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Abstract
As the automotive industry continues to develop, the car's function is no longer limited

to a simple means of transportation. Instead, it is more of a technological product that

combines safe mobility, entertainment and safe driving technology. Furthermore,

ensuring the safety of passengers is a critical element in the development of cars.

Thus, safety-based autonomous driving and assisted driving systems are essential in

developing cars and future development strategies.

However, the limitations of the current radar systems used in automobiles are

widespread. A single radar detection makes it difficult to carry out accurate object

detection and identification and can only provide vague conceptual feedback. The

radar feedback needs to be more accurate, especially when the distance is too close

or too far. Any object that reflects radar waves is being used as a hazard warning.

Due to the continuous development of information technology and artificial

intelligence technology, integrating artificial intelligence into traditional industries to

achieve automation and intellectual development is the main direction of current

technological development and industry progress. For example, the application of AI

technology to the automotive industry enables comprehensive and immediate

environmental awareness, comprehensive and accurate planning and

decision-making, and precise and efficient vehicle control to ensure the safety of

passengers.

In this thesis we propose the use of the YOLO algorithm in Virtual Worlds to safely

train the car's recognition to detect dangerous traffic accident situations in different

environments without damage to property and danger to human well-being through

real-time video detection by obtaining more accurate information about obstacles or

hazards. The YOLO series of Artificial Intelligent (AI) detection algorithms are used to

detect objects through video or pictures. Unlike radar detection, YOLO can accurately

analyse obstacles. Assisted driving and autonomous driving will be an essential part

of the future of transportation, but training them for object detection and recognition of

dangerous traffic situations, which is a key aspect of its operation, is difficult because

of the damage to property and human well-being. Therefore performing this training in

virtual world is essential.

First, we designed and built a virtual 3D city platform using the Unity 3D engine,

recreated as much realistic road information as possible in the 3D city. Then we used

the YOLOV5 algorithm for detection of objects to obtain accurate virtual identification
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information successfully. After training, YOLOV5 can detect all vehicles and obstacles

on the virtual road. From there, it can alert the driver of dangerous traffic situations

accordingly instead of alerting for all objects to avoid unnecessary danger warnings.

On the other hand, environmental perception is essential to safe driving. Nevertheless,

current research has seen various technologies applied to environmental perception,

such as Microsoft's AIRSIM autonomous driving simulator, LIDAR technology and

millimetre wave radar technology, which are currently heavily used. However,

technology is constantly evolving, and LIDAR and millimetre wave radar are now at

the forefront of environmental awareness. Accurate one-stage algorithms and

databases are an important direction for the future. This is because such algorithms

not only indicate the presence of an object in front of them but also identify exactly

what type of object the output is(people, pets, ground obstacles, etc.). We have built

on the Yolo algorithm and applied it to assisted driving with a focus on safely training

the AI to detect the driver's blind spot, by analysing the environment out of the driver's

view and giving timely feedback.

This thesis explores in depth the application of how to safely train YOLO for assisted

driving, building a 3D virtual city and testing it in different stages in a virtual

environment. The usefulness of the YOLO algorithm for driving car safety is verified.

Through the continuous training of the YOLO algorithm, an extensive database can

give the driver more results in terms of environmental perception. As a result, the

occurrence of traffic accidents due to insufficient environmental perception for training

YOLO can be increased by constructing virtual accidents without damage to property

and human well-being.
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Chapter 1 Introduction
London’s road network faces many challenges over the next 20 years: a rising

population expected to exceed 10 million by 2031, the need for significant investment

in road infrastructure, rising aspirations for high quality public space, conflicts between

competing road users and the imperative to improve road safety. Now is the time to

ensure that the right systems and procedures are in place to maximise the

effectiveness of the road network in light of London’s growing population.(Katherine

2014)

The most basic requirement of the road transport industry is safety and security, but

there remain a number of challenges we must overcome. Every year, between 1.25

and 1.5 million people die on the roads around the world. (Matthias Maedg 2019)One

of the crash types involved in these fatalities are blind spot crashes between trucks

and bicyclists. (ReinierJansen, Silvia Varotto 2022).

A driver’s field of view is an essential requirement for decreasing traffic crashes and

increasing safety (Mohammed beida 2022). The development of the automobile has

always been inseparable from traffic safety, and with the increasing speed of cars,

traffic safety is also an issue that the government should address. LKA (Lane-Keeping

Assist), FCW (Forward-Collision Warning), and other similar safety systems are also

used on most cars based on this and other safety measures.

1.1 Background
There are many causes of traffic accidents, of which speeding and drivers' blind spots

are two main factors. Speeding is mostly caused by drivers driving aggressively, while

blind spots are unavoidable when driving a car. Blind spots can be identified and

detected by AI algorithms to reduce the number of accidents caused by blind spots.

According to statistics, approximately 1,000,000 accidents occur worldwide each year

as a result of vehicles on the rear side being in the driver's blind spot and thus the

vehicle in front changing lanes. With these facts in mind, a system that detects

neighbouring vehicles entering the rear blind spot and warns the driver of a lane

change would prevent and reduce the number of accidents that could occur (Chen

2011). There are several areas around the car that the driver cannot see, these areas

are called Blind spot (Verhaevert 2017). The area to the left and right of the rear door

of a vehicle is the most likely blind spot for drivers when driving a vehicle (Zhang Rong

2009).
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The blind spots are even worse for large trucks; according to the OTS database,

about 76% of accidents are caused by blind spots. he reason is the trucks have much

more prolonged and taller than ordinary cars. As a result, the driver's blind spot can be

even worse. (Russell, D. 2009)

1.2 Flat-Screen Display (HUD) Technology
In the movie "Mission Impossible 4", a scene recently appeared: Tom Cruise drove

the BMW i8 concept car to the headquarters (Figure 1.1). The scene of using the

touch screen on the windshield is the future screen interaction technology. A new

direction of development. This technology has also been realized in real world. We

call it an augmented reality windshield. "Augmented reality" technology, also known

as AR, is a technology that integrates virtual information generated by a computer into

the actual environment that users want to experience. Its purpose is to supplement

the real-world information.

Figure 1.1 Mission impossible
Today's automotive technology is not as sophisticated as in the movies, but similar

technology is already available - flat-screen displays (HUD). More and more cars have

been equipped with flat-screen display(HUD) technology, which displays current

information about the car in the form of text or graphs projected onto the car's front

windscreen. This enables the driver to understand information about the vehicle, such

as driving speed, even when looking straight ahead (Tonnis, Sandor, Klinker, Lange,

and Bubb, 2005).

Figure 1.2 illustrates the use of flat-screen display (HUD) technology in today's cars,

displaying basic information such as the car's current speed, the time of day, and the

remaining battery level of the tram. This technology allows the driver to focus on the

road ahead by reducing the number of times the driver has to look down to see

information about the vehicle while driving.
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Figure 1.2 Flat-screen display(HUD) From google image

1.3 Virtual environment building
This virtual 3D city environment based on Unity includes buildings, roads, traffic lights,

busy intersections and moving vehicles. Simulation scenarios allow for a multi-faceted

analysis of the accident.( Jingwen,2021) The virtual environment provides an

extensive database of samples and allows for the simulation of various

accidents.(Leudet,Christophe,2018) Figure 1.3 virtual 3D city preview and Figure

1.4 virtual 3D city detail In this environment, we have recreated a large number of

traffic accidents, simulating traffic and accident-prone scenarios.

Figure 1.3 Virtual 3D city preview
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Figure 1.4 Virtual 3D city detail

1.4 The PhD Aim and Objective
The main research objective of this study is to safely train a Yolo AI to identify objects

in the blind zone of the car driver without damage to property or injury to persons

using object detection algorithms in a virtual scene. In order to improve the driver's

ability to perceive the environment outside the car and reduce the probability of traffic

and accidents due to blind zones.

The main objectives of this research are:

1. Analysis and statistics on the leading causes of current traffic to find the main

factors that trigger traffic accidents.

2. Introduction and analysis of measures to prevent/avoid motor vehicle traffic

accidents and literature review.

3. Set up an experimental virtual city scenario to simulate traffic accidents and collect

data.

4. Data analysis for image detection and test.

5. Algorithm analysis and application of driver blind spot video detection.

6. Database creation and study of AI training algorithms.

1.5 Research Contributions
This research project aims to reduce the number of traffic accidents caused by blind

spots in cars. The YOLO detection algorithm is used to safely train a Yolo AI system

for blind zone detection and recognition without damage to property or injury to

persons. Detection algorithms enhances the driver's perception of the environment

outside the car. In addition

1. The project design and builds a sizeable 3D model city, which can work for diverse
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traffic safety tests, including complex traffic networks, different types of road

information and moving vehicles.

2. Collection of information on traffic accidents. Statistics of traffic accident samples

from recent years are analysed and summarised. Finding the leading causes of traffic

accidents and planning reasonable solutions are presented.

3. We summarise the leading causes of traffic accidents and reproducing these

accidents in a virtual city without damage to property or injury to persons. Proposing

new solutions — Identification of the driver's blind spot using object detection

algorithms to enhance the driver's perception of the car's surroundings.

4. Conduct an in-depth study of the YOLO algorithm and analyse the implementation

process of the YOLO algorithm for target detection. Compare and summarise the

advantages and disadvantages of different versions of the YOLO algorithm

5. Train the YOLO detection algorithm and then use the YOLO algorithm to detect the

scene in the virtual environment and successfully get the detection results of all the

objects in the scene. This verifies the feasibility of the YOLO algorithm in automotive

blind spot monitoring.

1.6 The Research Scope and Thesis Structure
1.6.1 Research Scope
There are many causes of traffic accidents, and this thesis focuses on traffic accidents

caused by driver blind spots.

Yolo is divided into various versions of recognition. This thesis focuses on the

algorithm recognition of the Yolo V5 version and the environmental perception

analysis of the driver's blind spot.

1. This thesis does not consider factors caused by the driver's factors (drunk driving or

aggressive driving) or visibility.

2. Only the driver's blind spot around the car is analysed and discussed, with a small

range of objects identified and analysed and propose solutions.

1.6.2 Thesis Structure
This research project aims to reduce the number of traffic accidents. With the

development of modern transportation, fast travelling humans need to give more

consideration to safety issues. This thesis focuses on the leading causes of traffic

accidents, recreating them in virtual scenarios and using Ai recognition algorithms to

address the identification of potential hazards.

The thesis is divided into several chapters, each focusing on a critical topic. Finally, all
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chapters are combined and summarised in the conclusion. The second chapter

contains extensive literature reading and citations on the causes of traffic accidents,

known solutions, and an analysis of innovative solutions.

Chapter 3 focuses on constructing a 3D virtual scenario that will be used for data

collection and simulation experiments, and illustrates the differences and benefits of

testing in a virtual scenario versus testing in the field.

Chapter 4 contains data analysis and data collection on the driver's blind spot,

recording scenarios that are prone to traffic accidents on real roads. The scenarios

are then recreated in a virtual city and video recorded.

In Chapter 5, we compare several currently popular detection algorithms and finally

identify YOLO as the algorithm for our project requirements. The discussion of YOLO

is also developed, and the composition of the YOLO algorithm is explained.

Chapter 6 is an extension of the YOLO algorithm and the presentation of the final

detection results. This chapter describes configuring the YOLO environment,

analysing common errors and providing solutions.

The final chapter is Chapter 7, which concludes our project and this article with a

summary of our future work.
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Chapter 2 Literature Review

2.1 Introduction
In this chapter literature review, there are four parts. The first part 2.2 is the analysis of

traffic accidents and statistics on the leading contributing causes of traffic accidents.

The final results are in line with the case study. In section 2.3, we focus on most

leading causes of traffic accidents, driver's perception of the environment. Section 2.4

is an extension of section 2.3, which explains in detail the causes of blind spots and

discusses the dangers of blind spots and the effects of blind spots on drivers. Firstly,

in section 2.4, the current solutions to blind spots in cars are presented, and their

practical effects are reviewed. Various solutions are described in detail, including

additional mirrors and warnings for large vehicles and the use of radar in cars

(millimetre wave radar and LIDAR). A review of science fiction films summarises

human depictions of the future of the car and tries to find ways to implement them

today. An attempt is made to find new solutions in the context of AI algorithm

recognition and car blindness. 2.5 section received inspiration from the depiction of

automotive technology in a future movie, combined with today's rapidly evolving

artificial intelligence algorithms, to use the CNN family of algorithms for the detection

of automotive blind spots. 2.6 Section reviews the literature on detection algorithms,

describing how they differ from traditional solutions. Convolutional neural networks

are introduced in advance of the in-depth study of recognition algorithms that follows

in chapter 4. The section 2.7 is summary of Literature review chapter.

Figure 2.1 Driving on motorway from Google
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2.2 Analyze Traffic Accidents
Even with the advances in Vehicle technology, rising standards of Vehicle safety and

the increasing attention paid by the government to traffic safety, the incidence of road

traffic accidents is increasing yearly (Ryder, Gahr, Egolf, Dahlinger, Wortmann, 2017).

Unexpectedly, traffic accidents occur not because drivers need to learn the rules but

more often due to inattention, rash decisions and overconfidence (Srinivasa, Roy,

Jagdish, and Minocha, 2004). Crashes caused by lane changes are partly due to the

driver's blind spot at the rear of the car (Isaksson-Hellman, & Lindman, 2018).

The increasing popularity of cars leads to more traffic congestion and frequent traffic

accidents. However, the traffic safety problem will be more severe, and we have had

to revisit the transport issues to find more convenient solutions.

Figure 2.2 Traffic accident from google

2.2.1 Background of Traffic Accidents
Terrorist attacks concern most people, but the number of people injured or killed in

traffic accidents yearly is far higher than the number of casualties by terrorist attacks.

More than one million people are killed in road accidents each year, and tens of

millions suffer injuries of varying degrees of severity as a result of road accidents

(Tanaboriboon, and Satiennam,, 2005).

Thousands of people are currently injured or killed due to traffic problems each year,

and they may be walking, riding, driving and crossing the road alive. They could be

working-class people busy going to work, children playing in the street, or loved ones

making the long journey home. In the event of a road accident, they leave behind a

broken family and community. Every year, millions of people spend long weeks or

even months in hospital because of road accidents (Singh, Sahni, Bilquees, Khan,
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and Haq, 2016). Road traffic accidents are one of the leading causes of death among

young people and the eighth leading cause of death worldwide, with around 1.24

million people dying in road accidents yearly. Most of these deaths are preventable

(Serrano2022).

There were 23,139 reported collisions in London in 2021, resulting in 75 people being

killed, 3,505 being seriously injured and 23,092 being slightly injured. This report

provides a summary of personal injury road traffic collisions and casualties, reported

to and by the police, in Greater London in 2021 (transport London 2021). The early

injuries sustained in road traffic accidents cause significant financial losses to

individuals, families and the nation as a whole. These losses come from the cost of

treatment, as well as the lost productivity of those who die or are disabled as a result

of their injuries, and family members who need to take time off work or attend school

to care for the injured. Road traffic accidents cost most countries up to 3% of their

GDP (Global status report 2018). In comparison to the overall caseload,

15-19-year-olds will have a greater risk of dying in a road traffic accident, almost twice

as much as the general population average, 82.5 deaths per million (Gov Transport,

2022). A significant challenge for urban traffic safety and the transport network is the

increasing number of traffic accidents in recent years, which are related to the

population's health and add an economic burden to society and the government

(Kumar, Toshniwal,and Parida,2017).

Figure 2.3 This is number of car drivers involved in reported road accidents in Great

Britain from 2016 to 2019 (Google scholar 2020).

Figure 2.3 Drivers involved in reported road accidents
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From table 2.2.1 shows that the number of traffic accidents involving drivers has

decreased yearly but has yet to improve significantly. In 2019, more than 150,000

traffic accidents were directly related to drivers. Based on the above data, the

negative impact of traffic accidents is much higher than we expected.

China's traffic fatality rate of 22 per 100,000 people is slightly higher than the global

average of 18, ranking it 44th out of 193 countries studied. According to a recent

report by the University of Michigan Transportation Research Institute, the regions

with the highest traffic fatality rates are Africa and Latin America. Namibia has the

highest traffic fatality rate in the world, with 45 deaths per 100,000 people

(Mich-statistics 2014).

According to Figure 2.4, The Causes of Traffic of Fatalities (Rac,2021), vehicular

occupants account for 47% of all traffic fatalities, nearly half of the total. On the other

hand, pedestrians and motorcyclist account for 25% and 21% of accidents. Pedal

Cyclists for the least at around 7%. Since vehicle occupant fatailities are more

numerous than others, we need to pay more attention to vehicle traffic safety.

Figure 2.4 Cases of traffic fatalities (Rac Office 2021)
Our awareness of traffic accidents and safety is insignificant compared to the harm

caused by traffic accidents. With such a considerable amount of data, we are forced

to re-examine the issue of traffic safety today, and improving it is one of the critical

directions for future social development.

2.2.2 Different Reason with Traffic Accidents
Ten of the most common causes of vehicle accidents include: [1] Distracted driving. [2]
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Drunk and drugged driving. [3] Severe weather. [4] Reckless driving and road rage. [5]

Speeding. [6] Running red and yellow lights. [7] Running stop signs. [8] Improper turns.

[9] Road hazards. [10] Driver fatigue (Levin. G 2022).

Over a third of all road accidents in the UK are caused by failing to look properly. It is

the most common cause of all UK road accidents, yet it should be the easiest to

prevent. However, there are many reasons why it can happen.

If you have ever driven on a UK motorway, you will be familiar with the phrase

‘Tiredness kills’. This is because tiredness can have a dramatic impact on a

Driver’s awareness and reactions. Crashes caused by driver fatigue are about 50%

more likely to result in death or severe injury as they tend to be high-speed impacts

because a driver who has fallen asleep cannot brake or swerve to avoid or reduce the

impact. Alternatively, failing to look properly before other forms of distraction whilst

driving could cause maneuvering, perhaps by a fellow passenger, a mobile device or

the radio. Some accidents are simply caused by driver complacency, familiarity with

the route, or even laziness. Driving requires the utmost concentration. (Jonathan.2020)

The National Highway Traffic Safety Administration reports that approximately 60,000

crashes occur each year due to a driver's lack of concentration due to overexertion or

special causes of drowsiness or fatigue (Kaplan, Guvensan, Yavuz, & Karalurt, 2015).

Heavy and oversized vehicles are much more likely to be involved in accidents than

ordinary civilian vehicles travelling on the road. (Krishnan, Sheel, Viswanadh, Shetty,

and Seema, 2018)

In terrible weather conditions, drivers usually adjust their driving behaviour, such as

slowing down, avoiding overtaking, increasing the distance to the vehicle in front,

turning on unique lights, sounding the horn, etc.. However, these safe driving

behaviours are not worth mentioning compared to lousy weather. Severe weather

tends to cause traffic accidents, the main reason which is low visibility (Hammad,

Ashraf, Abbas, Bakhat, Qaisrani, Mubeen, Fahad,and Awais,2019). Distracted drivers,

or drivers who trust their judgement too much, are the leading cause of most road

accidents. The majority of accidents caused by low concentration of drivers are less

severe vehicle occupants cuts or minor injuries, and almost all drivers have been

involved in such minor accidents (Pecherková and Nagy, 2017).
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Figure 2.5 Percentage of leading causes of traffic accidents
From Figure 2.5 The careless, inattentive and reckless behaviour of drivers causes

more than 80% of traffic and accidents. (Krishnan, Sheel, Viswanadh, Shetty and

Seema, 2018).

Poor driver judgement or bad decision-making was the leading cause of most teenage

crashes. Over half of all crashes are caused by driver’s driving blind spot due to

inaccurate perception of the environment or lack of information about the environment

in the driver's blind spot (Curry, Hafetz, Kallan, Winston and Durbin, 2011). The most

common cause of car accidents in Great Britain is the driver (or motorcycle rider)

failing to look properly — this factor contributes to 37.8% of car accidents. (Yurday

2022). Insufficient careful observation, misjudgment of road surface information and

misunderstanding of unknown environments are the leading causes of road user

(driver) crashes, of which this category accounts for 72% of overall crashes. Minimal

differences in the road surface and environmental information can lead to serious

traffic accidents (Thomas, Morris, Talbot and Fagerlind, 2013).

According to the data and conclusions reviewed in the literature, the leading cause of

most road traffic safety accidents is the improper operation of individual drivers. The

main reason for this is a lack of concentration, comprehensive observation of the car's

surroundings and incorrect subjective judgement of the dangers, ultimately leading to

traffic accidents. Therefore, comprehensive environmental perception plays a vital

role in safe driving.
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2.3 Driver Blind Spot
In the previous section, we have analysed and summarised traffic accidents based on

literature reading and research. This subsection focuses on the Blind Spot, which

affects safe driving.

2.3.1 Explain Driver's Blind Spot
The Vehicle blind spot is an area where the driver's view of the road is blocked by the

structure of the vehicle and is not visible from the driver's point of view. Blind spots are

notoriously difficult for most drivers to improve. On average, drivers make lane

changes every 2.76 miles during their daily commute, which increases significantly

during traffic jams and peak commuting times. In addition, there are approximately

630,000 crashes annually in the US due to drivers being unable to see the vehicle

behind them changing lanes in their blind spots (Hester, Lavalliere, Laurendeau,

Simoneau, and Teasdale, 2011). A blind spot is the area of the road that can't be seen

by looking forward through your windscreen, or by using your rear-view and side-view

mirrors. Blind spots can be large enough in size to easily block another car, motorbike,

cyclist or pedestrian from your view. (AA driving school 2021). Blind spots arise from

two factors. First, rear-view and side mirrors reflect a limited field of view defined by

their size, shape, and curvature. Anything outside that field of view is, in effect,

invisible to the driver looking in the mirror. Second, a vehicle’s components (the

vehicle frame, roof, hood, trunk, or trailer) and contents (passengers, seats, and cargo)

can block a driver’s view, blinding the driver to whatever is behind those components

or contents.

It is worth noting that blind spots in vehicles can affect the safety of drivers and

passengers on the road, with drivers unable to detect information about their

environment within the blind spot, including vehicles, pedestrians, cyclists or road

obstacles (Hughey 2021). The presence of pedestrians or cyclists in the driver's blind

spot is one of the leading causes of crashes, and it is unpredictable for most drivers.

(Saito, Sugaya, Inoue, Raksincharoensak, and Inoue, 2021).
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Figure 2.6 Normal Vehicle Driver Blind Spot
The Figure 2.6 Shows the blind spot range of an average vehicle (rear side). The blue

area is where the driver can see through the vehicle's rearview mirror, while the red

area is where the driver cannot see.

In addition, there are blind spots not only at the rear of the vehicle but also in the front

due to the vehicle's structure. The A-pillar obscures the driver's side view in front of

him. In Figure 2.7 the Vehicle's A-pillar shows the blind spot in front of the driver.

Figure 2.7 Vehicle’s A-pillar Blind Spot (from google image)
The pillar between the left and right front doors and the windscreen is called the

A-pillar and is the main structure that holds the windshield in place and absorbs

impact energy when the car is mounted. However, such a structure will inevitably
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block the driver's view. Under normal circumstances, the driver will have a blind spot

of approximately 8 degrees, the size of which increases with distance. As the speed of

the vehicle increases, the driver's view becomes smaller, and the A-pillar becomes

more obscured, thus seriously compromising traffic safety (Sui, Chen, 2022).

Figure 2.8 explains the extent of the blind spot blocked by the A-pillar, which, as can

be seen from the picture, increases the distance from the driver. The yellow-coloured

area is the blind spot that the driver cannot see.

Figure 2.8 A-pillar blind spot area
The A-pillar is the same as the driver's pupil distance and remains constant when the

driver's pupil distance is greater than the width of the A-pillar. Conversely, when the

width of the A-pillar is less than the pupil distance, the driver's blind spot range

decreases (Ekroll, Svalebjørg, Pirrone, Böhm, Jentschke, van Lier, Wagemans,2021).

The width of the A-pillar determines the size range of the driver's blind spot. In Figure

2.9 gray area is blind spot, P is the A-pillar PD is driver's pupil distance, X represents

the width of the blind spot area, which is a variable that changes with d (distance)

Figure 2.9 A-pillar blind spot explain (Ekroll, Svalebjørg, Pirrone, Böhm,
Jentschke, van Lier, Wagemans, and Høye, 2021)

For large vehicles, the blind spot range is far greater than for ordinary cars. The

driver's blind spot for large vehicles, especially trucks, is much larger than for regular
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use, and much of the road surface around the truck is unobservable to the driver

(Harmon Parker 2020).

Figure 2.10 Truck blind spot
Figure 2.10 shows the extent of the truck's blind spot (in yellow), which includes the

following points.

1. Directly in front of the truck’s cab for about 20 feet.

2. Directly behind the truck’s trailer for about 30 feet.

3. Along each side of the truck extending backward diagonally.

4. Immediately below and behind the driver’s window.

Semi-trucks have larger blind spots than other vehicles. Drivers of passenger vehicles

or smaller vehicles can more easily turn their heads to see out their side windows,

they have rear-view mirrors, and they are more likely to use their mirrors to check their

blind spots (Bohn & Fletcher 2022). Compared with regular cars, a truck has a more

prominent blind spot for the driver, which also increases the chances of an accident.

The truck has a broader body knot and a longer body.

2.3.2 Blind Spots in Road Traffic
The blind spot are also on the left side of the car.
Motorbikes are in the driver's blind spot on the left side, so if the driver makes a direct

left turn, the steering angle is too small, and the motorbike will be directly involved in

an accident (Figure 2.11) Suppose A represents an oversized lorry. Motorbike B

changed to a small vehicle, which is difficult for the driver to notice without the help of

blind spot radar or additional blind spot reflectors.
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Figure 2.11 Blind Spot on Left Side
Overtaking in Singe Lanes
On a two-way road, if C wants to overtake, but B is in the way, the driver will not be

able to see A. If the driver does not look ahead, he could quickly get into an accident

with A when overtaking. This situation is very likely to occur in places with many

bends. If B is a large lorry, C will not be able to see A (Figure 2.12).

Figure 2.12 Overtaking in single lanes

2.4 Solutions for Blind Spots
The driver's blind spot causes a large proportion of traffic accidents, where two

vehicles suddenly appear from each other's realization nearby and the driver is unable

to stop the moving vehicle in a short time, or both parties do not have enough time
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and space to avoid it, thus causing a traffic accident (Wang, Jin, and Wu, 2022,).

There are many solutions to the blind spot problem from the government and car

manufacturers, which we have reviewed a large amount of literature to summarise

and analyse later. These include the simple and convenient use of physical lenses

and the application of electronic radar.

2.4.1 Additional Rear View Mirror
Special reflectors with large angles are one of the most common and straightforward

blind spot solutions in people's lives regarding traditional driver blind spot solutions.

There are two types of reflectors, Figure 2.13, which has mounted on vehicles, and

sizeable blind spot reflectors, Figure 2.14, which are retrofitted on sharp turning roads

with blind spots or in indoor car parks

Figure 2.13 Vehicles Blind Spot Mirror

Figure 2.14 Streets Blind Spot Mirror
The Blind spot Assist Mirror is a simple wide-angle mirror used to widen the rear-view

mirror's field of vision, mainly for the driver's blind spot in the road and the vehicle
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behind.

Mirrors are quite useful while driving a car. A driver cannot see the blind spot. If a

vehicle or pedestrian comes into this blind spot, the chances of a dangerous accident

increase. With these special mirrors attached to your side-view mirrors, you can see

the blind spot clearly to avoid any mishap (Ghosh, 2022). Blind spot mirrors aim to

cover the parts your standard mirrors miss, giving you a far greater view of what’s

going on behind your car. If a car does not come with radar or driver blind spot assist,

adding a blind spot assist mirror is an excellent option to reduce the risk of dangerous

traffic situations due to driver blind spots (Hester, 2021). Although additional

wide-angle mirrors can give drivers a more excellent range of vision in their blind

spots, small objects are difficult to spot due to the small size of the mirrors. Too many

mirrors can also distract the driver's attention.

2.4.2 Automotive RADAR and LIDAR Applications
Automotive radar systems are one of the essential measures to ensure safety on the

road. The millimetre wave radar detects obstacles around the vehicle, and LiDAR

works to detect the distance and relative speed of obstacles. In addition, radar

systems are an essential component of Advanced Driver Assistance Systems (ADAS)

(Patole, Torlak, Wang, and Ali, 2017).

RADAR
Improving the driver's awareness of the road environment and the vehicles in front

and behind him is one of the principles of traffic accident reduction. Radar is a safety

technology system currently implemented and used in their cars (Grimes, and

Jones,1974). Radar technology is the application of radio waves. The presence is

determined by the emission and reception of radio waves, and advanced radars can

detect the size and speed of objects. Most automotive radars use millimetre wave

frequencies to detect objects at a distance or in the road environment and obstacles

around the vehicle. Other vehicles, pedestrians, roadblocks etc., are the primary

targets for radar detection (Shawn , 2019). Advances in sensing technology and

communication technology have transformed the classic car. Functions and safety

systems for interacting with the environment have become essential features of most

cars. For initial awareness of the environment, airborne radar provides a quick and

decisive solution (Vazquez 2022). Automotive radar systems are an essential

technology for vehicles in traffic safety. It is also the primary sensor used for automatic

cruise control. With the development of technology, radar is also an essential and

critical component of autonomous driving assistance systems (ADAS). It is mainly
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used to avoid collisions, detect the presence of objects around the car and ensure

safe driving (Parker, 2017).

Early developments in the use of radar for automotive safety driving focused on

frequencies in hertz: 17 GHz, 24 GHz, 35 GHz, 49 GHz, 60 GHz and 77 GHz. The aim

was mainly to use radar to alert the driver and thus reduce the probability of a car

collision (Schneider. 2005) Figure 2.15 Shows the operation of the radar on display.

Figure 2.15 The operation of the radar on display
Radar is the most mature and primary sensing system in the field of automotive safety

technology, which is for detecting objects around cars widely; working well in most

environments, and its reliability is unquestionable (Roriz, Cabral, and Gomes,2021).

In current technological developments, three main types of radar are used in

automotive safety applications. They are as follows (Shawn 2018).

1. Short-range radar (SSR) The main applications are parking assistance functions

and collision warnings for objects at close range. It is from this that we hear alarms

when reversing or when parking.

2. Medium Range Radar (MRR) Mainly used for driver blind spot monitoring, safe lane

changes or corner collisions on turns etc.

3. Long Range Radar (LRR) This radar sensor is generally installed only at the front of

the car and is used for the automatic car cruise function, detecting objects in front of

the car at a distance.

Figure 2.16 shows the range and position of the different waveform radars in the

vehicle.
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Figure 2.16The range and position of the different waveform radars ( From
google image)

However, RaDAR technology had to develop for a long time to become a more

mature security system. However, the drawbacks of RaDAR are still evident. Although

radar technology is constantly evolving and improving, the environmental information

provided by radar still needs to be clarified and it provides insufficient sensing

resolution to give the driver accurate information (Steinbaeck, Steger,Holweg, and

Druml, 2017).

With the development of automotive technology, the disadvantages of using Radar

systems in cars have become more apparent, the main ones being the following:

The atmospheric medium determines the response time of the radar, which takes

more time to detect sandstorms or foggy weather.

If the detected object accelerates or decelerates by more than 1mph/s, the radar

cannot track it. It is also difficult for radar to detect targets that change speed.

If the target object is too close to the radar, or if the target object is too large, it can

saturate the radar receiver resulting in inaccurate information.

Radar cannot distinguish the type of target object and can only give feedback on the

presence or absence of the target object within range.

Radar is inaccurate and ambiguous information can cause false alarms in the system

6. Over-sensitivity is also a disadvantage of radar (John. C. l 2019).

LIDAR
LiDAR systems work similarly to radar systems in that Radar transmits and receives

radio waves, and LiDAR uses a laser. However, the feedback from the laser is more

accurate and reliable because radio waves are absorbed or consumed in large part

when they come into contact with an object, but the laser is not (Neal, A. 2018). This is

essentially an advanced sensing method that detects objects and measures their

distance by shining a laser pulse, invisible to the naked eye, in front of them and
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measuring the reflected signal. The width of the emitted laser pulses can be as small

as nanometres. (Khader, and Cherian, 2020).

Figure 2.17 Operation principle of LiDAR technology
The LiDAR system can be divided into two parts, the laser ranging system scanning

system. Laser ranging consists of a laser transmitter, which illuminates the target by

modulating the laser. A photodetector produces an electronic signal by receiving

photon reflections for photoelectric conversion. The optical element accurately

focuses the received reflections onto the photodetector, and the signal processor

calculates the predicted distance to the reflected target (Li, and Ibanez-Guzman,

2020).

LiDAR is an alternative development to laser detection radar, which is primarily used

for distance detection. LIDAR works by firing a laser at surrounding objects that are

obscured and measuring the time it takes for the laser to reach the object to calculate

the corresponding distance. However, LiDAR is not widely available and only a few

expensive cars are equipped with LiDAR for forward distance safety detection. (Kevin

Lim, Paul Treitz, Michael Wulder, Benoˆıt St-Onge, and Martin Flood). LiDAR

technology is evolving rapidly as automotive technology continues to advance, and

new LiDAR technologies are constantly being updated. Along with the development of

autonomous driving technology, LiDAR is one of the critical solutions to enhance the

driver's perception of the vehicle's surroundings (Khader, and Cherian, 2020). The

essential task of LiDAR is to measure distance. The LiDAR technologies are being

improved, so that LiDARs gain camera-like vision in addition to the ability to measure

distance. However, fundamentally LiDAR was developed for distance measurement

based on Radar. LiDAR struggles to work appropriately in bad weather, and even cars

with LiDAR still need Radar's aid. However, LiDAR produces data at a much higher

level of detail and in a clear field of view than Radar, Figure 2.18 compares Radar's

imaging with that of Lidar. At the same time, the clearer picture and more accurate
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data come with expensive LIDAR laser equipment and high maintenance costs.

(Karpathy, 2021)

Figure 2.18 compares Radar's imaging with that of Lidar.(Fierce Electronics)
However, LiDAR systems are like an upgrade to radar systems, being more accurate

and including distance detection capabilities that Radar does not have, but LiDAR still

has many disadvantages. Dampness in the atmosphere can directly affect the

feedback results and detection range of LiDAR, the severe rain, snow or fog can

directly cause LiDAR to fail to detect objects at long distances, and the range of

LiDAR is not even as wide as that of the human eye in some extreme conditions

(Rasshofer, R.H. and Gresser, K., 2005). Although LIDAR is far more accurate and

faster than ordinary radar, there are still difficulties in recognition due to atmospheric

visibility or bad weather. The lasers can cause irreversible damage to the human eye,

safeguarding the human eye is a requirement for LIDAR, which is more resistant to

radiation at wavelengths greater than 1400 nm and is limited to 1550

nm(Warren,2019,). The high maintenance cost is an issue that must be considered in

the car's development. Now, the LIDAR technology is challenging as vehicles on a

large scale due to cost and the mentioned reasons. The need to reserve ample

enough space in the vehicle for LIDAR devices is a significant challenge for vehicle

design (Ibáñez,, Zeadally, and Contreras-Castillo, 2018.) With the introduction of new

energy and environmental policies, battery energy is the way to go for the automotive

industry. Nevertheless, unfortunately, LiDAR systems consume a lot of electricity and

have a direct impact on the range of trams, which is one of the reasons why LiDAR is

not popular (Karpathy, 2021).

2.4.3 Summary and Evaluation
In this section, through an extensive literature review, we analyse solutions for the
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driver's blind spot when sensing its environment. The application of additional mirrors

and Radar is described in detail, and the working principles of Radar and LiDAR are

analysed, as are the advantages and disadvantages of the current mainstream

solutions. As society and the government take traffic safety seriously, car

manufacturers are constantly developing and updating vehicle safety systems. From

simple physical wide-angle mirrors to today's sophisticated millimetre wave radar and

LIDAR, the level of safety in cars is constantly increasing. However, advanced LIDAR

technology has been equipped in some cars, and the disadvantages of radar are hard

to change. At the same time, additional wide-angle mirrors can give drivers more

visibility in their blind spots, but it is difficult for the driver to notice the image in the

blind wide-angle mirror while the car is in motion and while paying more attention to

the front of the car.

2.5 Related Inspiration from Science Fiction Films
This section presents depictions of future cars from science fiction films that have

already been released, focusing on autonomous driving functions and flat-screen

display (HUD) functions

2.5.1 Autonomous Taxi
Many scenes depicting future technology that appear in science fiction films are

primarily for cool effects, thus helping to boost the box office or as a plot necessity to

help the protagonist explore. However, many of these novel technologies could well

change the shape of the world we currently live in. As early as 1990, in the film Total

Recall, self-driving taxis called "Johnny's cabs" (Figure 2.19) were introduced. They

could be driven autonomously on the road without human intervention with a robot

charged accordingly. In the film iRobot starring Will Smith, autopilot is standard in cars

and can be switched between autopilot and manual control at any time by the driver

(Craig Sheldon 2018).
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Figure 2.19 Total Recall Johnny's cabs
All of the future technologies mentioned above have already been realised. In China,

self-driving rental cars are already present in many cities and are generally accepted

by society. The switch between autonomous and active driving has been implemented

and is widely used in today's car brands, such as Tesla. The technology in science

fiction films is not just a figment of the imagination some of them might well become a

reality in part in the future.

2.5.2 Combine Object Detection with Driver Blind Spot
As time progresses, the car has become an essential part of everyday life as a means

of transport for people travelling in the middle of their every day activities in their lives.

However, traffic accidents break up people's ordinary lives with property damage,

personal injuries and even life-threatening situations. The number of cars worldwide

has reached one billion, and road safety has become a fundamental societal

challenge. The rapid development of technology and the continuous innovation of

vehicle safety systems have ensured traffic safety. New traffic intelligence systems

that enhance the driver's awareness of the road and spatial environment around the

car and allow the driver to interact with the car are one of the most critical directions in

developing automotive safety (Procedia 2015).

As a safety measure for blind spots on the left and right sides of the car, some cars

are now equipped with Blind Spot Monitors, which alert the driver to vehicles in the

blind spot on both sides of the car by means of an icon in the rear view mirror, which is

detected by radar. Figure 2.20.
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Figure 2.20 Blind spot monitors
While drawbacks may vary depending on the automaker, the biggest issue across the

board is the ability of the technology to detect fast-moving vehicles efficiently. As

mentioned previously, studies found that blind-spot monitoring systems would often

alert drivers too late of an approaching vehicle in an adjacent lane. Since most

blind-spot monitoring systems work on visual cues on the driver’s side mirror, it may

be difficult for the driver to pick up in time. An outside circumstance such as bright

lights can affect the driver ability to notice the signal (Ouyang 2022). This reminder is

a vague concept for drivers and although it serves as a reminder, it is often difficult to

give a precise and clear answer. Developing a blind zone alert safety system that can

give precise answers is one of the critical challenges facing motor traffic today.

Here we find inspired by the technology shown in the film and try to apply AR and VR

technology to the traffic safety system to subjectively remind drivers of the

surrounding traffic environment and passing vehicles. Augmented reality (AR) and

virtual reality (VR) technologies have gradually matured and entered ordinary people's

lives. If this technology can work into the security system, subjective reminders will let

the driver notice it. As a result, the dangerous situation gradually dramatically reduces

the occurrence of traffic accidents. We are inspired by technology films depicting the

future of automotive technology, to envisage cameras in the blind spots of cars. The

screens are displayed near the driver's instrumentation or projected onto the car's

front windscreen in combination with HUD technology so that the driver can see the

road environment in a real blind spot. At the same time, we intend to use AI algorithms

for blind spot detection so that when the camera captures objects in blind spot areas,

it threatens driving safety. They will be detected and displayed to the driver with a

coloured frame when the driver sees a special coloured box in the display to be

alerted to the blind spot and can look ahead for the rest of the time.
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2.6 Objects Detection
In this section, we will review and introduce the literature on Object Detection, analyze

and discuss the development directions and applications of Object Detection, and with

finalise with conclusions.

2.6.1 Introduction to Object Detection
Object detection (recognition) and AI deep learning techniques have attracted more

attention as technology (Ashish Patel 2020). Object detection is also the basis for the

development of most computer vision techniques and is one of the critical

fundamental problems of artificial intelligence (Zou, Shi, Guo, and Ye, 2019). The

development from the early days of radar detection to the current object detection in

computer vision has been revolutionary. Object detection is the process of classifying

and localising an object and ultimately determining the type of object and its current

location (Choudhury, 2022). Candidate objects are extracted from the target task, and

physical information about the object is predicted, i.e. the location, shape and size of

the object. Object detection methods include comprising ground filtering and

clustering in most traffic scenarios where the target object is kept perpendicular to the

ground. The ground is first determined, non-ground objects are marked out, and then

non-ground objects are grouped into different items using clustering methods (Li, and

Ibanez-Guzman, 2020).

Figure 2.21 shows the result of the object recognition algorithm. We can see the

vehicles framed and labelled with the type of vehicle.

Figure 2.21 Object detection result
Object detection is an esoteric computer vision technique focused on identifying and

labelling objects in images, video and even live footage. Object detection models are

trained using a surplus of annotated visual objects to perform this process using new

data. It becomes as simple as providing input visuals and receiving fully labelled

output visuals. We will discuss the object detection model in more depth later. A key

component is the object detection bounding box, which identifies the edges of objects

https://medium.com/@ashishpatel.ce.2011?source=post_page-----51f9d872ece7--------------------------------
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labelled with clear quadrilaterals - usually squares or rectangles. They are

accompanied by the object's label, whether a person, a car or a dog, to describe the

target object. Bounding boxes can be overlapped to show multiple objects in a given

shot as long as the model has a priori knowledge of the items it labels.

2.6.2 Deep Learning Review
Artificial neural networks are the foundation of deep learning, which has been

developing rapidly as the age of intelligence has opened up (Du, Cai, Wang,and

Zhang,2016).Deep learning is a branch of machine learning that learns abstract

concepts from data through different layers of constructs and has a wide range of

applications in artificial intelligence migration learning, computer vision (Ciresan,

Meier, Schmidhuber, 2012), natrual language processing (Mkolov, Sutskever,

Chen,2013), and semantic parsing (Bordes, X. Glorot,Weston2012).

Deep learning has grown rapidly and successfully in recent years (LeCun, Bengio,

Hinton, 2015)

It has been used in various aspects of everyday life, As of now, we have applied it in

our lives in the categories such as autonomous driving, object recognition, medicine,

biology and statistics. Research in artificial neural networks are the primary theoretical

and conceptual source of deep learning (Hong, 2011). The principle of deep learning

is learning representations from a large, multi-level data abstraction. At the same time,

Deep learning attempts to model levels beyond the target hierarchy of data,

classifying in multiple layers of stacked information modules. This is a very stable type

of hierarchical learning, where the system learns complex representations directly

from all the data on the input (Dhillon, and Verma, 2020). The conditions that facilitate

the development of deep learning are: 1. The increase in the speed and performance

of computer chips, such as the popularity of GPU units. 2. The reduction in the cost of

hardware, such as low-cost, high-performance graphics cards. 3. The development

and updating of machine learning algorithms, such as the Yolo family of detection

algorithms (Deng, 2014)

Figure 2.22 (Guo, Liu, Oerlemans, and Lew, 2016) which shows the branches of

development of deep learning, which are discussed and summarized in this thesis,

mainly in the direction of convolutional neural networks (CNN).
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Figure 2.22 The developing progress for deep learning
(Guo, Liu, Oerlemans, and Lew, 2016)

2.6.3 CNN Overview
Back in 1998 Convolutional Neural Networks (CNN) were first proposed by

Fukushima (Fukushima, 1998), Convolutional neural networks have a wide range of

applications, including activity detection (Papakostas, Giannakopoulos, Makedon,

Karkaletsis, 2016), text detection(Kim,Y.2011), paragraph detection (hou, Gong, Fu,

Du2017), face detection (Ranjan, Bansal, Bodla, Chen, Patel, Castillo, Chellappa,

2018), image characterization (Druzhkov,,Kustikova.2016), object detection (Milyaev,

Laptev 2017), etc. Figure 2.23 (Zhao, Peng Zheng, 2018) Illustrates the development

and stages of convolutional neural networks (CNN)

Figure 2.23 Object detection With deep learning(Zhao, Peng Zheng, 2018)
Deep learning with Convolutional Neural Networks (CNNs) is a mainstream AI

learning system which uses multi-level distributed training (LeCun, Bottou, Y. Bengio,

1998). CNN is a deep learning model for the analytical processing or recognition of
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data with grid pattern features, such as images. The organisation of the animal's

visual cortex inspires (Hubel, Wies, el ,1968) it. CNN which can learn spatially

hierarchical features on their own and in order of rank from low to high. The CNN is

also a mathematical structure typically consisting of three modules, namely the

convolutional layer, The ensemble layer, The connection layer.

In Figure 2.24 the convolutional and ensemble layers are responsible for extracting

features from the target. The final layer, the fully connected layer, is responsible for

the final output of all the extracted features, such as item classification (Yamashita,

Nishio, and Togashi, 2018)

Figure 2.24 Convolutional neural network
The processing of the solid image case is in Figure 2.25 (Krizhevsky, Sutskever,

Hinton. 2012). A flowchart for the recognition of the goldfish in the image.

Figure 2.25 CNN image detection Case
2.6.3.1 Convolutional Layer
In the first convolutional layer, the CNN uses a kernel algorithm to convolve the

prominent features of the entire image to generate the feature image Figure2.26

(Krizhevsky, Sutskever, Hinton. 2012)
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Figure 2.26 Convolutional layer
Convolutional operations (Zeiler Hierarchical 2014) are an important part of the

convolutional layer. The main advantages of its operation are: 1. the sharing

mechanism reduces the number of parameters (in the same feature map)

(Ñanculef,Radeva,Balocco2020), 2. local connectivity sharing learns correlations

between neighbouring pixels (Jeong, Pfister, Fatica, 2011) 3. the uniqueness of the

position of the target object features that do not change due to the convolution

operation (Szegedy, Liu, Jia 2015).

2.6.3.2 Pooling Layer
The pooling layer Figure2.27 of the convolutional neural algorithm is relatively widely

developed and researched. There are three ways to obtain results for the pooling

layer, each with a different research purpose.

Figure 2.27 Pooling layer
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Stochastic polling
At the pooling layer level, the stochastic pooling method addresses the disadvantage

of maximum pooling leading to overfitting (Zeiler, Fergus, 2013). Instead of passing all

pooling, a multinomial distribution with random selection is used to randomly select

the activation samples for each pooled region, which reduces the workload and

increases the speed while effectively solving the overfitting problem (Zeiler

Hierarchical Convolutional).

Spatial Pyramid Pooling (SPP)
The input target in a convolutional neural network usually requires a fixed image size,

and varying target images can affect the accuracy of the detection results. This

problem can be solved by replacing the last layer of the pooling with a spatial pyramid

pooling layer in the CNN base architecture. This is because spatial pyramid pooling

can be used to represent a fixed length from any region, thus allowing images of

different sizes and scales to be generated and processed. Pyramidal pooling can be

adapted to any convolutional neural network and improves the structural performance

(He, Zhang, Ren, 2014)

Def -Pooling
In the field of vision computers, object recognition is a challenge for the processing of

target deformations.

Max pooling and average pooling both are effective in dealing with target

deformations. However, they cannot learn with partial deformation and geometric

models of objects (Friedenthal, Moore, Steiner, 2015).

To change the traditional pooling constraint on deformation, a new pooling layer,

def-pooling, has been developed to handle deformation priming more efficiently,

enriching the depth model by learning deformations of visual patterns. Def-pooling

can also replace the traditional maximum pooling layer at any level of information

abstraction. Improved CNN framework performance (Ouyang, Luo, Zeng, 2015).

2.6.3.3 Fully-connected Layers
Figure 2.30 CNN Image Detection Case, we can know the last layers named

Fully-connected layers. The prominent role of this layer is to connect all the 2D

features in the Pooling layer and finally transform them into a 1D feature vector,

Figure 2.28.
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Figure 2.28 Fully-connected layer
The final fully connected layer contains a large amount of recognition information in

the CNN. The results of the pooling layer are fed back into a pre-defined length vector.

This length vector can be converted into numerical categories for image classification

(Krizhevsky, Sutskever, Hinton2012). Or as a feature vector, which is the basis for the

next operation (Girshick, Donahue, Darrell, 2014). The structure of the performance of

the fully connected layers is rarely changed, and in some special visual recognition

situations, the transfer learning approach is applied to the connections (Oquab, Bottou,

Laptev, 2014).

The learning speed and results of convolutional neural networks and deep learning

now far exceed those of traditional Machine Learning (Wang, X.J., Zhao, Wang, 2012),

even Naive Bayes (which based on Bayesian principles and use knowledge of

probability statistics to classify sample data sets) (Rish, 2021). With the development

of computer vision and the widespread use of object detection, there will be newer

structural developments in convolutional neural networks in the future.

2.6.4 Objects Detection Algorithms Review
Object detection algorithms are an important development in the field of computer

vision. Different object detection algorithms have emerged with the widespread use of

object detection algorithms and the expansion of the database of detection target

models (Hu, Tan, Wang, 2004). The Viola-Jones framework which is working for face

recognition detection (Viola, Jones 2001), this algorithm has made human detection

universal. Examples include mobile phone face recognition or bank security systems

(Padilla, Costa Filho 2012). Several branches have been developed with the update

of the version, such as pedestrian detection (Trivedi, 2016), car detection (Sun, Bebis,
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Miller2006), etc.

With the rapid development of computer vision and the popularity of convolutional

neural networks (CNN) and computer AI claim learning algorithms, visual object

detection is entering a new era (He, Zhang, Ren. Sun 2016). With the continuous

development of convolutional neural networks (CNN), faster and more accurate

algorithms have emerged. R-CNN (R. Girshick, Donahue, Darrell .Malik 2014); Fast

R-CNN (R. Girshick 2.15); Faster R-CNN (Ren, He, Girshick and Sun 2015); R-FCN

(Dai, Li,. Sun) ; SSD (Liu, Anguelov, Erhan, Szegedy,,2015); YOLO (Redmon and

Farhadi, 2017). The main difference between the CNN-based neural network

framework detection algorithm with the Viola-Jones algorithm is that the CNN

detection algorithm is flexible enough to train with several categories (tens or even

hundreds) at the same time. (Padilla, Nettoda Silva, 2020) which allows object

detection algorithms to become more accurate and faster. We present a review of

several mainstream detection algorithms, including, R-CNN, Fast R-CNN and YOLO.

2.6.4.1 R-CNN
In 2014 Ross Girshick proposed the R-CNN algorithm, which achieved a much higher

average precision of 54% than other algorithms at the time, compared to the best

results of PASCAL VOC 2012 of less than 25% two years earlier. The R-CNN

algorithm improves the candidate bounding boxes and extracts detailed features by

depth framing (He, Gkioxari, Dollár, and Girshick, 2017)

Figure 2.29 Object detection algorithm R-CNN
Figure 2.29 illustrates the three constructs of the R-CNN.

After the target region is generated, R-CNN takes a selective search, averaging 2000

initial target proposals per image. Next comes feature extraction, where each region is

cropped to a fixed resolution, and the CNN standard model has been used to extract

4096-dimensional features as the final result. The features have a specific high-level

semantic representation for each region of the area classification and localisation;

each extracted feature is transferred to an SVM that simultaneously classifies the
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items in the candidate zone days.

To improve the accuracy of the boundedness, the R-CNN algorithm also predicts four

additional values, which are not in the proposal for predicting objects (Bharati, and

Pramanik, 2020).

Limitations:
1. The R-CNN works in a sequence where the corresponding features are extracted

from the suggestions of different target regions and then temporarily stored on a disk.

During this time, the deep internet, which used, e.g. VGG16 (Theckedath, and

Sedamkar, 2020). It takes much time to process the small training set and a lot of disk

space.

2. R-CNN uses selective search to generate region proposals in the target model.

This approach leads to the algorithm generating redundant proposals (2k region

proposals) and requires high time complexity. The whole process takes about 2

seconds.

3. The R-CNN tends to spend much time performing repetitive operations at detection

time because the FC layer (Garipov, Podoprikhin, Novikov, Vetrov, 2016) requires a

fixed size input of the target image.

2.6.4.2 Fast R-CNN
To address the limitations of R-CNN, a novel structural framework based on R-CNN

Fast R-CNN was proposed by Grishick. This framework adds a multi-task loss

function to the target bounding box regression. Firstly, same as R-CNN, a

convolutional structure is introduced for image collation while generating a feature

map. At last, vectors of equal magnitude are extracted from each target region in the

region of interest (ROI, Chityala, Hoffmann, Bednarek, Rudin,,2002) pooling layer.

The main difference between Fast R-CNN and R-CNN is that the target features from

the upper levels are combined into a whole larger region by using a RoI pooling layer.

Figure 2.30. Then, the final softmax layer (Hu, Tian, Yin,and Wei,2018) predicts and

speculates the region's class.(Rajeshwari, Abhishek, Srikanth, and Vinod, 2019). But

here, the RoI return layer is a particular case of the SPP layer, which exists at only

one pyramid level.
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Figure 2.30 Fast R-CNN (Rajeshwari, 2019)
In the R-CNN described above, about 2k regions are processed by the convolutional

neural network each time. However, the Fast R-CNN requires one convolutional

operation per image and generates the target feature map. In fast R-CNN,

single-stage processing training applied to the grid layer saves a lot of disk space and

speeds up target detection accuracy. However, there is also a loss of task in

generating region proposals.

Similarly, Fast R-CNN still uses the search for region suggestions, which is a slow and

time-consuming process. It also relies on network performance (Ren, He,Girshick and

Sun, 2015).

2.6.4.3 YOLO (You Only Look Once)
You Only Look Once (YOLO) is one of the most advanced object recognition

algorithms available and is primarily used to process real-time object detection. The

difference between YOLO algorithm and other object algorithms is detection area.

Traditional object recognition uses regions to locate objects in an image, requiring the

complete range of the target image. However, YOLO detects a range of regions in the

target image where objects occur with high probability (Joseph Redmon, Santosh

Divvala, Ross Girshick, Ali Farhadi,2016). YOLO applies a single neural network to

the complete image, divides the target image into regions, and predicts the bounding

box probabilities for each region. Furthermore, all the bounding boxes had weighted

from the predicted probabilities (Jiang, Ergu, Liu, Cai, 2022).

Figure 2.31 shows the basic framework architecture of YOLO, which is the latest

recognition algorithm by combining the GoogleLeNet (Singla, Yuan, Ebrahimi 2016)

image classification algorithm with CNN.
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Figure 2.31 Framework rrchitecture of YOLO (Redmon)
YOLO divides the target image into an S X S grid, with each grid cell responsible for

predicting only the objects centred on that grid. Each cell predicts the bounding box of

the target and the corresponding confidence score Figure 2.32.

Figure 2.32 YOLO(Mohan-2021))
YOLO is much faster than R-CNN or even Fast R-CNN. However, in the initial version

of YOLO, the recognition of small objects is low due to the spatial constraint imposed

by YOLO on the prediction of bounding boxes. Also, the initial version of YOLO had

difficulty analysing objects with ill-defined boundaries. In later versions of YOLO, the

above problems had been improved (Arya, M.C.Rawat, A., 2020).

This thesis focuses on the application of the YOLO system of algorithms to

automotive blind spot detection. In chapter 4, we summarise and analyse YOLOv3

and YOLOv5 and discuss the details of the algorithm.

2.7 Summary
In this section, first we summarise the causes of traffic accidents through a large
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amount of traffic accident data and literature and identify the main reasons that

influence traffic accidents. Most of these factors are due to improper driver

observation leading to traffic accidents. An interesting phenomenon also emerged.

Most accidents are minor cuts and scrapes that do not cause severe damage to cars

or pedestrians. Both drivers (or one party) choose to settle or deal with the accident

themselves and do not report it to the insurance company or the police. This can lead

to the fact that the accidents we can learn about through information are often severe,

but serious accidents are a tiny percentage of all accidents. Many more minor

accidents are not reported or complained about by most drivers, which we cannot find

out from statistics. This was not only confirmed in the questionnaire but is also very

common. Most minor accidents are caused by blind spots (lack of observation) in cars.

In the next section, we look at how drivers currently deal with blind spots in their

vehicles. Since LiDAR is expensive equipment then it may only possible to equip

some cars with it. The research reported in this thesis is inspired by the future of

vehicles as depicted in science fiction films, convolutional neural algorithms detect the

environment in the blind spot when an obstacle is present. When an obstacle had

detected, marked on the screen with a red box, the type of obstacle is indicated to

alert the driver.

The detection algorithm is based on a convolutional neural network (CNN)

implementation. We begin with a literature review of convolutional neural networks

while the concept of AI deep learning is explained and summarised. Then, the types

of algorithms currently widely used by us are listed. Finally, examples are given to

analyse the algorithmic process and the basic framework, and their advantages and

disadvantages are summarised. Among them, the YOLO algorithm which is the

central part of this thesis that we explore and apply without damage to property or

injury to persons.



Chapter 3 3D Urban Modeling

39
39

Chapter 3 3D Urban Modeling

3.1 Introduction
This Chapter is a research report on the virtual environment construction part of the

project. In section 3.2, there is an overview of the Virtual City environment, a

discussion of the reasons for our experiments with the virtual environment and a

description of the software requirements and software selection needed to create the

environment. Section 3.3 shows the lengthy process of creating the virtual

environment and summary the available options which need to be considered in

creating the environment. The data collection is significant in virtual environments. In

the simulation tests, it is necessary to recreate as much as possible the realistic

scenario, for which we did much fieldwork and finalised the initial environment model.

Section 3.4 is about the statistics of the virtual environment. At last, section 3.5

concludes the 3d city modelling session.

3.2 Virtual Scenarios 3D Urban

In Chapter 2, we presented the idea of using an artificial intelligence recognition

algorithm to detect blind spots in cars. We intend to test it in the initial phase with a

virtual environment.

3.2.1 Virtual Versus and Real Scenes
The development of AI deep learning and neural networks requires large amounts of

data to be trained and collected, but it is challenging and time-consuming to collect

large amounts of data in real life without damage to property or injury to persons. Thus,

conducting preliminary testing of projects in a virtual environment is one of the main

ways to solve this problem (Liao, Song, Long. 2020). Figure 3.1 Virtual Versus Testing.

Using randomly generated 2D images to test various tasks is one of the essential

sources of test objectives, such as the generation of human poses and automated

face generation (Zhu, Huang, Shi, 2017). 3D modelling of virtual scenes or 3D models

for product testing or project inspection has had some recent success and is gaining

traction in many areas (Varol, Romero, Martin, 2017), which are used for indoor or

outdoor scene construction (Ros, Sellart, Materzynska, 2016), object detection

(Hinterstoisser, Pauly Heibel H. 2019)
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Figure 3.1 Virtual versus testing (Mérac, B.R.du 2021)
Virtual scenarios allow arbitrary changes to be made to the test environment and data

to be collected (Makransky, Borre‐Gude, Mayer,2019). Virtual scenarios allow for

testing unexpected situations that are impossible in reality and would often result in

considerable casualties in real life. But virtual scenarios are a complete no-brainer

(Lin, Guo, Shao, Chen Jiang, Zhu.2016). One of the main objectives of project testing

is to deal with unforeseen situations. In real life, blind spots in cars often lead to

accidents, and drivers avoid putting themselves in the blind spots of other vehicles for

long periods on real roads. Deliberately creating blind spots can lead to severe

accidents, so testing blind spots on existing roads is dangerous and undesirable

which can lead to damage to property or injury to persons. Creating a virtual scene,

creating blind spots in the virtual scene and performing blind spot detection are how

we prepare for the test.

3.2.2 Software Application
This section focuses on the software used to build the 3D environment, including

Unity 3D and Maya. We plan to use Maya software to create 3D modules, combine

many different types of 3D building modules into a city model using Unity 3D and

render them, and finally simulate and test the movement of a car model in a 3D

environment.

Maya
Maya Figure3.2 is a 3D computer graphics software that is widely used in the

entertainment industry for creating interactive 3D animations, models, simulations,

and visual effects for film, video games, and television (Derakhshani, 2012).
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Figure 3.2 Maya interface(From Google Image)
Although the Unity3D engine is mighty, the manipulation and detailing of the model

are more comprehensive in Maya than in pure model building (Liu, Li, 2011).

Therefore, we use Maya for single-building construction and Unity3D for combined

extensions.

Unity 3D
Unity 3D is our main production engine for building 3D virtual city environments. An

introduction to the Unity3D engine is as the following walkthroughs.

Unity3D is a cross-platform game engine and development environment for creating

2D, 3D, AR and VR experiences. It is a popular choice for game developers as it

offers various tools for creating interactive experiences, including a visual editor,

physics engine, scripting capabilities and more (Messaoudi, Simon, and Ksentini,

2015). Unity 3D is a popular game engine and development environment that can be

used to create a wide range of applications, including:

1. Video Games: Unity is widely used for creating 2D and 3D games across multiple

platforms, including PC, console, mobile, and VR/AR devices.

2. Simulation and Training: Unity is used to create simulations and training programs

for various industries, such as aerospace, construction, and medical.

3. Architecture Vizualisation (Foffa, 2022.) and Real-time 3D: Unity is used to create

real-time 3D visualization, architectural walkthroughs, and interactive product

demonstrations.

4. Education and Research: Unity is used in educational settings to create interactive

learning experiences and in research to create virtual environments for testing.

5. Advertising and Promotion: Unity is used to create interactive ads, promotions, and

visualizations for the web and mobile devices.
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6. Film and Animation: Unity is used to create short films, animated movies, and

special effects for the film industry.

Overall, Unity 3D is widely used across different industries to create interactive and

engaging experiences (Bartneck, Soucy, Fleuret, and Sandova, 2018).

Figure 3.3 Unity 3D interface
In the test scenario, we planed the car model drive generally on a defined road, then

make a traffic accident where a collision has occurred because another car blocked

the driver's view or because of the car's blind spot. A camera is then set up from point

of view of the accident vehicle to record the entire accident. The recorded video is

saved and identified using the YOLOV5 algorithm. Unity3D can quickly solve this

problem by using the object motion command module. In addition, Unity3D can also

solve the problem of video recording. We can set up a camera anywhere and track the

view of the car. Unity 3D is our main production engine for building 3D virtual city

environments.

3D model architecture has been widely used in the last few years. It has a significant

role in urban planning, simulated crash tests and other projects requiring target

visualisation (Brenner, 2001). Roads, traffic signs, buildings, and trees are the main

components of the virtual environment. Therefore, the alignment of buildings and

traffic signs is essential, as is the accurate distribution of traffic roads and the correct

placement of car models (Liu, Wang 2008). 3D city modelling is a lengthy process.

Much time was spent on 3D model construction and virtual city layout to ensure

accurate results.
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3.3 Specific Requirements for Virtual Scenarios
Building a 3D city scene is a complex and lengthy process, and our team's scene

requirements was first identified before starting to develop it.

Specific requirements for virtual scenarios for traffic testing depend on the type of

simulation being performed, but some common requirements include:

1. Detailed road network: A detailed and accurate representation of the road network

is essential for traffic simulations. This includes information about the layout of roads,

traffic signs, road markings, road furniture and signals, and terrain features.

2. Vehicle models: The simulation should include detailed models of the vehicles that

will be tested, including information about their size, weight, and performance

characteristics.

3. Traffic flow data: The simulation should include accurate traffic flow data to reflect

the expected conditions on the road network. This includes information about traffic

volume, speeds, and patterns of movement.

4. Hardware and Software: High-performance computer with specialized software and

hardware is required for processing large amounts of data and running the simulation

in real-time.

5. Validation: The simulation should be validated using real-world data, such as traffic

counts and speed measurements, to ensure its accuracy and reliability.

For our test-specific project, narrow sections of roads and junctions needed to be

layed out that would encourage a more excellent range of blind spots for drivers. For

the layout of the entire urban road, we designed and built mainly based on the two

lanes single carriageway (Taylor, Baruya, 2002 ) Figure 3.4. We also added a small

amount of single way Figure 3.5. Creating a 3D city scene is a complex and lengthy

process, and we first identified our team's scene requirements before starting to

develop it.

In our plans for the 3D environment build, we also optimised the details of the roads

and the city's layout by adding road signs and street clutter, railings, and road

construction sites, whitch tried to make 3D urban environment closer to the real-life

road by bringing the test results closer to reality. Figure 3.6 Road Construction Sites

and Figure 3.7 Junction Details are presented.
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Figure 3.4 Two Lanes single carriageway

Figure 3.5 Single way

Figure 3.6 Road construction Sites
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Figure 3.7 Junction details

3.3.1 Modeling Progress
Maya Part
3D modeling is a complex and demanding discipline requiring a combination of

technical skill, artistic ability, and creativity (Huang, Lin, 2017). 3D modelling takes a

lot of time to tweak the model, so we started with a single building model in the initial

stages. First, we used Maya to design and create a simple model. Figure 3.8

combines two simple model buildings to form a small structure, mainly used to fill the

gaps at the city's edge

Figure 3.8 Single building
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Figure 3.9 House area model
Figure 3.9 shows several architectural models of residential areas. These include

general residential and educational buildings. Figure 3.10 shows the design of the

building frontage details, which include the roadway trees and the base street lights.

Figure 3.10 Building front view
3D modelling takes a lot of time, so we used a laptop and desktop computer to work

together to speed up the early stages of the modelling process and assemble all the

models. Although the two computers use the same Maya software, the initial presets

have different system default length units due to the differences in computer systems

and software versions. As a result, when we tried to put the models together, there

was a significant deviation in the dimensions of the two sets, as shown in Figure 3.11
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Figure 3.11 Unit deviation
Although the deviation in length units can be adjusted by zooming in and out in Maya,

as each building has many differently shaped modules, selecting and scaling multiple

modules simultaneously can cause the system to lag or even crash. As a result,

building by building adjustments had to be made, which took a lot of time. During the

subsequent modelling process the software version was updated to ensure all 3D

models were in uniform length units.

3D city layout design involves creating a 3-dimensional representation of a city's

physical structure, including buildings, roads, public spaces, and other urban

elements. The design process may involve several stages, including gathering

information about the city, conceiving a detailed 3D model, and refining the design

through feedback and iteration (Rohil, and Ashok, 2022). 3D city layout design is often

used in urban planning, architectural design, and virtual simulation, among other fields,

to help visualize and understand the complex interactions between various urban

element.

The 3D scene plays a vital role in machine learning, and rationalising the occupancy

ratio of the grid in the 3D scene to bring the 3D scene closer to reality is beneficial in

obtaining more accurate data (Thrun, Burgard, 2005). The road planning of the 3D city

is also one of the issues that needs to be considered. Figure 3.12 shows the top view

of the 3D city model, and Figure 3.13 shows the preliminary city model from different

angles.
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Figure 3.12 Top view of the 3D city model

Figure 3.13 Different view of 3D city mode
Unity 3D Part
After completing the initial building model and the basic 3D city framework in Maya,

Unity 3D is used to optimize the details and the city road layout. The city model was

imported from Maya into Unity. At the same time, a new arrangement was made for all

the buildings. The residential buildings that had previously been made were added as

shown in figure 3.14. However, the initial version of the city layout had many flaws;

insufficient roads were reserved, and it was challenging to plan and fit the roads for

testing.
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Figure 3.14 Unity3D urban first version
The city's layout was redesigned by removing low-rise residential areas and making

substantial changes to the streets and buildings, considering the details of the London

town plan. Details of the changes are shown in Figure3.15 and Figure 3.16

1. The city's edges have been redesigned in 3D to create enclosed areas, giving the

city a more concentrated look.

2. The distance between each building has been increased.

3. Different types of roads have been added

4. Redesigned road elements such as traffic signs have been introduced

Figure 3.15 Urban street
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Figure 3.16 Urban overview
Our virtual urban road planning not only refers to reality, but also delves into road grid

design (Cipriani, E., Gemma, A. Nigro, M., 2014). Urban road planning is not limited to

the connection between different areas, but also includes the matching of roads to

community needs (Cantarella, G. E., Pavone, G. and Vitetta, A, 2006). During the

creation of our virtual environment, the layout of the roads and the different types of

roads were the main requirements for testing the project. Different types of roads were

designed at different locations, for example, single or dual carriageways.

Once the architectural framework of the city and the layout of the roads have been

determined, adding car models is essential. Therefore, we have selected standard car

models to add to the virtual city, including large vehicles and ordinary cars. Figure

3.17 shows several common types of small and large vehicles.

Figure 3.17 Urban overview
Materials and decals
Unity decals, which are materials that decorate the surface of other materials, are a

way to add details to 3D objects in Unity, such as adding logos, text, or bullet holes.

They are flat 2D images or textures projected onto an object's surface. Decals are
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overlayed on top of the objects' materials and blend with the underlying material's

colour, roughness, and normal maps. They can be used to enhance the realism of a

scene and add visual interest (Kumar, AKumar, 2021). Decals in Unity can be created

using Unity's Standard/Particle Shaders or custom shaders.

Unity3D supports using most bitmap formats as image materials, even .psd format

files with layers and layer effects. However, in practice, it is not recommended to use

non-universal file formats directly. Unity3D automatically performs a conversion

process when importing any image material in any format. Suppose we are dealing

with a non-generic format. In that case, the corresponding third-party software

function will be called to perform the conversion so that the actual conversion process

will be slower. Some special file formats will only be recognized if we have the

corresponding software installed. For this reason, it is recommended to first save the

image material as a .png file (lossless and small) using PS and then use the .png file

as the image material as shown in Figure3.18

Figure 3.18 Building Decals
After much mapping, the initial effect of the city is shown in Figure 3.19. At this stage,

our architectural model is complete, followed by the simulation of the car model track

movements and the simulation of traffic accidents.
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Figure 3.19 City Decals

3.4 Summary
This section focuses on the detailed process of building a 3D simulation environment.

From the initial building model to the final virtual city was a very lengthy process. We

had to constantly modify the pre-defined city prototype and compare it with real life to

ensure that the design and distribution of roads were more realistic. At the beginning

of the 3D modelling phase, we worked with different devices, and due to the lack of

uniformity in the computer systems (Mac-OS and Widow's), the preset software units

were different, and this led to significant discrepancies when combining the building

models, which was one of the problems that affected our progress. We have reworked

all the project units and are now using the Windows system to solve the problem of

large deviations caused by different length units. Two versions of the city's first draft

were used to finalise the final city model that we needed for the road simulation tests.

We also carried out extensive research and a literature review on the distribution of

roads in the city and the layout of different types of roads, identifying a variety of road

divisions and layouts that correspond to reality. At last, we added many car models

and coloured and mapped the 3D building models to complete the virtual city

construction.

The virtual environment is based on Unity3D and is a city complex of a specific size

and includes a complete road traffic system. Different areas have different types of

road plans, and it is a virtual city based on a realistic environment. It can be used not

only for our research projects but also for testing various virtual projects.
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Chapter 4 Blind Spot Analysis of Vehicles
and Virtual Scene Simulation Reproduction

4.1 Introduction
In order to obtain a more accurate picture of the actual data on the car's blind spot, a

field trip was carried out in this chapter. The driver's blind spot was verified at different

traffic sections using a filming and recording method, which was analysed in detail. A

realistic test of the car's blind spot in the rearview mirror was carried out under

controlled conditions, and the data was analysed and summarised. On the other hand,

under uncontrolled conditions, a virtual scenario was recreated after filming in the field,

simulating traffic accidents caused by blind overtaking in the presence of blind spots.

The driver's perspective is recorded in the virtual scenario. Blind spot of vehicles was

analysed and virtual scene simulation was reproduced.

Simulating traffic accidents in a virtual scenario involves creating a

computer-generated environment and using software to simulate the events and

consequences of a traffic accident, which can be used for research purposes, to study

the effects of different variables on the outcome of accidents (Hadipriono, Duane,

Nemeth, Won, 2003) without damage to property and danger to human well-being. In

the subsequent progress of the project, we tried to design and guide some traffic

accidents caused by traffic blindness, presenting them from the driver's point of view.

4.2 Traffic Accidents Caused by Blind Spots
Traffic accidents caused by a driver's blind spots occur when a driver cannot see

other vehicles, pedestrians, or obstacles in adjacent lanes or areas around the vehicle

due to the vehicle's design and the driver's limited field of vision (Thakurdesai, Aghav,

2021). These blind spots can cause accidents if the driver changes lanes or merges

with traffic without being aware of other vehicles or obstacles in the blind spot.

Blind spot accidents typically involve a driver merging into the lane of another vehicle

that was hidden in their blind spot, resulting in a collision. These types of accidents

can also occur when a driver changes lanes and does not see a motorcycle or bicycle

in their blind spot. Additionally, blind spot accidents can occur when a driver is

backing up and does not see a pedestrian or an object behind their vehicle.

Traffic accidents caused by blind spots in the UK are a common occurrence. A blind

spot is an area around a vehicle that the driver cannot see directly, which can lead to
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collisions with other road users. Blind spots are particularly dangerous when drivers

are making turns or changing lanes, as they may not see other vehicles, cyclists, or

pedestrians in their path. In this research thesis, the causes of blind spot accidents

are discussed and how they can be prevented.

4.2.1 Causes of Blind Spot Accidents:
Blind spot accidents are caused by a number of factors, including:

1. Inadequate Mirrors: Drivers rely heavily on their rearview and side mirrors to see

what is behind them. However, if these mirrors are not adjusted properly, they may not

provide a clear view of the blind spot. It is important for drivers to adjust their mirrors

correctly before driving.

2. Vehicle Design: Some vehicles have larger blind spots than others. For example,

commercial trucks have very large blind spots due to their size and shape. Drivers of

these vehicles must be particularly vigilant when changing lanes or making turns.

3. Distracted Driving: Distractions, such as using a mobile phone, eating or drinking,

and adjusting the radio or GPS, can divert a driver's attention from the road. This can

cause them to miss other road users in their blind spot.

4. Poor Weather Conditions: Rain, fog, and snow can make it difficult for drivers to see

what is around them. This can increase the risk of blind spot accidents (Summerskill,

Marshall, R, Lenard, and Richardson, 2016)

4.2.2 Preventing Blind Spot Accidents
There are several ways to prevent blind spot accidents, including:

1. Adjusting Mirrors: Drivers should adjust their mirrors so that they provide a clear

view of the blind spot. This can be done by positioning the mirrors correctly and using

a convex mirror to provide a wider angle of view.

2. Checking Blind Spots: Drivers should check their blind spots by turning their head

to look over their shoulder before changing lanes or making a turn. This is particularly

important when driving in heavy traffic.

3. Using Technology: Many modern vehicles are equipped with blind spot monitoring

systems that use sensors to detect other road users in the driver's blind spot

(Beresnev, Zarubin, Tyugin, and Pinchin, 2022). This technology can alert the driver

to potential hazards and prevent accidents.

4. Eliminating Distractions: Drivers should avoid distractions such as using a mobile

phone or eating while driving (Alosco, Spitznagel, Fischer, Miller, Pillai, Hughes,

Gunstad, 2012). This can help them remain focused on the road and avoid missing

other road users in their blind spot.
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The blind spot accidents are a serious problem in the UK. They are caused by a

number of factors, including inadequate mirrors, vehicle design, distracted driving,

and poor weather conditions (Williamson, 2021). However, these accidents can be

prevented by adjusting mirrors, checking blind spots, using technology, and

eliminating distractions. By following these tips, drivers can reduce the risk of blind

spot accidents and keep themselves and other road users safe.

4.3 Overtaking in Single Lanes
Blind spots can be an essential factor in overtaking accidents. A blind spot is an area

around a vehicle or where a driver is unable to gather information about the

environment in the blind spot due to the vehicle in front of them blocking their view. As

a result, when drivers attempt to overtake another vehicle, they may not be able to

see any approaching vehicles in the blind spot, which increases the risk of a collision.

This is why drivers need to double-check their blind spots before attempting to

overtake and to always be aware of their environment on the road. In addition,

vehicles with large blind spots, such as trucks and buses, may pose a greater risk to

other drivers when attempting to overtake. To help mitigate this risk, many vehicles

are now equipped with advanced driver assistance technology, such as blind spot

detection systems, which can alert drivers to the presence of vehicles in their blind

spots. However, blind spots due to obscuration by the vehicle in front are difficult to

identify and often only rely on the driver's experience to make predictions, which may

be inaccurate.

Overtaking in single lanes refers to passing another vehicle on a road or highway with

only one lane in each direction. This type of overtaking requires the driver to cross

over the centerline into the opposing lane of traffic temporarily, making it a high-risk

maneuver that must be done with caution. Before overtaking in a single lane, it is

important to ensure it is safe, and that driver has a clear view of the road ahead. In our

daily driving, the opposite lane is in the driver's blind spot because the car in front of

us is blocking the view. Overtaking in such a situation is dangerous and can easily

lead to traffic accidents. We have briefly described this situation in the previous

section of the Literature Review.

We performed and recorded the data on a realistic road section. For example, in

picture 4.1, the red bus was driving slow. Therefore, there is slight congestion behind

the bus, and from our viewpoint, we cannot see the vehicles directly behind the bus,

nor can the vehicles directly behind the red bus see us. At this point, if the car behind

the numbered bus forces itself to overtake us, there is a risk of a collision with our
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vehicle. Figure4.2 is the view that blocked by a bus in same situation. We can not see

oncoming traffic in the opposite lane . We are going to recreate this scene in a virtual

scene and record it on video as shown in Figure 4.3, which is a screenshot of the

video.

Figure 4.1 Blind spot behind the bus-front view

Fighre 4.2 Blind spot behind the bus-back view
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Figure 4.3 Accident by overtaking in singe lanes
Although it is hazardous to overtake when neither driver can see the other because of

the cover of the car in front of them, most drivers will choose to overtake a

slow-moving vehicle in front of them on particular long-distance roads.

4.4 Car drivers turning left(right) or change lanes
The blind spot for car drivers turning left (right) refers to the area behind and the side

of a vehicle that is not visible in the driver's rearview or side mirrors. This is a common

area where other vehicles, pedestrians, or cyclists may be located, and if the driver is

not aware of their presence, it can lead to accidents. Figure 4.4 shows these driver’s

blind spots.

Figure 4.4 Bot side driver’s blind spots (Kiefer, R.J. and Hankey, J.M., 2008)
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These blind spots pose a traffic hazard, mainly in the case of lane changes or

two-lane turns at traffic junctions. A blind spot in a car refers to the areas around the

vehicle that can't be seen directly through the mirrors or by looking forward (Hassan,

and Zainal Ariffin, 2013). This includes the area behind the car, and to the side of the

car, near the rear wheel. This can make it difficult for the driver to see other vehicles,

cyclists, or pedestrians when changing lanes or reversing. In Figure 4.5 it shows the

blind spot in a real-life rear-view mirror. In a standard rear-view mirror, it is almost

impossible to see a car coming from behind the left side of the car. It is therefore very

difficult for the driver to spot the car in the red circle without looking closely; it is by

adding more mirrors that the driver can see the full outline of the car behind him on the

side. However, most of the cars in our lives do not have these extra mirrors, and blind

lane changes without a full view are very likely to lead to accidents.

Figure 4.5 Rear-view mirror blind spot
We conducted a blind spot range test in a realistic and secure car park. The tester

stands two-thirds of the length of the vehicle, 1.2 meters from the right side of the car

as shown in Figure 4.6. We took a photo from the driver's view inside the car, a view

that does not allow any information about the environment to be seen in the rear view

mirror as shown in Figure 4.7. The view of the occupants of the car is shown in Figure

4.8.
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Figure 4.6 Blind spot test outside the car

Figure 4.7 Driver's view of the rear view mirror-A

Figure 4.8 Passenger 's view
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We can know the edge of the tester when the person tested is standing two-thirds of

the way up the car but at a distance of fewer than 1.2 metres from the horizontal

position of the car as shown in Figure 4.9.

Figure 4.9 Driver's view of the rear view mirror-B
Based on the results of these field tests, we can conclude that the driver cannot obtain

information about the environment through standard car mirrors in areas where the

horizontal distance behind the side of the average small vehicle is more significant

than approximately 1.2m. The standard UK road width for two lanes and above is

3.2m as shown in Figure 4.10. The average width of an average vehicle is 6 feet,

approximately 1.83m (Design Manual for Roads and Bridges, 2021).

Figure 4.10 Standard UK road width(Response to Milton Rd and Histon Rd
consultations 2017)

Assuming that both vehicles normally travel in the target lane, we know from the

picture that the total width of the dual carriageway is 6.4 meters. We can calculate that
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the distance between the two vehicles parallel to each other is approximately 1.37

meters. From the results of our tests, a distance of more than 1.2 meters makes it

impossible to observe oncoming traffic to the side and behind. It is therefore difficult

for drivers to observe the vehicles to the side and behind them through standard car

mirrors on a standard road.

This phenomenon occurs not only when changing lanes but also when both lanes can

turn left or right because the driver in the outside lane cannot see the vehicle in the

blind spot on the inside lane. This situation is even more common in large vehicles.

Large vehicles turn at a greater angle than the average vehicle and may occupy other

lanes when turning, which dramatically increases the probability of a traffic accident

occurring without the driver being able to detect it. We simulated and recorded this

situation, and the video screen shot in Figure 4.11 shows the traffic accident.

Figure 4.11 Blind spot for car drivers turning left

4.5 Both Vehicles in Blind Spot
At intersections or on narrow roads, not only is the target vehicle in the driver's blind

spot, but the target vehicle is also often in the blind spot of other vehicles. When

neither vehicle can see the other, it is straight forward to cause an accident, which is

often the case in narrow neighbourhood roads, where cars parked on either side of

the road obstruct the view when approaching an intersection.

Figure 4.12 and Figure 4.13 illustrate the data we have collected in real life.
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Figure 4.12 Figure 4.13
In both test photos, the car parked to the right of the vehicle blocks the view of the

junction ahead to the right. As a result, when a vehicle pulls out in front of the right car,

neither driver is able to observe the other due to the blockage of the view from the

vehicle. This situation was reproduced in the test environment, where the target

vehicle was unable to observe the blue car before pulling into the junction due to the

blocking of the red car. Although all roads are planned as main roads or side roads,

there is a need to wait and confirm that no other vehicles are passing on the main

road when other vehicles are approaching. However, not all drivers strictly adhere to

such rules and often only slow down slightly, making it easy for accidents to occur in

such scenarios.

Figure 4.14 Both vehicles are in the blind spot

4.6 Blind Spots Around the Car in Low-Speed
Blind spots are areas around a vehicle where the driver's view is obstructed, making it

difficult to see other vehicles, pedestrians, or obstacles. These blind spots can be

especially dangerous in low-speed situations, such as when parking or driving in a

crowded parking lot.

The blind spot varies depending on the size of the car, with approximately 5 feet in

front of and 5 feet behind the car, with the blind spot on both sides of the car mainly

behind the driver's side of the car and extending about 10 feet outwards (National
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Safety Council ,2019). The range of a car's blind spot varies depending on several

factors, such as the size and design of the vehicle, the height of the driver's seat, and

the position of the side mirrors. However, in general, the blind spot of a car can extend

up to several car lengths behind and alongside the vehicle. Most of the traffic

accidents we have access to are those that have a severe impact on cars or

pedestrians. However, according to the results of our questionnaire on traffic incidents

at the beginning of the project, most traffic accidents are minor, minor collisions

causing small scratches or bruises. These minor accidents or car hang-ups are

difficult to record or count. The driver's ignorance of the road surroundings due to

blind spots is one of the leading causes of these minor accidents.

Traffic jams are a common phenomenon in contemporary traffic and occur almost

daily. In the London area, motorbikes often pass between cars close to each other

when drivers are stuck in traffic, which makes it extremely easy for traffic hazards to

occur. This is because cars do not stop in traffic. They move slowly. The driver is

focused on the road ahead and always keeps a safe distance from the vehicle in front

of him. A motorbike suddenly approaching from the rear of the vehicle is difficult to

attract the driver's attention and will be in the driver's blind spot.

Figure 4.15 Motorbike passing between two vehicles
In image figure 4.15, if the driver of the car does not notice the motorbike coming from

the rear gap and moves the vehicle directly in its way, the vehicle can easily collide

with the motorbike, making even more congestion.

When turning, drivers should be aware of blind spots caused by the vehicle's A-pillars,

which are the supports between the windshield and the front doors. These blind spots

can make it difficult to see pedestrians or other vehicles approaching from the side.
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The A-pillars of a vehicle are the vertical supports on either side of the windshield that

help to hold up the roof (Obeidat, Altheeb, Momani, Theeb, 2022.). While they provide

structural support to the vehicle, they can also create blind spots for the driver,

particularly when turning or changing lanes.

When a driver looks forward through the windshield, the A-pillars can block their view

of objects or pedestrians on either side of the vehicle. This can be particularly

problematic when making turns or driving through intersections, as it can be difficult to

see pedestrians or other vehicles that may be in the driver's path, as shown in Figure

4.16.

Figure 4.16 A-pillar blind spot
There are also blind spots in front of and behind the car, but these do not need to be

considered when the driver is generally driving on the road, as the driver can observe

the blind spot in advance from a distance and make a judgement. However, when

driving at low speed in a car park or a narrow and curvy area, the driver cannot see

what is about to pass over the road in advance, which can easily result in a minor

collision.

4.7 Summary and Solutions
In this chapter, we have examined and verified the primary blind spots of a car in real

life. The driver's blind spots, prone to traffic accidents, are recreated in a virtual

environment, and the driver's perspective is recorded. These include the blind spot

when overtaking in single lanes, the blind spot at junctions in residential areas due to

roadside parking and the blind spot at the side and rear of the car. More field tests

were conducted to measure and verify the extent of the driver's side and rear blind

zones. The driver's blind spot was analysed at low speeds in cars, including
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motorbikes travelling between two cars in traffic jams, the car's front and rear blind

spots in car parks or on narrow, curved roads, and the blind spot caused by the car's

A-pillar.

In chapter 2, Literature review, we introduced traditional solutions to the driver's blind

spot, including radar and auxiliary mirrors. Although these measures enhance the

driver's awareness of the vehicle's surroundings, they do not entirely solve the driver's

blind spot problem. We try to solve the driver's blind spot problem by using object

recognition algorithms. Firstly, we intend to capture images of the car's surroundings

with a camera, then use an object recognition algorithm to detect them and present

the results on the in-car screen. This will improve the driver's awareness of the blind

spot environment and reduce the damage caused by traffic accidents or car collisions.
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Chapter 5 Object Detection - YOLO

5.1 Introduction
With the popularity and development of artificial intelligence, our ability to process

image information has reached a level of deep understanding. The predicted target

object's location in the image and multiple levels of culling and classification are

performed to determine the target type in the image (Zhao, Zheng, Xu, and Wu,

2019.). This approach is known as a object detection algorithm (Felzenszwalb et

al.2010). Object detection algorithms are computer vision algorithms designed to

automatically identify and classify objects within images or videos (Fang, Love, Luo,

Ding, 2020). These algorithms typically involve several stages of processing,

including feature extraction, feature selection, and classification.

This chapter describes the object recognition algorithms that are currently being

widely used and provides a cross-sectional comparison. The YOLO algorithm is the

main target of our comprehensive research. We discuss the Yolo algorithm in depth,

which includes the principles and implementation process of YOLO. Bounding Box

Prediction, Loss Function, and Non-Maximum Suppression (NMS) are discussed in

detail.

5.2 The Difference Between YOLO and Other Object
Detection Algorithms
Object detection algorithms are computer vision algorithms that detect and locate

objects within an image or video. These algorithms typically have two main

components: object localization and object classification (Padilla, Netto, and Da Silva,

2020,). Object localization involves determining the location of an object within an

image or video. In contrast, object classification involves identifying the type of object

present in the image or video.

5.2.1 Mainstream object detection algorithms
Object detection is a computer vision task that involves identifying and localizing

objects within an image or video stream (Athak, Pandey, and Rautaray, 2018). There

are many different algorithms and techniques that have been developed for object

detection, but some of the most popular and widely used are:

YOLO (You Only Look Once) figure 5.1: YOLO is a real-time object detection system

that processes images in a single pass through a neural network (Du, 2018,). It
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divides the image into a grid and predicts bounding boxes and class probabilities for

each grid cell (Morbekar, Parihar, and Jadhav, 2020). YOLO is known for its speed

and accuracy, and it is widely used in applications such as self-driving cars and

security systems.

Figure 5.1 YOLO detection algorithms
Faster R-CNN (Region-based Convolutional Neural Network) figure 5.2: Faster

R-CNN is a two-stage object detection system that uses a region proposal network to

generate candidate regions for objects and then uses a convolutional neural network

to classify and refine the bounding boxes for those objects (Jonathan Hui, 2017).

Faster R-CNN is known for its accuracy and is commonly used in applications such as

medical imaging and autonomous vehicles.

Figure 5.2 Fast R-CNN algorithm (Jonathan Hui, 2017)
SSD (Single Shot Detector. Figure 5.3): SSD is a real-time object detection system

which uses a single neural network to predict bounding boxes and class probabilities

for objects at multiple scales and aspect ratios (Valiati and Menotti, 2018). SSD is

known for its simplicity and speed, and it is commonly used in applications such as

robotics and video surveillance.
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Figure 5.3 SSD detection algorithm (Liu, Anguelov, Erhan, Szegedy, 2016)
Mask R-CNN: Mask R-CNN is an extension of Faster R-CNN that adds a third branch

to the network for predicting object masks in addition to bounding boxes and class

probabilities (Bharati, P. and Pramanik, A., 2020). Mask R-CNN (Figure 5.4) is known

for its accuracy and is commonly used in applications such as image segmentation

and augmented reality.

Figure 5.4 Mask R-CNN (Bharati, and Pramanik, 2020)
RetinaNet: RetinaNet (Figure 5.5) is a single-stage object detection system that uses

a focal loss function to address the class imbalance problem that is common in object

detection (Chen, and Qin, 2022 ). RetinaNet is known for its simplicity and

effectiveness, and it is commonly used in applications such as pedestrian detection

and satellite imagery analysis.

Figure 5.5 RetinaNet (Wang, Yuan Wang, Zhang ,2019)
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In this subsection, we summarise most of the types of detection algorithms currently

widely used. The following sections show deep research on the YOLO object

detection algorithm analysis.

5.2.2 Advantages of the YOLO Object Detection Algorithm
Object detection is a popular field in computer vision that involves detecting objects

within an image or video frame and classifying them into various categories (Paneru,,

Jeelani, 2021). Among the various object detection algorithms available, YOLO (You

Only Look Once) stands out due to its speed, accuracy, and efficiency.

Real-time Processing Speed
One of the most significant benefits of using YOLO is its real-time processing speed.

Traditional object detection algorithms such as R-CNN and Fast R-CNN are slower as

they detect objects in multiple stages (Xiao, Wang, Zhang, Meng, 2020). In contrast,

YOLO detects objects in a single pass. This means that YOLO can detect objects in

real-time, making it suitable for real-time applications such as autonomous driving,

surveillance, and video analysis.

1. High Accuracy
YOLO has high accuracy in detecting objects compared to other object detection

algorithms. It uses a single neural network to predict bounding boxes and class

probabilities simultaneously, which makes it more accurate than other algorithms

(Thuan, 2021). YOLO can detect objects with high precision and recall, making it an

excellent choice for applications where accuracy is critical.

2. Fewer False Positives
YOLO has a lower false positive rate than other object detection algorithms. This

means that it is less likely to detect objects that are not present in the image, which

reduces the chances of generating false alarms (Redmon, Divvala, Girshick and

Farhadi, 2016). YOLO also has a high detection rate, which means that it can detect

objects that other algorithms might miss.

3. Handles Occlusion
Another benefit of YOLO is that it can handle occlusion, which is when an object is

partially or fully obstructed by another object (Kim, and Cho, 2021). YOLO can detect

objects even if they are partially occluded, making it suitable for applications where

objects are likely to be partially hidden.

4. Handles Small Objects
YOLO is capable of detecting small objects accurately, which is challenging for other

object detection algorithms. YOLO can detect objects as small as 10 pixels
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(Kharchenko and Chyrka, 2018), making it suitable for applications where small

objects need to be detected.

5. Supports Multiple Object Classes
YOLO can detect multiple object classes simultaneously (Ivašić-Kos, Krišto, M. and

Pobar, 2019). This means that it can detect objects belonging to different classes,

such as people, cars, and animals, in the same image (Pham, Courtrai, Friguet,

Lefèvre, Baussard, 2020). YOLO can detect up to 80 different object classes, making

it suitable for a wide range of applications.

6. Easy to Implement
YOLO is easy to implement, making it suitable for developers who want to add object

detection capabilities to their applications (Kosuge, Suehiro, Hamada, Kuroda, 2022).

YOLO is open-source and available on GitHub, making it easy for developers to

access and use.

7. GPU Optimization
YOLO is optimized for GPU processing, making it faster and more efficient than other

object detection algorithms (Huang, Pedoeem, and Chen, 2018). This means that

YOLO can process large amounts of data quickly, making it suitable for real-time

applications where data processing speed is critical.

8. Transfer Learning
Transfer learning is the process of reusing pre-trained models to solve new problems

(Huang, Pedoeem, and Chen, 2018). YOLO can be used for transfer learning,

allowing developers to use pre-trained models to solve new object detection problems.

This makes it easier for developers to develop new object detection applications

without starting from scratch.

Constant Improvement
YOLO is continually being improved by researchers and developers, making it more

accurate and efficient over time. YOLO has now been updated with 7 versions from

YOLO-V1 to YOLO-V7, of which YOLO-V3 and YOLO-V5 are among the more widely

used versions. This means that YOLO is a future-proof object detection algorithm that

will continue to improve as new research and techniques are developed. YOLO is an

excellent object detection algorithm that offers many benefits, including real-time

processing speed, high accuracy, fewer false positives, handling occlusion, handling

small objects, supporting multiple object classes, easy implementation,
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5.3 The Principle and Implementation of the YOLO
Algorithm
This section mainly introduces the operating principle of YOLO. Target detection is a

relatively simple task in computer vision used to find particular objects in a picture.

Target detection requires us not only to identify the categories of these objects but

also to label the locations of these objects. The categories are discrete data, and the

locations are continuous data.

The full name of YOLO is you only look once, meaning you only need to look once to

identify the class and location of an object in a picture. Because you only need to look

once, YOLO is called a Region-free method. In contrast to Region-based methods,

YOLO does not need to find the Regions where targets may be present in advance.

Figure 5.6 YOLO detection vision
In the image above Figure 5.6, there are three tasks in computer vision: classification,

target detection, and instance segmentation. Overall, these three types of tasks range

from easy to complex, with the target detection we will discuss being in the middle.

The first classification task is the basis for our target detection.

5.3.1 Image Input
The first step is preprocessing, which is an essential step in YOLO object detection,

and one of the tasks involved in preprocessing is resizing and normalizing the input

image (Benedict, 2022.). The reason for resizing the image is to ensure it is

compatible with the input size expected by the YOLO model. Different versions of

YOLO may have different input size requirements, but generally, the input images are

resized to a fixed size, such as 416x416 pixels or 608x608 pixels. Resizing the image

also helps to reduce the computational overhead and speed up the object detection

process.

Normalization is another important preprocessing step, and it involves scaling the

image's pixel values to a fixed range, which helps improve the neural network's

performance by ensuring that the input data is in a consistent range of values.

Normalization is typically performed by subtracting the mean pixel value of the dataset
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from each pixel value of the input image and then dividing the result by the standard

deviation of the pixel values. Resizing and normalization are necessary preprocessing

steps in YOLO object detection (Jeong, Park, and Ha, 2018). They help ensure that

the input image is compatible with the YOLO model and is in a consistent range of

values. Figure 5.7

Figure 5.7 Image input

5.3.2 Grid-Based Approach
YOLO uses a grid-based approach for object detection.

Grid Cells: After the input image is processed by CNN Backbone (Maity, Banerjee and

Chaudhuri, 2021) is divided into a grid of cells. The grid size depends on the specific

YOLO variant, typically 13x13 or 19x19 (Ghimire and Horanont, 2017). Figure 5.9.

Each cell is responsible for detecting objects that fall within it.

Figure 5.8 S x S gird on input Figure 5.9 Target center point
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5.3.3 Bounding Box Prediction
For Bounding Box Prediction, when the input image is divided into S*S cells, each cell

detects the target whose centre point falls within the cell. For example, in Figure 5.10,

the red cell is the centre point of the target dog, so this cell is responsible for the

prediction of the dog.

Each grid predicts B bounding boxes and the confidence score of the bounding box,

which has two aspects: the probability that the bounding box contains the target and

the accuracy of the bounding box. Each cell is predicted to have B bounding boxes

and a confidence score. The so-called confidence level consists of two aspects: the

probability that the bounding box contains the target and the accuracy of the bounding

box. When there is no target in the bounding box but the background, Pr(object)=0.

Conversely, When there is no target in the bounding box but only background,

Pr(object) = 0. Conversely, when the bounding box contains a target, Pr(object) = 1.

Then markers as:

（equation 1）

Thus the confidence level can be defined as:

（equation 2）

The confidence in YOLO is not the probability that the bounding box contains a target

but the product of the other two factors. The accuracy of predicting the bounding box

is also reflected in it. The size of the bounding box is usually represented by four

values: (x, y, w, h), where (x. y) is the center coordinate of the bounding box, and w

and h represent the width and height of the bounding box, respectively. It should be

noted that the predicted value of the center coordinates (x, y) is the offset value

relative to the upper left corner of each cell, aligned with the grid cell (i.e., the offset

value relative to the current grid cell). In contrast, the predicted values of w and h of

the bounding box are relative to the ratio of the width to the height of the whole picture,

so the size of the four elements should theoretically be in the range of [0,1 ] (Jiang,

Ergu, Liu, Cai, and Ma, 2022). The final prediction of each bounding box contains five

elements: (x, y, w, h, c), the first 4 of which characterize the size and position of the

bounding box, while the last one is the confidence level.

For the classification problem, for each cell it also gives the predicted probability value

of C categories, which characterizes the probability that the target belongs to each

category of the bounding box for which the cell is responsible. But these probability

values are actually conditional probabilities at the confidence level of each bounding
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box, as:

（equation 3）

It is worth noting that no matter how many bounding boxes a cell predicts, it only

predicts a set of class probability values, which is a drawback of the YOLO algorithm.

In later improved versions, the YOLO bound the class probability prediction values

with the bounding boxes. At the same time, we can calculate the class-specific

confidence scores for each bounding box:

（equation 4）

In particular, the confidence level of the bounding box categories characterises the

likelihood that the targets in the bounding box belong to each category and how well

the bounding box matches the target.

Each cell requires a prediction of (Bx5+C) values. If the input image is divided into S ×

S grids, the final predicted value is a tensor of size S × S × (Bx5+C). For the PASCAL

VOC data, which has 20 categories, if S=7, B=2, then the final prediction is a tensor of

size 7×7×30.

Figure 5.10 Predictive value structure of the model (Redmon, Divvala, Girshick
and Farhadi, 2016)

We can understand as the aim of Yolo is to find an object in a picture and give its

class and position. Target detection is based on supervised learning, and the

supervised information for each image is the N objects it contains, with five pieces of

information for each object, namely the object's centre position (x, y) the height (h),
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width (w) and confidence score(C).

5.3.4 Network Design
Yolo uses a convolutional network to extract the features and then uses fully

connected layers to obtain the predicted values. The network structure is based on

the GooLeNet model, with 24 convolutional layers and 2 fully connected layers, Figure

5.11. For the convolutional layers, 1x1 convolution is mainly used to do channel

reduction, followed by 3x3 convolution. For the convolution and fully connected layers,

the Leaky ReLU activation function is used: max(x, 0.1 x). The last layer, however,

uses a linear activation function.

Figure 5.11 Network overview ( O.D.S.C.- O.D.2018)

Figure 5.12 Network progress (Odsc,2018)
From figure 5.12, we can obtain the network's final output as a tensor of size

7 x 7 x 30. This is consistent with the previous discussion. For each cell, the first 20

elements are the category probability values, then two elements are the bounding box

confidence levels, which are multiplied to obtain the category confidence levels, and

the last eight elements are the bounding box (x, y, w, h). The bounding box also

separates the confidence c and (x, y, w, h) so that each component can be easily
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extracted. The predicted value of the network is a two-dimensional tensor P with a

shape of [batch,7x7×30]. Using slicing, then P[:,0:7x7x20] is the category probability

part, while P[:,7x7x20:7x7x(20+2)] is the confidence part and the final remaining part

P[:,7x7x(20+2):] is the prediction of the bounding box. In this way, it is very convenient

to extract each part, which will facilitate the computation during training and prediction

later on.

5.3.5 Network training
Before formal training, the classification model was pre-trained on ImageNet using the

first 20 convolutional layers in Figure5.13, followed by adding an average-pool layer

and fully-connected layers. After pre-training, four convolutional layers and two

fully-connected layers were randomly initialised on top of the 20 convolutional layers

obtained from pre-training. As the detection task generally requires higher-resolution

images, the input to the network was increased from 224x224 to 448x448. The flow of

the entire network is shown in the Figure 5.13

Figure 5.13 Flow of the network

5.3.6 Loss Function
The Yolo algorithm treats target detection as a regression problem. A mean squared

difference loss function used in YOLO (Wang, Yang, Zhang, 2020).

Different complex weights are also used for the different components. First, a

distinction is made between the localisation and classification errors. The localisation

error (the prediction error in the bounding box coordinates) is given a more significant

weight: λcoord = 5 ｡The smaller weight λnoobj = 0.5 was used to differentiate the

confidence level of the bounding boxes without targets from those with targets. All
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other weights were set to 1. The mean square error was then used to treat the

different sizes of the bounding boxes equally. Since the coordinate errors of smaller

bounding boxes are usually more sensitive than those of larger bounding boxes, the

width and height predictions of the bounding boxes are changed to square root

predictions, and the final predictions can be expressed as:

（equation 5）

Each cell predicts multiple bounding boxes. However, its corresponding category is

only one. So then, if a target exists in that cell during training, only the bounding box

with the large Intersection over Union (IOU) to the ground truth is selected to predict

that target. In contrast, the other bounding boxes are considered not to have a target.

The result will be a more specialised bounding box for each cell, which can be applied

to targets of different sizes and aspect ratios, thus improving model performance.

When there are multiple targets in a cell, the Yolo algorithm can only select one for

training, which is one of the disadvantages of the Yolo algorithm. Also, for bounding

boxes with no corresponding target, the error term is only the confidence level, and

the coordinate term error cannot be calculated. The classification error term is only

calculated if a cell has an actual target, otherwise, it is not calculated either. Figure

5.14 shows the loss function.

Figure 5.14 Loss function (Ahmad, Ma, Yahya, Ahmad, Nazir, and Haq, 2020)
In this loss function, the first term is the error term of the centre coordinates of the

bounding box, and the presence of the target in the I-th cell is denoted

as: , and the J-th bounding box in that cell is responsible for predicting that target.

The second term is the error term for the height and width of the bounding box.
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The third term is the confidence error term for the bounding box containing the target.

The fourth term is the confidence error term for a bounding box that does not contain

a target. Furthermore, the last term is the classification error term for the cells

containing the target. In classification loss the

Which refers to the presence of a target in the I-th cell. In particular, if the target is not

present, Ci=0 since Pr(object)=0.

If a target exists, Pr(object)=1; at this point, it is necessary to determine the

We can take the IOU to be 1 so that Ci=1. In the YOLO implementation, a

control parameter rescore (default 1) is used; when it is 1, the IOU is not set to 1, but

the true IOU between truth and pred is calculated.

YOLO's forecasting uses the non maximum suppression (NMS) algorithm. The

following is a detailed description of the NMS algorithm and the application of the

NMS algorithm in YOLO.

Non-maximum suppression (NMS) is a technique used in computer vision and image

processing to reduce the number of overlapping detections in an image (Hosang,

Benenson and Schiele, 2017), which often works in object detection tasks to filter out

redundant bounding boxes around objects.

The basic idea of NMS is to suppress all but the best bounding box (with the highest

confidence score) that covers a particular object in the image. The algorithm works as

follows:

1. Sort the bounding boxes by their confidence scores in descending order.

2. Pick the bounding box with the highest confidence score and output it as a

detection.

3. Remove all the bounding boxes that have a high overlap (measured by intersection

over union, or IOU) with the selected bounding box.

4. Repeat steps 2 and 3 until there are no more bounding boxes left.

This is a step-by-step example of how NMS works:

Assume we have 5 bounding boxes with confidence scores and their corresponding

IOU scores with other boxes:

Box 1: confidence score = 0.8, IOU with box 2 = 0.4, IOU with box 3 = 0.5, IOU with

box 4 = 0.1, IOU with box 5 = 0.2

Box 2: confidence score = 0.7, IOU with box 1 = 0.4, IOU with box 3 = 0.6, IOU with

box 4 = 0.2, IOU with box 5 = 0.3

Box 3: confidence score = 0.6, IOU with box 1 = 0.5, IOU with box 2 = 0.6, IOU with

box 4 = 0.3, IOU with box 5 = 0.4
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Box 4: confidence score = 0.5, IOU with box 1 = 0.1, IOU with box 2 = 0.2, IOU with

box 3 = 0.3, IOU with box 5 = 0.5

Box 5: confidence score = 0.9, IOU with box 1 = 0.2, IOU with box 2 = 0.3, IOU with

box 3 = 0.4, IOU with box 4 = 0.5

Sort the bounding boxes by their confidence scores in descending order:

Box 5: confidence score = 0.9

Box 1: confidence score = 0.8

Box 2: confidence score = 0.7

Box 3: confidence score = 0.6

Box 4: confidence score = 0.5

Pick the bounding box with the highest confidence score (Box 5) and output it as a

detection. Remove all the bounding boxes that have a high overlap with Box 5 (IOU >

0.5):

Box 5: confidence score = 0.9 (output as a detection)

Box 1: confidence score = 0.8, IOU with box 5 = 0.2 (remove)

Box 2: confidence score = 0.7, IOU with box 5 = 0.3 (remove)

Box 3: confidence score = 0.6, IOU with box 5 = 0.4 (remove)

Box 4: confidence score = 0.5, IOU with box 5 = 0.5 (remove)

Figure 5.15 Non maximum suppression (NMS) in YOLO
The following is a case study of image processing by Non-maximum suppression

(NMS) in YOLO. Not only does YOLO sport the NMS algorithm, but most of the

detection algorithms use NMS. As shown in Figure 5.15, the face is detected a

number of times, but we want to output only one of the best-predicted frames. We only

need the detection result of the red frame for the lady in the picture. Then the NMS

algorithm can achieve this effect: first, find the frame with the highest confidence level

from all the detected boxes, then calculate its IOU with the remaining box one by one.

If the value is greater than a certain threshold (overlap is too high), then the box is

eliminated; then the above process is repeated for the remaining boxes until all the
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boxes are processed.

In figure 5.16 (same as Figure 5.11), the model input image has a shape of

[448,448,3], and after several convolutional and pooling layers, the output feature

map has a shape of [7,7,1024]; this feature map is then flattened into a

fully-connected layer with 4096 neurons, and a 4096-dimensional vector is an output;

this vector is then fed into a fully-connected layer with 1470 neurons, and a

1470-dimensional vector is an output; finally, this vector is reshaped into a [7,7,30]

feature map. The vector is then fed into a fully connected layer with 1470 neurons,

resulting in a 1470-dimensional vector; finally, the vector is reshaped into a [7,7,30]

feature map.

In the prediction phase, the YOLOV1 model is equivalent to a black box, with an input

image of [448,448,3] and an output feature map of [7,7,30]. The output tensor

contains all prediction boxes' coordinates, confidence levels, and category results.

Figure 5.16 Network overview (O.D.S.C.- O.D.2018)
In the first two subsections, we learned that the final network output is 7 × 7 × 30 .We

can understand as the network divides the image into SxS grid cells, S=7 in

Figure5.16, so each image is divided into a 7x7 grid. Each grid cell predicts b

bounding boxes, b=2 in YOLOv1, and each grid predicts two bounding boxes. The

two prediction boxes may vary significantly in size and shape, but as long as the

centroid of the box falls within the grid, the box is generated by that grid. So the

centroids of the two prediction boxes generated by each grid must fall in that grid.

Each prediction box contains the centroid coordinates (x, y), width and height (w, h)

which are the four positioning coordinates that determine the position of the prediction

box; the confidence c that the object in the prediction box is the target object; and the

conditional probability of containing all categories, assuming that the object is of a

particular category if the prediction box already contains the target object. For
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example, the probability of being a dog given that the target object is included.

Multiplying the confidence level of each prediction frame by the conditional probability

of the category gives the probability that each prediction frame belongs to each

category.

The number of channels in the output feature map is 30, which can be interpreted to

mean that each grid generates two prediction frames, each containing five parameters

(x, y, w, h, c), so two prediction frames would have ten parameters and contain 20

categories in the VOC dataset, i.e. each grid contains the conditional probabilities of

these 20 categories.

Thus, each grid contains 5+5+20 parameters, and each image is divided into a 7x7

grid, with one image having 7x7x30 parameters. Figure 5.17

Figure 5.17 30 Parameters
Each grid predicts two prediction boxes: the prediction box with high confidence,

represented by a thick line and the one with low confidence, represented by a thin line,

keeping the box with high confidence. Figure 5.18. Each grid also generates

conditional probabilities for 20 categories, as shown on the right, showing the grids

occupied by the categories with high conditional probabilities. For example, the green

colour represents the area with a high conditional probability for dogs. Each grid has

only one category, and the one with the highest of the 20 conditional probabilities is

selected.

Only one target object can be detected per grid, whereas a 7x7 grid can predict up to

49 objects.Which is one of the reasons why the YOLOv1 version does not perform

well in small, mini-target detection.
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Figure 5.18 Prediction boxes with confidence
At last, the 7x7x30 feature maps output by the network are turned into the final target

detection results. One grid is taken from the 7x7 grid and studied. In contrast, each

grid contains two predictor parameters (x, y, w, h, c) and 20 conditional probabilities of

the category (assuming the predictor contains the target object, the probability that it

is a particular category), i.e. 5+5+20 parameters, figure 5.19.

Figure 5.19 5+5+20Parameters
Next, the confidence of each prediction box is multiplied by the conditional probability

that each grid belongs to one of the 20 categories to obtain the probability that the grid

belongs to a category. The confidence of the first predictor box is multiplied by the

conditional probability of the 20 categories to obtain the total probability of the first

predictor box belonging to the 20 categories. One 20-dimensional vector represents

the probability that a predictor box belongs to each category. Each grid then has two

probability vectors, each with 20 elements. 7x7 grids have 98 vectors (7x7x2=98)

Figure 5.12

However, using the NMS algorithm in YOLO adopts a different mechanism from other

algorithms. First, for each prediction box, the category with the highest confidence

level is selected as its prediction label. After this layer of processing, we obtain the
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prediction category and the corresponding confidence value for each box, all sizes

[7,7,2]. In general, a confidence threshold is set, meaning that boxes with confidence

less than this threshold are filtered out, so after this layer of processing, the predictor

boxes with higher confidence remain. Finally, the NMS algorithm is applied to these

boxes; the final result is the detection result. A point worth noting is that NMS is

applied to all predictor boxes equally and distinguishes between each category, using

NMS separately.

In YOLO (Figure 5.20), NMS was first used before determining the category of each

box. Then, for each of the 98 boxes, values less than the confidence threshold is first

returned to 0, and then NMS is applied to the confidence values on a case-by-case

basis, where the result of the NMS process is not a rejection but a return of the

confidence value to 0. Finally, the category of each box is determined, and the

detection result is output when its confidence value is not 0.

Figure 5.20 Non maximum suppression in YOLO

5.4 Summary
YOLO (You Only Look Once) is a popular computer-vision object detection algorithm.

The main idea behind YOLO is to divide the image into a grid and predict the object's

class and location in each grid cell (Nie, Sommella, O’Nils, Liguori and Lundgren,

2019). The algorithm uses a single convolutional neural network (CNN) to perform this

task, making it a single-stage detector.

The critical steps involved in the YOLO algorithm:

1. First, divide the input image into a grid of cells.

2. For each cell, predict a bounding box and associated confidence score. The
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bounding box specifies the object's location in the cell, and the confidence score

represents the algorithm's confidence in the detection.

3. Assign a class score to each bounding box, representing the probability of the

object belonging to a particular class.

4. Use non-max suppression to remove overlapping bounding boxes and keep only

the most confident detection.

In this chapter, we analyse the YOLO algorithm. Three of the modules, bounding box

prediction, loss function and non-maximum suppression (NMS), we investigate and

interpret its operation in detail. In the following research, we will construct YOLO to

experiment with blind zone detection of cars in a virtual environment.
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Chapter 6 The Construction and
Application of YOLO

6.1 Introduction
In this chapter, we focus on building the YOLO object detection algorithm using the

images and videos we recorded in the virtual environment by constructing virtual

accidents without damage to property and human well-being, for object detection

recognition by the YOLO algorithm. We discuss and summarise image detection and

video detection in two parts, namely YOLOv3 image detection and YOLOv5 video

detection. In subsection 6.2, we describe the differences between YOLOv3 and the

original YOLO, then use YOLOv3 for image detection, summarise the errors that tend

to occur in the YOLOv3 environment built for successful image detection, and suggest

modifications. Sub-section 6.3 focuses on the YOLOv5 recognition algorithm. After

comparing YOLOv5 with YOLOv3 at the beginning and summarises the points of

YOLOv5. Finally, the video we recorded in the virtual scene was successfully

recognised, and the feasibility of YOLO for virtual object detection was verified. A

summary of this chapter is presented in subsection 6.4.

The YOLO family of object detection algorithms is updated rapidly, with each update

bringing different algorithm performance improvements. Therefore, as the project

progressed, we used different versions of the YOLO detection algorithm..

6.2 YOLO v3 With Image Detection
YOLO v3, the third iteration of the YOLO architecture, was released in 2018. It uses a

deep neural network with over 53 convolutional layers, including residual blocks and

skip connections, to detect objects in images and videos (Mujahid, Awan, Yasin,

Mohammed, Damaševičius, 2021). The architecture is designed to optimize for both

accuracy and speed, achieving real-time detection speeds of up to 30 frames per

second.In this section we arr focus on YOLO v3 architecture application in image part.

6.2.1 YOLO Version 3 Updates
YOLOv3 has been upgraded from the original YOLO version and is faster, more

accurate and more stable. From YOLOv1 to YOLOv3, each generation of

performance improvements has been closely linked to improvements in the backbone

(the backbone network).

1. YOLOv3 uses a new backbone architecture called Darknet-53, which is deeper and
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more powerful than the previous Darknet-19 backbone used in YOLO. This allows

YOLOv3 to extract more high-level features from the input image and improve

detection performance. Fugure 6.1 .Darknet-53 consists mainly of 1×1 and 3×3

convolutional layers, each followed by a batch normalization layer and a Leaky ReLU,

which are included to prevent overfitting. The convolutional layers, the batch

normalization layer and the Leaky ReLU together form the basic convolutional unit

DBL in Darknet-53, so called because there are 53 such DBLs in Darknet-53.

Fugure 6.1 Darknet-53 (won, Lee,and Lin, 2019)
2. Multi-scale fusion, the feature map can be 13x13, 26x26 or 52x52, which is

beneficial for detecting small object category probabilities. Figure 6.2
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Figure 6.2 Multi-scale fusion
3. Multi-label classification, replacing the first two versions of the softmax function with

multiple independent (logistic) classifiers to calculate the probability of inputting a

particular label.

4. One of the core ideas of YOLOv3 is to fuse different feature maps for prediction, e.g.

up-sampling before fusion. YOLOv3 also uses the idea of Resnet (Targ, Almeida and

Lyman, 2016), stacking more layers for feature extraction. Figure 6.3 shows the

network structure of YOLOv3.

Figure 6.3 Network structure of YOLOv3 (Mao, Sun, Liu, and Jia, 2019)

6.2.2 YOLOv3 Installation and Summary
Installation
We use the Mac Os system for the initial tests in the YOLO image recognition test

phase. At the same time, all our operations will be carried out on the system terminal.

1. On the homebrew website “https://brew.sh/ ” copy the terminal download link

“/bin/bash -c "$(curl -fsSLhttps://raw.githubusercontent.com/Homebrew/install/HEAD/

install.sh” to run in the terminal and download the required files.

2. Download the wget command. In put ”brew install wget ” without which we will not

be able to download the files required for the next yolo

3. Installing darknet and compiling

The darknet code: “git clone https://github.com/pjreddie/darknet”
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When we have cloned the repository, we can compile the code using the following

commands:

“cd darknet” and then input “make”

This will create an executable file called darknet that we can use to run YOLOv3.

Now we need to verify that all the programs installed are correct. Input: “./darknet”, if

the output usage:. /darknet <function>, which means we are ready for the next step.

Whenever we need to use YOLOv3, we need to cd darknet first and then run

4. Next step is to download the YOLOv3 weights:

YOLOv3 requires pre-trained weights to make predictions. Therefore, we need to

download the weights from the official website using the following command:

“wget https://pjreddie.com/media/files/yolov3.weights”

5. Run YOLOv3:

At last, run YOLOv3 on an image or a video using the following command:

“./darknet detector test cfg/coco.data cfg/yolov3.cfg yolov3.weights -thresh 0.25

data/xxx.jpg.”

The image can be any name, and we will use XXX instead. This will detect objects in

the XXX.jpg image using the YOLOv3 model with a confidence threshold of 0.25.

Here we have randomly selected images for testing and obtained the full detection

results, figure 6.4

The final output image is in the darknet directory and is automatically named

predictions.jpg. It is important to note that each time an image is detected, it will

automatically overwrite the previous one.

Figure 6.4 YOLOv3 Image detection test-1
YOLOv3 Image Detection Results
Inflow are the results of our random image inspection Figure6.5 and the results of our

virtual city screenshot inspection figure6.5 and figure6.7
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Figure 6.5 Test-2

Figure 6.6 Test-3

Figure 6.7 Test-3
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Errors and Summary
Errors
We encountered these main problems in the code session when building the YOLOv3

environment, and solutions are provided.

When we finish downloading Darknet input make, if we get: XCRUN: ERROR:

INVALID ACTIVE DEVELOPER PATH (/LIBRARY/DEVELOPER/

COMMANDLINETOOLS), MISSING XCRUN AT: Execute: xcode- select --install *

If we got: error: RPC failed; curl 56 SSLRead () return error -36 Execute: Input: git

config --global http.postBuffer 524288000 or 2.Input: sudo xcode-select -switch /

Applications/Xcode.app/Contents/Developer

If we only have one xcode, then this command is helpful; but if we have multiple

xcodes, we need to change it to the following: sudo xcode-select -switch

/Applications/Xcode 7.3.1.app/Contents/Developer.

Smmary
YOLOv3 is the most widely used of the earlier versions of the YOLO algorithm.

However, there are still some problems with the results from our data, with a detection

error in Figure 6.9, where two fire hydrants are treated as two pedestrians. Also, in

figure 6.7, it was not possible to recognise all the information in the photo for two main

reasons: 1 YOLOv3 uses a cubic detection algorithm (Dhyanjith, Manohar and

Raj,2021), so it is inaccurate or infeasible to recognise very dense targets in the area.

2 As this is a preliminary trial, we only tried a little data training, resulting in some

detected targets being out of the algorithm's recognition range. As we tried YOLOv3

for more training, the more powerful YOLOv5 came into view. The YOLO family of

object detection algorithms is updated quickly, with substantial improvements at each

stage. After discussion, we finally decided to experiment with the even faster and

more accurate YOLOv5 in the direction of video recognition research.6.3 YOLOv5

With Video Detection

6.3 YOLOv5 Video Detection
The YOLOv5 algorithm uses a single neural network architecture to perform object

detection on images and videos (Chen, Cao and Wang, 2022). It consists of a

backbone network, neck network, and head network (Lawal, 2023). The backbone

network is typically a convolutional neural network (CNN) that extracts features from

the input image (He, Ma, Wang, 2017). The neck network and head network are

responsible for generating bounding boxes and performing object classification.

One of the key improvements of YOLOv5 is its speed. The algorithm can process



Chapter 6 The Construction and Application of YOLO

91
91

images and videos at high frame rates, making it suitable for real-time

applications(Xiaoping, Jiahui, Zhonghe and Shida, 2021). YOLOv5 is also highly

accurate, achieving state-of-the-art performance on several benchmark datasets.

Another advantage of YOLOv5 is its flexibility. The algorithm can be trained on a wide

range of datasets and can detect a variety of object classes. Additionally, the YOLOv5

algorithm has been optimized for deployment on a variety of platforms, including

mobile devices and embedded systems (Nguyen, Q.T., 2022). Compared to YOLOv3,

YOLOv5 is a better match for our experimental needs.

6.3.1 The Difference Between YOLOv3 and YOLOv5
YOLOv5 is implemented using the PyTorch deep learning framework, which provides

better flexibility and performance than Darknet (Nguyen, Q.T., 2022). However,

YOLOv5 is still based on the same fundamental ideas as the original YOLO and

Darknet (Thuan, 2021.), which include dividing the input image into a grid of cells and

predicting the object classes and bounding boxes for each cell (Redmon, Divvala,

Girshick and Farhadi, 2016). So, while YOLOv5 does not use the Darknet framework,

it builds on the foundation that Darknet and YOLO laid. Figure 6.8

Figure 6.8 Over view of YOLOv5
One of the critical difference with YOLOv3 is that YOLOv5 uses the Focus layer,

figure 6.9. Furthermore, the Focus layer is used in the YOLO algorithm for the first

time; the Focus layer replaces the first three layers of YOLOv3. (Nepal and Eslamiat,

2022) The use of the Focus layer reduces the number of layers and the memory

needed for CUDA and thus increases the speed.
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Figure 6.9 Focus layer (Glenn-jocher. 2021)
Details of the other changes to YOLOv5 are as follows:

Architecture: YOLOv3 uses a Darknet-53 architecture as its backbone network, while

YOLOv5 uses a CSPDarknet53 architecture (Shetty, Saha, Sanghvi, Save, and Patel,

2021). CSPDarknet53 is a more efficient and accurate version of Darknet-53.

Speed and Accuracy: .YOLOv5 has improved performance in terms of mAP (mean

average precision)and FPS (frames per second)() on various benchmark datasets

( Wu, Wang and Liu, Y2021).YOLOv5 is faster and more accurate than YOLOv3

Object Detection Capability:

YOLOv5 has better object detection capabilities than YOLOv3. It can detect smaller

objects with greater accuracy and can detect objects that are partially hidden or

occluded.

Training Process: YOLOv5 has a simpler and more streamlined training process

compared to YOLOv3. Which uses a single-stage training process with anchor-based

object detection (Huang, Cheng, Yang, Lv and Xu, 2022), while YOLOv3 uses a

two-stage training process with anchor-free object detection.

Model Size: YOLOv5 has a smaller model size compared to YOLOv3(SZhao, Wang,

Liu, Peng yan, 2022). This means that YOLOv5 can be easily deployed on devices

with limited memory and computing power.

All changes to YOLOv5 we can understood as an update from YOLOv3, which the

most widely used version of the YOLO detection algorithm up to 2022.

6.3.2 YOLOv5 Installation and Testing
YOLOv5 Installation
The installation steps for YOLOv5 are tedious, starting with installing Anaconda with

Pycharm. Anaconda is an open-source Python package manager containing over 180

scientific packages (Rolon-Mérette, Ross, Rolon-Mérette and Church, 2016) and their

dependencies and is a Python data science and machine learning development

platform based on conda. Anaconda can be used for environment isolation in addition

https://github.com/glenn-jocher
https://github.com/glenn-jocher
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to providing rich databases. When we install a Python program or library, these

packages are installed by default under the site-packages directory of the current

Python environment. However, only one copy of the same library can exist in an

environment. What often happens is that two or more programs need to rely on the

same library, but have different library version requirements: program A relies on

library xxx, which requires version >= 1.23.0, and program B also relies on library xxx

but requires a version lower than <= 1.21.0, which can lead to version conflicts. So

the point of a virtual environment is to prevent conflicts caused by different python

projects relying on different versions.

The YOLOv5 source code from Github, (https://github.com/ultralytics/yolov5), figure

6.10

Figure 6.10 YOLOv5 source code
Next, the pre-trained model needs to be downloaded. In order to shorten the training

time and achieve better accuracy, we usually load pre-training weights for the network.

yolov5 version 6.2 provides us with several pre-training weights, and we can choose

different pre-training weights according to our different needs. Figure 6.11. The

installed pre-trained model should be placed in the YOLO folder. In our project, we

have chosen the widely used YOLOv5s version.

https://github.com/ultralytics/yolov5
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Figure 6.11 YOLOv5 pre-trained model
At last we are going to install yolov5 dependencies. Because Python lacks a range of

packages such as Numpy, Matplotlib, Scipy, Scikit-learn, etc., we need pip install to

import these packages to perform the appropriate operations (input: pip install -r

requirements.txt to install requirements.txt). The next step is to install Cuda and

Cudnn. Each version of Cuda corresponds to a different version of Cudnn. Our project

used Cuda version 10.02 and Cudnn versions 1.60/1.50. Finally, we tested and

successfully ran the detect.py file in the yolov5 folder in cmd.

Testing
Before each detection, we need to input: cd /d F:\yoloV5\yolov5-master, find the

program's location and then activate it: conda activate yolov5. Finally, to identify it,

input:

Python detect.py --source F:\yoloV5\yolov5-master\data\images\bus.jpg, where

--source is followed by the path of the target image or video to be detected, Figure

6.12.

Figure 6.12 YOLOv5 detecting
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We then compare the results of YOLOv3 with those of YOLOv5, and it is clear that

YOLOv5 is much better at detecting small objects. Figure 6.13

Figure 6.13 Test image

Figure 6.14 The different results between YOLOv3 and YOLOv5
From the comparison results, we can quickly tell that YOLOv5 can detect more

objects and is more accurate. However, the detection box in Window's YOLOv5 is

less evident than in Mac Os, probably due to the system separation rate.

Next is the speed comparison. Figure 6.15 shows the detection of YOLOv3 and

YOLOv5 in the same image. A visual comparison of the images shows a considerable

difference between the two versions of the YOLO algorithm, with YOLOv3 detecting

life photos in around 20.3 seconds, while YOLOv5 is incredibly fast at less than 1

second. However, there are computer performance and system differences in our

comparison results, but it is enough to prove that YOLOv5 is much faster at target

detection than YOLOv3
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Figure 6.15 Speed comparison
At last, we performed video detection. Below is a screenshot of our work in video

recognition. Figure 6.16 is the first attempt at video detection, and figure 6.17 is the

video detection of a simulated traffic accident scene in a virtual city.

Figure 6.16 Video test-1

Figure 6.17 Simulated traffic accident scenedetection

6.3.3 Model training
YOLOv5 is a type of object detection algorithm that is designed to identify and locate

objects in images (Karthi, Muthulakshmi, Priscilla, Praveen, and Vanisri, 2021). For

YOLOv5 to be able to do this effectively, it needs to be trained on a dataset of images
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annotated with labels indicating the locations and classes of the objects in the images.

During training, the YOLOv5 model learns to identify input image patterns

corresponding to different object classes and locations. It does this by adjusting the

weights of its neural network based on the errors it makes while predicting the labels

of the training images (Redmon, Divvala, Girshick and Farhadi, 2016.). By doing this

repeatedly over many iterations, the model gradually improves its accuracy and ability

to detect objects in new images.

Training increases the accuracy of YOLOv5's detection of targets and the variety of

detections. It would not have learned to identify the patterns that correspond to

different object classes and locations, and its predictions would need to be more

accurate and complete. Therefore, model training is a crucial step in using YOLOv5

for object detection.

In the introduction to this section, we only briefly discussed model training, as

YOLOv5 comes with a database of a specific size so that we can perform preliminary

object detection directly. Model training is a single and lengthy process, and the

LabelImg tool (Tzutalin - Git code 2015) is the essential model annotation tool used

for training.

6.4 Summary
This section focuses on an in-depth discussion and comparison of the YOLOv3 and

YOLOv5 algorithms. First, in section 6.2, we summarise the changes between the

YOLOv3 version and the first version of YOLO, introduce the changes and

optimisations, and finally complete the image detection using YOLOv3. In the next

section, 6.3, we analyse the upgrades to YOLOv5, summarise the differences with

YOLOv3 and introduce the environment build. At last, the traffic accident simulation in

the virtual city was successfully detected using YOLOv5.

In this chapter, we introduce two versions of YOLO, and this is because each version

of the YOLO algorithm is updated too quickly, and the efficiency and accuracy of

object recognition are substantially improved. In order to get more accurate

experimental data, we choose to use the current latest version of YOLO for

experimental detection.

The field of computer vision is rapidly evolving, with new techniques and ideas

emerging all the time. As a result, YOLO and other object detection algorithms need

to be updated frequently to incorporate the latest research and advancements. As the

use cases for object detection expand and become more complex, there is a growing

demand for faster and more accurate algorithms that can handle larger datasets and
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more diverse object categories. This demand drives the rapid updates to YOLO

versions.
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Chapter7 Conclusion and Future Work

7.1 Conclusion
Motor traffic is an integral part of contemporary society, and its problems are

magnified as society develops. Increasingly, car accidents have become a significant

problem affecting people's daily travel. One of the significant factors contributing to

traffic accidents is the driver's blind spots. According to a report by the UK Department

for Transport, over 13,000 accidents occurred in the UK in 2019 as a result of drivers

failing to look properly, which includes accidents caused by blind spots. When a driver

changes lanes, turns or overtakes, it is difficult to detect the presence of cars,

pedestrians or other objects in the driver's blind spot, which can lead to car collisions

and even injuries. As technology advances, we try to experiment with more scientific

solutions to the problems caused by drivers' blind spots. Combining object detection

technology with driver blind spots detection is a promising area of research in

automotive safety. Blind spots are areas around a vehicle that are not visible to the

driver, which can lead to accidents if not properly monitored. Object detection

technology can be used to detect the presence of objects in blind spots and alert the

driver to their presence.

Experimenting with the driver's blind spot on real roads is a dangerous project

category. Now the state of the art – no ways to safely train AI of accidents without

damage to property and harm to persons the solution, using virtual world to train AI of

accidents without damage to property and harm to persons the results – recognition of

incidents that we trained the AI. To address this issue, we experimented with and

successfully tested the driver's blind spot in a virtual environment by constructing

virtual accidents without damage to property and human well-being. Firstly, we used

Unity3D to build the virtual scene, which was completed with a combination of several

building models and the layout of the roads to create the virtual city. We then

measured and recorded the extent and angle of the driver's blind spot in real life at

rest and reproduced it in the virtual scene. Next, we count the scenarios that cause

the most traffic accidents. At last, the dangerous situation due to the driver's blind spot

was simulated using a 3D environment.

Ultimately, we settled on YOLO (You only look once) as our detection algorithm. We

describe in detail the architecture of the YOLO algorithm and the processing of the

target. Two versions of YOLOv3 and YOLOv5 were tested and compared for image
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recognition. We used YOLOv5 for the final video recognition. To our surprise,

YOLOv5 was fast and accurate in detecting the experimental videos, as we performed

a simple database training on YOLOv5 during the video recognition phase due to time

constraints. We will continue refining our database to improve the speed and

accuracy of YOLOv5's detection.

In this project, we combined car blindness and recognition algorithms for object

recognition in the driver's blind spot. At the same time, we built a virtual environment

of an urban road to test our proposal. We used the YOLO algorithm for the recorded

video of the virtual scene to verify the feasibility of the YOLOv5 algorithm for car blind

spot detection. The complete urban virtual environment will allow us to perform more

tests in the future.

7.2 Future works
For time reasons, we only spent a small quantity of time on additional database

training after we got the full test results. We will continue to enhance our database

training to improve the speed and accuracy of YOLOv5. YOLO has been updated very

quickly, and as of March 2023, YOLOv7 has been announced and is gradually

becoming more widely used. We need to keep updating the version used for testing to

ensure a faster identification process and more accurate results.

For the development of the project, our next unfinished goal is the detection of

distance, where the distance to the target object is calculated from the coordinates,

and an alarm or corresponding action is generated if the vehicle's current speed is

dangerous concerning the distance between the object.

YOLO is a real-time object detection system that can be used in conjunction with

self-driving vehicles to detect and identify objects in real-time. Self-driving vehicles

rely heavily on object detection to navigate and avoid obstacles. YOLO is an effective

object detection system that can detect objects such as vehicles, pedestrians, traffic

signs, and more, in real-time. By integrating YOLO with a self-driving vehicle system,

the vehicle can quickly and accurately identify objects in its environment, allowing it to

make informed decisions about its movements and adjust its behavior accordingly.

This can significantly improve the safety and reliability of self-driving vehicles.

However, it is important to note that object detection is just one part of the self-driving

vehicle system. Other components such as mapping, localization, and path planning

are also essential for safe and efficient operation of the vehicle.
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Appendix
YOLOv5 Full Code and Comments on Different Parts of The Code

For the interpretation of the train.py file.

# Directories

wdir = save_dir / 'weights'

wdir.mkdir(parents=True, exist_ok=True) # make dir

last = wdir / 'last.pt'

best = wdir / 'best.pt'

results_file = save_dir / 'results.txt'

# Configure

plots = not opt.evolve # create plots

cuda = device.type != 'cpu'

init_seeds(2 + rank)

with open(opt.data) as f:

data_dict = yaml.load(f, Loader=yaml.FullLoader) # data dict

with torch_distributed_zero_first(rank):

check_dataset(data_dict) # check

train_path = data_dict['train']

test_path = data_dict['val']

nc = 1 if opt.single_cls else int(data_dict['nc']) # number of classes

names = ['item'] if opt.single_cls and len(data_dict['names']) != 1 else

data_dict['names'] # class names

assert len(names) == nc, '%g names found for nc=%g dataset in %s' %

(len(names), nc, opt.data) # check assert True (Continue),False (Terminate

program operation)

# Model

Loading models:
if pretrained:

with torch_distributed_zero_first(rank):

pass

# attempt_download(weights) # download if not found locally

ckpt = torch.load(weights, map_location=device) # load checkpoint

# print('ckpt1', ckpt)
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if hyp.get('anchors'):

ckpt['model'].yaml['anchors'] = round(hyp['anchors']) # force autoanchor

model = Model(opt.cfg or ckpt['model'].yaml, ch=3, nc=nc).to(device) # create ch=3

(Number of input channels)

exclude = ['anchor'] if opt.cfg or hyp.get('anchors') else [] # exclude keys

state_dict = ckpt['model'].float().state_dict() # to FP32

state_dict = intersect_dicts(state_dict, model.state_dict(), exclude=exclude) #

intersect

model.load_state_dict(state_dict, strict=False) # load

logger.info('Transferred %g/%g items from %s' % (len(state_dict),

len(model.state_dict()), weights)) # report

else:

model = Model(opt.cfg, ch=3, nc=nc).to(device) # create

(Load the pre-trained model if it is available and get the anchors if there are any in

hyp.yaml)

# Freeze

freeze = [] # parameter names to freeze (full or partial)

for k, v in model.named_parameters():

v.requires_grad = True # train all layers

if any(x in k for x in freeze):

print('freezing %s' % k)

v.requires_grad = False

Set the layers to be frozen, i.e. some of the weights of the model are frozen and will

not change during the training of the model, only the weight parameters thought to be

in the frozen layers will be trained.

# Optimizer

nbs = 64 # nominal batch size ;

accumulate = max(round(nbs / total_batch_size), 1) # accumulate loss before

optimizing

hyp['weight_decay'] *= total_batch_size * accumulate / nbs # scale weight_decay

logger.info(f"Scaled weight_decay = {hyp['weight_decay']}")

pg0, pg1, pg2 = [], [], [] # optimizer parameter groups

for k, v in model.named_modules():

if hasattr(v, 'bias') and isinstance(v.bias, nn.Parameter):
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pg2.append(v.bias) # biases

if isinstance(v, nn.BatchNorm2d):

pg0.append(v.weight) # no decay

elif hasattr(v, 'weight') and isinstance(v.weight, nn.Parameter):

pg1.append(v.weight) # apply decay

# print('pg1', pg1)

Optimizer:
if opt.adam:

optimizer = optim.Adam(pg0, lr=hyp['lr0'], betas=(hyp['momentum'], 0.999)) # adjust

beta1 to momentum

else:

optimizer = optim.SGD(pg0, lr=hyp['lr0'], momentum=hyp['momentum'],

nesterov=True)

optimizer.add_param_group({'params': pg1, 'weight_decay': hyp['weight_decay']}) #

add pg1 with weight_decay

optimizer.add_param_group({'params': pg2}) # add pg2 (biases)

logger.info('Optimizer groups: %g .bias, %g conv.weight, %g other' % (len(pg2),

len(pg1), len(pg0)))

del pg0, pg1, pg2

lf = one_cycle(1, hyp['lrf'], epochs) # cosine 1->hyp['lrf']

scheduler = lr_scheduler.LambdaLR(optimizer, lr_lambda=lf)

start_epoch, best_fitness = 0, 0.0

if pretrained:

# Optimizer

# print('ckpt2', ckpt)

if ckpt['optimizer'] is not None:

optimizer.load_state_dict(ckpt['optimizer'])

best_fitness = ckpt['best_fitness']

# Results

if ckpt.get('training_results') is not None:

with open(results_file, 'w') as file:
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file.write(ckpt['training_results']) # write results.txt

# Epochs

start_epoch = ckpt['epoch'] + 1 # ckpt['epoch'] = -1

if opt.resume:

assert start_epoch > 0, '%s training to %g epochs is finished, nothing to

resume.' % (weights, epochs)

if epochs < start_epoch:

logger.info('%s has been trained for %g epochs. Fine-tuning for %g additional

epochs.' %

(weights, ckpt['epoch'], epochs))

epochs += ckpt['epoch'] # finetune additional epochs

del ckpt, state_dict

Load the saved best_fitness, epoch from the pre-trained model and use it as the

starting best_fitness and epoch for the training model (default is -1 in the source code)

gs = int(model.stride.max()) # grid size (max stride)

nl = model.model[-1].nl # number of detection layers (used for scaling hyp['obj']);

imgsz, imgsz_test = [check_img_size(x, gs) for x in opt.img_size] # verify imgsz

are gs-multiples imgsz

Data generators:
dataloader, dataset = create_dataloader(train_path, imgsz, batch_size, gs, opt,

hyp=hyp, augment=True, cache=opt.cache_images, rect=opt.rect,

rank=rank,

world_size=opt.world_size, workers=opt.workers,

image_weights=opt.image_weights, quad=opt.quad)

mlc = np.concatenate(dataset.labels, 0)[:, 0].max() # max label class;

nb = len(dataloader) # number of batches

assert mlc < nc, 'Label class %g exceeds nc=%g in %s. Possible class labels

are 0-%g' % (mlc, nc, opt.data, nc - 1)

def cache_labels(self, path=Path('./labels.cache')):

# Cache dataset labels, check images and read shapes

x = {} # dict
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nm, nf, ne, nc = 0, 0, 0, 0 # number missing, found, empty, duplicate

pbar = tqdm(zip(self.img_files, self.label_files), desc='Scanning images',

total=len(self.img_files))

for i, (im_file, lb_file) in enumerate(pbar): ## im_file is jpg,lb_file is txt with

labels and coordinates.

try:

# verify images

im = Image.open(im_file)

im.verify() # PIL verify (Verify that the image is not corrupted)

shape = exif_size(im) # image size

assert (shape[0] > 9) & (shape[1] > 9), 'image size <10 pixels'

# verify labels

if os.path.isfile(lb_file):

nf += 1 # label found (Labels can be found for) with open(lb_file, 'r') as

f:

l = np.array([x.split() for x in f.read().strip().splitlines()], dtype=np.float32) #

labels

if len(l):

assert l.shape[1] == 5, 'labels require 5 columns each'

assert (l >= 0).all(), 'negative labels' #

(# Negative labeling is wrong )

assert (l[:, 1:] <= 1).all(), 'non-normalized or out of bounds coordinate labels'

assert np.unique(l, axis=0).shape[0] == l.shape[0], 'duplicate labels'

else:

ne += 1 # label empty with txt, but nothing in txt file, with xml file, but xml

file is empty

l = np.zeros((0, 5), dtype=np.float32) ## with xml file, but no tags, load tag

as [], empty set

else:

#No txt's not loading

nm += 1 # label missing No txt, can't find the tag

l = np.zeros((0, 5), dtype=np.float32)

x[im_file] = [l, shape] ##
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except Exception as e:

nc += 1

print('WARNING: Ignoring corrupted image and/or label %s: %s' % (im_file,

e))

pbar.desc = f"Scanning '{path.parent / path.stem}' for images and labels... " \

f"{nf} found, {nm} missing, {ne} empty, {nc} corrupted"

if nf == 0:

print(f'WARNING: No labels found in {path}. See {help_url}')

x['hash'] = get_hash(self.label_files + self.img_files)

x['results'] = [nf, nm, ne, nc, i + 1]

torch.save(x, path) # save for next time

logging.info(f"New cache created: {path}")

return x

Parameters and category weights:
# Model parameters

hyp['cls'] *= nc / 80. # scale hyp['cls'] to class count;

hyp['obj'] *= imgsz ** 2 / 640. ** 2 * 3. / nl # scale hyp['obj'] to image size and

output layers

model.nc = nc # attach number of classes to model

model.hyp = hyp # attach hyperparameters to model

model.gr = 1.0 # iou loss ratio (obj_loss = 1.0 or iou)

model.class_weights = labels_to_class_weights(dataset.labels, nc).to(device) *

nc # attach class weights

model.names = names

labels_to_class_weights ;

def labels_to_class_weights(labels, nc=80):

# Get class weights (inverse frequency) from training labels

if labels[0] is None: # no labels loaded

return torch.Tensor()
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labels = np.concatenate(labels, 0) # labels.shape = (866643, 5) for COCO

classes = labels[:, 0].astype(np.int) # labels = [class xywh]

weights = np.bincount(classes, minlength=nc) # occurrences per class; number of

each category; e.g. label [1,2,4,5,1] weights as [0,2,1,0,1,1]

weights[weights == 0] = 1 # replace empty bins with 1; convert category number 0 to

1

weights = 1 / weights # number of targets per class; use the reciprocal of the number

of each class as its weight value

weights /= weights.sum() # normalize; normalize the weights of each class

return torch.from_numpy(weights)

# Update image weights (optional)

if opt.image_weights:

# Generate indices

if rank in [-1, 0]:

cw = model.class_weights.cpu().numpy() * (1 - maps) ** 2 / nc # class

weights; The map for each category, which is updated at test time, is given a small

weight for the next training for large maps and a large weight for small maps when

test.test is performed.

iw = labels_to_image_weights(dataset.labels, nc=nc, class_weights=cw) #

image weights;; iw weight of each image selected, probability

dataset.indices = random.choices(range(dataset.n), weights=iw, k=dataset.n)

# rand weighted idx; from all training sets (based on the index), select all images in

the training set, those with large category weights are selected multiple times, those

with small weights are selected less often, or not even once

# Broadcast if DDP

if rank != -1:

indices = (torch.tensor(dataset.indices) if rank == 0 else

torch.zeros(dataset.n)).int()

dist.broadcast(indices, 0)

if rank != 0:

dataset.indices = indices.cpu().numpy()

Warmup and forward propagation:
for i, (imgs, targets, paths, _) in pbar: # batch
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-------------------------------------------------------------

ni = i + nb * epoch # number integrated batches (since train start); ni is the

total number of images

imgs = imgs.to(device, non_blocking=True).float() / 255.0 # uint8 to float32,

0-255 to 0.0-1.0

# Warmup; nw: total number of images for warmup.

if ni <= nw:

xi = [0, nw] # x interp

# model.gr = np.interp(ni, xi, [0.0, 1.0]) # iou loss ratio (obj_loss = 1.0 or iou)

accumulate = max(1, np.interp(ni, xi, [1, nbs / total_batch_size]).round())

for j, x in enumerate(optimizer.param_groups):

# bias lr falls from 0.1 to lr0, all other lrs rise from 0.0 to lr0

x['lr'] = np.interp(ni, xi, [hyp['warmup_bias_lr'] if j == 2 else 0.0, x['initial_lr'] *

lf(epoch)])

if 'momentum' in x:

x['momentum'] = np.interp(ni, xi, [hyp['warmup_momentum'],

hyp['momentum']])

# Forward

with amp.autocast(enabled=cuda): ## (Semi-precision calculations for faster

training)

pred = model(imgs) # forward

loss, loss_items = compute_loss(pred, targets.to(device), model) # loss

scaled by batch_size

# print('loss, loss_items', loss, loss_items)

if rank != -1:

loss *= opt.world_size # gradient averaged between devices in DDP mode

if opt.quad:

loss *= 4.

# Backward

scaler.scale(loss).backward()

Loss function calculation:
def compute_loss(p, targets, model): # predictions, targets, model
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device = targets.device

lcls, lbox, lobj = torch.zeros(1, device=device), torch.zeros(1, device=device),

torch.zeros(1, device=device)

tcls, tbox, indices, anchors = build_targets(p, targets, model) # targets tcls

(3,808) denotes the class of the gt box corresponding to the 3 detection heads, tobox

(3, ([808,4])) denotes the gt box corresponding to the 3 detection heads xywh; 808

means 808 boxes

# anchors (3, ([802,2])), indicating the anchor corresponding to the 808 gt

boxes for each detection header h = model.hyp # hyperparameters

# Define criteria

BCEcls = nn.BCEWithLogitsLoss(pos_weight=torch.tensor([h['cls_pw']],

device=device)) # weight=model.class_weights) It combines nn.sigmoid() and

nn.BCELoss() together

BCEobj = nn.BCEWithLogitsLoss(pos_weight=torch.tensor([h['obj_pw']],

device=device))

# Class label smoothing https://arxiv.org/pdf/1902.04103.pdf eqn 3

cp, cn = smooth_BCE(eps=0.0)

# Focal loss

g = h['fl_gamma'] # focal loss gamma

if g > 0:

BCEcls, BCEobj = FocalLoss(BCEcls, g), FocalLoss(BCEobj, g)

# Losses

nt = 0 # number of targets

no = len(p) # number of outputs Final output of three layers no=3

balance = [4.0, 1.0, 0.3, 0.1, 0.03] # P3-P7 Confidence loss [80 80] needs to be

multiplied by 4.0

for i, pi in enumerate(p): # layer index, layer predictions, Three levels of

measurement, i only 0, 1, 2 Predicted head [80 80] [40 40] [20 20]

b, a, gj, gi = indices[i] # image, anchor, gridy, gridx

tobj = torch.zeros_like(pi[..., 0], device=device) # target obj

n = b.shape[0] # number of targets targets[]

if n:
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nt += n # cumulative targets

ps = pi[b, a, gj, gi] # prediction subset corresponding to targets

# Regression

pxy = ps[:, :2].sigmoid() * 2. - 0.5

pwh = (ps[:, 2:4].sigmoid() * 2) ** 2 * anchors[i]

pbox = torch.cat((pxy, pwh), 1) # predicted box

iou = bbox_iou(pbox.T, tbox[i], x1y1x2y2=False, CIoU=True) # iou(prediction,

target) ## (Compare and contrast the differences between GIOU, CIOU and DIOU

and their respective roles)

lbox += (1.0 - iou).mean() # iou loss, (lbox += (1.0 - iou).mean() # iou loss,

since it is a loss, it needs to be negative, or as small as possible)

# Objectness

tobj[b, a, gj, gi] = (1.0 - model.gr) + model.gr *

iou.detach().clamp(0).type(tobj.dtype) # iou ratio Confidence prediction

if model.nc > 1: # cls loss (only if multiple classes); ps[:, 5:] Corresponds to

three categories, multiple categories are only required for execution

t = torch.full_like(ps[:, 5:], cn, device=device) # targets

t[range(n), tcls[i]] = cp

lcls += BCEcls(ps[:, 5:], t) # BCE

lobj += BCEobj(pi[..., 4], tobj) * balance[i] # obj loss

# print("lobj", lobj)

s = 3 / no # output count scaling

lbox *= h['box'] * s

lobj *= h['obj']

lcls *= h['cls'] * s

bs = tobj.shape[0] # batch size tobj [batch-size 3 80 80 ] [batch-size 3 40 40 ]

[batch-size 3 20 20 ]

loss = lbox + lobj + lcls

## Last needs to be multiplied by bs, i.e. number of batches

return loss * bs, torch.cat((lbox, lobj, lcls, loss)).detach()

Accuracy and recall calculation:
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# DDP process 0 or single-GPU

if rank in [-1, 0]:

# mAP

if ema:

ema.update_attr(model, include=['yaml', 'nc', 'hyp', 'gr', 'names', 'stride',

'class_weights'])

final_epoch = epoch + 1 == epochs

if not opt.notest or final_epoch: # Calculate mAP

results, maps, times = test.test(opt.data,

batch_size=total_batch_size,

imgsz=imgsz_test,

model=ema.ema,

single_cls=opt.single_cls,

dataloader=testloader,

save_dir=save_dir, plots=plots and final_epoch,

log_imgs=opt.log_imgs if wandb else 0)

if len(stats) and stats[0].any():

p, r, ap, f1, ap_class = ap_per_class(*stats, plot=plots, save_dir=save_dir,

names=names)

p, r, ap50, ap = p[:, 0], r[:, 0], ap[:, 0], ap.mean(1) # [P, R, AP@0.5, AP@0.5:0.95]

## Calculated what the accuracy and recall were for IOUs from 0.5 to 0.95, and

averaged

mp, mr, map50, map = p.mean(), r.mean(), ap50.mean(), ap.mean()

nt = np.bincount(stats[3].astype(np.int64), minlength=nc) # number of targets per

class

else:

nt = torch.zeros(1)

# Update best mAP

fi = fitness(np.array(results).reshape(1, -1)) # weighted combination of [P, R,

mAP@.5, mAP@.5-.95]

if fi > best_fitness:

best_fitness = fi

# Save model

save = (not opt.nosave) or (final_epoch and not opt.evolve)

if save:
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with open(results_file, 'r') as f: # create checkpoint

ckpt = {'epoch': epoch,

'best_fitness': best_fitness,

'training_results': f.read(),

'model': ema.ema,

'optimizer': None if final_epoch else optimizer.state_dict(),

'wandb_id': wandb_run.id if wandb else None}

# Save last, best and delete

torch.save(ckpt, last)

if best_fitness == fi:

torch.save(ckpt, best)

del ckpt

Equations：

Overlap of Real Presence Box Predictions.

(Objectives present in the cell) x (Overlap of Real Presence Box Predictions)

Each grid predicts C conditional class probabilities, i.e., the probability that the grid belongs to a
class provided it contains an object

Multiplying the conditional category probability of each raster with the confidence level of each
bounding box, the result contains both information about the probability of the predicted
category in the bounding box and reflects the accuracy of whether the bounding box contains
objects and the coordinates of the bounding box.
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