays for diesel- and gasoline-like conditions are
investigated. For instance, pressure can go from sub-atmospheric to
2000 bar, and temperatures from cold to highly preheated conditions.
In that context, having accurate values for macroscopic fuel charac-
teristics and properties over such wide variety of spatial and time
scales is one of the main challenges for physically-driven methods.
That is particularly more dramatic for modern compounds depicting
complex chemical compositions, and simplified surrogate fuels [48]
are employed to estimate the properties of the original compounds.
That allows the systematic use of controlled experiments and, also,
Molecular Dynamics simulations [49,50]. Indeed, here our focus lies on
using ML models to leverage such type of simulations when obtaining
liquid fuel physicochemical properties. Those properties are generally
expressed as functions of local thermodynamic conditions like pressure
and temperature, which motivate to refer to closure models such as the
Equations of State (EoS). In general, the EoS is embedded in complex
CFD simulations resulting in divergence or numerical oscillations when
used with traditional methods based on tabular and interpolation
schemes [51]. It is worth to remark that we are seeking for models
capable of describing physicochemical properties over a wide range
of flow conditions and we expected to observe abrupt changes around
critical conditions.

We built two different ML models, namely Gaussian Processes
(GP) [42] and a probabilistic conditional generative approach [44].
We train both in a supervised learning fashion using data produced
with expensive MD simulations. Therefore, we rely on their ability to
learn from a small amount of data and their capacity of extrapolation.
Moreover, we also want to take into consideration the unavoidable
uncertainties arising from limited information (epistemic) and from
noisy data (aleatoric).

GPs have become popular due to its success on being a proxy for
physics-based high-fidelity models in different applications [52–57].
Another well proved ML approach are the so called generative models
that explore existing low-dimensional structures capable of explaining
high-dimensional data introducing probabilistic latent variables.

In the remainder of this chapter, we present a brief description of
both ML models for a generic property 𝛾(𝑃 , 𝑇 ) function of pressure and
temperature, along with the corresponding training algorithms. For the
training of the models, we assume the availability of, potentially expen-
sive, dataset comprising input/output pairs {(𝑃 , 𝑇 ) , 𝜸 𝑖 = 1,… , 𝑛}
3

𝑖 𝑖 t
generated by an implicit mapping 𝑔 characterizing the macroscopic
thermodynamic relation between the property and the state variables:

𝛾 = 𝑔(𝑃 , 𝑇 ; 𝝃). (1)

The role of 𝑔 here is played by upscaling MD simulations or, to a less
extent, by experimental available data. The vector 𝝃 denotes potential
noisy and is often considered a random. In order to keep a compact
notation, we refer to the above dataset as  = (𝐱, 𝐲), with 𝐱 ∈ R2𝑛 and
𝐲 ∈ R𝑛 vectors containing inputs and outputs. We intentionally do not
use the word surrogate to designate any of the two ML models to avoid
misleadings. In the combustion technical literature, it is employed to
refer to compounds with simpler compositions to replace complex fuels
in experimental or numerical analysis.

2.1. Gaussian process regression

A GP is an infinite collection of random variables, in which any fi-
nite number of such variables depict a joint Gaussian distribution [42].
In line with Bayesian estimation, to approximate 𝑔 we assign a GP
zero mean prior 𝑓 (𝐱), i.e., 𝑓 ∼ 𝐺𝑃 (𝑓 |𝟎, 𝑘(𝐱, 𝐱′;𝜽)), where 𝑘 is a kernel
arametrized by a vector of hyper-parameters 𝜽 to be learned from 

and engenders a symmetric positive-definite 𝑛 × 𝑛 covariance matrix
𝐾𝑖𝑗 = 𝑘(𝑥𝑖, 𝑥𝑗 ;𝜽). Instead of choosing the squared exponential form
of the kernel as usual [42], here, we test some forms of covariance
matrix belonging to the Matern family. More specifically, we employ
the Mayern 3/2 covariance matrix given as

𝑘(𝐫) = 𝜎2
(

1 +
√

6
|𝑟|
𝑙

)

exp
(

−
√

6
|𝑟|
𝑙

)

(2)

with 𝐫 = 𝐱 − 𝐱′ denoting the distance between different inputs. The
hyper-parameters are the standard deviation 𝜎, and the correlation
lengths 𝐥 = {𝑙1, 𝑙2,… , 𝑙𝑛𝑘}, and 𝑛𝑘 denotes the dimension of input 𝐫.
Hence, the hyper-parameters vector reduces to 𝜽 = {𝐥,𝝈}.

We do not follow a fully Bayesian approach, and obtain the vector
of hyper-parameters 𝜽 by maximizing the marginal log-likelihood of the
model, i.e.

log𝑝(𝛾|𝐱,𝜽) = −1
2

log|𝐊| − 1
2
𝛾𝑇𝐊−1𝛾 − 𝑛

2
log2𝜋. (3)

using a conjugate gradient descend method.
The final goal of the regression is obtaining a predictive model for

𝛾, which means to compute its value for an untested state 𝐱∗ [53]

∗(𝐱∗) = 𝑘∗𝑛𝐊−1𝐲 (4)

nd
2
∗(𝐱∗) = 𝑘∗∗ − 𝑘∗𝑛𝐊−1𝑘𝑇∗𝑛 (5)

here 𝑘∗𝑛 = [𝑘(𝐱∗, 𝐱1),… , 𝑘(𝐱∗, 𝐱𝑛)] and 𝑘∗∗ = 𝑘(𝐱∗, 𝐱∗). The predictions
re computed using the posterior mean 𝜇∗, and the uncertainty associ-
ted with that predictions is quantified through the posterior variance
2
∗ . It is worth to mention that in absence of noisy in the training data,
he later represents epistemic uncertainty due to lack of data.

.2. Probabilistic conditional generative model

Now, we explore a probabilistic conditional generative
pproach [43,44], that integrates variational auto-encoders (VAE) [58]
nd generative adversarial networks (GANs) [59]. Moreover, it employs
probabilistic perspective that enables to take into consideration noisy
nd limited data from the beginning. It is also capable of dealing with
igh-dimensionality of inputs and outputs, what is not explored here
ue to the specific aspects of our needs.

The final goal is to build probabilistic neural networks that follow
conditional probability density function 𝑝(𝛾|(𝑃 , 𝑇 ),) learnt from the
ata. So, the surrogate model can deploy accurate values for the prop-
rty 𝛾 by estimating the expectation E(𝛾|(𝑃 , 𝑇 ),), and also, to quantify
he uncertainty associated with that prediction in CFD calculations.
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The main ingredient for this approach is the introduction of a vector
of latent random variables aiming at seeking for a hidden low dimen-
sional structure for explaining the data structure. In a formal abstract
perspective, such latent variables allow us to express the conditional
probability associate to the data , not included in the expression to
eep the notion clear, 𝑝(𝛾|𝑃 , 𝑇 ), as an infinite mixture model through

𝑝(𝛾|𝑃 , 𝑇 ) = ∫ 𝑝(𝛾, 𝐳|𝑃 , 𝑇 ) 𝑑𝐳 = ∫ 𝑝(𝛾|𝑃 , 𝑇 , 𝐳) 𝑝(𝐳|𝑃 , 𝑇 ) 𝑑𝐳 (6)

where 𝑝(𝐳|𝑝, 𝑇 ) is a prior distribution on the latent variables. The
above hierarchical mathematical ansatz, despite being very elegant and
rigorous, has to be approximated [44], where a regularized adversarial
inference framework is proposed and detailed. The final result is a
generator model 𝛾 = 𝑓𝜙(𝑝, 𝑇 , 𝐳) parametrized by vector 𝜙, like trained
deep neural networks. In conjunction with 𝑝(𝐳), the statistics of 𝛾 can be
characterized. More specifically, we can compute its low order statistics
via Monte Carlo sampling. It is important to remark that the predictions
with the identified probabilistic generator, that, in present context,
plays the role of a proxy for obtaining macroscopic thermodynamic
properties of mixtures for pressures and temperatures not contained
in , is negligible when compared to MD simulations. The mean and
variance of the predictive distribution at a new point (𝑝∗, 𝑇 ∗) are
computed as

𝜇𝛾 (𝑃 ∗, 𝑇 ∗) = E[𝛾|𝑃 ∗, 𝑇 ∗, 𝐳] ≈ 1
𝑁𝑠

𝑁𝑠
∑

𝑖=1

[

𝑓𝜙(𝑃 ∗, 𝑇 ∗, 𝐳𝑖)
]

(7)

2
𝛾 (𝑃

∗, 𝑇 ∗) = Var[𝛾|𝑃 ∗, 𝑇 ∗, 𝐳] ≈ 1
𝑁𝑠

𝑁𝑠
∑

𝑖=1

[

𝑓𝜙(𝑃 ∗, 𝑇 ∗, 𝐳𝑖) − 𝜇𝐲(𝑃 ∗, 𝑇 ∗)
]2 ,

(8)

where 𝐳𝑖 ∼ 𝑝(𝐳), 𝑖 = 1,… , 𝑁𝑠, and 𝑁𝑠 corresponds to the total number
of samples.

At this point, it is important to clarify that the predictive uncertainty
encoded in 𝐳 is due to noise in the Molecular Dynamics computa-
tions originated by numerical approximations and to the potential
small amount of data employed in the training process. Therefore, it
encapsulates aleatoric and epistemic uncertainties.

Later, we explore the versatility of the probabilistic ML model
employing the fusion of data produced by MD with experimental data
obtained for supercritical behavior of the mixture.

2.3. Physicochemical properties prediction in EMD simulation

In this study, all MD simulations are performed in Gromacs pack-
age [60] with Transferable Potentials for Phase Equilibria (TraPPE)
force field [61]. United-atom molecular description is used in order
to reduce the computational cost. Before simulation, 1000 molecules
are distributed in a box with relatively large edge length of 14 nm to
avoid atom’s overlap. After energy minimization, a 2 ns simulation is
performed with time setup of 1fs in isobaric–isothermal NPT (fix the
number of atoms, pressure and temperature of the system) ensemble by
using Parrinello–Rahman method [62] to maintain the pressure. Then
1 ns NVT (fix the number of atoms, volume and temperature of the
system) simulation is followed for production run. The temperature
is controlled by velocity rescale. The fixed bond length in TraPPE
force field is achieved by using LINCS algorithm [63]. The density and
diffusion is calculated in NVT simulation.

The diffusion coefficient (𝐷) can be obtained from the linear fittings
f mean square displacement (𝑀𝑆𝐷) of molecules:

𝑆𝐷(𝑡) = ⟨|𝐫𝑖(𝑡) − 𝐫𝑖(0)|2⟩ (9)

𝐷(𝑡) = 1
6
𝑑
𝑑𝑡

⟨|𝐫𝑖(𝑡) − 𝐫𝑖(0)|2⟩ (10)

where 𝐫𝑖(𝑡) is the position of the 𝑖th particle at time 𝑡, angle bracket
indicates the ensemble average over all the particles in the system.
4

Table 1
Gaussian process training accuracy.
Train data 𝐿2−𝑀𝑅𝐸 R2-score

10% 6.2805 × 10−2 0.8538
50% 4.7438 × 10−2 0.9976
100% 2.7272 × 10−2 0.9991

Table 2
Generative model training accuracy.
Train data 𝐿2−𝑀𝑅𝐸 R2-score

10% 4.9316 × 10−2 0.9359
50% 2.8989 × 10−3 0.9983
100% 2.1409 × 10−3 0.9990

Fig. 1. Effect of the system size on density prediction.

The number of fuel molecules and simulation time in our simulation
is setup according to previous studies. For example, Yang et al. [64]
used 250 molecules with 2 ns simulation time in transport property pre-
diction of n-alkanes, and Kondratyuk et al. [65] used 1000 molecules
in modeling branched alkanes running in EMD simulation of 1 ns.
Fig. 1 depicts the effect of the system size on the n-dodecane density
prediction. As we can see 1000 molecules are sufficient to achieve
convergence of the density prediction at an affordable computational
cost.

3. Results and discussion

Here, we demonstrate the performance of the proposed methodol-
ogy. Despite alternative fuels can be very complex mixtures consisting
of hundreds of compounds, we consider single-component alkanes
C𝑛H2𝑛+2, so reliable data for model assessment and validation can be
used. In general, realistic fuels are usually described by surrogate mod-
els [8] because of availability of validated chemical mechanisms and
experimental measurements. The data to train our ML models consist of
properties of a family of alkanes, ranging from normal to supercritical
conditions. More specifically, we construct ML models to characterize
density dependency on some operational conditions in which data is
not available. As mentioned before, in order to take into consideration
unavoidable uncertainties, we approximate the conditional probability
𝑝(𝛾|𝐱,𝜽), with 𝐱 being the input vector with components pressure
𝑝, temperature 𝑇 and chemical composition. Moreover, it is worth
mentioning here that for simplicity we consider as the input that char-
acterizes the chemical compositions the number of atoms of carbon 𝐶 in
the molecule of the pure compounds, a categorical variable. However,
parameters from the EMD used to characterize the physicochemical
properties of the fuel molecule can be used. Also, for the GP learning

model, the hyper-parameters vector reduces to 𝜽 = {𝐥,𝝈}, and for the
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Fig. 2. Schematic view of the conditional generative model.
Fig. 3. n-Octane predictions with the GP (top) and probabilistic conditional generative models (bottom) at the pressures 3, 10, and 100 MPa.
generative model 𝜽 represents the vector of parameters of the deep
neural networks 𝜙. The latent variable 𝑧 is embedded in the input
vector 𝐱. We employ a one-dimensional latent space with a standard
normal prior, 𝑝(𝑧) ∼  (0, 1).

The pure compounds considered are n-octane, n-nonane, n-decane,
n-dodecane, and n-hexadecane, operating from high-pressure nozzle
to supercritical chamber environment conditions. The dataset used to
build the ML models consists of 1200 density values. Specifically, the
there are 240 values of the density for each compound, computed at
a regular temperature grid within 𝑇 ∈ [320, 900] K, varying by 20 K,
and at the specific pressures values: 𝑃 = {3, 4, 6, 8, 10, 20, 100, 150} MPa.
It is worth remarking that in this dataset we included density values
for supercritical regions, more specifically values above the critical
temperature (𝑇𝑐) of the compounds, being the critical values for n-
octane (𝑇 = 569.32 K), n-nonane (𝑇 = 594.55 K), n-decane (𝑇 =
5

𝑐 𝑐 𝑐
617.7 K), n-dodecane (𝑇𝑐 = 658.1 K), and n-hexadecane (𝑇𝑐 = 722 K),
which replicate engine-like conditions.

In the learning process, 80% of the data points are selected ran-
domly to training the ML models. The remaining 20% are used to
validating them. Moreover, the training data set is organized in three
subsets with 10%, 50%, and 100% of data available to train the models.
The aim here is to evaluate the convergence and impacts of constructing
the ML models in a small data regime. Accuracy is measured using the
distance between the expected values predicted with the ML models
and the predictions computed with the MD simulations. We check this
accuracy computing the 𝐿2 mean relative error (𝐿2−𝑀𝑅𝐸)

𝐿2−𝑀𝑅𝐸 = 1
𝑁

𝑁
∑

𝑖=1

(

𝜌𝑖 − �̂�𝑖
𝜌𝑖

)2
(11)

where 𝜌𝑖 is the density computed with MD simulations, �̂�𝑖 is the
expected ML output and 𝑁 is the number of test samples. Also, we



Fuel 329 (2022) 125415R.S.M. Freitas et al.
Fig. 4. n-Dodecane predictions with the GP machine learning model (top) and conditional generative machine learning model (bottom) at the pressures 3, 10, and 100 MPa.
Fig. 5. n-Hexadecane predictions with the GP machine learning model (top) and conditional generative machine learning model (bottom) at the pressures 3, 10, and 100 MPa.
compute the coefficient of determination (𝑅2-score) metric [66]

𝑅2 = 1 −
∑𝑁

𝑖=1 ‖𝜌𝑖 − �̂�𝑖‖22
∑𝑁

𝑖=1 ‖𝜌𝑖 − 𝜌‖22
(12)

where 𝜌 = 1
𝑁

∑𝑁
𝑖=1 𝜌𝑖 is the mean density of test samples. The 𝑅2-

score metric represents the normalized error, allowing the comparison
between ML models trained by different data sets, with values close to
1 corresponding to the ML models best accuracy, while 𝐿2−𝑀𝑅𝐸 is a
common metric used to check the accuracy of ML models during the
optimization process.

We obtain the GP regression model of Eq. (1) via maximizing the
marginal log-likelihood of Eq. (3) using the Mattern 3/2 kernel func-
tion, as that shown in Eq. (2). Also, we have used the gradient descend
optimizer L-BFGS [67] using randomized restarts to ensure convergence
to a global optimum. The GP learning model was implemented in GPy:
Gaussian Process (GP) framework written in python [68].

On the other hand, to construct the generative learning model, we
departed from the architecture proposed and validated by Yang and
Perdikaris [44]. More specifically, the conditional generative model is
6

constructed using fully connected feed-forward architectures for the
encoder and generator networks with 4 hidden layers and 100 neurons
per layer, while the discriminator architecture has 2 hidden layers with
100 neurons per layer. A schematic view of the conditional generative
model is depicted in Fig. 2. The neural networks are constructed by
combining try-and-error and Hyperopt algorithm [69] to search for the
hyperparameters that give the lowest 𝐿2−𝑀𝑅𝐸 . All activation uses a
hyperbolic tangent non-linearity. The models are trained for 50,000
stochastic gradient descent steps using the Adam optimizer [70] with
a learning rate of 10−4, while fixing a two-to-one ratio for the discrim-
inator versus generator updates. Furthermore, we have also fixed the
entropy regularization and the residual penalty parameters to 𝜆 = 1.5
and 𝛽 = 0.5, respectively. The proposed model was implemented in
TensorFlow v2.1.0 [71], and computations were performed in single
precision arithmetic on a single NVIDIA GeForce RTX 2060 GPU card.

We also explore some alternatives versions of the above described
ML models by proposing fusion with experimental data and the use of
multi-fidelity formulations.
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Fig. 6. n-Heptane predictions with the GP machine learning model (top) and conditional generative machine learning model (bottom) at the pressures 3, 10, and 100 MPa.

Fig. 7. n-Octane density variability for a range of temperatures and pressures.

Fig. 8. n-Dodecane predictions of the diffusion coefficient with the GP machine learning model (top) and conditional generative machine learning model (bottom) at the pressures
1, 10, and 100 MPa.
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Fig. 9. Comparison of the 𝐿2 mean relative error in different data regimes for training.
Gaussian process (dashed-line) and generative model (solid-line).

3.1. ML results for typical fuel surrogates

Tables 1 and 2 show the coefficient of determination (R2-score) and
𝐿2 mean relative error, respectively, for GP and the probabilistic con-
ditional generative models. The accuracy metrics are computed with
the test samples. We observe that they are not satisfactory in the small
training data scenario, with 10% of training data. R2-scores for the GP
and conditional generative models in this specific training scenario are
0.8538 and 0.9359, respectively. For a data richer situation, with 50%
of training data, we observe that the models return good predictions
with R2-score higher than 0.99. Also, we observe that the conditional
generative model returns better predictions than the GP model in a
small data scenario, with an accuracy of 𝐿2−𝑀𝑅𝐸 = 2.8989× 10−3 while
the GP accuracy is 𝐿2−𝑀𝑅𝐸 = 4.7428 × 10−2. Finally, with 100% of the
training data, we can see that the surrogate models return excellent
predictions with R2-score very near 1.0 and mean relative errors lower
than 0.03%.

As a further illustration of the performance of such approaches to
predict the density, we plot its values for n-octane, n-dodecane, and
n-hexadecane densities with respect to temperature for the ML models
trained with 50% of the dataset, since this training scenario returns the
best relation between accuracy and computational cost. Fig. 3 shows
the n-octane density predictions at the pressures equal to 3, 10, and
100 MPa. We can observe that at 3 MPa the GP model fails to deliver
good results around the transcritical region, while the generative model
provides robust predictions with uncertainties bounds that capture the
data. The predictive uncertainty of the proposed approaches reflects
limited data for training the models, the epistemic uncertainty. We can
also note that both models perform well at 10 and 100 MPa, wherein
the density dependency on the temperature has a smooth behavior.

Also, the n-dodecane and n-hexadecane densities are depicted along
with temperature in Figs. 4 and 5. We observe that the ML models
return robust predictions at three different pressures. Besides, it is noted
that the GP model returns larger uncertainty bounds at high pressures,
specifically at density points not used in the training process.

We also validate how the proposed ML technology perform in an
extrapolation scenario. We validate them for the n-heptane, a fuel not
used for building the models. In order to do that, instead of employing
data provided by ML computations, we use an experimental database
furnished by the National Institute of Standards and Technology (NIST).
Fig. 6 shows that at 3 MPa and liquid condition the ML model returns
good predictions of the n-heptane density behavior, with small uncer-
tainties. However, at supercritical conditions (𝑇𝑐 = 540.13 K), the GP
model returns density predictions far from satisfactory. Also, we note
that the generative model has uncertainty bounds able to capture the
thermophysical property. The 𝐿2 mean relative error between the NIST
dataset and the expected values predicted by the GP and conditional
generative models are 7.1697 × 10−2 and 2.0838 × 10−2, respectively.
We can also note that at higher pressure where the density behavior
is smooth, the models present better predictions, with the GP model
8

Fig. 10. Comparison between n-dodecane density predictions along with temperature
at 2 MPa between MD simulations against NIST dataset.

showing larger uncertainties bounds and the generative model returns
smaller uncertainty bounds. Moreover, the 𝐿2 mean relative errors of
the GP model at 10 and 100 MPa are respectively 1.8152 × 10−4 and
6.3072 × 10−4, and for the conditional generative model the 𝐿2 mean
relative errors at the same pressures are 8.4484×10−5 and 2.0322×10−4.

Furthermore, we use a coefficient of variation to measure the degree
of uncertainty of the density predictions. It is defined as the ratio
between the standard deviation 𝜎𝜌 and the mean 𝜇𝜌 of the prediction

cv(𝑝, 𝑇 ) =
𝜎𝜌(𝑝, 𝑇 )
𝜇𝜌(𝑝, 𝑇 )

(13)

Fig. 7 gives an overall picture by displaying a mapping between the
operating conditions and the uncertainty on n-octane density predic-
tions. We present an explicit quantification of the epistemic uncertainty
resulting from the lack of data, which helps to understand limits of the
ML models. More specifically, to make more accessible the visualization
of the results, we plot this mapping for log10𝑝 ∈ [0.5, 2.5] MPa and
𝑇 ∈ [320, 900] K with regular intervals of 20 K, allowing us to make
explicit the strong dependence of the epistemic uncertainties regarding
different regions of operating conditions. A critical aspect to be re-
marked is the higher values of cv in particular regions of the operating
conditions space, especially at transcritical conditions displaying higher
gradients of the property. We can note that the GP model returns a
degree of uncertainty slightly large in this region. That can be mitigated
by providing more training data for this specific region. Also, it is noted
that variability of density provided by the conditional generative model
is less pronounced at liquid regions and for high-pressure supercritical
regions, which is due to the smooth density behavior resulting in a low
degree of uncertainty in the predictions at these regions.

In addition, we explore the ability of ML models considering other
physicochemical properties. Specifically, we extend the above ap-
proaches to predict the diffusion coefficient of the alkane compounds.
The diffusion coefficient controls mass transport in combustion engines.
Therefore, understanding diffusion is extremely important in order to
optimize industrial processes and improve device efficiency, especially
for supercritical combustion, where the physicochemical properties of
fluids are quite different from those in liquid conditions. It is worth
emphasizing that constructing accurate and simple predictive models
overcoming costly simulations and expensive experimental procedures
is crucial for describing physicochemical properties over a wide range
of flow conditions. The dataset used to build the ML models consists
of 1240 values of the diffusion coefficient, computed within a regular
temperature grid 𝑇 ∈ [300, 900] K, varying by 20 K, and at specific pres-
sures: 𝑃 = {1, 2, 4, 10, 20, 40, 100, 150} MPa. In the training process, 70%
of the data points are selected randomly to training the ML models. The
remaining 30% are used to testing them. Moreover, the training data
set is organized in three subsets with 20%, 50%, and 70% of data. Fig. 8
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Fig. 11. n-Dodecane density predictions GP model: (a) n-Dodecane density along with temperature at 2 MPa. (b) 𝐿2 error between the expected value predicted by the ML model
against NIST.
Fig. 12. n-Dodecane density predictions conditional generative model: (a) n-Dodecane density along with temperature at 2 MPa. (b) 𝐿2 error between the expected value predicted
by the ML model against NIST.
Fig. 13. n-Dodecane density predictions with the GP model (top) and conditional generative model (bottom) using the data-fusion approach with three density points from the
NIST database.
shows the n-dodecane diffusion coefficient predictions at the pressures
equal to 1, 10, and 100 MPa for the ML models trained with 50% of
the dataset. We observe that the ML models return robust predictions
at three different pressures with GP model returns larger uncertainty
bounds. We can also note that similar to density the model perform
9

better at higher pressures, wherein the diffusion coefficient dependency
on the temperature has a smooth behavior. That is further confirmed by
calculating the 𝐿2 mean relative error, where for a pressure of 1 MPa
the models return worse predictions, as shown in Fig. 9. That might be
explained by the fact that the physicochemical properties display higher
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Fig. 14. Multi-fidelity modeling of n-dodecane diesel surrogate fuel density.
Fig. 15. n-Dodecane density predictions with the GP model (top) and conditional generative model (bottom) using the data-fusion-fidelity approach with one density point from
the NIST database.
gradients near transcritical regions at lower pressures, which decreases
the predictability of the models under these conditions. Also, we note
that the generative model has slightly better predictions than the GP
model. These results show the robustness of the proposed approaches
to construct predictive models for physicochemical properties of diesel
fuels.

3.2. Data-fusion machine learning models

Although MD simulation is considered to be a robust tool to predict
thermodynamic properties, it returns unsatisfactory values at critical
points/transcritical regions. It was shown [8] that the transport prop-
erties predictions of diesel surrogate fuels are far from satisfactory
near such critical points. That is also the case with n-dodecane in that
study. The results depict that EMD simulation might be unsuitable
for predicting the properties at regions near the critical point. Non-
equilibrium molecular dynamics simulation may leverage the results
near the critical points, which is beyond the scope of the present
study. Density predictions with MD simulations and NIST data at
transcritical regions present considerable discrepancies, as shown in
10
Fig. 10. More specifically, in operating conditions near the critical
point of n-dodecane, critical pressure (𝑃𝑐 = 1.8170 MPa) and critical
temperature (𝑇𝑐 = 658.1 K), our ML models based on the MD data
fail to accurately predict the density. Figs. 11(a) and 12(a) show the
density predictions at 2 MPa for GP and conditional generative model,
respectively. Moreover, Figs. 11(b) and 12(b) also show that the main
discrepancies between the expected values of ML models against the
NIST database are into the transcritical regions.

Aiming at improving the predictability of our ML models at tran-
scritical regions, we adopt two strategies, exploring the fusion of MD
simulations with experimental data. The aim here is not to compare
these different strategies but to evaluate their potential. Both are
formulated with the same idea, promoting the fusion of data from
MD simulations and experiments datasets. In the first one, we pro-
pose a data-fusion strategy in which density points of the transcritical
region provided by the NIST database are simply concatenated into
the training dataset. The second differs as we propose a multi-fidelity
arrangement of the data. A detailed description of both strategies is
given further ahead.
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Fig. 16. n-Dodecane density predictions with the GP model (top) and conditional generative model (bottom) using the data-fusion-fidelity approach with one density point from
the NIST database at the pressures 10 and 100 MPa.
Fig. 17. n-Dodecane density predictions with the GP model (top) and conditional generative model (bottom) using the data-fusion-fidelity approach with two density points from
the NIST database.
In the data-fusion approach, we add three density values from NIST
to the original training dataset, as depicts in Fig. 13(a). Note that
the fusion improves considerably the predictions of the conditional
generative model with relative errors lower than 5%, while the GP
model still returns relative errors not satisfactory. Further details about
this data-fusion approach can be found in Appendix.

As discussed above, generating reliable data with MD simulations
to be used in supervised learning might require a great computational
effort. To tackle such a drawback, numerical formulations combin-
ing models displaying different levels of fidelity are frequently em-
ployed. Those multi-fidelity simulators employ, for instance, coarse
11
grid discretizations, models based on simplified physics, or simplified
iterative methods. Here, again we merge experimental data with MD
simulations, restricting our approaches to two levels of fidelity.

In this new context, we propose extensions of the previous intro-
duced ML models. We start by obtaining high-fidelity {𝐱𝐻 , 𝛾𝐻} and
low-fidelity {𝐱𝐿, 𝛾𝐿} input–output samples. Typically, the number of
samples in the first case tends to be much smaller due to the related
costs. We assign the high-fidelity score to the experimental data, ac-
cording to the considerations above about the potential inaccuracy of
the MD obtained computed properties for transcritical regions.
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We start with our first, in this multi-fidelity context, ML model
approximating the conditional probability 𝑝(𝛾𝐻 |𝐱𝐻 , 𝛾𝐿, 𝑧), using the
generative model 𝛾𝐻 = 𝑓𝜙(𝐱𝐻 , 𝛾𝐿, 𝑧), 𝑧 ∼ 𝑝(𝑧). In another words, the
ML model is supposed to capture the correlation between the two level
of fidelity data. Once this is achieved, we have a predictive model
computing outputs for a new point 𝐱∗: 𝐲∗𝐇 = 𝑓𝜙(𝐱∗, 𝑓𝐿(𝐱∗), 𝑧). At this
point, it is worth remarking that one of the inputs is the output of
the low-fidelity model, leading to a recursive scheme to obtain the
predictions of the multifidelity model. In fact, here the considered low
fidelity data is produced with expensive MD simulations. Therefore, in
order to achieve a feasible scheme, we need to build an auxiliary, cheap
to compute and accurate, proxy for the low fidelity model using the
available data.

As a second approach, the one based on GPs, we employ the non-
linear autoregressive multi-fidelity GP (NARGP) regression model [53].
The main idea of the NARGP model is to extend GP modeling to capture
nonlinear correlations from data generated by sources of different
fidelity [72,73]. It enables the construction of probabilistic models
prone to encapsulate uncertainties, built upon the recursive relation
𝑦𝐻 = 𝑔(𝑥𝐻 , 𝑓𝐿(𝑥𝐻 )) involving low and high fidelity data, in which 𝑓𝐿
is a GP model for the former. Moreover, we put a GP prior on 𝑔. After
the training, we obtain the predictive model, which turns to be also a
GP, 𝑦𝐻 = 𝑔(𝑥∗, 𝑓𝐿(𝑥∗)).

To assess the above multi-fidelity ML approaches, we use an il-
lustrative example involving data from ‘‘low-fidelity’’ MD simulations
and ‘‘high-fidelity’’ NIST experimental values. For both approaches, the
training dataset consists of 7 density values of n-dodecane 𝜌𝐻 (𝑝, 𝑇𝐻 )
and 𝜌𝐿(𝑝, 𝑇𝐿), at the pressure of 2 MPa and a set of temperatures given
by 𝑇𝐻 = 𝑇𝐿 = {320, 440, 500, 620, 660, 680, 700} K. Note that we prior-
tize points located in the transcritical part, since this region presents
arger discrepancies between the values predicted by MD simulations
nd the NIST database.

The conditional generative model is constructed using fully con-
ected feed-forward architecture for the encoder and generator net-
orks with 4 hidden layers and 100 neurons per layer, while the
iscriminator architecture has 2 hidden layers with 100 neurons per
ayer. All activation uses a hyperbolic tangent non-linearity. The models
re trained for 20,000 stochastic gradient descent steps using the Adam
ptimizer [70] with a learning rate of 10−4, while fixing a one-to-five

ratio for the discriminator versus generator updates. Furthermore, we
have fixed the entropy regularization parameter to 𝜆 = 1.5, and we also
employed a one-dimensional latent space with a standard normal prior,
𝑝(𝑧) ∼  (0, 1).

We train the NARGP model via maximizing the marginal log-
ikelihood using the Mattern 3/2 kernel function. The gradient descend
ptimizer L-BFGS is used considering randomized restarts to ensure
onvergence to a global optimum. Once the high-fidelity recursive GP
s trained, we can compute the predictive posterior mean and variance
t a given untested point 𝐱∗ by sampling the probabilistic predictive

model.
The main results are summarized in Fig. 14. More specifically,

the results indicate that the NARGP model was able to satisfactorily
reconstruct the high-fidelity data. To make this comparison quantita-
tive, we compute the mean 𝐿2 relative error between the expected
values predicted by the generative model and the NIST data. It shows
predictions with accuracy of 𝐿2−𝑀𝑅𝐸 = 1.4524 × 10−2. Moreover,
it returns good uncertainty bounds able to capture the high-fidelity
response at the transcritical region. Also, we note a perfect agreement
between the expected value provided by the probabilistic conditional
generative model and the high-fidelity data, resulting in an accuracy
of 𝐿2−𝑀𝑅𝐸 = 4.4782 × 10−5. Finally, we observe that the multi-fidelity
model returns small uncertainty bounds despite the small amount of
12

data employed in the training process.
4. Conclusions

In this work, we propose a computational methodology based on the
use of ML with Molecular Dynamics simulations to compute physico-
chemical properties of single compound fuels at engine-relevant con-
ditions. The ML models have been revealed to be a powerful tool to
predict accurately the fuel properties of pure compounds. Moreover,
this study explores the versatility of the ML models to handle data from
different sources, which can then be integrated efficiently in the context
of UQ workflows with many-query tasks.

We place our contribution in the emerging area of physics-aware
ML, where the final model, in many different ways, blends two main
components: availability of experimental data and/or often expensive
computational models relying on first principles and phenomenolog-
ical closure equations, and deep learning data-driven models. Such
combination allows describing physicochemical properties over a wide
range of flow conditions at relatively low cost, and also offers a broad
spectrum of opportunities to enhance CFD codes.

This study has shown a successful prediction of fuel physical quan-
tities, in this case density and diffusion coefficient, that can also be
extended to other physicochemical properties as well as more complex
fuel molecules or multicomponent mixtures like dimethyl ethers or
oxymethylene dimethyl ethers. The generation of reliable physicochem-
ical properties of renewable fuels is an important step forward towards
the generation of digital tools that can assist on the decarbonization by
the use of renewable fuels.
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Appendix. Data-fusion studies

In order to enhance the predictability of the ML models at transcrit-
ical regions, here we propose a data-fusion approach. Specifically, we
concatenate density points of the transcritical region provided by the
NIST database into the training dataset. The aim here is to improve
the density predictability of our ML models, by supplying reliable
information about this state variable in the specific region where MD
data is scarce. Following this purpose, the first attempt is to add one
density point from the NIST database. Here, we concatenate the n-
dodecane density at pressure 2 MPa and temperature 660 K to the

training data. By adding this point to the training set, it is verified that
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the ML models can recover the density at 660 K, as shown in Fig. 15.
However, the 𝐿2 relative errors between the expected values predicted
y ML models and the NIST data are still considerable in transcritical
egions. Also, we can note that the conditional generative model has
arger uncertainty bounds at the transcritical region trying to recover
ensity behavior due to the lack of data in this region. Furthermore,
ig. 16 shows that adding density points from NIST into the training
ata does not change the degree of uncertainty at other operating
onditions.

As a further attempt to enhance the density predictions at the
ranscritical region, we now concatenate one more density point from
he NIST database. More specifically, in addition to concatenating the
-dodecane density at pressure 2 MPa and temperature 660 K to the
raining data, we also add the n-dodecane density at 680 K. Fig. 17
hows that adding two density points from NIST data in the transcritical
egion slightly improves the predictions of the GP model, while the
elative error remains considerable. However, we can verify that the
enerative model returns satisfactory predictions with 𝐿2 relative error
ower than 10% in the transcritical region. This shows the capability of
he conditional generative model to enhance the predictability of the
ensity when some pieces of information about the correct behavior of
he transport property are given to the model.

Finally, to further increase the predictability of our ML models, a
hird attempt is proposed based on adding three density points from
IST to the training data, those being the n-dodecane densities at 2 MPa
nd temperatures 660, 680, and 700 K. Fig. 13 depicts that in this
raining scenario the density predictions of the GP model have some im-
rovements, but the 𝐿2 relative error is still considerable. Furthermore,
e can verify that the conditional generative model returns accurate
redictions, with relative errors lower than 5% in transcritical regions.
inally, we note that the generative model has uncertainty bounds able
o recover the density predictions near the critical point.
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