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ABSTRACT
We develop a binary classifier to evaluate whether the rank condition (RC) is
satisfied or not for the Common Correlated Effects (CCE) estimator. The RC
postulates that the number of unobserved factors, m, is not larger than the rank
of the unobserved matrix of average factor loadings, �. When this condition
fails, the CCE estimator is inconsistent, in general. Despite its importance, to
date this rank condition could not be verified. The difficulty lies in the fact that
factor loadings are unobserved, such that � cannot be directly determined.
The key insight in this article is that � can be consistently estimated with
existing techniques through the matrix of cross-sectional averages of the
data. Similarly, m can be estimated consistently from the data using existing
methods. Thus, a binary classifier, constructed by comparing estimates of m
and �, correctly determines whether the RC is satisfied or not as (N, T) → ∞.
We illustrate the practical relevance of testing the RC by studying the effect of
the Dodd-Frank Act on bank profitability. The RC classifier reveals that the rank
condition fails for a subperiod of the sample, in which case the estimated effect
of bank size on profitability appears to be biased upwards.
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1. Introduction

In a seminal paper, Pesaran (2006) put forward the Common Correlated Effects (CCE) approach for√
NT-consistent estimation of panel data models with a multifactor error structure. The method aims

to control for the unobserved common factors by augmenting the regression model with cross-sectional
averages (CSA) of the observables. The CCE estimator has been applied to a large range of fields1, and it
has also been extended to several theoretical settings.2 Such popularity of CCE can be attributed to the
computational simplicity as well as the excellent finite-sample performance of the estimator in stylised
setups.

Nevertheless, CCE comes at a cost. In particular, the CSA of the observables are valid proxies for
the unobserved factors only if the number of factors, m, does not exceed the rank of the matrix of
averaged factor loadings, �. This so-called “rank condition” (RC) implies that there exist at least as
many observables holding linearly independent information about the unobserved factors as there are
factors. Westerlund and Urbain (2013) demonstrate that the CCE estimator is inconsistent when the RC
fails and the factor loadings arecorrelated with the regressors. Furthermore, Karabiyik et al. (2019) and
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1A recent search on Google Scholar indicated that the number of empirical applications based on CCE estimation currently

exceeds one thousand.
2See e.g., Kapetanios et al. (2011), Su and Jin (2012), Chudik and Pesaran (2015), De Vos and Everaert (2021), Juodis and
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Juodis et al. (2021) show that even when the factor loadings are uncorrelated with the regressors, failure
of the RC leads to a lower rate of consistency for the CCE estimator.

Despite the importance of the RC for the asymptotic properties of the CCE estimator, practitioners
typically take this assumption for granted. The main reason is that the matrix of average factor loadings
is unobserved and therefore its rank cannot be directly evaluated or estimated.

This article puts forward a binary classifier that evaluates the rank condition. The key insight is that
the rank of the unobserved matrix of average factor loadings, �, can be established from the matrix of
CSA of the data. We shall show that � can be estimated consistently using existing procedures developed
for determining the true rank of an unknown matrix; see e.g., Camba-Mendez and Kapetanios (2009)
and Al-Sadoon (2017) for an overview of this literature. Similarly, the number of factors, m, can be
estimated from the data in a straightforward manner using existing methods, such as those developed by
Onatski (2010), Ahn and Horenstein (2013), and Kapetanios (2010), among many others. Comparing
consistent estimates of m and �, m̂ and �̂, respectively, the rank condition is deemed to be satisfied
when the classifier R̂C ≡ 1 − 1{̂� < m̂} = 1, where 1{·} is an indicator function that returns 1 when
the argument inside the curly brackets holds true and 0 otherwise. R̂C is shown to be consistent, i.e., it
correctly determines whether the rank condition is satisfied or not, with probability 1 as (N, T) → ∞.

When the RC is violated for the standard CCE approach, one can augment the model with additional
CSA that contain new information about the factors. Several potential augmentations have been
suggested (see e.g., Chudik and Pesaran, 2015; Juodis, 2022; Karabiyik et al., 2019). However, it is not
always clear which set of additional CSA to choose, and whether the selected augmentation is sufficient to
restore the RC.3 To address these issues, we put forward a strategy that combines the classifier proposed
in this article and the IC criterion of Karabiyik et al. (2019). The resulting procedure enables consistent
CCE estimation of panel data models with a multifactor error structure, even in cases where the rank
condition fails for the original CCE estimator.

We illustrate the practical relevance of our RC classifier and augmentation strategy by studying the
effect of the Dodd-Frank Act of 2010 on bank profitability. In particular, based on a random sample
of 450 banks, we analyze bank profitability conditional on several potential drivers, controlling for
macro-risk factors and common shocks. To examine the impact of the Dodd-Frank Act, we estimate
the model separately over two subperiods, namely 2006:Q1-2010:Q4 and 2011:Q1-2019:Q4. The RC
classifier reveals that the rank condition fails for the first subperiod. By augmenting the standard set
of CSA using external variables, our procedure is able to restore the rank condition. This proves to be
important because the estimated effect of bank size on profitability is significantly lower when the RC is
restored.

In what follows, we will use A† to denote the Moore-Penrose pseudo-inverse of the matrix A, rk(A)

for its rank, |A| for the determinant and ‖A‖ = [
tr
(
AA′)]1/2 for its Euclidean (Frobenius) matrix norm.

For an n × n matrix A, the λ1(A) ≥ λ2(A) ≥ · · · ≥ λn(A) denote its n ordered eigenvalues. A vec(.)
denotes the vectorization operation. Finally, 	a
 (�a�) is the floor (ceiling) function, which yields the
largest (smallest) integer less than (greater than) or equal to a.

2. A multifactor panel data model and CCE

2.1. Model and assumptions

We study the following linear regression model with unobserved common factors
yi = Xiβ + Fλi + εi, (1)

where yi = [yi1, . . . , yiT]′ denotes a T × 1 vector of observations on the dependent variable for individual
i, Xi = [xi1, . . . , xiT]′ denotes a T × K matrix of covariates, where xit is K × 1, and β is a K × 1 vector of

3The strategy of choosing all possible additional CSA at hand, in the hope of satisfying the RC, can lead to a different problem.
In particular, as shown by Karabiyik et al. (2017) and Juodis et al. (2021), when too many CSA are employed, the CCE estimator
can suffer from bias or it may have a reduced convergence rate.
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unknown parameters of interest with ‖β‖ < ∞. The error term is composite, such that F = [f1, . . . , fT]′
denotes a T × m matrix of unobserved common factors, where ft is m × 1, and λi denotes an m × 1
vector of factor loadings. The dimension m is fixed and finite. Finally, εi = [εi1, . . . , εiT]′ is a T × 1
vector of purely idiosyncratic disturbances.

Following Pesaran (2006), we assume that the covariates are also subject to a common factor structure,
such that the data generating process (DGP) for Xi is given by

Xi = F�i + Vi, (2)

where �i denotes an m × K matrix of factor loadings, and Vi = [vi1, . . . , viT]′ is a T × K matrix of
idiosyncratic errors.

Replacing Xi in Eq. (1) by the expression in Eq. (2), and stacking the observables into a T × (1 + K)

matrix Zi = [yi, Xi] ≡ [zi1, ..., ziT]′, yields

Zi = FCi + Ui, (3)

where Ci = [δi, �i] is of order m × (1 + K) with δi = λi + �iβ , and Ui = [εi + Viβ , Vi]. In what
follows, it is important to note that Ci can be written as Ci = C̃iB, with

C̃i = [λi, �i] ; B =
[

1 01×K
β IK

]
. (4)

Therefore, since B has full rank, the rank of Ci is solely determined by the matrix of factor loadings C̃i.
The following assumptions are made throughout the article:

Assumption 1. (Idiosyncratic errors) εit and vit are mean zero, covariance-stationary, and indepen-
dent across i, with E(ε4

it) < ∞ and E(‖vit‖4) < ∞ for all i and t. Let U = [U1, . . . , UN] be such that
λ1(UU′/M) = Op(1) and λ	dcM̃
(UU′/M) ≥ c + op(1) for some real c > 0 and dc ∈ [0, 1), where M =
max{N, T} and M̃ = min{N, T}.

Assumption 2. (Common factors) ft is covariance-stationary with E(‖ft‖4) < ∞ and absolute summable
autocovariances. In addition, rk(F) = m and T−1F′F → �F as T → ∞, where �F is positive definite.

Assumption 3. (Factor loadings) C̃i is generated according to

C̃i = C̃ + �i; ξ i ∼ i.i.d.(0m(K+1), 
ξ ), (5)

where C̃ = E(C̃i) ≡ [λ, �] such that ‖C̃‖ < ∞, ξ i = vec(�i) and 
ξ = E(ξ iξ
′
i) with

∥∥
ξ

∥∥ < ∞. In
addition, 1

N
∑N

i=1 CiC′
i → �C as N → ∞, with �C positive definite.

Assumption 4. (Independence) ft , εis, vjl, ξh are mutually independent for all t, i, s, j, l, h.

The setup described by the DGP in Eq. (3) together with Assumptions 1–4, is similar to that in
Pesaran (2006) but deviates in the following respects. First, we focus on a model with homogeneous
slope coefficients and without fixed effects. This is for ease of exposition only, as the results below also
follow through under the assumption of independent random coefficients with a common mean, as
in Pesaran (2006). See Section 3.5 for a discussion, and also Appendix C.2 for simulation evidence.
Second, following Westerlund and Urbain (2013) and Karabiyik et al. (2019), Assumption 3 generalizes
Pesaran (2006) by allowing λi and �i to be mutually correlated, although uncorrelated across cross-
sectional units i. Third, we introduce more explicit regularity conditions on the innovations, factors and
their loadings compared to what is typically the case in the CCE literature. In particular, Assumption
1 places restrictions on the eigenvalues of the innovation covariance matrix as in Ahn and Horenstein
(2013). They exclude the presence of factors in the innovations and bound the largest 	dcM̃
 eigenvalues
away from zero. For the factors and loadings, the non central second moments are assumed to converge
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to a positive definite matrix. These regularity conditions are common in the factor literature (see e.g.,
Ahn and Horenstein, 2013; Bai and Ng, 2002) and allow us to consistently estimate m. Lastly, note that
rk(F) = m of Assumption 2 implies that T ≥ m.

2.2. CCE and the rank condition

Since F enters into the data generating process of both yi and Xi, and λi and �i are allowed to be mutually
correlated, Xi is endogenous. Therefore, standard panel data estimators, such as the two-way fixed effects
estimator, fail to be consistent for the parameters of interest, β . The key idea of CCE is to replace F with
CSA of the observables in Eq. (3).

In particular, taking sample averages over i in Eq. (3), we obtain

Z
T×(K+1)

= F
T×m

C
m×(K+1)

+ U
T×(K+1)

, (6)

where Z = [z1, . . . , zT]′, U = [u1, . . . , uT]′ and bars denote CSA as in Z = 1
N
∑N

i=1 Zi.
Under Assumptions 1–4 it is easy to show that C = C + Op(N−1/2), where C = E (Ci), and ‖ut‖ =

Op(N−1/2) for all t = 1, . . . , T. As a result, the observed CSA converge to a linear combination of the m
common factors at every t = 1, . . . , T:

zt = C
′
ft + (C − C)′ft + ut = C′ft + Op(N−1/2). (7)

Suppose that C has full rank such that CC′ is invertible and bounded by Assumption 3. Pre-multiplying
Eq. (7) by C and solving for ft yields

ft = (CC′)−1Czt + Op(N−1/2). (8)

Hence, as N → ∞, the common factor component at time t can be controlled for (or estimated) with
the cross-section averages zt .

The pooled CCE estimator for β is the least-squares estimator given by

β̂ =
( N∑

i=1
X′

iMXi

)−1 N∑
i=1

X′
iMyi, (9)

where M = IT − Z(Z′Z)†Z′.4
The above idea of estimating factors with CSA crucially relies upon the assumption that C has full

rank. This restriction, known as the “rank condition” (RC), corresponds to

� = m (10)

where � = rk(C). When � < m, the RC fails and the CCE estimator is generally inconsistent. This is
because the CSA do not contain enough information on ft , which implies that the factor estimator in
Eq. (8) does not exist.

There are several cases where the RC may fail. To begin with, such failure occurs when m > K +
1, i.e., the number of factors is larger than the number of CSA, in which case � ≤ min{m, K + 1} =
K + 1 < m. In addition, although K + 1 ≥ m is a necessary condition for the RC to hold, it is by no
means sufficient. For example, certain columns of Z can be asymptotically uninformative because the
corresponding observables: (i) do not load on the common factors (e.g., some of the columns in �i equal
zero); (ii) have factor loadings that average out (e.g., � = Op(N−1/2)); or (iii) do not contain information
on the common factors that is distinct from that already provided by other observables. In all these cases,
the number of columns that are informative to estimate ft , as measured by �, can be lower than m.5

4When the model contains fixed effects, then one may set M = IT − H(H′H)†H′ , where H = [ιT , Z] and ιT is a T × 1 vector of
ones.

5Strictly speaking, the dimension of the vector space spanned by Z will be lower than m in these cases.
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3. Evaluating the rank condition

Despite the importance of the RC for the properties of the CCE estimator, this assumption is typically
taken for granted. The main reason is that the population mean of the matrix of factor loadings, C, is
unobserved and therefore its rank cannot be directly evaluated or estimated. The key insight of this
article is that � can be determined by estimating the rank of Z using existing techniques. Given a
consistent estimate of �, the RC is evaluated by direct comparison of that value with a consistent estimate
for m. The latter can be determined from the observed data in a straightforward manner, based on e.g.,
Bai and Ng (2002), Alessi et al. (2010), Onatski (2010), and Ahn and Horenstein (2013).

The following two sections provide details for consistent estimation of � and m as (N, T) → ∞.
Section 3.3 puts forward a binary classifier that evaluates the rank condition correctly with probability 1
as (N, T) → ∞. Section 3.4 discusses a strategy for obtaining a consistent CCE estimator when the RC
fails.

3.1. Consistent estimation of �

We make use of the fact that the rank of an unobserved matrix A can be determined through a√
N-consistent estimator of that matrix AN = A + Op(N−1/2); see e.g., Robin and Smith (2000) and

Kleibergen and Paap (2006). Noting that Z = FC + Op(N−1/2) is
√

N-consistent for FC (for T fixed), it
follows from the rank equivalence

rk (FC) = rk (C) = �, (11)

that � can be consistently estimated by applying a rank estimator to Z.6
Many popular rank estimators are based either on sequential testing procedures, as e.g., in Chen

and Fang (2019), or on information criteria (IC), see e.g., Cragg and Donald (1997). Camba-Mendez
and Kapetanios (2009) provide an overview and conclude that sequential testing procedures have an
advantage over IC methods under several modeling scenarios. Therefore, in the remainder of this
section, we closely follow the sequential testing procedure developed by Robin and Smith (2000). This
is easy to implement and relies on relatively mild assumptions, in that it does not require the variance-
covariance of the estimator of the unknown matrix FC to be full rank, or its rank to be known.

A major complication that arises in our setting, however, is that unlike Robin and Smith (2000),
where the dimensions of the target matrix are fixed as the sample size grows, here FC and its estimator
Z are of order T × n.7 Therefore, the number of rows increases with the time dimension such that Z =
FC + Op(

√
TN−1/2) is not

√
N-consistent when (N, T) → ∞. To circumvent this issue, we introduce

a narrow matrix  of order n × T, such that Z is n × n and rk(FC) = rk(FC). That is,  has the
role of reducing the dimension of Z without altering the rank of the matrix it estimates. The following
assumption is imposed:

Assumption 5. (Dimension reduction matrix) As (N, T) → ∞,  satisfies

(i) ‖F‖ = Op(1); (ii)
∥∥U

∥∥ = Op(N−1/2);

(iii)
√

Nvec(Z − FC) →L N (0, �) .

Assumption 5 places additional restrictions on the potential choices for  , besides it being rank
preserving. Assumption 5(i) requires that the entries of  are sufficiently bounded. Assumption 5(ii)
states that  is asymptotically uncorrelated with U, the error term in Eq. (6). Assumption 5(iii) ensures

6Note that the first equality in (11) follows from the fact that F has full column rank by Assumption 2. See exercise 4.25 on pg.
85 in Abadir and Magnus (2005).

7Hereafter, we change the notation for the number of columns of the CSA matrix Z from K + 1 to a general n. This is in order
to accommodate for the need to augment Z with additional CSA when the rank condition fails, as described in Section 3.4.
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that, by application of a suitable central limit theorem, Z remains a
√

N-consistent estimator for FC
and is asymptotically normally distributed with variance 
 as (N, T) → ∞. This assumption is identical
to Assumption 2.2 in Robin and Smith (2000), except that it is imposed on Z rather than Z itself.

In practice, there exist several options for  that satisfy the rank preservation condition and
Assumption 5. One option is to set  = T−1/2�, with the entries of � drawn from the standard
normal distribution. The following theorem confirms that this choice is rank-preserving and satisfies
the required consistency and boundedness conditions of Assumption 5. In turn, Assumption 5(iii) is
easily seen to hold by application of a CLT.

Theorem 1. Let T > n and � be a n × T random matrix with i.i.d. standard normal entries.
(i) For a T × n matrix A, it holds that

Pr [rk(�A) = rk(A)] = 1.

(ii) Let  = T−1/2�. Under Assumptions 1-4, as (N, T) → ∞, it follows that
Z = FC + Op(N−1/2),

where ‖FC‖ = Op (1).

The proof of Theorem 1 is in Appendix B.

Remark 3.1. An alternative stochastic option would be  = Z′
/T. However, this is ruled out because

even though Z = Z′Z/T is stochastically bounded and has the same rank as Z, it does not have an
asymptotic normal distribution, i.e., it violates Assumption 5(iii).

The  matrix can also be deterministic. Since n time periods contain the same information on the
rank of C as do T observations, an obvious candidate is  = [0n×(T−n), In], which considers only the
last n rows of Z. One can also take averages over every n-th row in Z by setting  = 1

�T/n� [ι′�T/n� ⊗
In]I�T/n�n,T , where ιa is an a × 1 vector of ones.

Given the above, we propose estimating the rank of the n × n matrix Z by sequentially testing the
null hypothesis H0 : � = �∗ against the alternative Ha : � > �∗, using the following statistic:

τ = N
n∑

�=�∗+1
λ�(A), (12)

where λ1(A) ≥ · · · ≥ λn(A) are the ordered eigenvalues of A ≡ ZZ′
 ′. The procedure is implemented

sequentially for �∗ = 0, . . . , n − 1 and the estimated rank �̂ corresponds to the smallest value of �∗
for which the null hypothesis is not rejected. Under the null, τ has a limiting distribution which is a
weighted sum of independent χ2

1 variables, with weights given by the (n − �∗)2 largest eigenvalues of
(D′

�∗ ⊗ R′
�∗)
(D�∗ ⊗ R�∗), where D�∗ and R�∗ denote the eigenvectors corresponding to the n − �∗

smallest eigenvalues of Z′
 ′Z and A, respectively. We shall assume in accordance with Robin and

Smith (2000) that rk[(D′
� ⊗ R′

�)
(D� ⊗ R�)] > 0.
The asymptotic variance 
 of Z is unknown but can be estimated consistently by8:


̂ = 1
N

N∑
i=1

vec(Zi − Z)vec(Zi − Z)′. (13)

As discussed in Robin and Smith (2000), the estimator for � obtained from the test sequence is
consistent when the employed significance level αN vanishes at an appropriate rate with N. This is

8
 can also be estimated using bootstrap techniques. When the model contains fixed constants, Zi should be time-
demeaned, i.e., pre-multiplied with Q = IT − ιT ι′T /T .
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because αN is the probability of over-estimating the true rank, Pr(̂� > �), which must tend to zero for
consistency. The authors show that αN = o(1) and −N−1 ln αN = o(1) are sufficient for consistency. This
is summarized in the following proposition:

Proposition 1. Let Ass.1-5 hold and rk[(D′
� ⊗ R′

�)
(D� ⊗ R�)] > 0. Provided that αN = o(1) and
−N−1 ln αN = o(1) as N → ∞, it follows that �̂ − � = op(1).

The proposition follows from the arguments of Theorem 5.2 in Robin and Smith (2000), mutatis
mutandis. We omit the proof to save space.

Remark 3.2. Clearly, αN has to vanish sufficiently fast with N to limit the over-estimation frequency, but
not too fast, as this results in under-estimation when N is small. We suggest to specify the nominal level
as αN = αcN−1/γ . This way, for a given choice of α and γ , the small N significance level is controlled
through c > 1, whereas the speed at which αN decreases with N is governed by γ > 0. For instance,
choosing α = 5% and setting c = 20, γ = 1 fixes the nominal level to 5% for N = 20 and lets it decrease
at rate N. Given that over-estimating � may lead to false conclusions that the rank condition holds, we
prefer a conservative estimator through a fast decrease with N (i.e., requiring strong evidence against
the null before rejecting it in favor of a higher rank estimate).

3.2. Consistent estimation of m

Existing methods to estimate the number of factors from observed data rely on one of the following three
approaches: looking at differences or ratios of adjacent eigenvalues (Ahn and Horenstein, 2013; Onatski,
2010), specifying threshold functions to separate bounded from unbounded eigenvalues (Alessi et al.,
2010; Bai and Ng, 2002) or sequential tests to determine which eigenvalues are unbounded (Kapetanios,
2010; Trapani, 2018). Preliminary simulation evidence conducted for this article shows that the Growth
Ratio (GR) by Ahn and Horenstein (2013) performs well in finite samples and outperforms other
estimators.9 Therefore, in what follows we propose estimating m using the GR statistic.

In particular, let Z = [Z1, . . . , ZN] denote a T × (K + 1)N matrix, where Zi (defined in Eq. (3))
collects all observables for individual i in a T × (K + 1) matrix. Also, let mmax denote the maximum
value of m considered in estimation, such that mmax ≥ m. We define

m̂ = arg max
j∈{1,...,mmax}

GR(j); GR(j) = ln(V(j − 1)/V(j))
ln(V(j)/V(j + 1))

, (14)

where V(j) = ∑h
k=j+1 λk

(
ZZ′/NT

)
with h = min{T, N(K + 1)}, and λk

(
ZZ′/NT

)
denotes the kth

largest eigenvalue of
(
ZZ′/NT

)
.

The GR statistic is easy to compute because it involves maximizing the “growth ratio” of two adjacent
eigenvalues arranged in descending order. The main intuition is that the growth ratios of two adjacent
eigenvalues of ZZ′/NT are asymptotically bounded, except for the growth ratio involving the mth and
(m + 1)th eigenvalues, which diverges to infinity.

Under regularity conditions implied by Assumptions 1–4, Ahn and Horenstein (2013) show10

limmin{N,T}→∞Pr (m̂ = m) = 1, (15)

for any mmax ∈ {m, (dcmin{N, T}) − m − 1}, where dc ∈ (0, 1].

9Juodis and Sarafidis (2022b) provide additional evidence that confirms the good performance of the GR statistic in finite
samples.

10Note that our Ass. 2-3 and the independence in Ass.4 imply Assumptions A and B in Ahn and Horenstein (2013), and our
eigenvalue condition in Ass.1 is sufficient for Assumptions C and D in that paper (see in particular Eqs. (2)–(3) and the
surrounding discussion in Ahn and Horenstein, 2013).
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Remark 3.3. In exactly the same way as described above, the number of factors can also be estimated
based on the T × T matrix YY′/NT, where Y = [y1, . . . , yN] is of dimension T × N. However, since
both yi and Xi share the same factors by assumption, it is natural to combine them together in order to
increase the information set used to construct proxies for F. This strategy is in line with the rationale
behind the CCE approach, which involves solving a system of equations, such that Eq. (3) includes LHS
variables (observables) that are solely driven by a common factor component and purely idiosyncratic
noise. Moreover, this strategy is consistent with Westerlund and Urbain (2015), who also estimate factors
based on ZZ′/NT.

3.3. A consistent classifier for the rank condition

Given consistent estimates �̂ and m̂ of the rank of C and the number of factors, the rank condition is
deemed to be violated when �̂ < m̂. We define the following classifier:

R̂C ≡ 1 − 1{̂� < m̂}, (16)
where 1{·} is an indicator function that returns 1 when the argument inside the curly brackets holds
true, and 0 otherwise. Hence, if R̂C = 1 the rank condition is considered to be satisfied, whereas R̂C = 0
indicates that (10) may be violated. The definition in (16) shows that we also take �̂ > m̂ as a sign that
(10) is satisfied.11

Let RC ≡ 1 − 1{� < m} denote the indicator of the true state of the rank condition in the population.
The following proposition summarizes the asymptotic properties of the classifier.

Proposition 2. Let Assumptions 1–5 hold true. Suppose also that � is determined based on the sequential
testing procedure outlined in Section 3.1, with αN = o(1), and −N−1 ln αN = o(1), and m is determined
by Eq. (14) with mmax ≥ m. Then, Pr[R̂C = RC] → 1 as (N, T) → ∞.

That is, the probability that the classifier correctly identifies whether the rank condition is satisfied
or not, converges to unity. The result follows directly from the consistency of �̂ as N → ∞ under
Assumptions 1-5, given an appropriate rate of decay for αN , and the consistency of m̂ as (N, T) → ∞
given appropriate specification of mmax.

3.4. What if the rank condition is violated?

When R̂C = 0, the standard CCE estimator is generally inconsistent unless the regressors are uncorre-
lated with the unobserved factor loadings. One may seek to restore the RC by augmenting the model
with additional CSA (see Appendix A for several options). This brings about two important issues.

The first one is how to choose relevant additional CSA from a set of candidate expansions, as not all
candidates are necessarily informative about F. The second one is whether the selected additional CSA
are also able to restore the RC.

To tackle the first question, Karabiyik et al. (2019) have proposed an IC selection procedure. To
illustrate, let Z+ be the matrix of available expansions

Z+ = {Z(1)

+ , Z(2)

+ , Z(3)

+ }, (17)

where (say) Z(1)

+ = Z(e) contains CSA of new exogenous variables, Z(2)

+ = Zw1 contains a matrix of CSA
arising from a new weighting variable w1, and similarly Z(3)

+ = Zw2 for a weight w2 (see Appendix A for
details). The appropriate set of expansion CSA can be selected from Z+ by minimizing

�∗ = arg min
�

IC(�), (18)

11�̂ > m̂ can only occur in finite samples due to estimation error but not at the population level.
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where CNT = min{N,
√

T} in

IC(�) = ln|�N
i=1Z′

iM
(�)
A Zi/NT| + g(�); g(�) = cols(Z(�)

A )(K + 1)
ln (CNT)

CNT
, (19)

where cols(·) denotes the number of columns of the matrix within brackets and � = {�1, �2, ...} gathers
the indices of the considered expansions from Z+. As such, for (say) � = {�1, �3}, we have Z(�)

A =
[Z, Z(1)

+ , Z(3)

+ ] = [Z, Z(e), Zw2 ], and M(�)
A = IT − Z(�)

A

(
Z(�)′

A Z(�)

A

)†
Z(�)′

A .
A desirable property of the IC selection procedure is that it identifies the CSA that bring in new

information about the factors in Zi given what is already present in Z. Candidates that are uninformative,
or informative on factors that do not feature in Zi, will be excluded (asymptotically). However, the IC
does not by itself signal whether the additional CSA are sufficient to restore the RC. For example, if the
IC does not select additional CSA besides Z, this could be either because the rank condition is satisfied
with Z, or because no further informative CSA are available in the proposal set Z+. To overcome this
problem, we propose combining the IC with our RC classifier, as outlined in Algorithm 1.

Remark 3.4. An alternative strategy would be to combine our classifier with the regularization approach
proposed by Juodis (2022). The latter makes use of the Singular Value Decomposition in order to remove
the asymptotically redundant singular values of appropriately normalized CSA. We leave this possibility
for future research.

Algorithm 1: CCEA algorithm
(1) Estimate the model parameters using the standard CCE approach and calculate IC0 = IC(∅)

(no expansions). Proceed to step 2;
(2) Evaluate the rank condition for Z. If R̂C = 1, no further steps are required. If R̂C = 0, proceed

to step 3;
(3) Employ the IC in Eq. 19 to select from Z+ = {Z(1)

+ , Z(2)

+ , Z(3)

+ , . . . } the set of CSA that are
relevant for the factors in Zi. That is, define �∗ = arg min�IC(�);

(4) If IC(�∗) ≤ IC0, evaluate the rank condition for ZA = [Z, Z(�∗)
+ ] and proceed to step 5, else

proceed to step 6;
(5) If R̂C(ZA) = 1, estimate the model with the CCEA estimator based on ZA. No further steps are

required. If R̂C(ZA) = 0, proceed to step 6;
(6) Z+ does not contain sufficient informative expansions to restore the rank condition in the

model. Add new potential expansions to Z+ and return to step 3;

The key benefit of Algorithm 1 is that it either returns a consistent CCE estimator or signals to
the researcher that alternative CSA need to be sought. If Z or the potential expansions Z+ contain
sufficient informative CSA to satisfy or restore the RC, they will (asymptotically) be identified and the
CCE estimates emerging from Algorithm 1 are consistent. In this case, the algorithm will end in step
(5) (or step (2)). If on the other hand Z does not satisfy the RC and Z+ does not contain the right (or
insufficient) expansions to restore it, then this will be signaled by landing in step (6). The researcher then
knows that alternative CSA candidates need to be sought and fed into the algorithm before consistent
CCE estimates can be obtained.

Remark 3.5. It is also possible to evaluate the RC for all potential augmentations until R̂C = 1. However,
this strategy bares the risk of selecting CSA that load on different factors than those in Zi, and so they
are irrelevant for approximating the factor space. This is because such CSA will increase the rank of the
augmented loading matrix, despite being irrelevant, and they will therefore be incorrectly favored by the
classifier. A preliminary pass-through by the IC selection, as in Algorithm 1, eliminates such irrelevant
options.
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Remark 3.6. We refer to Appendix D for a discussion and results pertaining to inference with the
augmented CCE estimator after the application of Algorithm 1.

3.5. Heterogeneous slopes

The preceding results and theorems apply similarly to heterogeneous random slope models as in
Assumption 4 of Pesaran (2006), where β i = β + νi, νi ∼ IID(0K×1, 
ν), with 
ν nonnegative definite
and νg is independent of ft , εis, vjl, υh for all t, i, s, j, l, g, h. Note that in this setting, the first column
of Ci = [δi, �i] changes to δi = λi + �iβ i and similarly for the first column of Ui = [εi + Viβ i, Vi].
However, since νi is an i.i.d. random variable with finite variance, expectation zero and independent
of the other model components, it straightforwardly follows that Assumptions 1–5 listed above directly
follow through. In particular, the critical eigenvalue bounds and

√
N-consistency of Z for FC remain

unaffected. The rank condition can thus be evaluated with the same procedures as outlined above. This
is also confirmed by the Monte Carlo simulations reported in Appendix C.

4. Monte Carlo simulation

In this section, we investigate the small sample performance of the rank condition classifier proposed in
Section 3 using Monte Carlo simulations.

4.1. Design

Data are generated from Eq. (3), broadly following Westerlund and Urbain (2013). We set m = 2, K = 1,
β = 3 and sample the time series in F, εi and Vi assuming independent autoregressive processes with a
common AR coefficient ρ = 0.8 and normally distributed mean zero innovations with variance (1 − ρ2)
for the factors and (1 − ρ2)/2 for the idiosyncratic errors. For the factor loadings λi and �i, we specify
the following three scenarios:

Experiment 1: λi = [3, 2]′ + ηi, ηi ∼ N(02, I2), and �i = λi + [−2, 0]′.
Experiment 2: λi =

{ [0, 2]′ + ηi for i = 1, . . . , 	N/2

[0, 2]′ + ηi for i = 	N/2
 + 1, . . . , N with ηi ∼ N(02, I2) and �i = λi.

Experiment 3: λi ∼ N(02, I2) and �i = λi.

Thus, in Experiment 1 the RC is satisfied for the simple CSA Z (� = m = 2). In Experiment 2, the basic
CSA contain some information for estimating the factors (� = 1), yet not sufficient to satisfy the RC.
Since the loadings in yi and Xi are (perfectly) correlated, the standard CCE estimator is not consistent.
In Experiment 3 the standard CSA contain no information at all about the factors (� = 0 < m), in which
case consistent CCE estimation is also not possible with Z.

We evaluate the RC in each MC iteration, using Algorithm 1 of Section 3.4. The number of factors
(m) is estimated by the GR statistic of Ahn and Horenstein (2013), setting mmax = 7. The rank of the
loading matrix (�) is estimated as in Section 3.1 with a random dimension reduction  = T−1/2�, �

containing i.i.d. standard-normal entries, and the nominal significance level given by αN = cαN−1/γ ,
with c = 20, γ = 1 and α = 5%.

Additional CSA are constructed using the following weighting schemes:

Zw,1 =
N∑

i=1
Ziwi,1; wi,1 =

{
1/N1 for i = 1, . . . , N/2;
0 for i = N/2 + 1, . . . , N,

(20)

Zw,2 =
N∑

i=1
Ziwi,2; wi,2 =

{
0 for i = 1, . . . , N/2;
1/(N − N1) for i = N/2 + 1, . . . , N,

(21)
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which results in CSA calculated over the first (Zw,1) and second (Zw,2) group of N/2 cross-sectional
units. This choice of weights presumes the existence of an exogenous grouping of the cross-sectional
units, as in Experiment 2. It is not an appropriate RC-restoring expansion for experiments 1 and 3, as no
such grouping exists for these experiments. We also consider candidate CSA originating from the T × 2
matrix of external variables

Z(e)
i = FC(e)

i + ε
(e)
i ,

where the columns of ε
(e)
i are generated as AR(1) processes with autoregressive coefficient ρ = 0.8 and

mean zero normally distributed innovations with variance (1 − ρ2)/2, while

C(e)
i =

[
2.5 1
1 2.5

]
+ η

(e)
i ; vec(η(e)

i ) ∼ N(04, I4).

As the Z(e)
i load on the same factors as those in Zi, the matrix Z(e) = 1

N
∑N

i=1 Z(e)
i is an informative, RC-

restoring, expansion in experiments 2 and 3. We also accommodate in our simulations the fact that in
practice not all external variables will load on the same factors as those in Zi. These irrelevant candidates
are generated from

Z(g)

i = GC(g)

i + ε
(g)

i ,

where the factors G, loadings C(g)

i and innovations ε
(g)

i follow the same DGP as F, C(e)
i and ε

(e)
i but

are independently generated from the latter. As such, Z(g)

i is informative about G but not F, and Z(g) is
therefore not an appropriate expansion in any of the considered experiments. The total set of candidate
expansions that is fed into Algorithm 1 is thus a mixture of both relevant and uninformative candidates,
and is given by

Z+ = [Zw,1, Zw,2, Z(e), Z(g)]. (22)

In accordance with Algorithm 1, the augmented estimator CCEA selects expansions from Z+ using
the Information Criterion by Karabiyik et al. (2019) given in Eq. (19). The RC is re-evaluated when
expansions are selected.

We generate 10000 datasets for each combination of N = (20, 50, 100, 200, 500, 1000) and T =
(20, 50, 100, 200), and calculate the under/over-estimation frequencies for �̂ and m̂, and the classification
accuracy of R̂C, i.e., the % of MC draws where the RC is correctly evaluated. When the RC is not
satisfied for the standard CCE estimator (experiments 2 and 3), we also consider the CCEA estimator
and compute the ‘RC satisfied rate’ as the % of MC draws where Algorithm 1 selects expansions that
restore the rank condition.

4.2. Estimating � and m

Results for the performance of the estimators for � and m are presented in Table 1 in A/B format, with
A and B the percentage of MC iterations where � or m are, respectively, under- and over-estimated.
The left panel contains results for estimating the rank � of the loading matrix and reveals that both the
over-and under-estimation frequencies tend to zero as N → ∞. This is consistent with the main result
of the paper that � can be estimated consistently from Z. As expected, we find that the rank estimator
is somewhat sensitive to the size of the cross-section dimension, which needs to be sufficiently large
(i.e., N of at least 50) to achieve an accuracy of 75%. In contrast, its performance is largely invariant to
the size of T, which supports the projection strategy to guarantee computability of the estimator and
large N consistency when also T → ∞. Note that the rank estimator is conservative in the sense that the
true rank is more likely to be under-estimated than over-estimated. This is a consequence of our chosen
significance level αN = 20αN−1, of which its fast decay in N implies that strong evidence against the
null � = �∗ is required before it is rejected in favor of a higher rank � > �∗. Yet, the observed under-
estimation frequency is reasonable and vanishes sufficiently fast with N.
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Table 1. Under/over-estimation frequency of the estimators for � and m.

�̂ m̂

(N, T) 20 50 100 200 20 50 100 200

Experiment 1 20 30/0 29/0 29/0 30/0 11/13 2/0 0/0 0/0
� = 2, m = 2 50 22/0 22/0 21/0 21/0 7/9 0/0 0/0 0/0

100 18/0 17/0 17/0 17/0 6/7 0/0 0/0 0/0
200 13/0 13/0 13/0 13/0 5/6 0/0 0/0 0/0
500 9/0 9/0 9/0 9/0 5/5 0/0 0/0 0/0

1000 6/0 6/0 7/0 7/0 5/5 0/0 0/0 0/0

Experiment 2 20 29/4 26/4 26/5 27/4 12/6 3/0 0/0 0/0
� = 1, m = 2 50 17/2 16/2 15/2 16/2 9/4 0/0 0/0 0/0

100 12/1 10/1 10/1 10/1 8/3 0/0 0/0 0/0
200 7/1 6/1 6/1 6/1 7/2 0/0 0/0 0/0
500 4/0 3/0 3/0 3/0 7/1 0/0 0/0 0/0

1000 2/0 2/0 2/0 2/0 7/1 0/0 0/0 0/0

Experiment 3 20 0/7 0/6 0/6 0/7 11/13 2/0 0/0 0/0
� = 0, m = 2 50 0/2 0/2 0/2 0/2 7/9 0/0 0/0 0/0

100 0/1 0/1 0/1 0/2 6/7 0/0 0/0 0/0
200 0/1 0/1 0/1 0/1 5/6 0/0 0/0 0/0
500 0/0 0/0 0/0 0/0 5/5 0/0 0/0 0/0

1000 0/0 0/0 0/0 0/0 5/5 0/0 0/0 0/0

Notes: (i) Based on 10, 000 MC iterations. (ii) Reported in the left panel is the percentage of under/over- estimation of the true rank �

by the rank estimator �̂ applied to Z, with  = T−1/2�, � drawn from the standard-normal distribution αN = 20αN−1 and α = 5%.
(iii) The right panel is the percentage of under/over estimation of the true number of factors m = 2 by the GR estimator with mmax = 7.

Table 2. Evaluating the rank condition: Experiment 1.

CCE CCEA

(N, T) 20 50 100 200 20 50 100 200

Classification 20 0.64 0.71 0.71 0.70 0.68 0.71 0.71 0.70
accuracy 50 0.72 0.79 0.79 0.79 0.74 0.79 0.79 0.79

100 0.77 0.84 0.83 0.83 0.78 0.84 0.83 0.83
200 0.83 0.87 0.87 0.87 0.84 0.87 0.87 0.87
500 0.87 0.91 0.91 0.91 0.87 0.91 0.91 0.91

1000 0.90 0.94 0.93 0.93 0.90 0.94 0.93 0.93

Notes: (i) Based on 10, 000 MC iterations. (ii) Reported is the Classification Accuracy (CA), which is the proportion of MC samples in which
the classifier R̂C defined in Eq. (16) correctly identifies whether the RC is satisfied or not. (iii) The RC classifier uses the GR estimator of Ahn
and Horenstein (2013) with mmax = 7 to estimate m, and the Robin and Smith (2000) rank estimator with a standard-normal projection
matrix and significance level αN = 20αN−1 to estimate �. (iv) The left panel evaluates the rank condition for the standard CCE estimator
that uses the matrix of CSA Z to control for the unobserved factors. The right panel evaluates the rank condition for the CCEA estimator,
which is the outcome of Algorithm 1 presented in Section 3.4. That is, if R̂C = 1 for Z, then only Z is employed in the estimation. If on the
other hand Z yields R̂C = 0, then expansion CSA are selected from Z+ using the IC in (19).

The right panel of Table 1 reports results for estimating the number of factors m = 2 with the GR
estimator of Ahn and Horenstein (2013). The estimator performs very well despite the high serial
dependence in the generated data, in which case many of its competitors in the literature tend to behave
more poorly. The finite sample performance of the GR approach appears to be primarily driven by
the time series dimension T. Yet, its small-sample performance is more than adequate as the approach
displays low error frequencies even when T = 20, and identifies m without error when T > 50.

4.3. Evaluating the rank condition

4.3.1. Experiment 1: rank condition satisfied
In Experiment 1, the RC is satisfied for the CCE estimator that uses the standard set of CSA in Z. The
classification accuracy reported in Table 2 shows that the R̂C classifier is reasonably accurate in detecting
that the rank condition is indeed satisfied. Even for smaller samples, the RC is correctly confirmed for
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Table 3. Evaluating the rank condition: Experiment 2.

CCE CCEA

(N, T) 20 50 100 200 20 50 100 200

Classification 20 0.89 0.94 0.95 0.96 0.70 0.89 0.94 0.95
accuracy 50 0.92 0.98 0.98 0.98 0.81 0.94 0.97 0.98

100 0.93 0.99 0.99 0.99 0.89 0.98 0.99 0.99
200 0.93 0.99 0.99 1.00 0.91 0.99 0.99 0.99
500 0.94 1.00 1.00 1.00 0.92 1.00 1.00 1.00

1000 0.93 1.00 1.00 1.00 0.92 1.00 1.00 1.00

RC satisfied 20 0.89 0.94 0.95 0.96
rate 50 0.92 0.98 0.98 0.98

100 Always 0 0.93 0.99 0.99 0.99
200 (by construction) 0.93 0.99 0.99 0.99
500 0.94 1.00 1.00 1.00

1000 0.93 1.00 1.00 1.00

See notes to Table 2. The ‘RC satisfied rate’ is the % of MC samples in which the algorithm behind CCEA selects CSA augmentations that
restore the rank condition.

at least 70% of the MC iterations, the only exception being the smallest N = 20 setting where the lowest
rate is 64%. As the sample size grows, the accuracy improves and we find that it tends to 1 as both
(N, T) → ∞, as required. The results also show that the main determinant for finite sample performance
is the cross-section dimension N, rather than T. This is as expected from the results in Table 1, which
show that (i) �̂ is more prone to finite sample error than m̂. The latter is practically error-less when
T ≥ 50; and (ii) �̂ converges at a slower rate and only as N grows. Hence, �̂ is the main driver of the
finite sample performance of R̂C. Therefore, in line with the properties of the CCE estimator itself, it
will mainly be N that needs to be sufficiently large to be able to correctly assess the rank condition
in practice. Finally, note that the samples where we incorrectly obtained R̂C = 0 for the CCE estimator
prompted the application of the augmentation strategy outlined in Algorithm 1 of Section 3.4. As shown
in Table C1 in the appendix, an expansion was only selected in the smallest samples and in at most 2%
of the MC iterations. Hence, the rank evaluation results for the augmented CCEA estimator reported
on the right panel of Table 2 are almost identical to those for the CCE estimator. This also confirms the
effectiveness of the IC selector.

4.3.2. Experiment 2: rank condition violated for basic weights
In Experiment 2, the RC is violated when using the standard set of CSA Z, and since factor loadings
are (perfectly) correlated, the CCE estimator is inconsistent for β in this setting.12 The left panel of
Table 3 shows that the RC-classifier strongly signals that the RC is violated for the CCE estimator. The
proportion of samples where the classifier wrongly concludes that the RC holds quickly diminishes as
(N, T) → ∞.

When the RC is found to be violated, Algorithm 1 is applied by letting the IC search among the
proposal expansions for additional CSA. In this experiment, this leads to the selection of at least one
of the valid augmentations (Zw,1, Zw,2, Z(e)) in the majority of combinations of N and T (see Table
C1 in Appendix C). Accordingly, the rank condition was successfully restored in around 90% of the
MC iterations, even in the smallest samples T = N = 20. The proportion of samples where the RC is
restored is given in the lower panel of Table 3 for the CCEA estimator, and can be seen to converge to 1 as
(N, T) → ∞. Hence, Algorithm 1 leads to a consistent CCEA estimator as (N, T) → ∞, when provided
with appropriate rank-increasing CSA.13 Note that the algorithm performs well in finite samples. The
cases where the RC is not satisfied for CCEA are mostly due to the miss-classification as R̂C = 1 in the
‘CCE’ panel, which vanishes as the sample size grows.

12This can also be seen from the estimation results in Table C4 in Appendix C.
13This is also confirmed by the estimation results for β in Table C4 of Appendix C.
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Table 4. Evaluating the rank condition: Experiment 3.

CCE CCEA CCEA,sub

(N, T) 20 50 100 200 20 50 100 200 20 50 100 200

Classification 20 0.99 0.99 1.00 1.00 0.41 0.39 0.39 0.39 0.95 0.96 0.96 0.96
accuracy 50 1.00 1.00 1.00 1.00 0.65 0.70 0.70 0.70 0.98 0.99 0.99 0.98

100 1.00 1.00 1.00 1.00 0.86 0.94 0.92 0.94 0.98 0.99 0.99 0.99
200 1.00 1.00 1.00 1.00 0.92 0.98 0.98 0.98 0.98 1.00 1.00 1.00
500 1.00 1.00 1.00 1.00 0.95 0.99 0.99 0.99 0.98 1.00 1.00 1.00

1000 1.00 1.00 1.00 1.00 0.95 1.00 1.00 1.00 0.98 1.00 1.00 1.00

RC satisfied 20 0.93 0.98 0.99 1.00
rate 50 0.96 1.00 1.00 1.00

100 Always 0 0.96 0.99 1.00 1.00 Always 0
200 (by construction) 0.97 1.00 1.00 1.00 (by construction)
500 0.98 1.00 1.00 1.00

1000 0.98 1.00 1.00 1.00

See notes to Tables 2 and 3. CCEA,sub refers to using Algorithm 1, with the set of potential augmentations given by Z+,sub =
{Zw,1, Zw,2, Z(g)} instead of Z+ .

In practice, selecting expansion CSA with the IC does not guarantee that the rank condition is also
satisfied, leaving the researcher unsure about the state of the RC. Hence, Algorithm 1 incorporates a re-
evaluation with the classifier after expansions have been chosen. The top right panel of Table 3 reveals
that this re-evaluation is able to confirm with good accuracy that the rank condition is satisfied in those
cases where the right expansions have been selected. The overall classification accuracy is over 70% in
the smallest samples and gradually converges to 1 as (N, T) → ∞. Finite T fluctuations in the table are
induced by the estimator of m̂ (which we have demonstrated to be sensitive to T), and the variability of
the averages selected by the IC estimator for finite T settings. See to that end the selection probabilities
reported in Table C1 of the Appendix.

4.3.3. Experiment 3: rank condition violated
In Experiment 3, the loading matrix C for the standard CSA has rank zero. Intuitively, the effect of the
factors is averaged out in Z such that the CSA are uninformative for estimating the factor space. The
top panel of Table 4 reveals that our RC evaluation method is highly accurate in this setting even for
very small N. This is due to the large discrepancy between m = 2 and � = 0. Since we have specified a
conservative estimator for �, such a large over-estimation error almost never occurred (recall the bottom
panel of Table 1).

Given the strong signal by the classifier that the RC is violated, Algorithm 1 in the ‘CCEA’ panel has led
to a search for expansion CSA in nearly all MC samples. We find that the sole rank-restoring expansion
Z(e) was selected with high probability, as indicated by the high proportion of samples for which the
RC has been restored (see the bottom panel of Table 4). This again confirms the performance of the
IC approach to select only relevant candidates (i.e., loading on the same factors) for expansion. Note,
however, that compared to Experiment 2, the classifier appears less capable to confirm that the rank
condition is restored when N is very small. Accuracy is only 40% when N = 20. Closer analysis reveals
that this is caused by a relatively large under-estimation rate (60%) of the true rank in N = 20 samples
when the correct expansion was selected. A possible cause is that the expanded matrix ZA = [Z, Z(e)]
has a potential rank (number of columns = 4) which is twice the true rank (2). This suggests a relatively
high level of estimation noise, and a cross-section dimension of N = 20 appears too small to estimate
the rank accurately in such cases. Yet, the performance of the estimator improves quickly with N, and
classification accuracy recovers to 85% or higher for N = 100.

We consider also the empirically relevant scenario where the proposal set Z+ does not contain
sufficient informative CSA to restore the rank condition. To that end, we report in the CCEA,sub panel of
Table 4 the outcomes of Algorithm 1 when the set of proposal expansions is Z+,sub = {Zw,1, Zw,2, Z(g)}
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instead of Z+. Hence, Z+,sub contains insufficient valid expansions to restore the RC, and Algorithm
1 should signal that the RC remains violated even when expansions have been selected from it. It is
furthermore important that the IC does not select Z(g), the CSA that load on factors other than those in
Zi, as it would lead to false conclusions that the RC is satisfied by the classifier (see Remark 3.5). This
makes the setting particularly challenging. However, the results summarized in the CCEA,sub panel of
Table 4 show that the classifier confirms with high accuracy that the RC fails even after expansions were
chosen.

4.3.4. Experiments with heterogeneous slopes
To confirm the validity of the RC classifier in settings with heterogeneous slopes, we also run Experi-
ments 1-3 with the slopes in Eq. (1) generated as βi = β + νi, where νi ∼ N (0, 1). We generally find that
slope heterogeneity has little effect on the performance of the classifier, or Algorithm 1, save that the rank
estimator incurs a slightly higher error rate due to the additional noise (max +5%). Conclusions are thus
practically identical to the common slope results reported above, and we refer to Appendix C.2 for the
results in the interest of space. This confirms the consistency of the procedures posited in Section 3.5.

5. Application: the impact of the Dodd-Frank Act on the profitability of U.S. banks

Studies on the profitability of banking institutions are vital for obtaining better understanding of the
causes of financial crises, economic recessions, and growth. Profits constitute the first line of defense
against losses from credit impairment, since retained earnings are an important source of capital. When
it comes to large banks, high profitability may also signal excessive market power through stronger brand
image or implicit regulatory protection; this is the so-called “too-big-to-fail” (TBTF) hypothesis, which
postulates that large financial institutions may be so widely interconnected to the rest of the economy
that their failure would generate a disastrous domino effect for the whole economy. To the extent that
governments effectively subsidize downsize risk for financial institutions with TBTF status, large banks
face artificially lower costs of capital, and thus reap more profits.

A large number of studies analyze drivers of bank profits (see e.g., Baker and Wurgler, 2015; Goddard
et al., 2011; Iannotta et al., 2007; Lee and Hsieh, 2013; Staikouras and Wood, 2004). There is also a fairly
substantial literature focusing on the TBTF hypothesis (see e.g., Gropp and Vesala, 2004; Hakenes and
Schnabel, 2011; Morgan and Stiroh, 2005; Sironi, 2003; Stern and Feldman, 2009; Völz and Wedow,
2011). The bulk of this literature provides evidence that government bailout guarantees may distort
market discipline, inducing excessive risk-taking and morally hazardous behavior (Mattana et al., 2015).

The present illustration contributes to this literature by examining the impact of the well-known
“Dodd-Frank Act” (DFA) on profitability in the U.S. banking sector. The DFA is a U.S. federal law enacted
in 2010 that has instituted a new failure-resolution regime, which seeks to ensure that losses resulting
from bad decisions by managers are absorbed by equity and debt holders, thus potentially reducing moral
hazard. Existing empirical evidence on the extent to which the DFA has alleviated the TBTF is relatively
sparse and not in agreement. For example, while Baily et al. (2020) conclude on a positive influence of
the DFA towards resolving moral hazard, other studies point in the opposite direction (see e.g., Bordo
and Duca, 2018). In what follows, we apply the CCE estimator and rank test methodology developed in
the present paper to shed further light on this important topic.

5.1. Data and model specification

We make use of a panel data set consisting of 450 U.S. banking institutions over the period 2006:Q1–
2019:Q4.14 We analyze the impact of major drivers of bank profitability, with emphasis on bank size.

14All data are publicly available and they have been downloaded from the Federal Deposit Insurance Corporation (FDIC)
website. See https://www.fdic.gov/.
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Thus, we specify the following model:

ROAit = β
(�)
1 SIZEit + β

(�)
2 CARit + β

(�)
3 LIQUIDITYit + β

(�)
4 QUALITYit + β

(�)
5 RISKit + uit ;

uit = ηi + λ′
ift + εit ,

where i = 1, . . . , N, t = 1, . . . , T, � = τ11{t < 2011 : Q1} + τ21{t ≥ 2011 : Q1}. Essentially, the model is
estimated for two sub-periods, namely 2006:Q1–2010:Q4 and 2011:Q1–2019:Q4. The first sub-period
belongs to the Basel I-II period, whereas the second corresponds to the DFA and coincides with the
introduction of the Basel III internationally.15

The variables of the model are defined as follows: ROAit is the return on assets (annualized net
income expressed as a percentage of average total assets on a consolidated basis); SIZEit denotes the
natural logarithm of bank total assets; CARit stands for “capital adequacy ratio” (ratio of Tier 1 capital
over average total assets minus ineligible intangibles). Higher values of this ratio imply higher levels of
capitalization; LIQUIDITYit is proxied by the loan-to-deposit ratio. Higher values imply a lower level of
liquidity; QUALITYit is computed as the total amount of loan loss provisions expressed as a percentage
of assets; and RISKit denotes the ratio of non performing loans to total loans. Higher values of RISK
indicate that banks ex-ante took higher lending risk and therefore they have accumulated ex-post more
bad loans.

The error term uit is composite. In particular, ηi captures bank-specific effects, such as ownership
and location. The m × 1 vector ft denotes unobserved economy-wide factors that influence bank profits,
albeit with heterogeneous intensities λi. Last, εit is an idiosyncratic error.

The above set of explanatory variables originate from bank accounts (balance sheets and/or profit
and loss accounts) and are tied to management decisions. As such, they are viewed as “internal”. Bank
profitability is also driven by “external” factors that lie beyond the control of management, such as
business cycle effects, monetary shocks, and financial innovation. These are absorbed in our model by
the common factor component specified in the error term, λ′

ift . Although in some cases external drivers
can be measured and included directly in the model, often the details of measurement may be difficult
and/or contentious.16

We note that internal and external drivers of bank profitability are likely to be mutually correlated.
For example, asset quality may depend on the position of the business cycle, since contractionary phases
are typically associated with a higher level of default risk. Therefore, standard panel data approaches
that fail to control for external drivers are likely to face an endogeneity problem and, hence, to yield
inconsistent parameter estimates. The CCE approach allows for consistent estimation, provided that the
rank condition is satisfied such that the external drivers are adequately controlled for.

For notational convenience, let Zi denote the T × 6 matrix with the observables

Zi =
[

yi, x(1)
i , . . . , x(5)

i

]
, (23)

where yi = [
yi1, . . . , yiT

]′ is a T × 1 vector such that yit ≡ ROAit , and similarly for the remaining
variables, where x(k)

i denotes the covariate with coefficient β
(�)

k .

5.2. Evaluating the RC

Before looking at the CCE estimation results, it is important to examine whether the RC is satisfied.
The number of factors m is estimated from the T × (K + 1)N matrix Z = [Z1, . . . , ZN], using the
Growth Ratio statistic of Ahn and Horenstein (2013). The rank of the matrices of CSA that we consider,

15Basel III is an international regulatory framework for capital standards, which incorporates a set of reforms within the
banking sector, designed to improve the regulation, supervision and risk management. It requires banks to maintain proper
leverage ratios and meet certain minimum capital requirements.

16For example, how does one measure monetary shocks? Does one look at interest rates or monetary aggregates? Which
monetary aggregates? Similarly, how does one proxy financial innovation? For instance, how does one measure embedded
leverage in new financial instruments?
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Table 5. US bank profitability: Evaluating the rank condition.

CCE CCEA

Basel I-II Dodd-Frank Act Basel I-II Dodd-Frank Act

m̂ 3 2 3 2
�̂ 1 3 3 2
R̂C 0 1 1 1

Notes: ‘Basel I-II’ refers to the 2006:Q1–2010:Q4 period, while ‘Dodd-Frank Act’ to the 2011:Q1–2019:Q4 period. m̂ is the number of
factors estimated from the T × (K + 1)N matrix Z, using the GR statistic of Ahn and Horenstein (2013). �̂ is the rank estimator of Robin
and Smith (2000), with αN = 20αN−1 and  = IT . R̂C is the rank condition classifier defined in Eq. (16).

to be defined shortly, is determined based on the sequential testing procedure of Robin and Smith
(2000). Since T is small in both sub-samples, there is no need to reduce the row-dimensionality using a
projection matrix.

We start with the standard CCE estimator based on the unweighted CSA Z = 1
N
∑N

i=1 Zi. Table 5
reports results for evaluating the RC. The first and second columns correspond to the standard CCE
estimator applied to the periods 2006:Q1–2010:Q4 (Basel I-II) and 2011:Q1–2019:Q4 (Dodd-Frank
Act). For the period under Basel I-II, m̂ = 3. The standard CSA Z appear unable to proxy these factors
as the RC is found to be violated, R̂C = 0. For the period under the Dodd-Frank Act, we obtain m̂ = 2
and the rank condition now appears to hold for the standard CCE estimator.

Given that the RC is violated for the standard CCE approach in the first sub-period of the sample, we
consider a set of potential expansion of CSA, given by

Z+ = {Z(1)

+ , Z(2)

+ , Z(3)

+ , Z(4)

+ }. (24)

Z(1)

+ ≡ [x(6), x(7)] is a T × 2 matrix, where x(6) and x(7) denote the simple CSA of two external variables,
namely the return to equity (ROE), and the tier 1 risk-based capital ratio. ROE is defined as annualized
net income expressed as a percent of average total equity on a consolidated basis. The risk-based capital
ratio is defined as the tier 1 (core) capital expressed as a percent of risk-weighted assets. As these variables
present alternative measures of profitability (yi) and capitalization (x(2)

i ), respectively, they are expected
to be driven by the same common factors as those entering into the regression model.

Z(2)

+ and Z(3)

+ denote T × (K + 1) matrices of weighted CSA, computed from Zi in Eq. (23). Z(2)

+
is calculated using as aggregation weight the initial value of the bank-specific debt ratio (defined as
total liabilities over total assets). This variable has been employed in the literature as a measure of
interconnectedness of banks (Fernandez, 2011). Thus, banks with similar levels of debt ratio may be
hit by common shocks in an alike manner and therefore they take a similar weight in the computation
of the CSA of Zi. Z(3)

+ uses the size of each bank in the beginning of the sample as averaging weight. This
implies that banks of similar size get a similar weight in the computation of Z(3)

+ .
Finally, Z(4)

+ is a T × 2(K + 1) matrix of CSA, obtained using two weights that are constructed by
grouping banks according to their size. In particular, we take CSA over the bottom and the top quintile
of banks.

Table 6 reports IC results for each of the suggested additional CSA. Under Basel I-II, where the RC was
found to be violated, the IC selects Z(1)

+ as a relevant expansion. The other expansions (Z(2)

+ , Z(3)

+ , Z(4)

+ )
do not provide new information about the factor space. In the DFA period none of the expansions are
selected, since the RC was already satisfied.

Given the IC results, we consider the augmented CCEA estimator with CSA ZA = [Z, Z(1)

+ ]. Whether
this augmented set of CSA is also sufficient to restore the rank condition needs to be verified with the RC
classifier. Results are reported in the right panel of Table 5. As we can see, the augmentation has restored
the rank condition (R̂C = 1) for the first sub-period. As expected, the RC remains satisfied in the second
sub-period should we also augment the CCE estimator with Z(1)

+ .
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Table 6. US bank profitability: IC for additional CSA.

Basel I-II Dodd-Frank Act

IC IC
Z −4.149 −7.664
[Z, Z(1)

+ ] −4.260 −5.510
[Z, Z(2)

+ ] 0.588 −0.516
[Z, Z(3)

+ ] 2.045 0.012
[Z, Z(4)

+ ] 1.529 7.044

Note: the IC criterion is specified in Eq. (19).

Table 7. US bank profitability: CCE and CCEA estimation results

Basel I-II Dodd-Frank Act

CCE CCEA CCE CCEA

β̂1 (size) 0.959∗∗∗
(0.325)

0.647∗∗∗
(0.196)

0.267∗
(0.149)

0.331∗∗
(0.156)

β̂2 (CAR) −0.035∗∗
(0.017)

−0.038∗∗∗
(0.015)

−0.027
(0.021)

−0.026
(0.021)

β̂3 (liquidity) 1.045∗∗∗
(0.364)

0.646∗∗∗
(0.251)

0.964∗∗∗
(0.170)

0.871∗∗∗
(0.192)

β̂4 (quality) −0.943∗∗∗
(0.061)

−0.914∗∗∗
(0.040)

−0.890∗∗∗
(0.050)

−0.905∗∗∗
(0.048)

β̂5 (RISK) 0.016
(0.012)

0.017
(0.011)

−0.027∗∗∗
(0.009)

−0.025∗∗
(0.010)

Notes: ‘Basel I-II’ refers to the 2006:Q1–2010:Q4 period, while ‘Dodd-Frank Act’ to the 2011:Q1–2019:Q4 period. Standard errors,
computed based on the parametric sandwich-type formula in Eq. (74) of Pesaran (2006), are reported in parentheses. ∗∗∗p < 0.01,∗∗p < 0.05, ∗p < 0.10.

5.3. CCE and CCEA estimation results

Table 7 reports CCE and CCEA estimates for the two sub-periods 2006:Q1–2010:Q4 and 2011:Q1–
2019:Q4. The RC evaluation results imply that in the first sub-period the CCEA estimator is consistent,
whereas CCE is not. Such discrepancy is mainly noticeable in the estimated coefficients of SIZE and
LIQUIDITY . In both cases, the inconsistent CCE appears to overestimate the impact of these variables
on bank profitability. For the period 2011:Q1–2019:Q4, RC holds for both CCE and CCEA. Hence, there
is no need to augment the model with additional CSA. Notably, the estimated coefficients obtained by
the two estimators are not statistically different.

Turning to a comparison of the results across the two sub-periods, SIZE appears to be substantially
less important in terms of driving profitability of banks under the DFA period.17 More specifically, the
difference between β̂

(τ1)
1 = 0.647 and β̂

(τ2)
1 = 0.267 equals 0.38 and is statistically significant at the 10%

level of significance, with a p-value that is roughly equal to 0.061 (one-tailed test).18 That is, if large
banks exercised market power and implicitly relied on regulatory protection based on a “too-big-to-fail”
presumption, such type of behavior seems to be less prevalent after the introduction of the Dodd-Frank
Act. Further, note that if we use the standard CCE estimator in both sub-periods, the difference between
β̂

(τ1)
1 and β̂

(τ2)
1 amounts to 0.959 − 0.267 = 0.692. Hence, the impact of the DFA is estimated to be twice

as large as that obtained based on our approach. This further highlights the importance of evaluating
the rank condition for CCE-type estimators.

17In practice, we note that β
(�)
1 captures not only the effect of market power and implicit regulatory protection via TBTF, but

also the effect of economies of scale. Such scale effects will be positive (negative) if there exist economies (diseconomies)
of scale. However, to the extent that the degree of returns to scale in the banking sector has remained unaltered during the
sampling period of the analysis, the difference in the coefficient of SIZEit between the two sub-periods, i.e., β(τ2)

1 − β
(τ1)
1 ,

will measure the impact of the Dodd-Frank Act on TBTF, conditional on the remaining covariates.
18The t-statistic is t = (0.647 − 0.267)/

√
0.1962 + 0.1492 = 1.54. Note that since the CCEA and CCE estimates are based on

different samples, it is natural to assume that their covariance equals zero.
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6. Conclusion

It is well known that the so-called Rank Condition is crucial for the statistical properties of the CCE
approach developed by Pesaran (2006). However, to date this rank condition could not be verified as it
relates to the rank of the unobserved matrix of factor loadings. Therefore, in practice the rank condition
is typically assumed to hold true.

In this article, we have outlined a procedure to evaluate whether the rank condition holds in the model
of interest given a chosen set of cross-sectional averages. If the rank condition is found to be violated,
the procedure can be applied in an augmentation strategy, which combines our proposed classifier with
an Information Criterion, to determine the set of CSA that restores the rank condition. Therefore, our
approach is generally applicable for checking whether the chosen cross-section averages are sufficient to
satisfy the rank condition, or whether additional variables should be explored.
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Appendix

A. Rank condition not satisfied: potential CSA for expansions

Chudik and Pesaran (2015) advocate expanding Z by adding cross-sectional averages of external variables.
This practice requires that these variables load on the same set of factors F that operate in Zi, but otherwise
have no relation to the dependent variable. To illustrate, consider a setting where m > K + 1 so that the rank
condition is violated for Z. Let Z(e)

i be the T × Ke matrix gathering the exogenous covariates, given by

Z(e)
i = FC(e)

i + ε
(e)
i , (A.1)

where C(e)
i denotes an m × Ke matrix of factor loadings with finite mean C(e), and ε

(e)
i is the T × Ke matrix of

errors. Assuming that the components of this DGP also satisfy Assumptions 1-3 and 4, the augmented matrix
of CSA, ZA = [

Z, Z(e)], may satisfy the rank condition, because it can be written as

ZA = F
[
C, C(e)] + [

U, ε(e)] = FCA + Op(N−1/2), (A.2)

where CA = [C, C(e)]. Given that Z(e)
i loads on the same set of factors F, the augmented loading matrix CA is

now of order m × (1 + K + Ke). Therefore, this can restore the RC provided that m ≤ 1 + K + Ke and C(e)

is also sufficiently distinct from C.
An alternative idea is to make use of external variables as additional weights, in order to construct weighted

CSA. Such an approach has been recently advocated by Juodis and Sarafidis (2022b), Fan and Liao (2020),
Juodis and Sarafidis (2022a) and, in the present context of CCE estimation, by Karabiyik et al. (2019).

To illustrate, let wi denote an external, time-invariant variable.19 Multiplying Eq. (3) by wi and summing
over i yields

Zw
T×(K+1)

= F
T×m

Cw
m×(K+1)

+ Uw
T×(K+1)

, (A.3)

where Zw = ∑N
i=1 Ziwi, Cw = ∑N

i=1 Ciwi, and Uw = ∑N
i=1 Uiwi. As shown by Karabiyik et al. (2019), when

Ci and wi are correlated, but Ui and wi are not, then Zw = FCw + Op(N−1/2) and Cw converges to a non
zero matrix.20 If Cw is also sufficiently distinct from C, the obtained Zw provides new (i.e., rank increasing)
information on F, and the rank of the augmented matrix ZA = [Z, Zw] is increased. As the authors point out,
wi effectively acts as an instrument for Ci, and multiple wi can be combined in an attempt to restore the RC.21

Lastly, one can also employ deterministic averaging weights, such as binary indicators that give rise to
group-specific cross-sectional averages. For example, in a panel of countries, individual units may be classified
as developed, emerging and developing economies; in a panel of firms, units may be grouped according to
their size or sector; and so on. In many cases, such group memberships are known and the group-specific
averages can be more informative factor proxies than the simple (overall) average.

B. Proofs of theoretical results

B.1. Proof of Theorem 1

Let M be a given T × n matrix (T > n) and let � = [
φ1, . . . , φn

]′ be an n × T random matrix, where
φ1, . . . , φn are i.i.d.MN (0, IT) in R

T .

Part (i). We wish to prove that
Pr [rank (�M) = rank (M)] = 1.

Case 1. M has full column rank, i.e., rank(M) = n.

19For example, Karabiyik et al. (2019) estimate a gravity equation of bilateral trade flows and construct weights based on
different measures of trade cost.

20This property is also utilized by Juodis and Sarafidis (2022a), who propose the use of aggregation weights in the context of
GMM estimation in panels with T fixed or large.

21See Section 2 in Karabiyik et al. (2019) for the formal set of assumptions required to ensure the validity of such weights.
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Consider the row-matrix representation of a product of two matrices:

�M =

⎡⎢⎢⎢⎣
φ′

1M
φ′

2M
...

φ′
nM

⎤⎥⎥⎥⎦ .

It suffices to show that

Pr
[{

φ′
1M, . . . , φ′

nM
}

are linearly independent
] = 1 ⇔

Pr
[{

M′φ1, . . . , M′φn
}

are linearly independent
] = 1. (B.1)

Let zi = M′φi denote an n × 1 vector, for i = 1, . . . , n. Since φ1, . . . , φn are i.i.d.MN (0, IT), it follows that
z1, . . . , zn are i.i.d.MN

(
0, M′M

)
, with M′M non singular because M has full rank. Let z̃i denote a specific

realization of zi, where z̃i ∈ R
n. Define y = vec (z1, . . . , zn) and ỹ = vec (̃z1, . . . , z̃n), both n2 × 1 vectors. Let

A =
{̃

y ∈ R
n2

: z̃1, . . . , z̃n are linearly dependent
}

.

We have

Pr
[
z1, . . . , zn are linearly dependent

]
= E

(
I
[
y ∈ A

])
= E

(
E
(
I
[
y ∈ A

] |z1, . . . , zn−1
)) = 0 (B.2)

because

E
(
I
[
y ∈ A

] |z1, . . . , zn−1
) = 0.

Therefore, we have proved that

Pr
[
z1, . . . , zn are linearly dependent

] = 0,

and thereby

Pr [rank (�M) = rank (M) = n] = 1.

Case 2. M has less than full column rank, i.e., rank(M) = n1 < n. Partition M = [M1
... M2], where M1 is T ×

n1 and M2 is T × (n − n1), such that rank(M1) = n1. Similarly, partition � such that

� =
[

�1
�2

]
where �1 and �2 are n1 × T and (n − n1) × T respectively with rank(�1) = n1 with probability 1. Thus, the
product between � and M can be written as

�M =
[

�1M1 �1M2
�2M1 �2M2

]
n×n

. (B.3)

Based on exactly the same arguments as in Case 1, it can be shown that rank(�1M1) = n1 with probability
1. However, since �1M1 is a submatrix of �M, rank(�M) ≥ n1. Therefore, we have

n1 = rank (�1M1) ≤ rank (�M) ≤ min {rank (�) , rank (M)} = n1.

Hence, rank(�M) = n1 = rank(M) with probability 1. This completes part (i) of the theorem.

Part (ii). We can write by simple addition and subtraction

Z = T−1/2�Z = T−1/2(�FC + �U) = T−1/2�FC + T−1/2�F(C − C) + T−1/2�U

Recall that � = [φ1, . . . , φn]′, with its rows given by φk ∼ iidMN (0T×1, IT) for k = 1, . . . , n. Consider then
the kth row of T−1/2�U, and write it as T−1/2 ∑T

t=1 φktu′
t , with φk = [φk1, . . . , φkT]′ and U = [u1, . . . , uT]′.
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By the independence of � and U we have for every k = 1, . . . , n that E(
∑T

t=1 φktu′
t) = 01×n and

Var

(∑T
t=1 φktu′

t√
T

)
= 1

T

T∑
t=1

T∑
s=1

E (φktφks) E
(
utu′

s
) = 1

T

T∑
t=1

E
(
utu′

t
) = O(N−1),

because E (φktφks) = 0 for s �= t, E (φktφkt) = E
(
φ2

kt
) = 1 and E(‖ut‖2) = O

(
N−1) by A.4 of Lemma 1 in

Pesaran (2006) under Assumptions 1 and 4. Hence,
∥∥T−1/2�U

∥∥ = Op(N−1/2) as (N, T) → ∞.
Consider next T−1/2�F. By the independence of � and F we have E (�F) = 0n×m, and since F =

[f1, . . . , fT]′ we can write the k-th row of �F as
∑T

t=1 φktf ′
t . Therefore,

Var

(∑T
t=1 φktf ′

t√
T

)
= 1

T

T∑
t=1

E (φktφkt) E
(
ftf ′

t
) = 1

T

T∑
t=1

E
(
ftf ′

t
) = O(1),

because E
(
ftf ′

t
) = O(1) for every t (Assumption 2). Hence, we have

∥∥T−1/2�F
∥∥ = Op (1). Noting then that∥∥C − C

∥∥ = Op(N−1/2) under Assumption 3, it follows that∥∥T−1/2�F(C − C)
∥∥ ≤ ∥∥T−1/2�F

∥∥ ∥∥C − C
∥∥ = Op(N−1/2).

Thus, combining the results above yields as (N, T) → ∞,

Z = T−1/2�FC + T−1/2�F(C − C) + T−1/2�U = T−1/2�FC + Op(N−1/2),

where also
∥∥T−1/2�FC

∥∥ ≤ ∥∥T−1/2�F
∥∥ ‖C‖ = Op(1) since ‖C‖ < ∞ under Assumption 3. Hence, the proof

of part (ii) of the theorem is complete.
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C. Additional simulation results

C.1. Homogeneous slopes

Table C.1. Algorithm 1: Selection percentages for expansion CSA.

Zw,1 Zw,2 Z(e) Z(g)

(N,T) 120 150 100 200 120 150 100 200 120 150 100 200 120 150 100 200

Experiment 1 20 1 0 0 0 1 0 0 0 2 0 0 0 1 0 0 0
50 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0

100 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
200 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
500 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Experiment 2 20 33 43 50 52 33 43 44 44 24 7 1 0 1 0 0 0
50 28 39 49 52 29 38 45 46 35 21 4 0 1 0 0 0

100 26 34 44 51 26 33 42 48 40 32 13 1 1 0 0 0
200 24 30 37 48 25 30 36 45 44 40 26 6 1 0 0 0
500 24 27 31 38 24 27 30 38 46 46 38 23 0 0 0 0

1000 23 25 27 32 23 25 27 32 47 49 46 36 1 0 0 0

Experiment 3 20 3 0 0 0 3 0 0 0 93 98 99 100 1 0 0 0
50 2 0 0 0 2 0 0 0 96 100 100 100 1 0 0 0

100 1 0 0 0 1 0 0 0 96 100 100 100 1 0 0 0
200 1 0 0 0 1 0 0 0 97 100 100 100 1 0 0 0
500 1 0 0 0 1 0 0 0 98 100 100 100 1 0 0 0

1000 1 0 0 0 1 0 0 0 98 100 100 100 1 0 0 0

Experiment 3 20 21 16 19 24 22 17 16 17 0 0 0 0 3 0 0 0
Z+,sub = Z+\Z(e) 50 21 15 17 22 20 15 14 16 0 0 0 0 3 0 0 0

100 19 14 17 20 19 14 13 17 0 0 0 0 3 0 0 0
200 19 13 15 19 18 13 13 15 0 0 0 0 3 0 0 0
500 19 13 15 18 19 14 13 17 0 0 0 0 3 0 0 0

1000 19 13 15 18 19 14 13 17 0 0 0 0 3 0 0 0

Notes: Reported are percentages out of 10000 Monte Carlo iterations that the CSA stated in the column has been selected as an
expansion by the IC given in Eq. (19). Since multiple expansions can be selected on each sample size, the percentages do not necessarily
sum to 100. The bottom panel displays selection frequencies in Experiment 3 when Z(e) is not a selectable option. That is, the set of
proposal expansions is Z+,sub = {Zw,1, Zw,2, Z(g)}.
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Table C.2. Algorithm 1: Sensitivity and specificity.

RC satisfied rate Sensitivity Specificity

(N, T) 20 50 100 200 20 50 100 200 20 50 100 200

Experiment 1 20 1.00 1.00 1.00 1.00 0.68 0.71 0.71 0.70 1.00 1.00 1.00 1.00
50 1.00 1.00 1.00 1.00 0.74 0.79 0.79 0.79 1.00 1.00 1.00 1.00

100 1.00 1.00 1.00 1.00 0.78 0.84 0.83 0.83 1.00 1.00 1.00 1.00
200 1.00 1.00 1.00 1.00 0.84 0.87 0.87 0.87 1.00 1.00 1.00 1.00
500 1.00 1.00 1.00 1.00 0.87 0.91 0.91 0.91 1.00 1.00 1.00 1.00

1000 1.00 1.00 1.00 1.00 0.90 0.94 0.93 0.93 1.00 1.00 1.00 1.00

Experiment 2 20 0.89 0.94 0.95 0.96 0.79 0.95 0.99 0.99 0.01 0.00 0.00 0.00
50 0.92 0.98 0.98 0.98 0.89 0.96 0.99 1.00 0.00 0.00 0.00 0.00

100 0.93 0.99 0.99 0.99 0.96 0.99 1.00 1.00 0.00 0.00 0.00 0.00
200 0.93 0.99 0.99 0.99 0.98 1.00 1.00 1.00 0.00 0.00 0.00 0.00
500 0.94 1.00 1.00 1.00 0.98 1.00 1.00 1.00 0.00 0.00 0.00 0.00

1000 0.93 1.00 1.00 1.00 0.99 1.00 1.00 1.00 0.00 0.00 0.00 0.00

Experiment 3 20 0.93 0.98 0.99 1.00 0.38 0.39 0.39 0.39 0.79 0.63 0.22 0.07
50 0.96 1.00 1.00 1.00 0.64 0.70 0.70 0.70 0.89 0.78 0.33 0.00

100 0.96 1.00 1.00 1.00 0.86 0.94 0.92 0.94 0.95 0.91 0.00 0.00
200 0.97 1.00 1.00 1.00 0.92 0.98 0.98 0.98 0.98 0.86 1.00 1.00
500 0.98 1.00 1.00 1.00 0.95 0.99 0.99 0.99 0.98 1.00 1.00 1.00

1000 0.98 1.00 1.00 1.00 0.95 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Experiment 3 20 0.00 0.00 0.00 0.00 1.00 1.00 1.00 1.00 0.95 0.96 0.96 0.96
Z+,sub = Z+\Z(e) 50 0.00 0.00 0.00 0.00 1.00 1.00 1.00 1.00 0.98 0.99 0.99 0.98

100 0.00 0.00 0.00 0.00 1.00 1.00 1.00 1.00 0.98 0.99 0.99 0.99
200 0.00 0.00 0.00 0.00 1.00 1.00 1.00 1.00 0.98 1.00 1.00 1.00
500 0.00 0.00 0.00 0.00 1.00 1.00 1.00 1.00 0.98 1.00 1.00 1.00

1000 0.00 0.00 0.00 0.00 1.00 1.00 1.00 1.00 0.98 1.00 1.00 1.00

Notes: (i) Reported in the left panel is the fraction of MC samples where the rank condition (� = m) is satisfied (restored) after
application of Algorithm 1. The middle panel displays the ’Sensitivity’of the RC classifier, or the rate of correctly obtaining R̂C = 1 for the
cases where the RC is satisfied/restored ( #true RC=1 conclusions

#true RC=1 conclusions+#false RC=0 conclusions ), and the rightmost panel gives the ’Specificity’, or

the rate of correctly obtaining R̂C = 0 when the RC is indeed violated/not restored ( #true RC=0 conclusions
#true RC=0 conclusions+#false RC=1 conclusions ). Note

that when there are no RC = 0 cases and also no R̂C = 0 conclusions, then Specificity = 1, and similarly for the Sensitivity. The inverse
of Sensitivity and Specificity give respectively the false positive (false RC holds conclusions) and false negative rates (false RC violated
conclusions). (ii) The RC classifier employs the GR estimator with mmax = 7 to estimate m, and the rank estimator employs the random
projection with αN = 20αN−1. (iii) The bottom panel gives outcomes for Algorithm 1 when the rank-restoring expansion CSA Z(e) is
not among the set of proposal expansions such that it is impossible to restore the RC. (iv) Note that the classifier Sensitivity/Specificity
are not separately reported when evaluating the RC based on Z, because they are identical to the ’Classification Accuracy’ reported in
the main text. That is, when the RC is satisfied for Z (experiment 1), then Specificity = 1 and Sensitivity equals the classification accuracy
reported in table 2. Conversely, when RC is violated for Z, then Sensitivity = 1 and Specificity is the reported accuracy.
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C.1.1. Estimation results

Table C.3. Estimation results for β in Experiment 1.

bias rmse

(N, T) 20 50 100 200 20 50 100 200

CCE 20 0.055 0.052 0.052 0.053 0.120 0.089 0.075 0.066
50 0.023 0.022 0.022 0.022 0.069 0.049 0.039 0.032

100 0.011 0.011 0.011 0.011 0.047 0.032 0.024 0.019
200 0.006 0.005 0.006 0.005 0.032 0.022 0.016 0.012
500 0.002 0.002 0.002 0.002 0.020 0.013 0.010 0.007

1000 0.001 0.001 0.001 0.001 0.014 0.009 0.007 0.005

CCEA 20 0.053 0.052 0.052 0.053 0.118 0.089 0.075 0.066
50 0.023 0.022 0.022 0.022 0.068 0.049 0.039 0.032

100 0.011 0.011 0.011 0.011 0.046 0.032 0.024 0.019
200 0.006 0.005 0.006 0.005 0.032 0.022 0.016 0.012
500 0.002 0.002 0.002 0.002 0.020 0.013 0.010 0.007

1000 0.001 0.001 0.001 0.001 0.014 0.009 0.007 0.005

Note: Reported are estimation bias for β and root mean square error (rmse).

Table C.4. Estimation results for β in Experiment 2.

bias rmse

(N, T) 20 50 100 200 20 50 100 200

CCE 20 0.818 0.836 0.844 0.848 0.825 0.839 0.846 0.850
50 0.820 0.839 0.847 0.851 0.825 0.841 0.848 0.852

100 0.819 0.839 0.848 0.851 0.824 0.841 0.849 0.852
200 0.820 0.839 0.848 0.853 0.824 0.841 0.849 0.853
500 0.821 0.840 0.848 0.852 0.826 0.842 0.849 0.853

1000 0.820 0.840 0.848 0.852 0.825 0.842 0.849 0.853

CCEA 20 0.122 0.075 0.067 0.062 0.295 0.219 0.198 0.180
50 0.083 0.031 0.027 0.028 0.246 0.132 0.123 0.124

100 0.069 0.017 0.016 0.014 0.231 0.093 0.094 0.086
200 0.061 0.009 0.009 0.007 0.219 0.066 0.067 0.063
500 0.056 0.005 0.005 0.003 0.214 0.053 0.050 0.039

1000 0.056 0.003 0.002 0.002 0.215 0.039 0.034 0.028

Note: Reported are estimation bias for β and root mean square error (rmse).
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Table C.5. Estimation results for β in Experiment 3.

bias rmse
(N, T) 20 50 100 200 20 50 100 200

CCE 20 0.664 0.680 0.687 0.692 0.679 0.688 0.693 0.697
50 0.670 0.686 0.695 0.699 0.681 0.692 0.699 0.702

100 0.668 0.688 0.696 0.700 0.679 0.694 0.700 0.702
200 0.671 0.688 0.698 0.702 0.681 0.693 0.701 0.704
500 0.672 0.689 0.698 0.703 0.681 0.694 0.701 0.704

1000 0.673 0.690 0.698 0.703 0.682 0.695 0.701 0.705

CCEA 20 0.052 0.032 0.029 0.028 0.145 0.094 0.074 0.060
50 0.025 0.012 0.011 0.011 0.096 0.051 0.035 0.028

100 0.017 0.006 0.005 0.006 0.079 0.035 0.024 0.017
200 0.013 0.003 0.003 0.002 0.068 0.024 0.015 0.011
500 0.009 0.002 0.001 0.001 0.058 0.020 0.009 0.007

1000 0.008 0.001 0.000 0.001 0.056 0.012 0.007 0.005

CCEA,sub 20 0.535 0.569 0.573 0.566 0.568 0.597 0.600 0.593
50 0.546 0.585 0.589 0.581 0.574 0.610 0.614 0.606

100 0.547 0.587 0.593 0.584 0.575 0.612 0.618 0.609
200 0.553 0.596 0.601 0.591 0.579 0.619 0.625 0.616
500 0.553 0.595 0.600 0.591 0.579 0.618 0.624 0.615

1000 0.553 0.597 0.602 0.592 0.579 0.620 0.625 0.617

Note: Reported are estimation bias for β and root mean square error (rmse). CCEA,sub denotes the outcome of Algorithm 1 with the set

of potential augmentations given by Z+,sub = {Zw,1, Zw,2, Z(g)} instead of Z+ .
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C.2. Heterogeneous slopes

Table C.6. Algorithm 1: Selection percentages for expansion CSA (heterogeneous slopes).

Zw,1 Zw,2 Z(e) Z(g)

(N,T) 120 150 100 200 120 150 100 200 120 150 100 200 120 150 100 200

Experiment 1 20 2 0 0 0 3 0 0 0 3 0 0 0 1 0 0 0
50 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0

100 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
200 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
500 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Experiment 2 20 33 41 49 52 32 42 43 43 22 7 2 0 1 0 0 0
50 28 37 49 51 28 38 43 46 33 19 5 0 1 0 0 0

100 26 34 44 51 26 33 41 46 39 29 13 1 1 0 0 0
200 25 29 36 48 25 29 36 45 41 38 25 6 1 0 0 0
500 23 26 30 39 23 26 30 38 45 44 37 21 1 0 0 0

1000 23 25 28 32 23 24 26 32 45 46 44 34 0 0 0 0

Experiment 3 20 5 1 0 0 5 1 0 0 88 94 97 99 1 0 0 0
50 2 0 0 0 2 0 0 0 93 98 99 100 1 0 0 0

100 1 0 0 0 1 0 0 0 95 98 99 100 1 0 0 0
200 1 0 0 0 1 0 0 0 95 98 99 100 1 0 0 0
500 1 0 0 0 1 0 0 0 96 98 99 100 1 0 0 0

1000 1 0 0 0 1 0 0 0 95 98 99 100 1 0 0 0

Experiment 3 20 27 22 29 34 26 23 21 24 0 0 0 0 3 0 0 0
Z+,sub = Z+\Z(e) 50 25 21 26 31 24 20 19 22 0 0 0 0 3 0 0 0

100 24 19 24 29 24 20 19 21 0 0 0 0 3 0 0 0
200 24 19 23 28 23 19 18 22 0 0 0 0 3 0 0 0
500 24 19 22 26 23 19 19 23 0 0 0 0 3 0 0 0

1000 24 20 21 26 21 19 20 23 0 0 0 0 3 0 0 0

Notes: Reported are percentages out of 10000 Monte Carlo iterations that the CSA stated in the column has been selected as an
expansion by the IC given in Eq. (19). Since multiple expansions can be selected on each sample size, the percentages do not necessarily
sum to 100. The bottom panel displays selection frequencies in Experiment 3 when Z(e) is not a selectable option. That is, the set of
proposal expansions is Z+,sub = {Zw,1, Zw,2, Z(g)}.
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Table C.7. Algorithm 1: Sensitivity and Specificity (heterogeneous slopes).

RC satisfied rate Sensitivity Specificity

(N, T) 20 50 100 200 20 50 100 200 20 50 100 200

Experiment 1 20 1.00 1.00 1.00 1.00 0.67 0.67 0.67 0.67 1.00 1.00 1.00 1.00
50 1.00 1.00 1.00 1.00 0.72 0.74 0.75 0.75 1.00 1.00 1.00 1.00

100 1.00 1.00 1.00 1.00 0.78 0.81 0.81 0.81 1.00 1.00 1.00 1.00
200 1.00 1.00 1.00 1.00 0.83 0.85 0.85 0.85 1.00 1.00 1.00 1.00
500 1.00 1.00 1.00 1.00 0.87 0.90 0.90 0.90 1.00 1.00 1.00 1.00

1000 1.00 1.00 1.00 1.00 0.90 0.93 0.92 0.93 1.00 1.00 1.00 1.00

Experiment 2 20 0.86 0.91 0.94 0.95 0.78 0.94 0.98 0.99 0.22 0.30 0.28 0.14
50 0.89 0.94 0.96 0.97 0.87 0.95 0.99 1.00 0.34 0.63 0.57 0.35

100 0.91 0.96 0.97 0.98 0.96 0.99 1.00 1.00 0.36 0.80 0.71 0.43
200 0.91 0.95 0.97 0.98 0.98 1.00 1.00 1.00 0.40 0.86 0.82 0.72
500 0.91 0.96 0.97 0.98 0.99 1.00 1.00 1.00 0.41 0.94 0.92 0.81

1000 0.91 0.96 0.97 0.99 0.99 1.00 1.00 1.00 0.41 0.97 0.95 0.89

Experiment 3 20 0.88 0.94 0.97 0.99 0.37 0.37 0.37 0.37 0.84 0.88 0.78 0.57
50 0.93 0.98 0.99 1.00 0.60 0.65 0.66 0.65 0.94 0.96 0.95 0.90

100 0.95 0.98 0.99 1.00 0.85 0.92 0.92 0.92 0.97 1.00 0.96 0.94
200 0.95 0.98 0.99 1.00 0.92 0.98 0.97 0.97 0.99 1.00 1.00 0.92
500 0.96 0.98 0.99 1.00 0.94 0.99 0.99 0.99 1.00 1.00 0.99 1.00

1000 0.95 0.98 0.99 1.00 0.95 1.00 1.00 1.00 0.99 1.00 1.00 1.00

Experiment 3 20 0.00 0.00 0.00 0.00 1.00 1.00 1.00 1.00 0.94 0.96 0.96 0.95
Z+,sub = Z+\Z(e) 50 0.00 0.00 0.00 0.00 1.00 1.00 1.00 1.00 0.97 0.99 0.99 0.99

100 0.00 0.00 0.00 0.00 1.00 1.00 1.00 1.00 0.98 0.99 0.99 0.99
200 0.00 0.00 0.00 0.00 1.00 1.00 1.00 1.00 0.98 1.00 1.00 1.00
500 0.00 0.00 0.00 0.00 1.00 1.00 1.00 1.00 0.97 1.00 1.00 1.00

1000 0.00 0.00 0.00 0.00 1.00 1.00 1.00 1.00 0.97 1.00 1.00 1.00

Notes: see notes Table C2.
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C.2.1. Evaluating the rank condition

Table C.8. Under/over-estimation frequency of the estimators for � and m (heterogeneous slopes).

�̂ m̂
(N, T) 20 50 100 200 20 50 100 200

Experiment 1 20 35/0 34/0 34/0 33/0 11/13 2/1 0/0 0/0
� = 2, m = 2 50 26/0 26/0 25/0 25/0 7/9 0/0 0/0 0/0

100 19/0 19/0 19/0 19/0 5/6 0/0 0/0 0/0
200 14/0 15/0 15/0 15/0 5/5 0/0 0/0 0/0
500 10/0 10/0 10/0 10/0 5/4 0/0 0/0 0/0

1000 8/0 7/0 8/0 7/0 5/4 0/0 0/0 0/0

Experiment 2 20 30/4 26/5 28/4 28/4 12/7 3/0 1/0 0/0
� = 1, m = 2 50 18/2 16/2 16/2 16/2 8/4 0/0 0/0 0/0

100 11/1 11/1 10/1 11/1 6/3 0/0 0/0 0/0
200 8/0 6/1 6/1 7/0 6/2 0/0 0/0 0/0
500 4/0 3/0 3/0 3/0 5/1 0/0 0/0 0/0

1000 2/0 2/0 2/0 2/0 5/1 0/0 0/0 0/0

Experiment 3 20 0/6 0/6 0/6 0/6 13/15 3/1 1/0 0/0
� = 0, m = 2 50 0/2 0/2 0/2 0/2 8/10 0/0 0/0 0/0

100 0/1 0/1 0/1 0/1 7/8 0/0 0/0 0/0
200 0/1 0/1 0/1 0/1 6/6 0/0 0/0 0/0
500 0/0 0/0 0/0 0/0 6/6 0/0 0/0 0/0

1000 0/0 0/0 0/0 0/0 5/5 0/0 0/0 0/0

Notes: (i) Based on 10000 MC iterations. (ii) Reported in the left panel is the percentage of under/over- estimation of the true rank � by
the rank estimator �̂ applied to Z, with  = T−1/2�, � drawn from the standard-normal distribution αN = 20αN−1 and α = 5%.
(iii) The right panel is the percentage of under/over estimation of the true number of factors m = 2 by the GR estimator with mmax = 7.

Table C.9. Evaluating the rank condition: Experiment 1 (heterogeneous slopes).

CCE CCEA

(N, T) 20 50 100 200 20 50 100 200
Classification 20 0.60 0.67 0.66 0.67 0.67 0.67 0.67 0.67
accuracy 50 0.69 0.74 0.75 0.75 0.72 0.74 0.75 0.75

100 0.77 0.81 0.81 0.81 0.78 0.81 0.81 0.81
200 0.82 0.85 0.85 0.85 0.83 0.85 0.85 0.85
500 0.87 0.90 0.90 0.90 0.87 0.90 0.90 0.90

1000 0.89 0.93 0.92 0.93 0.90 0.93 0.92 0.93

Notes: (i) Based on 10000 MC iterations. (ii) Reported is the Classification Accuracy (CA), which is the proportion of MC samples in which
the classifier R̂C defined in Eq. (16) correctly identifies whether the RC is satisfied or not. (iii) The RC classifier uses the GR estimator of Ahn
and Horenstein (2013) with mmax = 7 to estimate m, and the Robin and Smith (2000) rank estimator with a standard-normal projection
matrix and significance level αN = 20αN−1 to estimate �. (iv) The left panel evaluates the rank condition for the standard CCE estimator
that uses the matrix of CSA Z to control for the unobserved factors. The right panel evaluates the rank condition for the CCEA estimator,
which is the outcome of Algorithm 1 presented in Section 3.4. That is, if R̂C = 1 for Z, then only Z is employed in the estimation. If on the
other hand Z yields R̂C = 0, then expansion CSA are selected from Z+ using the IC in (19).
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Table C.10. Evaluating the rank condition: Experiment 2 (heterogeneous slopes).

CCE CCEA

(N, T) 20 50 100 200 20 50 100 200

Classification 20 0.89 0.94 0.96 0.96 0.71 0.88 0.93 0.94
accuracy 50 0.93 0.98 0.98 0.98 0.81 0.93 0.97 0.98

100 0.94 0.99 0.99 0.99 0.91 0.98 0.99 0.99
200 0.94 0.99 1.00 1.00 0.93 0.99 0.99 1.00
500 0.95 1.00 1.00 1.00 0.93 1.00 1.00 1.00

1000 0.95 1.00 1.00 1.00 0.94 1.00 1.00 1.00

RC satisfied 20 0.86 0.91 0.94 0.95
rate 50 0.89 0.94 0.96 0.97

100 Always 0 0.91 0.96 0.97 0.98
200 (by construction) 0.91 0.95 0.97 0.98
500 0.91 0.96 0.97 0.98

1000 0.91 0.96 0.97 0.99

See notes to Table 2. The ‘RC satisfied rate’ is the % of MC samples in which the algorithm behind CCEA selects CSA augmentations that
restore the rank condition.

Table C.11. Evaluating the rank condition: Experiment 3 (heterogeneous slopes).

CCE CCEA CCEA,sub

(N, T) 20 50 100 200 20 50 100 200 20 50 100 200

Classification 20 0.99 1.00 1.00 1.00 0.42 0.40 0.38 0.37 0.94 0.96 0.96 0.95
accuracy 50 1.00 1.00 1.00 1.00 0.62 0.65 0.66 0.66 0.97 0.99 0.99 0.99

100 1.00 1.00 1.00 1.00 0.86 0.92 0.92 0.92 0.98 0.99 0.99 0.99
200 1.00 1.00 1.00 1.00 0.92 0.98 0.97 0.97 0.98 1.00 1.00 1.00
500 1.00 1.00 1.00 1.00 0.94 0.99 0.99 0.99 0.97 1.00 1.00 1.00

1000 1.00 1.00 1.00 1.00 0.95 1.00 1.00 1.00 0.97 1.00 1.00 1.00
RC satisfied 20 0.88 0.94 0.97 0.99
rate 50 0.93 0.98 0.99 1.00

100 Always 0 0.95 0.98 0.99 1.00 Always 0
200 (by construction) 0.95 0.98 0.99 1.00 (by construction)
500 0.96 0.98 0.99 1.00

1000 0.95 0.98 0.99 1.00

See notes to Tables 2 and 3. CCEA,sub refers to using Algorithm 1, with the set of potential augmentations given by Z+,sub =
{Zw,1, Zw,2, Z(g)} instead of Z+ .
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C.2.2. Estimation results

Table C.12. Estimation results for heterogeneous β in Experiment 1.

bias rmse

(N, T) 20 50 100 200 20 50 100 200

CCE 20 0.064 0.066 0.067 0.066 0.288 0.262 0.250 0.242
50 0.027 0.028 0.028 0.027 0.180 0.162 0.154 0.150

100 0.015 0.013 0.013 0.014 0.126 0.113 0.108 0.104
200 0.007 0.006 0.007 0.006 0.089 0.079 0.075 0.072
500 0.003 0.003 0.003 0.003 0.057 0.050 0.047 0.046

1000 0.001 0.001 0.002 0.001 0.040 0.035 0.034 0.033

CCEA 20 0.060 0.065 0.067 0.066 0.285 0.261 0.250 0.241
50 0.026 0.028 0.028 0.027 0.180 0.162 0.154 0.150

100 0.015 0.013 0.013 0.014 0.126 0.113 0.108 0.104
200 0.007 0.006 0.007 0.006 0.089 0.079 0.075 0.072
500 0.003 0.003 0.003 0.003 0.057 0.050 0.047 0.046

1000 0.001 0.001 0.002 0.001 0.040 0.035 0.034 0.033

Note: Reported are estimation bias for β and root mean square error (rmse).

Table C.13. Estimation results for heterogeneous β in Experiment 2.

bias rmse

(N, T) 20 50 100 200 20 50 100 200

CCE 20 0.677 0.697 0.706 0.710 0.758 0.768 0.774 0.775
50 0.670 0.694 0.702 0.706 0.719 0.736 0.741 0.743

100 0.675 0.696 0.705 0.709 0.710 0.726 0.733 0.736
200 0.669 0.689 0.697 0.703 0.700 0.715 0.720 0.725
500 0.670 0.693 0.701 0.706 0.697 0.714 0.721 0.725

1000 0.669 0.689 0.699 0.704 0.695 0.710 0.717 0.721

CCEA 20 0.106 0.076 0.062 0.058 0.361 0.306 0.277 0.266
50 0.072 0.037 0.028 0.024 0.261 0.193 0.174 0.169

100 0.057 0.022 0.016 0.014 0.215 0.137 0.124 0.121
200 0.051 0.017 0.013 0.008 0.192 0.104 0.094 0.086
500 0.047 0.014 0.010 0.006 0.178 0.079 0.071 0.060

1000 0.046 0.013 0.009 0.005 0.173 0.069 0.060 0.048

Note: Reported are estimation bias for β and root mean square error (rmse).
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Table C.14. Estimation results for heterogeneous β in Experiment 3.

bias rmse
(N, T) 20 50 100 200 20 50 100 200

CCE 20 0.606 0.621 0.628 0.632 0.688 0.692 0.693 0.695
50 0.613 0.629 0.637 0.640 0.656 0.665 0.670 0.671

100 0.613 0.628 0.636 0.640 0.642 0.650 0.656 0.658
200 0.612 0.628 0.636 0.640 0.634 0.644 0.649 0.652
500 0.614 0.630 0.639 0.642 0.631 0.642 0.648 0.650

1000 0.611 0.630 0.638 0.641 0.626 0.641 0.646 0.648
CCEA 20 0.057 0.041 0.034 0.029 0.297 0.264 0.247 0.235

50 0.028 0.018 0.013 0.011 0.193 0.168 0.155 0.148
100 0.022 0.011 0.007 0.005 0.143 0.123 0.111 0.104
200 0.016 0.007 0.004 0.002 0.110 0.090 0.078 0.073
500 0.014 0.007 0.003 0.002 0.086 0.066 0.053 0.047

1000 0.016 0.006 0.002 0.001 0.082 0.055 0.040 0.033
CCEA,sub 20 0.465 0.492 0.492 0.487 0.567 0.58 0.575 0.568

50 0.473 0.507 0.511 0.501 0.531 0.556 0.558 0.548
100 0.476 0.510 0.514 0.506 0.517 0.546 0.548 0.539
200 0.477 0.514 0.519 0.510 0.51 0.542 0.546 0.536
500 0.481 0.519 0.522 0.512 0.508 0.543 0.545 0.535

1000 0.479 0.517 0.522 0.511 0.505 0.54 0.543 0.533

Note: Reported are estimation bias for β and root mean square error (rmse). CCEA,sub denotes the outcome of Algorithm 1 with the set

of potential augmentations given by Z+,sub = {Zw,1, Zw,2, Z(g)} instead of Z+ .

D. Post-selection inference

One remaining question is how to perform inference with the CCEA estimator after application of Algorithm
1. To address this, let β̂A be the estimated parameter vector that follows from Algorithm 1, calculated with the
(potentially) augmented set of cross-section averages ZA. We shall assume that Z+ contains sufficient valid
augmentations to restore the rank condition through ZA in case the RC is violated with Z. The distribution of
β̂A is then given by

Pr(
√

NT(β̂A − β) ≤ δ) = Pr(
√

NT(β̂A − β) ≤ δ|�(ZA) = m)

+ Pr(
√

NT(β̂A − β) ≤ δ|�(ZA) �= m)(1 − Pr(�(ZA) = m))

where �(ZA) denotes the rank of the loading matrix implied by ZA, such that Pr(�(ZA) = m) is the probability
that R̂C = 0 when the RC was not satisfied (the augmentation sequence is kicked into gear) and an RC
restoring set of augmentations was selected from Z+ by the IC criterion. Since the classifier correctly evaluates
the rank condition as (N, T) → ∞ by Proposition 2, and hence leads to the IC selection step in stage (3)
and beyond of Algorithm 1 if �(Z) �= m, we have by the consistency of (19) for selecting the correct rank-
restoring averages, established in Karabiyik et al. (2019), that Pr(�(ZA) = m) → 1 as (N, T) → ∞. Hence,
asymptotically

Pr(
√

NT(β̂A − β) ≤ δ) = Pr(
√

NT(β̂A − β) ≤ δ|�(ZA) = m),
such that the distribution of the augmented estimator asymptotically equals that of the CCE estimator
when the rank condition is satisfied. As is well known from the CCE literature, this asymptotic distribution
is independent of the specific choice of CSA provided that T/N → 0 (see e.g., Theorem 1 in Karabiyik
et al. (2019)). Hence, the distribution of

√
NT(β̂A − β) is asymptotically unaffected by pre-testing and

augmentations, and inference can proceed as for the original CCE approach, with rank condition satisfied,
provided T/N → 0.
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