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Para-infectious brain injury in COVID-19
persists at follow-up despite attenuated
cytokine and autoantibody responses

A list of authors and their affiliations appears at the end of the paper

To understand neurological complications of COVID-19 better both acutely
and for recovery, we measured markers of brain injury, inflammatory media-
tors, and autoantibodies in 203 hospitalised participants; 111 with acute sera
(1–11 days post-admission) and 92 convalescent sera (56 with COVID-19-
associated neurological diagnoses). Here we show that compared to 60
uninfected controls, tTau, GFAP, NfL, and UCH-L1 are increasedwith COVID-19
infection at acute timepoints and NfL and GFAP are significantly higher in
participants with neurological complications. Inflammatory mediators (IL-6,
IL-12p40, HGF, M-CSF, CCL2, and IL-1RA) are associated with both altered
consciousness andmarkers of brain injury. Autoantibodies are more common
in COVID-19 than controls and some (including against MYL7, UCH-L1, and
GRIN3B) are more frequent with altered consciousness. Additionally, con-
valescent participants with neurological complications show elevated GFAP
and NfL, unrelated to attenuated systemic inflammatory mediators and to
autoantibody responses. Overall, neurological complications of COVID-19 are
associatedwith evidence of neuroglial injury in both acute and late disease and
these correlate with dysregulated innate and adaptive immune responses
acutely.

At the beginning of the COVID-19 pandemic, neurological complica-
tions occurred in a significant proportion of hospitalised patients1 and
even in those with mild COVID-19 infection2. While these neurological
‘complications’ were often mild (headache and myalgia), it became
clear that more significant neurological sequelae were observed,
including encephalitis/encephalopathies, Guillain Barre Syndrome,
seizure, and stroke3–6.

Although in vitro studies show that SARS-CoV-2 can infect neu-
rons and astrocytes7,8, autopsy studies indicate that direct viral inva-
sion is unlikely to be a cause of neurological dysfunction in vivo9. Post-
mortem studies failed to detect viral infection of the brain by immu-
nohistochemistry in the majority of cases, and viral qPCR levels were
often low andmay simply have reflected viraemia10–12. In addition, virus
and/or anti-viral antibodies were rarely found in cerebrospinal fluid
(CSF)13. Thus, it seems more likely that the virus affects the brain
indirectly. This could be through peripherally generated inflammatory

mediators, immune cells, autoantibodies and/or blood brain barrier
changes associated with endothelial damage14,15. Immune infiltrates
have been found in autopsy studies, including neutrophils and T cells,
although agonal effects could not be excluded16. On the other hand,
elevated IL-6 levels in sera and CSF have been associated with neuro-
logical complications, including meningitis, thrombosis, stroke, cog-
nitive and memory deficits, regardless of respiratory disease
severity17–20. One study found that the brain injury markers NfL and
GFAP, and inflammatory cytokines were elevated in COVID-19 and
scaled with severity21–25; another study showed that baseline CSF NfL
levels correlatedwith neurological outcomes at follow-up26 but overall,
the relationships between these immune mediators and markers of
brain injury and neuropathology remains to be fully explored. Finally,
specific neuronal autoantibodies have been reported in some neuro-
logical patients raising the possibility of para- or post-infectious
autoimmunity14,27.
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To assess the relationship between host immune response and
markers of brain injury with neurological injury, we studied two large,
multisite cohorts which, in combination, provided acute, early and late
convalescent sera from COVID-19-positive (COVID+ve) participants.
Wemeasuredbrain injurymarkers, a range of cytokines and associated
inflammatory mediators, and autoantibodies in these samples, and
related them to reduced levels of consciousness (defined as a Glasgow
Coma Scale Score [GCS] GCS ≤ 14) in the acute phase, or the history of
a neurological complication of COVID-19 in convalescent participants.
We tested the hypothesis that immunemediators would correlate with
brain injury markers and reveal a signature of neurological complica-
tions associated with COVID-19.

Results
COVID-19 results in acute elevation of serum markers of brain
injury, more so in participants with abnormal Glasgow coma
scale (GCS) score
We used sera from the International Severe Acute Respiratory and
emerging Infection Consortium Clinical Characterisation Protocol
United Kingdom (ISARIC CCP-UK) study, obtained 1–11 days post
admission, that included 111 participants with COVID-19 of varying
severity and 60 uninfected healthy controls (labelled Control). Parti-
cipants were stratified by normal (n = 76) or abnormal (n = 35) Glasgow
Coma Scale scores (labelled GCS = 15 or GCS ≤ 14, respectively) to
provide a proxy for neurological dysfunction (Fig. 1a). GFAP (glial
fibrillary acidic protein, marker of astrocyte injury), UCH-L1 (a marker
of neuronal cell body injury), and NfL (neurofilament light) and Tau
(both markers of axonal and dendritic injury) were measured. Overall,
serum levels of NfL, GFAP, and total-Tau (tTau) were significantly
higher in COVID-19 participants compared to the uninfected healthy
controls but, as shown in Fig. 1b–e, those participants with abnormal
GCS scores hadhigher levels ofNfL andUCH-L1 than thosewith normal
GCS scores. Thus, all fourmarkers of brain injurywere raised inCOVID-
19 participants (both GCS = 15 and GCS ≤ 14) but, in addition, axonal
and neuronal body injury biomarkers discriminated between partici-
pants with and without reduced GCS.

Markers of brain injury remain elevated in the early and late
convalescent phases in participants who have had a CNS
complication of COVID-19
To ask whether these findings persisted in participants recovering
from COVID-19-related neurological complications, ninety-two
COVID-19 participants were recruited to the COVID-Clinical Neu-
roscience Study (COVID-CNS), 56 who had had a new neurological
diagnosis that developed as an acute complication of COVID-19
(group labelled “neuro-COVID”), and 36 with no such neurological
complication (group labelled “COVID”, Fig. 1f, Table 1, Supplemen-
tary Tables 1 and 2). When compared to the same healthy controls
(n = 60), across all timepoints, both COVID-19 subgroups (COVID and
neuro-COVID) showed increased levels of NfL, GFAP, and tTau (but
not UCH-L1 (Fig. 1g–j, Supplementary Table 1)). Furthermore, parti-
cipants recovering from neuro-COVID had significantly higher levels
of NfL, and a trend towards higher levels of tTau, than the COVID
participants (Fig. 1g, j). Highest NfL serum levels were present in
participants with cerebrovascular conditions, whereas tTau was ele-
vated in participants with cerebrovascular, CNS inflammation and
peripheral nerve complications (Fig. 1k, l). NfL remained significantly
elevated in a multiple regression model adjusted for age (Supple-
mentary Fig. 1a, b). We then separately compared the two cohorts at
early and late convalescent follow-up periods (less than and over six
weeks after admission respectively). NfL and GFAP levels remained
elevated in all COVID-19 participants in the convalescent period, but
only remained elevated beyond 6 weeks in participants who had
suffered an acute neurological complication (neuro-COVID,
Fig. 1m–p; Supplementary Fig. 1c). The presence of elevated brain

injury markers in the acute phase of COVID-19 confirms previous
findings14, but the elevated levels of NfL and GFAP in those who are
convalescent from acute neurological complications suggest ongo-
ing neuroglial injury.

Clinical and brain injurymarkers evidence of neurological insult
levels are associated with levels of innate inflammatory
mediators in the acute phase of COVID-19
To explore whether the acute and persistent elevation of markers of
brain injury observed in participants with COVID-19 was associated
with an acute inflammatory response, we measured a panel of 48
inflammatorymediators in serumat the same timepoints. In the ISARIC
samples, sixmediators were significantly higher in participants with an
abnormal GCS than in those with a normal GCS (interleukin [IL]-6,
hepatocyte growth factor [HGF], IL-12p40, IL-1RA, CCL2 and macro-
phage colony stimulating factor [M-CSF]), indicating increased innate
inflammation (Fig. 2a, Supplementary Fig. 2a). Pearson’s correlation
tests identified correlations between these significant immune med-
iators in an interrelated pro-inflammatory network (Fig. 2b, c), and
unsupervised Euclidean hierarchical cluster analysis revealed clusters
of pro-inflammatory mediators elevated together (Fig. 2d). The first
cluster incorporated the IL-1 family (including IL-1RA), interferons and
M-CSF, and the second cluster included IL-6, CCL2, CXCL9, HGF, and
IL-12p40 (boxes in Fig. 2d). Brain injury biomarkers correlated with
elevations in these inflammatory mediators: GFAP and UCL-H1 corre-
lated with a number ofmediators in the first cluster, whereas tTau and
NfL correlated strongly with HGF and IL-12p40 in the second cluster
(Supplementary Table 3).

Amore stringent analysis ofmedian-centred cytokine data (which
corrected for between participant skewing of mediator levels) con-
firmed thatHGFand IL-12p40werehigher in the abnormal GCSCOVID-
19participants, and correlatedwith cognateNfL levels (Supplementary
Table 4). Taken together these data suggest that activation of the
innate immune system was related to both clinical and blood marker
evidence of CNS insult.

Inflammatory mediators are not elevated across the participant
cohort at late timepoints after COVID-19; but late tTau eleva-
tions correlate with levels of several inflammatory mediators
In contrast to the acute data, the levels of cytokines and associated
mediatorswere lowerwhenmeasuredduring the convalescent periods
even in those who had suffered neurological complications of COVID-
19 (group labelled “neuro-COVID”. Supplementary Fig. 2b). The cor-
relations between cytokines and associated mediators no longer dis-
played the same tight clusters (Fig. 2e, f). GFAP remained elevated
during the convalescent phase of neurological complications (Fig. 1p)
but did not show correlations with the inflammatory mediators.
Similarly NfL was higher overall in those with neurological complica-
tions (Fig. 1n) but there were no significant correlations with inflam-
matorymediators (Fig. 2f). However, tTau remained elevated overall in
those with neurological complications ((1.7 (1.3, 2.2) pg/mL versus 1.3
(1.1, 1.9) pg/mL)) and levels correlated with eight immune mediators
including CCL2, IL-1RA, IL-2Rα and M-CSF along with CCL7, stem cell
factor (SCF), IL-16 and IL-18 (Fig. 2f, Supplementary Table 5, Supple-
mentary Fig. 2c). This last association was specific to the late phase of
the illness and was not found in acute COVID-19.

Cytokine networks are significantly altered in participants with
neurological complications of COVID-19: both acute encepha-
lopathy, and those recovering from a neurological complication
We used graph theoretical approaches to compare these cytokine
networks between participants with: acute COVID-19 and normal GCS;
acute COVID-19 with altered consciousness (GCS ≤ 14), and con-
valescent participants recovering from a neurological complication of
COVID-19 (neuro-COVID). Participants with both neurological
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Fig. 1 | Brain injurymarkers are elevated acutely in COVID-19 participants with
an abnormal Glasgow coma scale score (GCS) and in participants who experi-
enced a neurological complication associated with COVID-19. a The acute
ISARIC cohort included Day 1–11 hospital admission timepoints. b–e Acute serum
brain injurymarkers were assessed by Simoa: bNfL, cUCH-L1, dGFAP, and e tTau.
All four were elevated in COVID-19 cases with normal Glasgow coma scale scores
(GCS) relative to controls overall. Dotted lines show lower limit of quantification
(LLOQ). f–j The Simoa analyses were performed for the sera from the COVID-CNS
COVID and neuro-COVID groups at early and late convalescent timepoints (g, j)
showing persistence of NfL, GFAP, and tTau in COVID participants, with NfL
higher in neuro-COVID than COVID participants. kWithin the combined early and

late convalescent COVID-19 neurological cases, the highest levels of NfL were
observed in participants who had suffered a cerebrovascular event at the time of
SARS-CoV-2 infection. l tTau levels were raised in the cerebrovascular, CNS
inflammatory and seizure conditions. m, n Serum NfL remained elevated in both
the early (<6 weeks from positive SARS-CoV-2 test) and late convalescent phases
(>6 weeks) in neuro-COVID compared to COVID non-neurological cases.
o, p GFAP was elevated in neurological cases in the early and late convalescent
phase. Box and whisker plots show all data points with median as centre line with
25th and 75th percentiles. Sample sizes shown in (a) and (f). Group comparisons
are by Kruskal–Wallis test with Dunn’s post-hoc multiple comparison test, no
statistical comparison made for panel (h) as medians were at LLOQ.
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consequences of COVID-19 (GCS ≤ 14) and Neuro-COVID both showed
cytokine networks thatweredifferent fromCOVID-19 participantswith
no neurological problems (Fig. 2b, c, e; p <0.001, Steiger test), sug-
gesting a specific dysregulated innate immune response that is asso-
ciated with neurological complications of COVID-19. Further pathway
analyses using the KEGG enrichment scores on the significantly dif-
ferent cytokines, revealed many commonalities with other inflamma-
tory syndromes (Supplementary Fig. 3a, b). Interestingly, cytokine
profiles of the neurological complications groups from both the ISA-
RIC and COVID-CNS cohort led to JAK-STAT signalling being a sig-
nificant involved pathway which would be amenable to
immunomodulation, for example, by tofacitinib, which has been
shown to reduce mortality in COVID-1928.

COVID-19 is associatedwith an acute adaptive immune response
overall, which includes antibodies to viral antigen and CNS
autoantigens in those with abnormal GCS scores
Given past reports of autoantibody responses following COVID-1914,27,
we sought evidence of similar dysregulated adaptive immune
responses in our participant cohorts. We used a bespoke protein
microarray of 153 viral and tissue proteins tomeasure IgM (Fig. 3a–d)
and IgG (Fig. 4a–d) reactivity in the acute phase ISARIC sera. The
median fluorescence intensities for each putative antigen were nor-
malized for each participant and the Z-scores were compared to
healthy control data, to determine positive reactivity to the different
antigens (with a threshold for detection set at three standard
deviations above controls for each antigen; see Supplementary
Table 6, Supplementary Fig. 4a). IgM and IgG responses in COVID-19
participants showed greater reactivity overall (both GCS= 15 and
GCS ≤ 14), compared to the controls, with no difference in normal-
ised fluorescence Z scores or the number of participants with IgG
‘hits’ (a Z-score >3) between those with normal or abnormal GCS
score (Fig. 3a, b, Fig. 4a, b). However, several IgM and IgG auto-
antibodies, including those against the CNS antigens UCH-L1, GRIN3B
and DRD2, along with the cardiac antigen, myosin light chain (MYL)-
7, were present in a greater proportion of participants with an
abnormal GCS score, as were antibodies to spike protein (Figs. 3c,
4c). None of the antibodies correlated significantly with levels of
brain injury markers (Supplementary Figs. 4b, c, 5b, c), but they did
show correlations with each other (Figs. 3d, 4d, h), suggesting a non-
specific antibody response in some individuals during the
acute phase.

Normalized fluorescence Z scores of serum IgM and IgG auto-
antibodies in the early and late convalescent samples were similar to
those in the acute samples (Figs. 3e, 4e), and the IgM and IgG ‘hits’
were more frequent than in controls (highest in the neuro-COVID
group, Figs. 3f, 4f, Supplementary Fig. 5a). However, specific auto-
antibody responses to MYL7, gonadotrophin releasing hormone
receptor (GNRHR) and several HLA antigens were common in the
neuro-COVID participants (Figs. 3g, 4g, Supplementary Fig. 5a).
When the IgM and IgG hits were stratified by condition,

cerebrovascular and inflammatory conditions showed the highest
number (Supplementary Fig. 5d, e). As in the acute phase, autoanti-
body responses did not show significant associations with brain
injury markers, but did tend to correlate with each other (Fig. 4h,
Supplementary Fig. 5b, c).

Finally, to explore binding to native neuronal antigens, sera from
acute COVID-19 participants with CNS antigen reactivity were incu-
bated with sections of rat brain, neurons and antigen-expressing cells.
Binding to rat brain sections identified 42/185 (23%) of participants with
strongly positive immunohistochemical staining (e.g. Fig. 4i) and
overall, sera from the COVID+ve ISARIC participants showed more
frequent binding to brainstem regions than control sera, but this did
not relate to the GCS or neurological disease of the participants (Fig. 4j,
Supplementary Fig. 6). In addition, from 34 selected samples tested via
cell-based assays to examine for the presence of specific autoantibodies
(LGI1, CASPR2, NMDAR, GABAB receptor), only one bound to the
extracellular domain of the GABAB receptor (from the ISARIC cohort,
Supplementary Fig. 7a, b), as expected of a pathogenic autoantibody.

Discussion
We used several approaches to study neurological complications of
COVID-19 infection. These included assessment of immune mediators
and markers of brain injury in participants with and without neurolo-
gical complications, both in the acute and convalescent phases after
COVID-19 infection. We demonstrated increased levels of brain injury
markers following COVID-19, which showed specific patterns with
disease phase (acute or convalescent), and varied with the presence or
absence of neurological injury or dysfunction. In the acute phase, all
four brain injury markers (GFAP, NfL, tTau and UCH-L1) were elevated
in participants when compared to controls, and specific markers of
dendritic and axonal injury (tTau and NfL) were significantly higher in
participants who showed a reduced level of consciousness (GCS ≤ 14).
In the early convalescent phase (<6 weeks post-infection), GFAP, NfL,
and tTauwere elevated in participants recovering fromCOVID-19, with
no differences between those who had or had not sustained a neuro-
logical complication of disease. However, at late timepoints (>6weeks)
elevations of NfL and GFAP were only seen in participants who had
sustained a neurological complication of COVID-19 in the acute phase
of their illness. These data suggest that clinical neurological dysfunc-
tion in COVID-19 is reflected by increases in markers of neuroglial
injury, both in the acute phase and at follow-up, which are related to a
dysregulated immune response, more robustly in the acute phase of
illness.

In the acute phase, when compared to controls, we also observed
increases in a range of inflammatorymediators (IL-6, HGF, IL-12p40, IL-
1RA, CCL2, and M-CSF) in the overall cohort of COVID-19 participants,
with HGF and IL-12p40 showing robust differentiation between parti-
cipants with and without alterations in consciousness. By contrast,
participants at the late phase after COVID-19 showed no group level
elevation of inflammatory mediators. However, late elevations in tTau
correlated with levels of CCL2, CCL7, IL-1RA, IL-2Rα, M-CSF, SCF, IL-16,

Table 1 | Clinical characteristics of healthy controls and COVID-CNS participants

Clinical characteristics Control (n = 60) COVID (n = 36) Neuro-COVID (n = 56)a

Age Mean (SD) 48 (18) 51 (17) 58 (13)

Median (Q1,Q3) 50 (32,62) 52 (34,65) 61 (48,67)

Gender Male n (%) 21 (35%) 21 (58.3%) 36 (64.3%)

Sampling time (days)b,c Median (Q1,Q3) 8 (4,14) 148 (52,272)

COVID severityc,d Median (Q1,Q3) 5 (5,5) 7 (5,8)
aNeuro-COVID group comprises cases of: cerebrovascular conditions (21%), CNS inflammation (16%), movement disorders (5.4%), seizures and other CNS conditions (30%), and peripheral nervous
system conditions (27%).
bSampling time in days between the first COVID+ve test and serum sample.
cTwo Neuro-COVID participants with approximate COVID-infection timing and nine with indeterminate severity.
dAs per COVID-19 WHO severity score from 0 to 10.
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12p40, CCL2, CXCL9 and hepatocyte growth factor (HGF) and the second group

included the IL-1 family, interferons, andmacrophage colony stimulating factor (M-
CSF); to the right is shown the correlations between each cytokine with the four
brain injurybiomarkers (significance indicated by asterisks). eNetwork analysis and
heatmaps of correlations between mediators did not demonstrate the tight inter-
connectedness that had been identified in acute samples and there were differ-
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(***p <0.001). f At this later stage several mediators correlated with tTau. Volcano
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****p<0.0001).
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and IL-18, suggesting that these markers of the late innate host
response were associated with persisting markers of dendritic/axonal
injury markers. A network analysis showed that the repertoire of
cytokine responses was different in participants both with acute
reductions in GCS, or those recovering from a neurological compli-
cation of COVID-19 when compared to the GCS = 15 group.

Participants with acute COVID-19 also developed IgG autoanti-
body responses to a larger number of both neural and non-neural
antigens, than seen in controls. These increased IgG responses

persisted into the late phase but to different antigens. While the
diversity of autoantibody response did not differ between participants
with andwithout neurological dysfunction, autoantibody responses to
specific antigens, including the neural antigens UCH-L1, GRIN3B, and
DRD2, were more common in participants with abnormal GCS at pre-
sentation. In the late phase, participants who had or had not experi-
enced a neurological complication of COVID-19 were distinguished by
the presence of autoantibodies to HLA antigens rather than neural
antigens.

a

b c
d

f g

e

0 5 10 15 20

ACE
DLAT

DPYSL5
GLRA1
HLA-B

SFTPC
Nucleocapsid

Spike

50 100

*
*
*

*
*

*

GCS≤14
GCS=15

*

% of participants with antibody

0 50 100

HLA-DRB4

KRT18

Nucleocapsid

Spike COVID
neuro-COVID

*
*

% of participants with antibody

.
0.01
0.1

1

10
100

1000
10000

N
or

m
al

iz
ed

 Z
-s

co
re

s

Spike

CNS antigens BBB Non-CNS antigens

GCS ≤14 (n=34); GCS = 15 (n=72)

Control GCS=15 GCS≤14
0

10

20

30

40

50

Ig
M

 h
its

 (Z
-s

co
re

 a
bo

ve
 3

) <0.0001

<0.0001

COVID

Neu
ro-

COVID
0

20

40

60

80

Ig
M

 h
its

 (Z
-s

co
re

 a
bo

ve
 3

)

.
0.01

0.1
1

10

100

1000

10000

N
or

m
al

iz
ed

 Z
-s

co
re

s

Spike

CNS antigens BBB Non-CNS antigens

COVID (n=31); Neuro-COVID (n=51) Nucelocapsid

ACE
GLRA1

DPYSL5

DLAT

HLA-B

Spike
SFTPC

Fig. 3 | There is an IgM antibody response in participants with COVID-19
directed at SARS-CoV-2 spike protein and against several self-antigens. a Acute
samples were tested for IgM antibodies by protein microarray with normalized
fluorescence Z-scores shown. b COVID-19 participants showed considerably more
binding ‘hits’ than healthy controls (fluorescence with a Z-score of 3 or above
compared to controls), although overall there was no difference in the acute
samples between participants with normal (GCS= 15) or abnormal GCS (GCS ≤ 14)).
Nevertheless, c COVID-19 participants with abnormal GCS (GCS ≤ 14) more fre-
quently had raised IgM antibodies than COVID-19 participants with a normal GCS
(GCS = 15), including those directed at SARS-CoV-2 spike protein (Fisher’s exact
tests *p<0.05). d A chord diagram shows the associations between antibodies,

including those against Spike. e IgM antibodies were also analysed in the con-
valescent participants. fA largrproportionofCOVID andNeuro-COVIDparticipants
had positive antibody ‘hits’ for IgM (defined by Z-score 3 and above compared to
controls). gOf those antibodies against self-antigens identified, they were only two
with different frequencies between the groups (Fisher’s exact tests *p<0.05). At
this timepoint there was no significant difference in the proportion of individuals
with IgM against SARS-CoV-2 spike or nucleocapsid epitopes. Violin plots show all
data points with median at centre line and 25th and 75th quartile lines. Group
comparisons are by Kruskal–Wallis test with post-hoc Dunn’s multiple comparison
test, pairwise comparisonsby two-tailedMann–WhitneyU test, and correlations are
Pearson’s coefficients.
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parisons by two-tailed Mann–Whitney U test, and correlations are Pearson’s
coefficients.
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These data from clinical disease provide important insights
regarding the pathophysiology and pathogenesis of neurological
injury, dysfunction, and disease in COVID-19. The clinical character-
istics of our participant cohorts, and the elevation in brain injury
markers, provide evidence of both acute and ongoing neurological
injury29. Furthermore, the literature data on the rarity of direct CNS
infection by the virus, suggest that the innate and adaptive host
responses that we document should be explored as pathogenic
mechanisms. The incidence of neurological cases has decreased since
the first wave of the pandemic, possibly due to the use of immuno-
suppressants, such as dexamethasone, although this may also reflect
vaccines attenuating disease and changes in the prevalence of differ-
ent strains of SARS-CoV-230.

The inflammatory mediators that we found to be elevated in the
acute phase are broadly concordant withmany other publications that
have examined innate immune responses in COVID-1921,22 but there are
limited data addressing associations between such responses and the
development of neurological complications. It is possible that someof
the risk of developing such complications is simply related to the
severity of systemic infection and the host response, and it would be
surprising if these were not strong contributors. However, our data
suggest that acute neurological dysfunction in COVID-19 is also asso-
ciated with a different repertoire of cytokine responses, with HGF and
IL-12p40 showing the statistically most robust discrimination between
participants with and without an abnormal GCS. HGF has important
roles in braindevelopment and synaptic biology31 and its elevationmay
represent a protective/reparative response in participants with neu-
rological injury. IL-12p40 has a core role in orchestrating Th1 respon-
ses, and has been reported to be central in the development of central
and peripheral neuroinflammation, with p40 monomer subunits per-
haps acting as inhibitors of the process32–34. Interestingly, the cytokine
network that was activated in the late convalescent phase was differ-
ent, potentially indicating differential drivers of neurological injury
throughout the disease course. Though group level comparisons with
controls showed some commonalities in inflammatory mediator
increase, most notably in IL-1RA, CCL2, and M-CSF, there were many
differences. The late tTau elevation that we demonstrated was sig-
nificantly associated with elevations in these three mediators, but also
CCL7, IL-2Rα, SCF, IL-16, and IL-18. These are all important pro-
inflammatory mediators, and their association with tTau levels may
reflect the persistence of a systemic inflammatory response that can
enhance neuroinflammation32,34,35.

We found a general increase in antibody production following
COVID-19 infection and only a few autoantibody frequencies were
different when compared by GCS or COVID versus neuro-COVID cases.
Of note, absolute levels of autoantibodies were low in comparison to
anti-viral antibodies that developed over the course of the acute ill-
ness, with the exception of SFTPA1. Antibodies to SFTPA1, a lung sur-
factant protein, have been found to correlate with COVID-19 severity14,
but these antibodies were present in only a few acute cases. HLA
antibodies, on the other hand, were more frequent in Neuro-COVID
than COVID participants and this requires further investigation. The
autoantibodies detected in COVID-19, as in other infections, could be
through molecular mimicry or bystander effects36–39, but the lack of
association of autoantibody levels with markers of brain injury is evi-
dence against a causal role for these adaptive immune responses.
Further analysis by screening the antibodies against brain antigens
ex vivo revealed sporadic reactivity in both cases and controls with
only the brainstem showing increased reactivity in acute COVID+ve
participants; the frequencies were lower in COVID and neuro-COVID
cases with no difference between them.

Our studies have several limitations including: limited clinical
information on the acute participants and lack of longitudinal blood
samples; in addition, the low GCS could indicate sedation for intuba-
tion, rather thanCNS disease, in the acute cohort. Althoughwedid not

have COVID-19 severity scores, we did know whether participants had
required oxygen or not; when data were analysed within the cohorts
comparing participantswhohador hadnot required oxygen, 5 out of 6
cytokines remained significantly elevated in the abnormal GCS group.
In the COVID-CNS study where we did have in-depth clinical informa-
tion, wewere limited bynot having acute blood samples. Nevertheless,
several cytokines showed significant positive correlations with the
brain injury marker tTau, and interestingly, three of them were cyto-
kines thatwere significantly associatedwith abnormalGCS in the acute
cohort (IL-1RA, CCL2, and M-CSF) highlighting a network of co-
upregulated immune mediators associated with neurological compli-
cations. The commonalities in innate immune response in participants
who suffered neurological dysfunction/complications, both in the
acute phase and at convalescence, is underlined by the results of
network analysis. Pro-inflammatory cytokines are expected to be
increased in the anti-viral response, but we found that they not only
correlate with COVID-19 severity, but with GCS, as well. Strengths of
our study include the large cohort of participants studied with well-
characterized neurological syndromes and a known range of timings
since COVID-19 infection. We studied aspects of the innate and adap-
tive immune response as well as brain injury markers in order to dis-
cover useful markers of neurological complications over time.

Several hypotheses for how SARS-CoV-2 causes neuropathology
have been tested. A prospective study of hospitalised patients showing
IL-6 and D-dimer as risk factors for neurological complications impli-
cates the innate immune response and coagulation pathways19. The
complement pathway and microthrombosis have been associated with
brain endothelial damage from the infection, and this phenotype per-
sists months after COVID-1940,41. Animal models have provided key
insights into COVID-19 neuropathology that warrant discussion. There
have been at least two reports of viral encephalitis and neuron degen-
eration and apoptosis observed in non-human primates42,43. It is
important to note that in these studies the virus was present at low
amounts in the brain and predominantly in the vasculature as visualized
by co-localization with Von Willebrand Factor43. Similar to the clinical
scenario, there was no correlation of neuropathology with respiratory
disease severity43. A recent mouse study is particularly relevant to our
work and involved assessment of amousemodel that lacked direct viral
neural invasion by infecting mice that were intratracheally transfected
with human ACE2. This study reported increased CXCL11 (eotaxin) in
mouse serum and CSF that correlated with demyelination and was
recapitulated by giving CXCL11 intraperitoneally44; this was linked to
clinical studies that showed elevated CXCL11 in patients with brain fog44.
A combined analysis of hamster and clinical studies showed that COVID-
19 led to IL-1β and IL-6 expression within the hippocampus andmedulla
oblongata and decreased neurogenesis in the hippocampal dentate
gyrus which may relate to learning and memory deficits45. This was also
borne out during in vitro studies that showed that serum from COVID
patients with delirium lead to decreased proliferation and increased
apoptosis of a human hippocampal progenitor cell line mediated by
elevated IL-646.

In conclusion, we show evidence of quantifiable neuroglial injury
markers in blood fromCOVID-19 infection, which ismore prominent in
patientswith neurological dysfunction in the acute phaseof the illness,
andpersists in the convalescent phase inpatientswho suffereddefined
acute neurological complications. These brain injury markers are
associated with dysregulated systemic innate and adaptive immune
responses in the acutephaseof thedisease, and suggest that thesemay
represent targets for therapy.

Methods
Human participant studies/healthy controls and ethics
information
The ISARIC WHO Clinical Characterization Protocol for Severe Emer-
ging Infections in the UK (CCP-UK) was a prospective cohort study of
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hospitalised patients with COVID-19, which recruited across England,
Wales, and Scotland (National Institute for Health Research Clinical
Research Network Central Portfolio Management System ID: 14152).
Participants were recruited prospectively during their hospitalisation
with COVID-19 between February 2020 and May 2021. The protocol,
revision history, case report form,patient information leaflets, consent
forms and details of the Independent Data and Material Access Com-
mittee are available online47. Ethical approval for CCP-UK was given by
the South Central - Oxford C Research Ethics Committee in England
(Ref 13/SC/0149) and the Scotland A Research Ethics Committee (Ref
20/SS/0028). We examined 111 participants with anonymized clinical
data including Glasgow coma scale score and consented serum sam-
ple. ISARIC samples were collected during the acute phase (1–11 days
from hospital admission). Healthy control participants between the
ages of 20–79 years old were recruited through the Cambridge Bio-
medical Research Centre (prior to the COVID-19 pandemic) and were
non-hospitalised, without SARS-CoV-2 infection, and had no neurolo-
gical diagnoses. All participants provided written consent. Sex was not
considered in the study design and the sex of participants was self-
reported.

Participants were recruited into the COVID-Clinical Neuroscience
Study (COVID-CNS) between October 2020 and October 2022 and
either the participant or their next of kin consented in accordancewith
the ethically-approvedNIHR Bioresource (East of England—Cambridge
Central Research Ethics Committee (Ref 17/EE/0025; 22/EE/0230). The
purpose of the study was to investigate patients who had been hos-
pitalised with COVID-19 with or without neurological complications.
These were defined by the following criteria: neurological disease
onsetwithin 6weeks of acute SARS-CoV-2 infection and no evidenceof
other commonly associated causes, and diagnostic criteria previously
described48. Participants were recruited both as in-patients and retro-
spectively after discharge. The diagnosis was reviewed and finalized by
a multi-disciplinary Clinical Case Evaluation panel. In this study, there
were COVID patients without neurological complications (COVID-
controls) and COVID patients with neurological complications (Neuro-
COVID cases) and these cases were stratified by diagnostic definitions
of each type of neurological complication, very few had overlapping
syndromes in this relatively small cohort and the Evaluation Panel were
able to provide a primarydiagnosis for all”4. Co-morbidities and known
treatments are shown in Supplementary Table 7. Serum samples were
collected at either the early (<6 weeks from COVID-19 positive test) or
late convalescent (>6 weeks) phases. The samples were aliquoted,
labelled with anonymised identifiers, and frozen immediately
at −70 °C.

Human brain injury markers measurements
Brain injury markers were measured in thawed sera using a Quanterix
Simoa kit run on an automated HD-X Analyser according to the man-
ufacturer’s protocol (Quanterix, Billerica,MA, USA, Neurology 4-Plex B
Advantage Kit, cat#103345). We assessed neurofilament light chain
(NfL), Ubiquitin C-Terminal Hydrolase L1 (UCH-L1), total-Tau (tTau),
and glial fibrillary acidic protein (GFAP) in sera diluted 1:4 and used the
manufacturer’s calibrators to calculate concentrations.

Human serum cytokine measurements
Analytes in thawed sera were quantified using the BioRad human
cytokine screening 48-plex kit (Cat# 12007283) following manu-
facturer’s instructions on a Bioplex 200 using Manager software 6.2.
This involved incubation of 1:4 diluted sera with antibody-coated
magnetic beads, automated magnetic plate washing, incubating the
beads with secondary detection antibodies, and adding streptavidin-
PE. Standard curves of known protein concentrations were used to
quantify analytes. Samples that were under the limit of detection
were valued at the lowest detectable value adjusted for 1:4 dilution
factor.

Median-centred normalization of human serum cytokine
measurements
To minimise any potential impact of any possible variation in sample
storage and transport, concentrations were median-centred and nor-
malised for each participant, using established methodology49–51. The
pg/mL of cytokines were log-transformed and the median per parti-
cipant across all cytokines was calculated. The log-transformed med-
ian was subtracted from each log-transformed value to generate a
normalized set.

Protein microarray autoantibody profiling
Autoantibodies were measured from thawed sera as previously
described inNeedhamet al.14. Briefly, a protein arrayof antigens (based
on the HuProt™ (version 4.0) platform) was used to measure bound
IgM and IgG from sera, using secondary antibodies with different
fluorescent labels detected by a Tecan LS400 scanner andGenePix Pro
v4 software. As developed in previous studies14,52, antibody positivity
was determined bymeasuring themedian fluorescence intensity (MFI)
of the four quadruplicate spots of each antigen. The MFI was then
normalized to the MFI of all antigens for that patient’s sample by
dividing each value by the median MFI. Z-scores were obtained from
these normalized values based on the distribution derived for each
antigen from the healthy control cohort. A positive autoantibody ‘hit’
was defined as an antigen where Z ≥ 3.

Detection of antibodies by immunohistochemistry
Immunohistochemistry was performed on sagittal sections of female
Wistar rat brains. Brains were removed, fixed in 4% paraformaldehyde
(PFA) at 4 °C for 1 h, cryoprotected in 40% sucrose for 48h, embedded
in freezing medium and snap-frozen in isopentane chilled on dry ice.
10-µm-thick sections were cut and mounted on slides in a cryostat. A
standard avidin-biotin peroxidase method was used, as reported
previously53,54, where thawed serawere diluted 1:200 in 5% normal goat
serum and incubated at 4 °C overnight, and secondary biotinylated
goat anti-human IgG Fc was diluted (1:500) and incubated at room
temperature for 1 h. Finally, slides were counter-stained using cresyl
violet.

Detection of autoantibodies with cell-based assays
HEK293T cells were seeded on 96 well plates in DMEM+ 10% FCS at
37 °C and 5% CO2, transiently transfected with polyethylenimine with
the relevant antigen-encoding plasmids GABAB-R1 and GABAB-R2 of
the GABAB receptor, membrane tethered LGI1, CASPR2 and the
NR1 subunit of the NMDA receptor, as described previously55–57.
Thawed serum samples were incubated at 1:100 dilution for CASPR2
and GABAB receptor assays, and at 1:20 for LGI1 and NMDAR. After
washing, cells were fixed with 4% PFA, washed again and incubated
with unconjugated goat anti-human IgG Fc antibody, and donkey anti-
goat IgG heavy and light chain Alexa Fluor 568 antibody. Cells were co-
stained with DAPI.

Statistical analyses
Prism software (version 9.4.1, GraphPad Software Inc.) was used for
graph generation and statistical analysis. The Shapiro-Wilk normality
test used to check the normality of the distribution. Individual data
points, median lines, and first and third quartiles are shown on box
and whisker plots and violin plots with minimum and maximum
points as error bars. Heatmaps, volcano plots and Chord diagrams
were made using R studio (version 4.1.1 RStudio, PBC). The 2D
cytokine network analyses were created using the qgraph package in
R software and matrices differences were assessed by Steiger test58.
Univariate analyses were conducted to test for differences between
two groups. Differences between two normally distributed groups
were tested using the paired or unpaired Student’s t test as appro-
priate. The difference between two non-normally distributed groups
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was tested using Mann–Whitney U test. Volcano plots used multiple
Mann–Whitney U tests with a false discovery rate set to 5%, and
heatmaps show Pearson’s correlations adjusted for a false discovery
rate of 5%. Group comparisons were by Kruskal–Wallis test. Fre-
quency differences of antibodies were measured by Fisher’s exact
tests. Proteins which were statistically significantly different in the
COVID-positive controls (GCS = 15 or COVID groups, respectively)
versus the GCS less than or equal to 14 or neurological cases by
Mann-Whitney test (p ≤0.05) were analysed with the KEGG (Kyoto
Encyclopedia of Genes and Genomes) database. Pathway classifica-
tions from the KEGG map search results were ranked by highest
number of mapped candidates and exported in the KGML format
using R package clusterProfiler. p ≤0.05 was considered statistically
significant.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The individual-level data from these studies is not publicly available to
main confidentiality. Data generated by the ISARIC4C consortium is
available for collaborative analysis projects through an independent
data and materials access committee at isaric4c.net/sample_access.
Data and samples from the COVID-Clinical Neuroscience Study are
available through collaborative research by application through the
NIHR bioresource at https://bioresource.nihr.ac.uk/using-our-
bioresource/apply-for-bioresource-data-access/. Brain injury marker
and immune mediator data are present in the paper and in the source
data file. Source data are provided with this paper.
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