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Abstract 
With the fast increase in the publicity of the Internet of Things (IoT) and cloud computing, the 

requirement for massive connectivity and highly reliable data rates is increasing day by day for 

communication networks. IoT can establish the connections among many types of smart 

devices, such as smart sensors, robots, and mobile devices. To satisfy these demands and such 

massive connectivity, three main services have been presented to the communication networks. 

These key services consist of massive machine type communication (mMTC) that permits 

massive connections between IoT terminals, enhanced mobile broadband (eMBB) that delivers 

a high data rate for mobile devices, and ultra-reliable and low-latency communication 

(URLLC) that confirms reliability and minimum latency for critical and sensible applications. 

These services are characterized by their quality of service (QoS), where URLLC has a 

stringent QoS policy for high reliability and low latency application, eMBB service is 

categorized by a moderate QoS policy, while mMTC has no precise QoS policy. These types 

of QoS are usually difficult to realize with the traditional orthogonal multiple access (OMA) 

due to limited spectrum resources, and delays. To satisfy and enhance these diverse QoS 

requirements, many potential multiple access schemes have been introduced into 

communication network. Among them, is the non-orthogonal multiple access (NOMA) scheme 

that has a achieved a popularity because it can support massive connectivity with limited 

resources, tolerable transmission delays, and high spectral efficiency. The key feature of 

NOMA is that multiple user devices can be served from the same radio resource block, such 

as time, frequency, and code. NOMA scheme applies superposition coding to combine signals 

related to multiple users at the transmitter side and implements successive interference 

cancellation procedure to differentiate and recover the signals of multiple devices at the 

receiver side.   

There are some challenges related to resource allocation in NOMA system, such as power 

allocation and channel estimation. Machine learning has obtained publicity over the past 

several years, and many machine learning models and algorithms have been industrialized. 

Deep learning is a subset of machine learning, and it has distinct advantages over traditional 

machine learning methods, such as being capable of working on huge volumes of data in 

complex networks. Furthermore, reinforcement learning also is a type of machine learning, and 

the main aim of reinforcement learning is to train an agent to carry out a certain task within an 
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uncertain environment. Deep learning and reinforcement learning approaches can be 

investigated and inspected to be one of the candidate’s algorithms for resource allocation and 

channel estimation in NOMA system. In this thesis, simulation results clearly indicates that 

deep learning and reinforcement learning algorithms can provide a superior improvement in 

terms of diverse performance metrics when Rayleigh and Rician fading channels are 

considered. Also, in this thesis, a benchmark schemes are also simulated to highlight how much 

enhancement has been achieved in the system performance when our proposed machine 

learning models are applied compared to the results obtained by the benchmark schemes. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



IV  

Publications Based on this Research 
 

1. Gaballa, Mohamed, and Maysam Abbod. 2023. "Simplified Deep Reinforcement Learning 

Approach for Channel Prediction in Power Domain NOMA System" Sensors 23,                  

no. 21: 9010. https://doi.org/10.3390/s23219010 

2. Gaballa, Mohamed, Maysam Abbod, and Ammar Aldallal. 2023. "A Study on the Impact 

of Integrating Reinforcement Learning for Channel Prediction and Power Allocation 

Scheme in MISO-NOMA System" Sensors 23, no. 3: 1383. 

https://doi.org/10.3390/s23031383 

3. Gaballa, Mohamed, Maysam Abbod, and Ammar Aldallal. 2022. "Investigating the 

Combination of Deep Learning for Channel Estimation and Power Optimization in a Non-

Orthogonal Multiple Access System" Sensors 22, no. 10: 3666. 

https://doi.org/10.3390/s22103666 

4. M. Gaballa, M. Abbod and S. Alnasur, "Hybrid Deep Learning for Channel Estimation and 

Power Allocation for MISO-NOMA System," 2022 IEEE Future Networks World Forum 

(FNWF), Montreal, QC, Canada, 2022, pp. 361-366, doi: 

10.1109/FNWF55208.2022.00070. 

5. M. Gaballa, M. Abbod and A. Aldallal, "Deep Learning and Power Allocation Analysis in 

NOMA System," 2022 Thirteenth International Conference on Ubiquitous and Future 

Networks (ICUFN), Barcelona, Spain, 2022, pp. 196-201, doi: 

10.1109/ICUFN55119.2022.9829643. 

6. M. Gaballa, M. Abbod and A. Jameel, "Power Optimization Analysis using Throughput 

Maximization in MISO Non-Orthogonal Multiple Access System," 2021 IEEE Globecom 

Workshops (GC Wkshps), Madrid, Spain, 2021, pp. 1-6, doi: 

10.1109/GCWkshps52748.2021.9682080. 

7. M. Gaballa, M. Abbod, A. Jameel and N. Khaled, "Throughput Maximization & Power 

Optimization Analysis in Non-Orthogonal Multiple Access System," 2021 IEEE 4th 5G 

World Forum (5GWF), Montreal, QC, Canada, 2021, pp. 82-87, doi: 

10.1109/5GWF52925.2021.00022. 

https://doi.org/10.3390/s23031383
https://doi.org/10.3390/s22103666


V  

8. M. Gaballa, M. Abbod and M. Albasman, "Power Allocation & MRC Analysis for Single 

Input Multi Output Non-Orthogonal Multiple Access System," 2021 IEEE International 

Conferences on Internet of Things (iThings) and IEEE Green Computing & 

Communications (GreenCom) and IEEE Cyber, Physical & Social Computing (CPSCom) 

and IEEE Smart Data (SmartData) and IEEE Congress on Cybermatics (Cybermatics), 

Melbourne, Australia, 2021, pp. 168-173, doi: 10.1109/iThings-GreenCom-CPSCom-

SmartData-Cybermatics53846.2021.00038. 

 

 



VI  

Declaration 
 

It is hereby declared that the thesis in focus is the author’s own work and is submitted for 

the first time to the Post Graduate Research Office. The study was originated, composed, and 

reviewed by the mentioned author in the Department of Electronic and Electrical Engineering, 

College of Engineering, Design and Physical Sciences, Brunel University London, UK. All the 

information derived from other works has been properly referenced   and acknowledged. 

 

Mohamed Gaballa  

August 2023  

London, UK 



VII  

Acknowledgements 
 

Firstly, I would like to express my sincere appreciation and gratitude to all those who made 

this thesis possible. This work would not have been possible without help, support and strong 

motivation of my principal supervisor, Prof.  Maysam Abbod, who gave me the 

encouragement, guidance, and support from the beginning to the end made my work much 

easier and more enjoyable. 

I would also like to thank my second supervisor Dr. Ammar Aldallal for his fascinating 

discussions about the area and the work undertaken. 

Lastly, I thank my parents and my family for their support, love, and encouragement 

throughout the period. Also, I express my sincere thanks to all my teachers, relatives, 

colleagues, elders, and all those from whom I have learnt and gained knowledge. 



VIII  

Thesis Contents 
 

Abstract ........................................................................................................................................... II 

Publications Based on this Research ............................................................................................ IV 

Declaration ..................................................................................................................................... VI 

Acknowledgements...................................................................................................................... VII 

Thesis Contents ........................................................................................................................... VII 

List of Figures ............................................................................................................................. XII 

List of Tables ............................................................................................................................... XV 

List of Abbreviations ................................................................................................................. XVI 

Chapter 1 .......................................................................................................................................... 1 

Introduction ..................................................................................................................................... 1 

1.1 Multiple Access System and Machine learning Vision .............................................................. 1 

1.2 Motivations ................................................................................................................................ 3 

1.3 Aim of the Research ................................................................................................................... 4 

1.4 Design Objective ........................................................................................................................ 5 

1.5 Contributions to Knowledge ...................................................................................................... 6 

1.6 Thesis Outline ............................................................................................................................ 8 

Chapter 2........................................................................................................................................ 10 

Background and Outlook ............................................................................................................... 10 

2.1 Introduction ............................................................................................................................. 10 

2.2  Power Domain Non-Orthogonal Multiple acess .................................................................... 10 

2.3  Superposition Coded Signal ................................................................................................... 13 

2.4  Successive Interference Cancellation ..................................................................................... 16 

2.5  NOMA System based Power Optimization Literature Survey ................................................ 19 

2.6  Machine Learning and Artificial Neural Networks ................................................................ 23 

2.7  Deep Learning Based NOMA system Related works .............................................................. 23 

2.8  Artificial Neural Networks and Deep Learnig Basic Thoery  ............................................... 254 

2.9  Recurrent Neural Networks .................................................................................................. 276 

2.10 Long-Short Term Memory Neural Networks ......................................................................... 27 

2.11 Modulation Scheme  .............................................................................................................. 28 

 



IX 

 

2.12  Summary ............................................................................................................................... 30 

Chapter 3...................................................................................................................................... 311 

Mathematical System Modelling ................................................................................................. 311 

3.1  Introduction ............................................................................................................................ 31 

3.2  System Model ........................................................................................................................ 322 

3.3  Optimization Problem........................................................................................................... 344 

3.4  Power Constraints ................................................................................................................ 355 

3.5  QoS Constraints .................................................................................................................... 355 

3.6  Sum Rate optimization problem  ........................................................................................... 366 

3.7  Optimization Analysis ........................................................................................................... 366 

3.8  Lagrange Function and Optimality Condition ....................................................................... 40 

3.9  MISO-NOMA System  ........................................................................................................... 433 

3.9.1 Multiuser Environment ....................................................................................................... 444 

3.9.2  MISO-NOMA System Model  ............................................................................................. 456 

3.10  Optimization Problem Characterization ............................................................................ 488 

3.10.1 Power Constraint .............................................................................................................. 489 

3.10.2 QoS Constraints ................................................................................................................ 499 

3.11  Optimization Framework .................................................................................................... 499 

3.12  Simulation Results and Discussion ..................................................................................... 522 

3.13  SIMO-NOMA System Model ................................................................................................. 55 

3.14  Optimization Problem ........................................................................................................... 59 

3.15  Optimization Problem Analysis ............................................................................................ 60 

3.16  Simulation Results and Discussions ..................................................................................... 64 

3.17  Summary ............................................................................................................................... 67 

Chapter 4 ....................................................................................................................................... 68 

Deep Neural Networks based Long-Short Term Memory Architecture and Framework....……..68 

4.1  Introduction ............................................................................................................................ 68 

4.2  Related Works ......................................................................................................................... 69 

4.3  Recurrent Neural Networks and long short-term memory Networks ..................................... 71 

4.3.1 Proposed Deep Neural Networks Architecture and Framework .......................................... 72 

4.3.2 LSTM Cell Structure and Mechanism................................................................................... 74 

4.3.3  Channel Estimation based DNN Model ............................................................................... 75 

4.3.4  Dataset Generation.............................................................................................................. 76 

4.4  Simulation Environment ......................................................................................................... 77 



X 

 

4.5  Simulation Results and Discussion ......................................................................................... 80 

4.6  Results Summary..................................................................................................................... 91 

4.7 Summary .................................................................................................................................  93 

Chapter 5 ........................................................................................................................................ 94 

Reinforcement Learning based Q-Learning for Channel Estimation in MISO-NOMA System ... 94 

5.1  Introduction ............................................................................................................................ 94 

5.2 Related Works .......................................................................................................................... 95 

5.3 Reinforcement learning Theory and Framework .................................................................... 97 

5.4 Channel Estimation Based Q-Learning Algorithm .................................................................. 98 

5.5 Q-Learning Network Architecture ......................................................................................... 101 

5.5.1 Dataset Preparation ........................................................................................................... 103 

5.6  Simulation Parameters ....................................................................................................... 1056 

5.6.1 Simulation Setup ................................................................................................................. 107 

5.6.2 Results Discussion and Analysis ......................................................................................... 108 

5.7 Reults Summary ..................................................................................................................... 120 

5.8 Summary  ............................................................................................................................... 122 

Chapter 6...................................................................................................................................... 123 

Deep Reinforcement Learning Framework in NOMA System ................................................... 123 

6.1  Introduction .......................................................................................................................... 123 

6.2  Related Works ....................................................................................................................... 123 

6.3  System Model ...................................................................................................................... 1244 

6.4  Channel Estimation in Multiuser Environment .................................................................... 126 

6.5  Deep Reinforcement Learning Basic Concept ...................................................................... 128 

6.6  DQN Training phase .......................................................................................................... 1311 

6.7  DQN Based LSTM Network .................................................................................................. 131 

6.8  DQN Dataset Generation ..................................................................................................... 136 

6.8.1 DQN Policy ...................................................................................................................... 1367 

6.8.2 DQN Algorithm .................................................................................................................. 138 

6.9  Simulation Parameters ..................................................................................................... 13940 

6.10  Simulation Environment ................................................................................................... 1422 

6.11  Results Discussion and Analysis ......................................................................................... 142 

6.12  Results Summary................................................................................................................. 148 

6.13 Summary  ............................................................................................................................. 150 

Chapter 7 ..................................................................................................................................... 151 



XI 

 

Conclusions and Future Work ..................................................................................................... 151 

7.1 Introduction ........................................................................................................................... 151 

7.2 Conclusion ............................................................................................................................. 152 

7.3 Future Work ........................................................................................................................... 154 

References .................................................................................................................................... 156 



XII  

List of Figures 
Figure 2.1: Basic block diagram for PD-NOMA system  .............................................................. 11 

Figure 2.2: User 1 and user 2 data representation ....................................................................... 13 

Figure 2.3: Modulated data representation for user 1 and user 2 ............................................... 14 

Figure 2.4: Modulated data for user 1 and user 2 after power scaling ........................................... 15 

Figure 2.5: Superimposed coding signal  ....................................................................................... 16 

Figure 2.6: Direct decoding for signal 𝑥1 .................................................................................... 18 

Figure 2.7: Decoding for signal 𝑥2 .............................................................................................. 19 

Figure 2.8: Deep learning basic architecture ............................................................................... 25 

Figure 2.9: Recurrent neural networks fundamental construction ............................................. 26 

Figure 2.10: LSTM cell structure  ................................................................................................. 28 

Figure 2.11: QPSK Modulator structure  ...................................................................................... 29 

Figure 2.12: QPSK modulated waveforms  ................................................................................... 29 

Figure 2.13: QPSK Demodulator structure.................................................................................... 30 

Figure 3.1: MISO-NOMA system basic Structure. ....................................................................... 46 

Figure 3.2: BER vs power (optimized power - fixed power). ........................................................ 53 

Figure 3.3: Outage probability vs power (optimized power - fixed power) .................................. 54 

Figure 3.4: Sum rate vs power (optimized power - fixed power) .................................................. 55 

Figure 3.5: Sum rate vs Power for SIMO-NOMA and SIMO-OMA ............................................ 65 

Figure 3.6: Outage probability vs Power for SIMO-NOMA (optimized - FPA) ........................... 66 

Figure 3.7: Individual rates vs Power for SIMO-NOMA (optimized - FPA) ............................... 67 

Figure 4.1: RNN network architecture. ......................................................................................... 72 

Figure 4.2: Architecture of the proposed DNN network ............................................................... 73 

Figure 4.3: Internal structure of LSTM cell .................................................................................. 75 

Figure 4.4: BER vs. power for proposed DL-NOMA and conventional NOMA (Rayleigh). ....... 81 



XIII  

Figure 4.5: Outage probability vs. power for DL and conventional NOMA (Rayleigh)............... 82 

Figure 4.6: Sum rate vs. power for conventional NOMA, joint DL-NOMA, and proposed DL-NOMA 

(Rayleigh). ..................................................................................................................................... 83 

Figure 4.7: Individual capacity vs. power for conventional NOMA and DL-NOMA (Rayleigh).84 

Figure 4.8: BER vs. power for conventional NOMA and DL-NOMA (Rician) ........................... 85 

Figure 4.9: Outage probability vs. power for conventional NOMA and DL-NOMA (Rician) ..... 86 

Figure 4.10: Individual capacity vs. power for conventional NOMA and DL-NOMA (Rician) ... 87 

Figure 4.11: Sum rate vs. number of users for conventional NOMA, joint DL-NOMA, and proposed 

DL-NOMA (Rayleigh) .................................................................................................................. 88 

Figure 4.12: BER vs. power for DL based optimized and FPA schemes (Rayleigh) .................... 89 

Figure 4.13: Outage prob. vs. power for DL based optimized and FPA schemes (Rayleigh). ...... 90 

Figure 4.14: Sum rate vs. power for DL-based optimized and FPA schemes (Rayleigh). ............ 91 

Figure 5.1: Reinforcement Learning Framework ....................................................................... 98 

Figure 5.2: Architecture of the proposed Channel prediction scheme-based Q- algorithm ......... 102 

Figure 5.3: BER vs. power (Q-learning - Conventional NOMA (MMSE)) ................................ 109 

Figure 5.4: Outage Prob. vs. power (Q-learning - Conventional NOMA (MMSE)) ................... 110 

Figure 5.5: Sum rate vs. power (MMSE, LSTM, RL Actor-Critic, RL Q-learning) ................... 111 

Figure 5.6: Sum rate vs. number of users (MMSE, LSTM, RL Actor-Critic, RL Q-learning) ... 112 

Figure 5.7: BER vs. Power (Q-learning, Conventional NOMA – Rician channel) ........... 113 

Figure 5.8: BER vs. power (Q-learning, SARSA, Actor-Critic)  .............................................. 115 

Figure 5.9: Outage Prob. vs. power (Q-learning, SARSA) .......................................................... 116 

Figure 5.10: Sum rate vs. power (Q-learning, SARSA) .............................................................. 117 

Figure 5.11: BER vs. Power (Q-learning, Optimization, FPA) .................................................. 118 

Figure 5.12: Outage Prob. vs. Power (Q-learning, Optimization, FPA) ..................................... 119 

Figure 5.13: Individual rate vs. Power (Q-learning, Optimization, FPA) ....................................120 

Figure 6.1 DQN basic structure with two hidden layers .............................................................. 130 

Figure 6.2: Proposed DQN Architecture ..................................................................................... 132 



XIV  

Figure 6.3: Basic DQN Architecture ........................................................................................... 135 

Figure 6.4: LSTM Cell Structure ................................................................................................. 136 

Figure 6.5: BER vs. power (DQN - MMSE) ............................................................................... 143 

Figure 6.6: Outage Probability vs. power (DQN - MMSE) ......................................................... 144 

Figure 6.7: Capacity vs. power (DQN - MMSE) ......................................................................... 145 

Figure 6.8: Sum rate vs. power (MMSE, LSTM, RL Q-learning, DQN) .................................... 146 

Figure 6.9: Sum rate vs. number of users (MMSE, LSTM, RL Q-learning, DQN) .................... 147 

Figure 6.10: BER vs. power (DQN – Q learning - Optimization) ............................................... 148 

 



XV  

List of Tables 
Table 4.1: Summary of the simulation parameters ................................................................... 80 

Table 4.2 Sample statistics for average percentage improvement (DL- LSTM vs Conventional NOMA 

- Rayleigh) ..................................................................................................................................... 92 

Table 4.3: Sample statistics for average percentage improvement (DL- LSTM vs Conventional 

NOMA- Rician)  ............................................................................................................................ 92 

Table 4.4: Sample statistics for average percentage improvement (Optimization vs FPA) .......... 93 

Table 5.1: Simulation environment parameters. ....................................................................... 107 

Table 5.2: Sample statistics for average percentage improvement (RL- Q learning vs Conventional 

NOMA)  ......................................................................................................................................... 121 

Table 5.3: Sample statistics for average percentage improvement (RL- Q learning vs RL- SARSA) 

 ....................................................................................................................................................... 121 

Table 5.4: Sample statistics for average percentage improvement (Optimization vs FPA) .......... 122 

Table 6.1: Simulation parameters for DQN approach ................................................................... 141 

Table 6.2: Sample statistics for average percentage improvement (DQN vs MMSE)  ................. 149 

Table 6.3: Sample statistics for average percentage improvement (Sum rate vs Power) ............ 149 

Table 6.4: Sample statistics for average percentage improvement (Sum rate vs no. of users) .. 150 

 

 

 

 

 

 

 

 

 



XVI  

List of Abbreviations 

6G Sixth Generation   

AWGN Additive White Gaussian Noise   

BER Bit error rate  

BS Base station  

CSI Channel state information 

DL Deep Learning  

DNN Deep Neural Network  

DRL Deep Reinforcement Learning 

eMBB enhanced mobile broadband  

FPA Fixed Power allocation  

GRU Gated Recurrent unit  

HetNet Heterogeneous Networks 

IoT Internet of Things 

ITU International Telecommunication Union 

ITU International Telecommunication Union 

KKT Karush-Kuhn–Tucker   

LSTM Long-short term memory  

LTE Long term evolution  

MEC Mobile Edge Computing 

MIMO Multi Input – Multi Output 

MISO Multi-input single output  

ML Machine learning  

MMSE Minimum mean square error  

mMTC  Massive machine type communication  



XVII  

MSE Mean square error  

MUD Multiuser detection  

OFDM Orthogonal Frequency Division Multiplexing   

OPS Optimized power scheme  

PD-

NOMA 

Power domain Non-Orthogonal Multiple 

Access 

QoS Quality of service  

RL Reinforcement learning  

RNN Recurrent Neural Networks 

SARSA State-Action-Reward-State-Action 

SDMA Space Division Multiple Access  

SIC Successive interference cancellation  

SIMO Single-input multi-output 

URLLC ultra-reliable and low-latency communication  

  



1  

Chapter 1    

Introduction 

1.1 Multiple Access System and Machine Learning Vision   

Non-orthogonal multiple access (NOMA) system is classified as an inspiring multiple access 

scheme in forthcoming wireless networks toward enhancing the spectral efficiency and system 

capacity. NOMA can exploit the radio resource block (RRB) by characterizing the fading 

channels for each user in NOMA cell, to deliver a diverse quality of service (QoS) demands 

for the examined users in the cell. NOMA system enables various users to get simultaneous 

access to same time-frequency resource block based on the principle of superposition different 

signals from different users via the power domain or code domain [1].  In order that the 

spectrum can be effectively exploited, NOMA concept mainly depends on that, user with bad 

or weak channel condition and a user that has a good channel condition can both share the same 

subcarrier at same time slot. In NOMA scheme, each user device can receive the superposition 

or the multiplexing of signals from all users in the cell, therefore the exclusion of interference 

from non desired users come to be essential to achieve a managed decoding. Regularly, 

multiuser (MU) detection in NOMA system can be achieved via the successive interference 

cancellation (SIC) procedure that can be performed in power domain [2]. In SIC technique, 

signals from different users can be decoded sequentially on the basis of the availability of the 

channel parameters and the assigned power. On the other hand, comprehensive knowledge of 

the channel parameters for each user in NOMA cell is challenging because pilot symbols that 

mainly employed in channel prediction might interfere with signals from other users, hence 

disturbing the performance of conventional channel estimation procedures, such as minimum 

mean square error (MMSE). 

In order to realize a high spectral efficiency and enormous connectivity in next generation of 

wireless networks, Power domain non-orthogonal multiple access (PD-NOMA) is one of the 

multiple access candidates’ schemes, since it can deal with signals that have noticeable 

distinction in power levels. PD-NOMA also depends on SIC procedure to split up the high-
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energy signal at the receiver side and then remove it to leave only the desired signal [3]. The 

incorporation of NOMA scheme and multiple antenna techniques is considered as a appropriate 

way towards characterizing the meaningful improvement in the system’s data rates [4]. 

Machine learning (ML) has obtained a public interest over the past several years, and numerous 

machine learning approaches have been industrialized [5]. One of the popular ML models that 

used for prediction and forecasting, is artificial neural networks (ANN). Artificial neural 

network is mainly considered as an information processing structure that is inspired from the 

methodology that is used by the brain to process the information [6]. Principally, ANN can be 

considered as a smaller scale model for the neural structure of the brain. Neurons are the 

elementary components of an ANN that can take two or more inputs and give one output. The 

output of the neurons is calculated based on a set of weights and a bias applied to the input and 

these weights and biases can modify the output. When several neurons are organized into one 

layer, and these layers are connected such that the output of one-layer feeds into the input of 

the succeeding layer, and this structure can be described as a feedforward ANN.  

ANN can find out how to resolve a complex problems based on the experience obtained during 

the training process for that ANN structure. Throughout the training process, ANN is given a 

set of certain inputs for processing, and the output from the ANN is then compared with the 

anticipated output, and then the error function is calculated. Throughout the training iterations, 

and based on the calculated error function, a backpropagation algorithm will be used to update 

the weights and biases in the ANN using gradient descent algorithm to reduce the output error 

[7]. This training process can be repeated many times until the error function is minimized, or 

the ANN starts to show a good performance. Once the ANN is efficiently trained, the ANN 

can deal or manage a new set of data and predict the output with relatively high precision. 

Normally, the ANN can run well when the training process follows to reliable settings or 

policy. To improve the convergence process in the training process, all the training data firstly 

need to be processed so that there are no substantial time gaps, and it is more suitable to 

normalize all the input training data, in order to accelerate the training process.  

The utilization of deep neural networks (DNN) or deep learning (DL) in NOMA system, is 

greatly explored over the last few years. Various kinds of learning algorithms have been 

suggested and implemented in different types of communication networks to enhance the 
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system performance. Overall, there are three types of ML algorithms that are mainly discussed 

in the literature, such as supervised, unsupervised, and reinforcement learning. Supervised 

learning is extensively exploited to estimate the channel state information (CSI), and 

localization. Unsupervised learning is frequently used in user clustering. Reinforcement 

learning is a different branch of ML, and it is considered to have a remarkable impact in 

wireless networks.  

Recently several RL algorithms have been proposed to obviously handle the issues associated 

with channel state information (CSI), beamforming, and power allocation. Typically, RL is 

developed on the basis of a Markov Decision Process (MDP) design, with the following basic 

elements [8]: a state space 𝑺, which is the set of all states in the environment and these states 

can be observed by the agent. An action space 𝑨, which is the set of actions that can be decided 

by the agent at each state. An immediate reward 𝑅, which is the direct reward that is given to 

the agent after selecting an action 𝑎 ∈ 𝑨 to move to the new state 𝑠 ∈ 𝑺 . Policy 𝑃 represents 

the framework to move from the current state to the new state based on the action that will be 

decided by the agent. Another essential component in the RL process is the State-action value 

function 𝑄(𝑠, 𝑎), which is mathematically described as the expectation or the average of the 

cumulative rewards when a certain action 𝑎 ∈ 𝑨 is selected by an agent in the state 𝑠 ∈ 𝑺 when 

a certain policy is applied. Based on the above, we can consider RL as a method of 

understanding the agent’s interaction in a stochastic environment, and the main aim of the 

reinforcement learning is to train the agent how to carry out a certain task within an uncertain 

environment [9]. 

1.2 Motivations 

Many deep neural networks (DNN) approaches have been proposed in the literature to 

explicitly address the issues associated with resource allocation, channel state information, 

channel assignment, and signal detection. To the best of my knowledge, there has been no 

study that has investigated the combination between deep learning based channel estimation 

process and the optimal power allocation scheme for multiuser detection in a downlink non-

orthogonal multiple access (NOMA) system in fading channels. Most of the current works are 

managing the issues of power optimization and deep learning based channel estimation 

separately [10]. 
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Furthermore, it is worth mentioning that many of the proposed schemes in the literature that 

consider ML for channel estimation task are mainly focused on implementing several deep 

neural networks (DNN), which in turn leads to an increase in the number of hidden layers with 

a massive number of neurons in each layer. So, one of the significances of this research is to 

illuminate that we can also eliminate the need for such DNN approaches, and instead, we can 

adopt the RL based developed Q-learning algorithm to predict the channel coefficients for each 

user device in the NOMA cell, and at the same time, a notable improvement in system 

performance and network convergence is realized. It is also worth mentioning that unlike deep 

learning algorithms, that mainly depend on learning from a training data set, the proposed Q-

learning algorithm in our research is developed to dynamically enhance the system 

performance and adjust to the variations in the channel based on the feedback and interaction 

with the environment and cell parameters [11]. 

In addition, several RL algorithms have been suggested in the literature to handle the issues 

associated with channel state information (CSI), beamforming, and power allocation, and to 

the best of our knowledge, there is no study that investigates the incorporation between the RL 

based Q learning algorithm for channel estimation and the optimum power allocation policy, 

in order that this integrated framework can be exploited for multiuser detection in downlink 

NOMA system in fading channels. 

Recently, deep reinforcement learning based Q network have achieved a remarkable interest 

by authors ̀ in various fields, and because of that, in our work we also manage to apply the deep 

reinforcement learning (DRL) based deep Q networks (DQN) as a tool in the channel 

estimation task. Then, we plan to compare between RL based Q algorithm and DRL based 

DQN when channel estimation problem is considered, and power optimization policy is also 

applied.  

1.3 Aim of the Research 

In this research, initially we aim to discuss and analyse the downlink NOMA system based on 

sum rate maximization problem with respect to the constraints of total transmitted power 

budget and minimum transmission rate. To satisfy this aim, we have elaborated and structured 

a mathematical analysis to formulate the objective function, then Lagrange function and 

optimality conditions are applied to derive a closed form expression for the optimal power 
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coefficients that can be assigned for users in the examined NOMA cell [4]. Fading channels 

may scatter the transmitted signal and initiate dependencies between the scattered samples, this 

might impact the channel estimation process and therefore influence the reliability of decoding 

procedure and the signal detection. Therefore, in our research, we also aim to investigate the 

impact of utilizing different ML approaches such as, DNN, RL based Q algorithm, and DRL 

based DQN in estimating the channel parameters for users in NOMA cell. In our research 

scenarios, we will incorporate the DNN, Q algorithm, and DQN approaches into NOMA cell 

to predict the channel taps that will be utilized by the receiver to recover the desired symbols 

[10].  

Most of the works in the literature are managing the issues of power optimization and deep 

learning based channel estimation separately. So, in this research will explore how the channel 

estimation based on different ML approaches such as DNN, Q algorithm, and DQN can be 

integrated with the power optimization process for multi-user detection in a PD-NOMA system 

in fading channels [11][12]. 

1.4 Design Objectives  

The objectives of this research can be outlined as follows: 

• A structured mathematical analysis will be presented to derive an analytical expression for 

the optimum power coefficient for each user in the examined NOMA system based on 

maximizing the sum rates for all users in the NOMA cell. 

• In this research, different machine learning approaches will be introduced and discussed 

as follows: DNN based LSTM network, RL based Q learning algorithm, and DRL based 

DQN structure.  All of these ML approaches will be separately developed based on 

maximizing the sum rates for all users in a NOMA system. These proposed ML approaches 

will be employed dynamically to approximate the channel parameters for each user in the 

examined NOMA cell. 

• The efficiency of the proposed machine learning algorithms: DNN based LSTM model, 

RL based Q-algorithm, and DRL based DQN will be inspected in approximating the 

channel parameters when different fading channels models such as Rayleigh fading 

channel and Rician fading channel are applied. 
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• A new design structure will be proposed and applied at the receiver side to investigate how 

the channel estimation process based on LSTM or Q algorithm, or DQN can be combined 

with the derived power allocation policy, in order that this new joint structure can be 

utilized for multiuser detection in the PD-NOMA system. 

• The optimized power allocation scheme and the fixed power allocation scheme, both will 

be implemented separately, evaluated, and compared when any of the proposed ML 

procedures is applied as a channel estimator in the examined NOMA cell. 

• As a benchmark comparison, different simulation environments related to different works 

in the literature will be conducted, in order that we can compare the results of these 

benchmark schemes with the outcomes of our developed machine learning algorithms. 

Moreover, different performance metrics will be examined to emphasize that reliability 

can be guaranteed by our proposed machine learning approaches when being utilized for 

channel estimation process. 

1.5 Contributions to Knowledge 

Based on the current works in the literature, many deep neural networks approaches have been 

proposed to clearly address different issues in NOMA system such as power allocation, channel 

assignment, and signal detection. In addition, most of the proposed machine learning 

approaches in the literature are managing the issues of power optimization and channel 

estimation separately. To the best of our knowledge, there is no research that has investigated 

the integration between machine learning approaches that can be used to estimate the channel 

parameters and the optimal power allocation policy, in order that this integrated model can be 

used for multiuser detection in a downlink PD-NOMA system in different fading channels. 

In addition, there have been several works that adopt ML approach to handle the channel 

estimation task in wireless communication networks. However, most of this research that 

employ ML for channel prediction in NOMA systems is mainly discussed via a specific model 

of deep neural networks. To the best of my knowledge, currently, there is no study that manages 

the channel approximation task using RL based Q-learning algorithm in a multi-input single-

output non-orthogonal multiple access (MISO-NOMA) system. The RL based Q-table 

procedure is developed based on maximizing the sum rates for all users in the network. 

Moreover, as a channel estimator schemes, RL based Q algorithm and DRL based DQN 
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structure are developed, implemented, and compared when the optimized power scheme is 

considered.   

Furthermore, in this thesis, a structured mathematical analysis is introduced to formulate the 

analytical power allocation expression for user devices in the examined NOMA system based 

on maximizing the sum rate in the system while considering the constraints of the total power 

budget in the system, and the QoS requirements for each user.  

In this research, the main contributions can be summed up as follows: 

• Different ML models are proposed (DNN based LSTM, Q-algorithm, DQN) to illuminate 

how these ML models can be developed and utilized dynamically to predict the channel 

parameters for each user in NOMA cell when the sum rate maximization problem is 

considered. 

• Evaluate the beneficial impact of cooperatively integrating the developed ML algorithms 

(DNN based LSTM, Q-algorithm, DQN) for channel prediction and the derived power 

allocation scheme to be used in multiuser recognition in the PD-NOMA system. 

• The developed DNN based LSTM structure, the developed RL based Q algorithm, and the 

developed DQN model are all investigated using different types of fading channels such 

as Rayleigh or Rician fading channels, to validate the efficacy of these algorithms in 

estimating the channel parameters for each user. 

• The optimized power allocation scheme and the fixed power allocation scheme are both 

compared when the developed ML approaches are implemented as a channel estimator. 

• As a benchmark comparison, additional simulation environments are established as 

follows:  the standard minimum mean square error (MMSE) procedure for channel 

estimation [13], the DNN model based on LSTM network for channel prediction [10], the 

RL based actor-critic technique for channel prediction [14], and the fourth simulation 

environment is mainly dependent on RL based State-Action-Reward-State-Action 

(SARSA) procedure [15]. The simulation outcomes of these benchmark environments will 

be compared with the results of our proposed ML approaches, and simulation outcomes 

have emphasized that dependability can be assured by our proposed ML schemes in 

predicting channel parameters even when the number of devices in the cell is increased. 
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1.6 Thesis Outline 

This thesis in total consists of seven chapters, starting with an introductory chapter to outline 

the motivation behind the research, discuss the aims and objectives and then highlight the 

contributions of the research. The remaining chapters are organized to start with an introduction 

and end with a summary for each chapter while the information related to the research are 

discussed in each chapter based on the purpose of the chapter as below: 

Chapter 2 “Background and Outlooks”: The first section of this chapter provides an overview 

of PD-NOMA system and then discuss the basic components that involve, superposition coding 

signal (SC) and successive interference cancellation (SIC) procedure. Then, a literature survey 

for the power optimization techniques for SISO-NOMA, MISO-NOMA, and SIMO-NOMA 

systems is presented.  The last section of this chapter is mainly dedicated toward introducing 

the various designs and the functionality of DNN and how it could be adopted in NOMA 

system. 

Chapter 3 “Mathematical System Modelling”: System model for the NOMA system that 

includes the superposition coding signal, the received signal, and the expected user rate are all 

formulated in the first section of this chapter. Then, based on the introduced objective function 

and the constraints, the power optimization problem is analysed, and the optimum power 

coefficients are derived for SISO-NOMA, MISO-NOMA, and SIMO-NOMA systems. Finally, 

simulation environments are conducted, and results are generated and discussed for different 

performance metrics.  

Chapter 4 “Deep Neural Networks Based Long-Short Term Memory (LSTM) Architecture 

and Framework”:      The basic concept of Recurrent neural networks (RNN) is introduced at the 

start of this chapter. Then, the main design architecture for the proposed DNN based long-short 

term memory (LSTM) is presented and discussed. Based on the channel estimation task, dataset 

generation and network parameters are described and the DNN algorithm is provided to clarify 

how the developed DNN structure is utilized to estimate the channel parameters for each user 

in NOMA cell. Finally, simulations are generated, and benchmarks and results are discussed. 

Chapter 5 “Reinforcement Learning Based Q-learning Algorithm for Channel Estimation 

in MISO-NOMA System “: Reinforcement learning theory and Framework is mainly 

introduced in the first part of this chapter. Then, based on the developed Q learning algorithm 
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the design architecture for the channel prediction scenario is illustrated and discussed. Dataset 

preparation and Q learning model are presented to clarify how the Q algorithm is initialized 

and updated in order to predict the channel parameters for the users in the NOMA cell. 

Simulation environment, benchmark comparisons, and results are also generated and discussed 

in this chapter. 

Chapter 6 “Deep Reinforcement Learning Framework in NOMA System”: The system 

model and the basic components of DRL based DQN procedure is introduced in the first section 

of this chapter. The proposed DQN based LSTM network architecture is illustrated and the 

DQN training phase is clarified and outlined. DQN policy and dataset generation are also 

designated to maximize the rewards and minimize the error. Finally, simulation scenarios are 

created, and benchmark comparisons are also generated to characterize the impact of DQN 

when being used as a channel estimator in different simulation scenarios. 

Finally, Chapter 7 “Conclusion and Future Work”: This chapter present a global   summary 

for the research with conclusions. Future research outlook is also highlighted based on the 

estimated challenges that may arise with the deployment of more complicated machine 

learning algorithms in the upcoming communication networks. 
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Chapter 2 

Background and Outlook 

2.1 Introduction 
Fifth generation (5G) or sixth generation (6G) cellular systems are not just an outspread form 

of the preceding generation because of the growing request of network data traffic, but the 

forthcoming generation must support the new emerged technologies such as the internet of 

things (IoT) devices, and the web-based artificial intelligence (AI) applications. Furthermore, 

the upcoming generation should have the capability to enhance the massive connectivity and 

develop the spectral efficiency [16]. On average, Orthogonal multiple access (OMA) scheme 

can be considered as the standard multiple access scheme but in limited communication 

environment, hence OMA scheme may not be satisfactory to support huge networks that may 

require a diverse quality of services (QoS). Also, OMA may suffer from the matter of restricted 

degrees of freedom (DoF), where user with a good channel condition is served first with respect 

to user with weak channel status who need to postpone for channel access [17]. In order to 

realise the requirements of QoS and DoF that needed for wireless communication networks, 

non-orthogonal multiple access (NOMA) was introduced as a new multiple access scheme to 

enhance the system capacity.  

2.2 Power Domain Non-Orthogonal Multiple Access  
As shown in Figure 2.1, in power domain non-orthogonal multiple access (PD-NOMA) system, 

multiplexing for the different user’s signals is carried out in the power domain via the 

superposition coding (SC) scheme at the transmitter side, and these power differences between 

user’s signals are exploited to assist in the interference cancellation at the receiver side [18]. 

Because PD-NOMA deals with signals that have differences in the allocated power levels, so 

PD-NOMA has the capability to decode and split up the interference signal at the receiver and 

then remove it to leave only the desired signal. By adopting superposition coding (SC) at the 

transmitter side and applying SIC procedure for interference cancellation at the receiver side, 

this will enable PD-NOMA scheme to distribute DoF between devices in a fair way.  
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Figure 2.1 can be clearly described as follows: In NOMA cell, numerous user devices can be 

served via the same resource block (RB) by adopting the power domain in both uplink and 

downlink transmissions. In Figure 2.1, we are considering a downlink NOMA cell, where the 

BS is serving three distinct types of users or devices at same time via different fading channels. 

In NOMA cell, the BS can assign one carrier to every set of user devices, and the signals of 

that devices can be superimposed using unique power levels. Then, each user device will 

receive the desired signal beside the undesirable signals related to other devices in same 

channel and these unwanted signals can be either considered as interference or noise. The 

undesirable received signals will be considered as noise if the power level of the desired signal 

is high, otherwise, these unwanted signals will be regarded as interference. To decode the 

desired signal for each user, each user device can use the successive interference cancelation 

(SIC) procedure. The SIC technique will decode the signal with the highest power level and 

then subtracts that signal from the principal signal until the desired signal is decoded. As shown 

in Figure 2.1, near user usually has a good channel condition along with the BS, therefore the 

near user is usually assigned low power. Therefore, at near user receiver side when SIC is 

applied, firstly an immediate decoding for far user signal is accomplished, then removing it 

from the composite signal. Next, decoding the middle user signal, and removing it from the 

remaining signal and finally the near user desired signal will be decoded.  

 

Figure 2.1 Basic block diagram for PD-NOMA System.  
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As mentioned above, when applying the superposition coding (SC) technique, the base station 

(BS) can transmit the superposition coded signal for all users in the NOMA cell. Then, at the 

receiver side for each user, the desired signal can be recovered based on the channel gains for 

all users in the cell and the power allocated for each user.  

The main characteristics of NOMA can be described as follows [19]: 

• Bandwidth efficiency: NOMA can demonstrate a high bandwidth efficiency and hence can 

improve the system throughput. This enhancement is related to the fact that NOMA system 

allows each resource block (RB) to be exploited by multiple user devices                                     

(time - Frequency). 

• Fairness: A key feature of NOMA is that it can allocate more power to the weak user 

device, and by doing so, NOMA can realize the fairness among users in terms of their 

throughput. There are multiple techniques for maintaining fairness in NOMA system, such 

as the cooperative NOMA scheme. 

• Connectivity: The next generation of wireless networks is expected to support a connection 

of billions of smart IoT devices [20], hence, the presence of NOMA can offer an 

encouraging design alternative to efficiently enhance this feature by exploiting its non-

orthogonal characteristics. More specifically, in contrast to classical OMA, which requires 

the same number of frequency-time resource blocks as the number of user terminals, 

NOMA system on the other hand is capable of serving them by using less resource blocks. 

• Compatibility: NOMA can be considered as an “add-on” procedure for any existing OMA 

techniques, such as TDMA/FDMA/CDMA, due to the fact that it exploits a new 

dimension, which is the power domain. Furthermore, based on the characteristics provided 

by superposition coding (SC) and successive interference cancellation (SIC) techniques, 

NOMA can be incorporated with the traditional multiple access techniques. 

• Flexibility: based on the fact that NOMA is relying on sharing multiple users in a single 

resource block, NOMA can be considered as conceptually appealing and can provide an 

affordable complexity design. 
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2.3 Superposition Coding Signal 
Non-Orthogonal Multiple Access (NOMA) can be considered as a powerful candidate multiple 

access scheme for future wireless communication networks. The fact that NOMA design 

permits multiple users to transmit and receive using the same time-frequency block is 

considered as attractive feature. The two key operations that make NOMA possible are the 

superposition coding (SC) which must be done at the transmitter side and successive 

interference cancellation (SIC) that implemented at the receiver side [4][18][19]. To explain 

the concept behind the SC process, assume we have two users in the cellular network and both   

users need to send their data simultaneously using the same time-frequency block.  

Let 𝑥1 denotes the data for user 1 and 𝑥2 denotes the data for user 2. For simplicity, let us 

assume that data for each user can be represented by 4 bits as follows:  

𝑥1 = [1010]  and 𝑥2 = [0110]  are both represented graphically as shown in Figure 2.2. 

 

Figure 2.2 User 1 and user 2 data representation [19]. 

user 1 = [1 0 1 0] 

user 2 = [ 0 1 1 0] 
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𝑥1 and 𝑥2 must be modulated before transmitted via the channel, therefore a digital modulation 

scheme can be employed such as binary phase shift keying (BPSK).  Basically, BPSK maps 0 

to -1 and 1 to +1. After BPSK modulation,  

𝑥1 is mapped to 𝑥1 =  [+1  − 1  + 1  − 1]   

𝑥2 is mapped to 𝑥2 = [ −1  + 1  + 1  − 1]  

and the modulated sequences can be presented graphically as shown in Figure 2.3. 

 

Figure 2.3 Modulated data representation for user 1 and user 2 [19]. 

Superposition coding is an essential stage in power domain NOMA. To superpose means to 

add, so, we need to add 𝑥1 and 𝑥2 together. But before doing so, we need to multiply the 

modulated data for each user with the allocated power factors, then, we can add them together 

[4][11][12]. From Figure 2.3, we can see that both 𝑥1 and 𝑥2 have a peak amplitude of ±1, 

which means that they both have unit power. We can allocate the power factors as follows: 

𝑎1=0.75 to user 1 and 𝑎1=0.25 to user 2. A rule to obey here is that 𝑎1 and 𝑎2 must sum up to 

1 which reflects the total power assigned by the base station. Since 𝑎1 and 𝑎2 denote the power 

user 1 =[1 -1  1 -1] 

user 2 = [-1  1  1 -1] 
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scaling factors, we need to apply square root for the power coefficients to transfer them to 

amplitude. So, we can scale 𝑥1 and 𝑥2 with  √𝑎1 and  √𝑎2  respectively. The amplitude of 

𝑥1 will be scaled by √𝑎1 = √0.75 =  0.866  and the amplitude of 𝑥2 will be scaled by √𝑎2 =

√0.25 =  0.5. Hence, the amplitude scaled version of the modulated data for each user, can be 

shown as follows: for user 1  √𝑎1𝑥1 = [0.866  − 0.866  0.866  − 0.866] and for user 2              

√𝑎2𝑥2 = [−0.5  0.5  0.5 − 0.5] 

After scaling, the modulated data for each user can be shown graphically as shown in           

Figure 2.4. 

 

Figure 2.4 Modulated data for user 1 and user 2 after power scaling [19]. 

Now we need to add the modulated scaled data for user1 and user 2, then the resulting signal 

is called superposition coded signal 𝑥  that can be denoted as in equation 2.1. 

𝒙 = √𝑎1𝑥1 + √𝑎2𝑥2                      (2.1) 

a) modulated data of user 1 after power scaling  

b) modulated data of user 2 after power scaling 
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The resultant superposed signal can be represented as a values vector form as follows:                      

𝒙 = [0.366 − 0.366 1.366 − 1.366] and the graphical representation of this superposed 

signal is shown in Figure 2.5.  

 

Figure 2.5   Superimposed coding signal 𝒙 [19]. 

The resultant signal 𝑥 can also be represented as a linear combination of 𝑥1 and 𝑥2 and this 

signal 𝑥 is actually transmitted from BS towards all users in NOMA cell in downlink scenario.  

2.4 Successive Interference Cancellation 
PD-NOMA scheme depends on the power domain for multiplexing user’s signals in same time 

and frequency resource block, and as explained in the previous section, this is accomplished 

by applying SC at the transmitter side. Successive interference cancellation (SIC) is performed 

at the receiver side, and it is considered as an iterative procedure where data is decoded in the 

order of decreasing power levels. The signal or the data corresponding to the user who is given 

the highest power is decoded first, then the data corresponding to the user who is given the 

next highest power is then decoded. This procedure will be continued till we have decoded all 

user's data. Based on the details given in the previous section, we will continue consider the 

Superposition Coded Signal    𝑥 = √𝑎1𝑥1 + √𝑎2𝑥2 
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two users case study in a NOMA cell, and the steps involved in SIC can be clarified as follows:  

Step 1: directly decode the superposition coded signal 𝑥 to get the original signal for user that 

allocated the highest power. Therefore, based on our abovementioned analysis, where 𝑥1 is 

given more power proportion (𝑎1 > 𝑎2), direct decoding of 𝑥 will recover the original signal 

𝑥1. 

Step 2: re-modulate 𝑥1 and multiply the remodulated signal in step 1 by its corresponding 

power factor and subtract it from 𝑥, as follows 𝑥 − √𝑎1𝑥1. 

Step 3: decode the signal obtained in step 2, (𝑥 − √𝑎1𝑥1) to recover the original signal 𝑥2.  

Since we have applied BPSK modulation scheme at the transmitter side, so we need to apply 

direct decoding at the receiver by applying BPSK demodulation directly to 𝑥. BPSK 

demodulation is basically, a simple thresholding [12][13][15]. 

So, simply we can assign a threshold level as zero, hence if the amplitude exceeds zero, the 

decoding symbol is 1, and 0 otherwise. As indicated in Figure 2.6, threshold level is denoted 

as a solid black horizontal line. It can be observed that the first and third symbols sit above the 

threshold level, so, we take a decision that the first and third bits are ones. The second and 

fourth symbols sit below the threshold level, so we take a decision that the second and fourth 

transmitted bits are zeros. Thus, the decoded sequence is [1010] which is the same as the 

original sequence 𝑥1. We have recovered the original signal 𝑥1 by directly performing BPSK 

demodulation on 𝑥  and ignoring the fact that the superposed signal  𝑥 has another component 

related to 𝑥2 . This was possible because, we have allocated a higher power factor to 𝑥1.  
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Figure 2.6 Direct decoding for signal 𝑥1 [19].  

It has been shown before that the coded signal 𝒙 is analytically expressed as follows:                 

𝒙 = √𝑎1𝑥1 + √𝑎2𝑥2. We obtained 𝑥1 by following step 1, then to recover 𝑥2 we need to 

subtract √𝑎1𝑥1 from 𝒙, then we will be left with √𝑎2𝑥2 . Recall that we have recovered here 

𝑥1 by direct decoding and the result come to be [1010], but 𝑥1 is present in 𝒙  as a BPSK 

modulated form, So we need to reproduce  𝑥1  in BPSK form again  as [1 -1 1 -1], and scaled 

it by √𝑎1 , then we need to subtract this BPSK modulated scaled version of 𝑥1 from x  as 

follows: 

 𝒙 − √𝑎1𝑥1 = [0.366 − 0.366 1.366 − 1.366] −  [ 0.866 − 0.866 0.866 − 0.866]  

𝒙 − √𝑎1𝑥1  = [ -0.5  0.5  0.5  -0.5] 

After subtraction, the graph can be illustrated as shown in Figure 2.7.  

Direct Decoding of  Superposition Coded Signal 𝒙 
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Figure 2.7 Decoding for signal 𝑥2 [19]. 

After subtraction, we can simply apply the same BPSK demodulation rule to demodulate the 

resulting signal (𝒙 − √𝑎1𝑥1). As shown in Figure 2.7, it is clearly shown that the first and 

fourth symbol can be demodulated as zeros and the other symbols should be demodulated as 

ones. Thus, the decoded sequence for user 2 will be [0110], which is matching with the original 

signal for user 2 generated in the transmitter side. Therefore, two different user’s data have 

multiplexed in the power domain and successfully recovered based on SIC procedure.  

2.5 NOMA System Based Power Optimization Literature Survey  
In [21], authors have proposed the sum rate maximization problem based on certain constraints 

for uplink NOMA system and a closed form for the optimal power coefficients is derived. 

Numerical results revealed that the sum rates for NOMA system with the suggested power 

distribution scheme are more sensible than its OMA counterpart.  

Power allocation and user clustering were described in [22], where the sum throughput 

maximization for uplink and downlink NOMA systems was studied under several constraints. 

The authors declared that user clustering based on distinctive channel conditions can provide 

a noteworthy gain in NOMA system compared to OMA system. Authors also went to conclude 

that with large NOMA clusters, the error transmission in SIC procedure will negatively impact 

the performance of NOMA system.  

𝒙 − √𝑎1𝑥1 
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The upper bound for the sum rate were analysed in [23], based on a power threshold in distinct 

fading channels. Sum rate upper bound is derived, and simulation outcomes showed that 

system dependability is improving when the target received power is considered, whilst the 

system reliability is shown to decrease when power threshold is included. Authors also went 

to conclude that the applied fading distribution has a major role in allocating the maximum and 

minimum power values that needed to satisfy the communication requirements.  

A dynamic power allocation for NOMA users with mobility was introduced in [24], where user 

device can adjust his position in a random way with reasonable speed and at same time, the 

suggested dynamic power scheme can deliver a remarkable sum rate. On the other hand, it has 

been shown that static power scheme is not satisfactory when user mobility is considered due 

to unstable channel condition.  

Performance of a downlink NOMA cell in terms of bit error rate (BER) is examined in [25]. 

BER expressions were derived for NOMA scheme when Nakagami fading channel and 

imperfect SIC are considered and two or three users are assumed in the cell. Optimum power 

coefficients that can minimize the BER were also deduced to manage the fairness between 

users. Simulation outcomes demonstrated that the power coefficients should be determined 

carefully to avoid a huge BER difference between user devices.  

In [26], optimum power allocation with channel assignment is investigated to maximize the 

users’ rate in NOMA system when varying channel gains are considered. Quality of service 

(QoS) and downlink power budget constraints and are examined in the power allocation task. 

Simulation results have indicated the improvement in system performance when the system 

throughput is maximized.   

The integration of NOMA and multiple antenna techniques [4] is investigated as a proper 

scheme to boost system performance. Hence, analysing multiple-input single-output (MISO) 

based NOMA system can be an encouraging towards highlighting the significant 

improvements in the achievable system rate. 

 In downlink MISO-NOMA system, authors in [27] have suggested a closed form lower bound 

for the channel capacity and also optimal power level assigned to every user is found given 

that user rate constraints should be satisfied. An algorithm is introduced to determine the 

maximum number of users in the cell while the user rate constraint is considered. Authors went 
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to conclude that the number of users in the system will decrease when either the minimum rate 

requirement is increased or the channel gain gap between users is raised.  

Power consumption and clustering in a multi cluster MISO-NOMA system were explored in 

[28]. In order to lower the total transmitted power, a two-layer user clustering algorithm is 

introduced to group users into clusters and each cluster contains 2 users. In the first layer, the 

algorithm is focusing in deciding the cluster heads according to condition of the channel gains, 

whereas in the second layer the procedure is responsible to couple each cluster head with a tail 

user. Numerical results are generated to validate the superiority of the proposed clustering 

algorithm in MISO-NOMA system.  

An iterative power distribution algorithm is proposed in [29], for a power minimization in a 

multi cell MISO-NOMA system. Throughout each iteration, base station (BS) is accountable 

for adjusting the power transmitted for each user according to the channel status and the inter-

cell interference plus noise at user devices. The algorithm showed performance improvements 

and the simulation outcomes emphasized that the considered algorithm with MISO-NOMA 

system can considerably outperform OMA technique.  

Sum rate maximization in MISO-NOMA downlink system based simultaneous wireless 

information and power transfer (SWIPT) is investigated in [30]. Authors proposed a user 

pairing beamforming procedure where two user devices with distinct channel gains are selected 

to realize user pairing to enhance the sum rate and accordingly improve the energy harvesting 

capability. Based on convex approximation technique, authors have utilized low complexity 

iterative algorithm to solve the formulated sum throughput problem. Results confirmed the 

dominance of the proposed scheme over the non-user-pairing schemes. 

Under the assumption of statistical channel state information (CSI), authors in [31], have 

formulated a closed form expression for the outage probability in downlink MISO-NOMA 

system. Outage formulas have been deduced based on probability density function (PDF) and 

cumulative distribution function (CDF) for the beamforming ratio. Outage probability is 

simulated against numerous power allocation scenarios to justify the reliability of the outage 

probability results.  

In [32], energy efficiency maximization task-based clustering in a MISO-NOMA system is 

investigated based on imperfect channel state information, when total power transmitted, and 
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minimum user rate constraints are considered. Authors have utilized an iterative algorithm that 

use of Taylor series method to translate the resultant nonlinear optimization problem into a 

subtractive form. Also, two approaches of zero forcing (ZF) scheme were introduced to relieve 

the inter cluster interference. Simulation results illustrated that increasing the number of 

clusters will also expand the inter-cluster interference while zero forcing scheme verified to be 

a suitable candidate to provide a remarkable performance when energy efficiency is assessed. 

Based on arbitrary path beamforming, authors in [33] investigated the single cell millimetre 

wave MISO-NOMA system, where users are grouped into multiple NOMA clusters based on 

their antenna’s angles of arrival. Authors have developed the lowest achievable signal to 

interference plus noise ratio (SINR) associated with power allocation scheme. In addition, they 

propose an iterative algorithm to manage the power allocation factors in order to achieve the 

maximum-minimum SINR (maximizing the min. SINR to improve performance) Simulation 

outcomes have shown that the proposed algorithm can achieve a better performance than 

conventional orthogonal multiple access scheme in terms of user fairness.  

The power minimization task for a standard multi cell MISO-NOMA system is explored in 

[34]. The joint power management and beamforming scheme is discussed as a non-convex 

dilemma, which is handled by the near optimal zero forcing beamforming technique. 

Numerical results showed that the suggested approach can act better than various standard 

MISO-NOMA schemes.  

In [35], the main aim was to establish a feasible framework to handle the following tasks:  

power allocation, beamforming, and user clustering in MISO-NOMA system by controlling 

the transmit power and user’s rates. Authors have manged the superposition coding signal for 

clustering two users and process the signals in space division multiple access via beamforming. 

A closed form expression is formulated to manage the beamforming with optimal power 

distribution. Based on the results, it was shown that the proposed approach outperforms the 

conventional counterpart and can provide noticeable gains in terms of power transmitted.  

In [36], a cooperative PD-NOMA with energy harvesting procedure using multiple antenna 

system is explored. Authors suggest a framework to improve the bit error rate (BER), spectral 

efficiency and capacity compared to conventional NOMA system. Two users were considered 

in the cell, where one user is near to the BS, while the other user is far from the BS and both 
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users are allocated different power levels and share the same spectrum. Simulation results of 

this cooperative MISO-NOMA system with energy harvesting verified a reasonable 

enhancement compared to traditional system when different performance metrics is inspected. 

2.6 Machine Learning and Artificial Neural Network     
Over the past several years, machine learning (ML) has achieved popularity, and numerous 

machine learning approaches have been industrialized. Artificial neural networks (ANNs) are 

considered as one of the most popular models for ML, that principally exploited for prediction 

and forecasting [37]. ANN is an information processing structure that is inspired from the 

biological nervous system that manages how the brain is processing information. The most 

elementary component of an ANN is the neuron, which can take two or more inputs and give 

one output. The output of the neurons is calculated based on a set of weights applied to the 

inputs plus a bias value that can adjust the output. Various neurons are organized into a layer 

and these layers can be connected such that the output of each layer feeds into the input of the 

next layer, and this is called a feedforward ANN that can be employed to solve problems such 

as classification and signal detection [38].  

2.7 Deep Learning Based NOMA System Related Works   

In the literature, the encouraging procedure of machine learning (ML) has been jointed with 

NOMA system to manage different types of tasks such as channel assignment, beamforming, 

and power allocation. Also, the deep learning (DL) concept, which was proposed in 2006, is 

considered as a dynamic tool for handling huge data sets and solving complex nonlinear 

problems [39]. Deep learning influence in MIMO system where channel coding is considered 

is investigated in [40]. A deep learning based sparse code multiple access (SCMA) is developed 

in [41], to reduce the BER, and to satisfy a smaller computation time compared to the typical 

schemes. Approaches that incorporate the deep learning into the orthogonal frequency division 

multiplexing (OFDM) system also has been introduced in [42], and its satisfactory performance 

has been discussed in terms of channel estimation and signal detection. Furthermore, deep 

learning has been implemented in traffic systems, where the performance enhancement has 

been shown in [43]. A deep reinforcement learning based power management has been 

introduced in [44] to improve the system performance by identifying the power that should be 

allocated to each user to ensure the fairness between users. In addition, authors also suggest a 

dual DNN models to handle the noisiness problem in training data. In [45], authors have 
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presented a co-operative NOMA structure based on deep learning model to enhance the BER 

performance. Authors have introduced a cascaded DNN models to characterize the cooperative 

NOMA system. Loss functions were utilized to evaluate the BER performance, and a two-stage 

training process was also adopted to resolve training problem. Simulation outcomes have 

illustrated the merits of the proposed DL scheme over the orthogonal multiple access (OMA) 

scheme and the conventional NOMA scheme in different channel environments.  

2.8 Artificial Neural Networks and Deep Learning Basic Theory  
Throughout the training process, an ANN is given a set of input data for processing, the output 

from the ANN (predicted) is then compared to the target output, and an error can be calculated. 

The network weights and biases can be adjusted at each set of training iterations using gradient 

descent algorithm [46] to minimize the error. This training process can be repeated several 

times till the ANN starts to show a good performance or the error function converges. Once 

the ANN efficiently trained, it can receive a new data set and predict the output with reasonable 

precision. Usually, the ANN can perform well when the training model follows to certain 

policy. Commonly, all the input data need to be pre-processed to make sure that there are no 

substantial time gaps in the data sequence. Furthermore, it is desirable to normalize the training 

data, in order to be within the same range and to speed up the network convergence [10][46].  

Overall, three types of ML algorithms are mainly discussed in the literature, such as supervised, 

unsupervised, and reinforcement learning. Supervised learning is extensively exploited to 

estimate the channel state information (CSI), spectrum sensing, and localization [47] [48]. 

Unsupervised learning is frequently used in user clustering and congestion control [49]. 

Reinforcement learning is a different branch of ML, and it is considered to have a remarkable 

impact in wireless networks. The most recognized application of reinforcement learning in 

communication networks is related to resource allocation [50].   

The deployment of deep neural networks (DNN) or deep learning (DL) in NOMA system, is 

greatly explored over the last few years. Various kinds of learning algorithms have been 

suggested and implemented in different types of communication networks to enhance the 

system performance. Typically, deep learning can be adopted as a useful tool for complex data 

processing and also can be exploited in different applications such as estimating channel 

features. A typical deep Learning model is shown in Figure. 2.8, where the hidden layers are 
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particularly equipped with multiple neurons. Online training and offline training are considered 

as the two major approaches for training in DNN that can be adopted in NOMA scheme 

[11][51].  

When we consider the channel parameters estimation task, a random sequence of the input data 

can be extensively trained using the channel parameters related to different environments 

collected from simulations. This type of training is described as offline training.  

Alternatively, the other type of training is called online learning, that depends on the pilot 

symbols to carry the channel state information and the input signals can be trained using DNN 

with the help of that pilot sequences [52].  

 

Figure 2.8 Deep learning basic architecture. 

Sometimes, in NOMA system it can be difficult to apply the SIC procedure to decode the data 

perfectly when the number of user devices is huge, besides that the SIC technique might be 

also affected by the propagation error. Thus, the deep neural network can be a practical 

alternative to recover a desired sequence from a weaken received signal. 

2.9 Recurrent Neural Network  
Recently, many works have proposed different approaches for resource optimization based on 

maximizing the data rates, but these approaches need high computational complexity due to 

the nonlinear optimization problem.  Traditionally, the channel characteristics in multiuser 

NOMA system are described in complex form and the conventional estimation procedures are 

not effective and reliable enough in capturing the variation of the channel parameters in real 

time. Accordingly, the channel state information estimation process is interrupted, and NOMA 
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system performance is affected. Many DNN approaches have been proposed for further 

enhancing the NOMA performance based on estimating the channel features [10][53][54].  

Recurrent neural network (RNN) is considered as one of the candidates DL models that fits the 

CSI and channel estimation tasks. Recurrent neural network (RNN) is classified as one of the 

prevalent DL schemes that can be utilized for predicting time series data [55]. At each timestep, 

the RNN receives not only the new input data but also its own output from the previous time 

step, known as the hidden state, the underlying form of RNN structure is clearly illustrated in 

Figure 2.9. 

 

Figure 2.9 Recurrent neural networks fundamental construction.  

Recurrent neural network (RNN) is regarded as a form of supervised learning algorithm where 

it can exploit the sequential information for estimation and recognition. This type of network 

consists of convoluted hidden layers made of artificial neurons with feedback. As shown in 

Figure 2.9, RNN have two inputs, the new input to each neuron and the recent previous which 

is the output that loops back into the network. Thus, the hidden layers are able to function as 

memory for the network at a certain instant, which is dependent on its previous state. This 

structure of RNN permits it to save and process the previous complex data for a prolonged 

period of time [56]. Likewise, RNN has the ability to map a certain input to the output sequence 

during the current time interval and estimate this sequence during the subsequent time slots.  
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2.10 Long Short-Term Memory Neural Networks  
long-short term memory (LSTM) is mainly an artificial neural network that used in the fields 

of deep learning and artificial intelligence. Different from standard feedforward neural 

networks and similar to RNN, LSTM has a feedback connections and can process not only 

single data points, but also entire sequences of data. In LSTM, the hidden layers can act as a 

memory for the network state, which particularly permits the DNN to save, recall, and process 

the preceding complex data [57]. 

Transmitting the signal through a fading channel may result in a dispersion signal with long-

term dependencies among different samples. These dependencies differ from one signal to 

another and do not necessarily follow a specified pattern [58]. Using a conventional neural 

network to represent such long-term dependencies may require a high-dimensional hidden 

layers with a huge number of neurons, which may lead to over-fitting [59]. Alternatively, RNN 

can model time dependencies with a lowered number of neurons, due to their feedback 

recurrent style. The traditional RNN using backpropagation through time is usually affected by 

the vanishing gradient problem and slow learning. In order to resolve this fundamental issues, 

long-short term memory (LSTM) neural network is proposed to be able to model selective 

dependencies between different portions of the received signal with a small number of neurons 

and with moderate learning rates. LSTM can accept a vector of complex data at each time step; 

therefore, it can include the magnitude and phase parts of the received signal simultaneously 

[60]. LSTM is considered as modified form of RNN. The LSTM module is classically referred 

to as cell rather than neurons and contain a sequence of gates. An illustration of an LSTM cell 

can be seen in Figure 2.10.  

The standard LSTM cell includes a cell, an input gate, an output gate and a forget gate. The 

cell remembers values over arbitrary time periods and the three gates control the flow of data 

into and out of the cell. A forget gate examines the new input and the hidden state and decides 

which information in the cell state should be carefully forgotten. The input gate then determines 

what information from the new input should be delivered to the cell state to be remembered. 

The output gate gathers data from the cell state, input, and hidden state and produces the output 

for the current time step. By this procedure, LSTM has the power to remember information 

passed in different timesteps, making it ideal candidate for finding longer term decencies in 

data [10][59][60].  

https://en.wikipedia.org/wiki/Artificial_neural_network
https://en.wikipedia.org/wiki/Deep_learning
https://en.wikipedia.org/wiki/Artificial_intelligence
https://en.wikipedia.org/wiki/Feedforward_neural_network
https://en.wikipedia.org/wiki/Feedforward_neural_network
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Figure 2.10 LSTM cell structure [10]. 

 

2.11 Modulation Scheme  
The Quadrature Phase Shift Keying (QPSK) modulation scheme is a variation of a Binary 

Phase Shift Keying (BPSK), which sends two bits of digital information at a time. Instead of 

the conversion of digital bits into a series of digital stream, it converts them into bit pairs, this 

decreases the data bit rate to half, which allows space for the other users. Quadrature Phase 

Shift Keying is a modulation scheme that utilizes four different phase shifts to represent the 

binary values of data. It is called "Quadrature" because it uses two carriers that are 90 degrees 

out of phase with each other. 

QPSK Modulator 

The QPSK Modulator shown Figure 2.11 consists of the following: a bit-splitter hat contains a 

2-bit serial to parallel converter, two multipliers with local oscillator, and a summer circuit.  
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Figure 2.11 QPSK Modulator structure. 

At the modulator’s input, the message signal’s even bits and odd bits are separated by the bits 

splitter and are multiplied with the same carrier to generate in phase BPSK component (called 

PSKI) and out of phase BPSK component (called as PSKQ). The PSKQ signal is phase shifted 

by 90° before being modulated. The QPSK waveform for two-bits input is shown in Figure 

2.12, which illustrates the modulated waveforms for different instances of binary inputs. 

 

Figure 2.12 QPSK modulated waveforms. 
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QPSK Demodulator 

The QPSK Demodulator shown in Figure 2.13, uses two product demodulator circuits with 

local oscillator, two band pass filters, two integrator circuits, and a 2-bit parallel to serial 

converter. The two product detectors at the input of demodulator simultaneously demodulate 

the two BPSK signals. These signals after processing, are passed to the parallel to serial 

converter. 

 

Figure 2.13 QPSK Demodulator structure. 

2.12 Summary 
OMA scheme may not be suitable to support huge networks that may require a diverse QoS, 

also OMA suffers from restricted DoF, where user with a good channel condition is served first 

with respect to user with weak channel status.  In order to realise the requirements of QoS and 

DoF that needed for future communication networks, NOMA scheme is introduced as a new 

multiple access scheme to enhance these restrictions. It is clearly noticed that PD-NOMA can 

deal with signals that have differences in the allocated power levels, hence PD-NOMA has the 

capability to distribute a DoF between user devices in a fair way via adopting superposition 

coding at the transmitter side and applying SIC procedure at the receiver side for interference 

cancellation and signal decoding. In the next chapter, we will consider PD-NOMA system for 

the sum rate maximization problem, based on certain constraints and the optimum power 

coefficients for user devices will be derived. 
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Chapter 3  

Mathematical System 

Modelling 

3.1 Introduction 

Non-orthogonal multiple access (NOMA) scheme has been classified as encouraging multiple 

access structure for forthcoming wireless communication networks to enhance system 

throughput and spectral efficiency. NOMA could exploit the available resources more 

efficiently by resourcefully benefiting from the users’ channel status to provide several users 

with diverse quality of service (QoS) demands. NOMA enables several user devices to attain 

simultaneous arrival to the same time-frequency resource block by super-positioning the 

different signals in the code or power domains [61]. The concept of power domain non-

orthogonal multiple access (PD-NOMA) is mainly depending on that the user device with a 

weak channel condition and the user with a good channel condition can both share the same 

time slot and the same subcarrier to ensure that the bandwidth block is well exploited. 

In NOMA cell, the receiver at each user terminal will receive the multiplexing of signals from 

different users that are sharing the same subcarrier, therefore, removal of interference related 

to other users is essential for coordinated decoding. In PD-NOMA, multiuser detection (MUD) 

can be managed by applying the SIC procedure, where signals related to several users are 

decoded sequentially based on the availability of the channel parameters and the assigned 

power for each user in the NOMA system [10][11][61]. On the other hand, complete realization 

of channel parameters for each user device is challenging. Traditionally, pilot symbols can be 

basically utilized to estimate the channel parameters for users in wireless communication 

system, but   this pilot symbols may also interfere with signals related to other users in the cell, 

thus affecting the performance of the standard channel estimation procedures, such as 

minimum mean square error (MMSE) [62]. Therefore, before decoding the desired signal for 
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each user we need first to carefully estimate the channel parameters for each user in the 

examined NOMA cell. Second, we may need to optimize the power factor allocated for each 

user device in the examined NOMA cell.   

In this chapter, we will focus on presenting the framework that clarify how the allocated Power 

factors for user devices in the examined PD-NOMA cell are optimized based on maximizing 

the sum rate of the users while the entire power transmitted, and the Quality of service (QoS) 

constraints are considered. An investigation for the optimization problem is shown where 

Lagrange function and Karush–Kuhn–Tucker (KKT) optimality conditions are applied to 

derive the optimum power coefficients. Simulations will be conducted in terms of different 

performance metrics to explore the improvement achieved when the optimized power policy 

is applied compared to the users with fixed power scenario. 

 3.2 System Model   

The downlink NOMA system is introduced in this section, where the path between the base 

station (BS) and user devices is represented by distinct fading channels. The PD-NOMA cell 

is considered, where a BS with a single antenna is assumed to serve three users concurrently 

and every user device also has a single antenna. As indicated in the above-mentioned 

discussion, each user device will receive the combined signal sent from BS that consists of a 

desired signal and the interfering signals and all these signals are sent through the same time-

frequency block. Thus, multiplexing the signals using distinct power levels is critical to 

distinguish the signals and to strengthen the SIC procedure at the receiver side [10][11][61]. In 

PD-NOMA, users that are described by good channel condition are usually allocated low power 

level, while user devices with poor channel conditions can be assigned high power levels. 

Typically, users are recognized according to their distance from BS and the fading channel 

distribution. In the proposed examined NOMA cell, the nearby device is indicated as near user 

while the user equipment at the edge of the cell is viewed as far user. In this chapter, we assume 

that we have three user devices in the cell and Rayleigh fading channels are considered with 

zero mean. Accordingly, the fading channel for each user device can be mathematically 

characterized as follows, for near user ℎ𝑛~(0, 𝑑𝑛
−𝑘), for middle user ℎ𝑚~(0, 𝑑𝑚

−𝑘), and for far 

user ℎ𝑓~(0, 𝑑𝑓
−𝑘), where ℎ𝑖 indicates the fading channel between the BS and the user device i 

and k represents the path loss [63]. 
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In this work, Additive White Gaussian Noise (AWGN) is assumed at the receiver side of each 

user, and the noise power is denoted as 𝜎2. Without loss of generality, the channel gains for 

the examined user devices can described as follows: |ℎ𝑛|
2 > |ℎ𝑚|

2 > |ℎ𝑓|
2
. Total power 

transferred from BS to all devices in the cell is specified as 𝑃𝑡. In NOMA system, the receiver 

at each user has the ability to carry out SIC to remove the signals related to other users with 

poor channel environments. In contrast, signals from devices with good channel conditions 

could not be removed and treated as interference. In downlink NOMA scenario, the BS can 

send the superposition coded signal 𝑥 that can be expressed as follows [10][11][61]: 

 𝒙 = √𝑃𝑡(√𝛼𝑛𝑥𝑛 +√𝛼𝑚𝑥𝑚 +√𝛼𝑓𝑥𝑓)                             (3.1)  

where 𝛼𝑛, 𝛼𝑚, and 𝛼𝑓 are the power coefficients allocated to the near user, middle user, and 

far user respectively. Likewise, 𝑥𝑛, 𝑥𝑚, and 𝑥𝑓 denote the target signals related to near, middle, 

and far users, respectively. The signal received at far user can be shown as follows: 

   𝑦𝑓 = 𝒙ℎ𝑓 + 𝑧𝑓                                                                         (3.2)  

where ℎ𝑓 represents the fading channel among BS and far user, while 𝑧𝑓 represents AWGN 

noise component at far user with zero mean and variance 𝜎2. Far user device is usually 

described by poor channel condition, and its signal 𝑥𝑓 can be assigned additional power level 

by BS compared to other users. Thus, based on SIC procedure, the far user can directly decode 

its own signal 𝑥𝑓 from received signal 𝑦𝑓. The expression for the received signal at far user 

device can be detailed as follows: 

𝑦𝑓 = √𝑃𝑡(√𝛼𝑛𝑥𝑛 +√𝛼𝑚𝑥𝑚 +√𝛼𝑓𝑥𝑓)ℎ𝑓 + 𝑧𝑓                (3.3) 

𝑦𝑓 = √𝑃𝑡𝛼𝑓𝑥𝑓ℎ𝑓 +√𝑃𝑡(√𝛼𝑚𝑥𝑚 +√𝛼𝑛𝑥𝑛)ℎ𝑓 + 𝑧𝑓        (3.4) 

 

The first term in Equation (3.4) represents the desired signal for a far user, while the second 

term denotes the interference term from middle and near users. Based on Equation 3.4, the 

possible rate for far user could be expressed as shown [64]: 
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𝑅𝑓 = log2 (1 +
|ℎ𝑓|

2
𝑃𝑡𝛼𝑓

|ℎ𝑓|
2
𝑃𝑡(𝛼𝑛 + 𝛼𝑚) + 𝜎

2
)                        (3.5) 

 
 

Likewise, the attainable rate for middle user can also be expressed as follows: 

𝑅𝑚 = log2 (1 +
|ℎ𝑚|

2𝑃𝑡𝛼𝑚
|ℎ𝑚|

2𝑃𝑡(𝛼𝑛) + 𝜎
2)                                 (3.6)  

In same manner, the near user device can be characterized by a good channel condition along 

with BS, thus, the near user signal 𝑥𝑛 can be allocated a low power level, and hence, the 

received signal at the near user can be shown as: 

𝑦𝑛 = 𝑥ℎ𝑛 + 𝑧𝑛                                                                          (3.7) 

𝑦𝑛 = √𝑃𝑡𝛼𝑛𝑥𝑛ℎ𝑛 +√𝑃𝑡(√𝛼𝑚𝑥𝑚 +√𝛼𝑓𝑥𝑓)ℎ𝑛 + 𝑧𝑛    (3.8) 
 

Similarly, the first term in Equation 3.8 represents the near user target signal, while the second 

term denotes the interfering term from middle and far devices. On the other hand, it can be 

observed from Equation 3.8 that the interfering term can be major due to the additional power 

that could be assigned to the far user. Therefore, at the near user side, SIC should be performed, 

where far user signal 𝑥𝑓 is recovered by immediate decoding, then it will be removed from the 

composite signal. Next, the middle user signal 𝑥𝑚 should also decoded and removed from the 

remaining signal. Finally, the near user achieved rate 𝑅𝑛 can be expressed as follows: 

𝑅𝑛 = log2 (1 +
|ℎ𝑛|

2𝑃𝑡𝛼𝑛
𝜎2

)                                                   (3.9)  

3.3 Optimization Problem 

The aim here is to maximize the sum rate for user devices in NOMA system based on 

optimizing the power factors for each user in accordance with the channel conditions. Based 

on the above-mentioned analysis, the possible sum rates for N users in downlink NOMA 

system can be written as follows [65]: 
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𝑅𝑠𝑢𝑚 =∑ log2 (1 +
|ℎ𝑘|

2𝑃𝑡𝛼𝑘
|ℎ𝑘|

2∑ 𝑃𝑡𝛼𝑗
𝑘−1
𝑗=1 + 𝜎2

)

𝑁

𝑘=1

         (3.10)  

In our examined system, the constraints and the objective function considered for the 

optimization problem can be discussed as follows: 

3.4 Power Constraints 

The power assigned for each user device in the cell is a percentage of the total power 

𝑃𝑡  transmitted from base station; thus, the allocated power level for each user device must 

conforms with the following expression [10][66]: 

    ∑𝛼𝑥

𝑁

𝑥=1

≤ 1                                                                      (3.11)  

where 𝛼𝑥 is the power assigned for the 𝑥𝑡ℎ user in NOMA cell, and N represents number of 

users in the cell. 

3.5 QoS Constraints 

To support user fairness, it is assumed that the weak user in the examined NOMA cell must 

satisfy the QoS constraint, which indicates that a minimum rate 𝑅𝑚𝑖𝑛 needs to be satisfied and 

this constraint can be expressed as follows [64]: 

log2(1 +𝑆𝐼𝑁𝑅𝑛) ≥ 𝑅𝑚𝑖𝑛                                                  (3.12)  

where 𝑆𝐼𝑁𝑅𝑛 is the signal to interference plus noise ratio (SINR) for 𝑛𝑡ℎ user and 𝑅𝑚𝑖𝑛 is the 

minimum transmission rate required in the system [66]. This constraint can be simplified in 

many ways, suppose we have 𝑅𝑚→𝑘 which is the rate of user k to detect the signal of user m, 

where 1 ≤ 𝑘 ≤ 𝑚 and 𝑅𝑚 = 𝑅𝑚𝑖𝑛. When user 𝑘 is not able to detect the message of user 𝑚 

with rate 𝑅𝑚𝑖𝑛, this can be indicated as 𝑅𝑚→𝑘 < 𝑅𝑚𝑖𝑛 , the complement of this event can be 

formulated as follows: 

|ℎ𝑘|
2𝑃𝑡𝛼𝑚

|ℎ𝑘|
2𝑃𝑡 ∑ 𝛼𝑖

𝑚−1
𝑖=1 + 𝜎2

> (2𝑅𝑚𝑖𝑛 − 1)                             (3.13)  

where 𝛼𝑖 is the power factor for 𝑖𝑡ℎ user in the system. By dividing both the numerator and 
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denominator of left-hand side of Equation 3.13 by the noise power 𝜎2, the expression in 

Equation 3.13 can be reformulated as:  

|ℎ𝑘|
2𝜌(𝛼𝑚 − (2

𝑅𝑚𝑖𝑛 − 1) ∑ 𝛼𝑖

𝑚−1

𝑖=1

) > (2𝑅𝑚𝑖𝑛 − 1)       (3.14)  

where 𝜌 represent the ratio between signal power and noise power (SNR). Based on the 

aforementioned discussion and Equation 3.14, we can deduce an expression for the outage 

probability performance metric, which simply can be defined as the probability that the 

received information rate is less than the required threshold information rate. Hence, it is worth 

mentioning that based on Equation 3.14, we can conclude that in order to satisfy the minimum 

transmission rate and avoid that 𝑘𝑡ℎ user being in outage, the following condition for the power 

factor must be satisfied as follows [65][66]: 

 𝛼𝑘 > (2
𝑅𝑚𝑖𝑛 − 1)∑𝛼𝑖

𝑘−1

𝑖=1

                                                     (3.15)  

3.6 Sum Rate optimization problem  

Based on the constraints in Equation 3.11 and Equation 3.12 and sum rate representation, the 

standard optimization problem can be normally expressed as follows [10][66][67]: 

  max
𝛼
 𝑅𝑠𝑢𝑚 = ∑ log2 (

|ℎ𝑘|
2𝑃𝑡∑ 𝛼𝑗

𝑘−1
𝑗=1 + 𝜎2 + |ℎ𝑘|

2𝑃𝑡𝛼𝑘

|ℎ𝑘|
2𝑃𝑡∑ 𝛼𝑗

𝑘−1
𝑗=1 + 𝜎2

)

𝑁

𝑘=1

            (3.16)  

such that: 

∑𝛼𝑥

𝑁

𝑥=1

≤ 1                                      (3.17) 

 log2(1 +𝑆𝐼𝑁𝑅𝑛) ≥ 𝑅𝑚𝑖𝑛          (3.18) 

 𝛼𝑘 ≥ 0 ∀𝑘 = 1,2,… ,𝑁 

 

3.7 Optimization Analysis 

In this section, the optimization analysis is realized where three users are considered in the 

NOMA system, hence the objective function and the constraints can be simply reformulated as 
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follows [68]: 

max
𝛼
    𝑅𝑆𝑢𝑚 = 𝑅𝑛 + 𝑅𝑚  + 𝑅𝑓                                                        (3.19)  

 𝑆. 𝑡. 

(2𝑅𝑚𝑖𝑛 − 1) − |ℎ𝑥|
2𝜌(𝛼𝑥 − (2

𝑅𝑚𝑖𝑛 − 1)∑𝛼𝑖

𝑥−1

𝑖=1

) ≤ 0              (3.20) 

 𝛼𝑛 + 𝛼𝑚 + 𝛼𝑓 − 1 ≤ 0                                                                      (3.21) 

 𝛼𝑛, 𝛼𝑚, 𝛼𝑓  ≥ 0 

 

where 𝛼𝑥 is the power assigned for the 𝑥𝑡ℎ and 𝑅𝑚𝑖𝑛 is the minimum rate required in the 

system. According to the above analysis, the constraints can also be represented as follows: 

𝐶1(𝛼) = 𝛼𝑛 + 𝛼𝑚 + 𝛼𝑓 − 1                                                               (3.22)  

𝐶2(𝛼) = (2
𝑅𝑚𝑖𝑛 − 1) − 𝜌|ℎ𝑓|

2
(𝛼𝑓 − (2

𝑅𝑚𝑖𝑛 − 1)(𝛼𝑛 + 𝛼𝑚)    (3.23)  

𝐶3(𝛼) = (2
𝑅𝑚𝑖𝑛 − 1) − 𝜌|ℎ𝑚|

2(𝛼𝑚 − (2
𝑅𝑚𝑖𝑛 − 1)(𝛼𝑛)              (3.24)  

The constraints 𝐶1(𝛼), 𝐶2(𝛼) & 𝐶3(𝛼) are linear in terms of 𝛼, hence the constraints are 

convex. Therefore, 
𝜕𝑅𝑆𝑢𝑚(𝛼)

𝜕𝛼
 and 

𝜕2𝑅𝑆𝑢𝑚(𝛼)

𝜕𝛼
  can be calculated [69]. We can find the first 

derivative for 𝑅𝑆𝑢𝑚(𝛼) with respect to each of the power coefficients 𝛼𝑛, 𝛼𝑚, and 𝛼𝑓. After 

some mathematical manipulation, 
𝜕𝑅𝑆𝑢𝑚(𝛼)

𝜕𝛼
  can be expressed as follows [10][68][69]: 

𝜕𝑅𝑆𝑢𝑚
𝜕𝛼𝑛

=
1

𝑙𝑛2
(

|ℎ𝑛|
2𝑃𝑡

|ℎ𝑛|
2𝑃𝑡𝛼𝑛 + 𝜎

2
−

(|ℎ𝑚|
2𝑃𝑡)

2𝛼𝑚
(|ℎ𝑚|

2𝑃𝑡(𝛼𝑛 + 𝛼𝑚) + 𝜎
2)(|ℎ𝑚|

2𝑃𝑡(𝛼𝑛) + 𝜎
2)

−
(|ℎ𝑓|

2
𝑃𝑡)

2
𝛼𝑓

(|ℎ𝑓|
2
𝑃𝑡(𝛼𝑛 + 𝛼𝑚 + 𝛼𝑓) + 𝜎

2) (|ℎ𝑓|
2
𝑃𝑡(𝛼𝑛+𝛼𝑚) + 𝜎

2)
)                           (3.25) 
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𝜕𝑅𝑆𝑢𝑚
𝜕𝛼𝑚

=
1

𝑙𝑛2
(

|ℎ𝑚|
2𝑃𝑡

|ℎ𝑚|
2𝑃𝑡(𝛼𝑛 + 𝛼𝑚) + 𝜎

2

−
(|ℎ𝑓|

2
𝑃𝑡)

2
𝛼𝑓

(|ℎ𝑓|
2
𝑃𝑡(𝛼𝑛 + 𝛼𝑚 + 𝛼𝑓) + 𝜎

2) (|ℎ𝑓|
2
𝑃𝑡(𝛼𝑛+𝛼𝑚) + 𝜎

2)
)     (3.26) 

 

𝜕𝑅𝑆𝑢𝑚
𝜕𝛼𝑓

=
1

𝑙𝑛2
(

|ℎ𝑓|
2
𝑃𝑡

|ℎ𝑓|
2
𝑃𝑡(𝛼𝑛 + 𝛼𝑚 + 𝛼𝑓) + 𝜎

2
)                                 (3.27)   

At this point, a general formula can be derived for the first derivative of the objective function 

in terms of 𝛼 as follows: 

𝜕𝑅𝑆𝑢𝑚(𝛼)

𝜕𝛼𝑖
=

1

𝑙𝑛2
  (

|ℎ𝑖|
2𝑃𝑡

|ℎ𝑖|
2𝑃𝑡 ∑ 𝛼𝑗

𝑖
𝑗=1  + 𝜎2

)

−
1

𝑙𝑛2
∑{(

(|ℎ(𝑖+𝑘)|
2
𝑃𝑡)

2
𝛼𝑖+𝑘

(|ℎ(𝑖+𝑘)|
2
𝑃𝑡 ∑ 𝛼𝑗

𝑖+𝑘
𝑗=1 + 𝜎2)

)

𝑁−𝑖

𝑘=1

× (
1

(|ℎ(𝑖+𝑘)|
2
𝑃𝑡∑ 𝛼𝑗

𝑖+𝑘−1
𝑗=1 + 𝜎2)

)}                                     (3.28)  

 

The second derivative of the objective function 
𝜕2𝑅𝑆𝑢𝑚(𝛼)

𝜕𝛼
  with respect to each of the power 

coefficients 𝛼𝑛, 𝛼𝑚, and 𝛼𝑓 can also be derived as follows [10][68][69]: 
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𝜕2𝑅𝑆𝑢𝑚

𝜕𝛼𝑛
2

= −
1

𝑙𝑛2
{(

(|ℎ𝑛|
2𝑃𝑡)

2

(|ℎ𝑛|
2𝑃𝑡𝛼𝑛  + 𝜎

2)2
)

− (
(|ℎ𝑚|

2𝑃𝑡)
3𝛼𝑚  [ 2(|ℎ𝑚|

2𝑃𝑡𝛼𝑛 + 𝜎
2) + |ℎ𝑚|

2𝑃𝑡𝛼𝑚]

(|ℎ𝑚|
2𝑃𝑡(𝛼𝑛 + 𝛼𝑚) + 𝜎

2)2  (|ℎ𝑚|
2𝑃𝑡(𝛼𝑛) + 𝜎

2)2
)

− (
(|ℎ𝑓|

2
𝑃𝑡)

3
𝛼𝑓 [2 (|ℎ𝑓|

2
𝑃𝑡(𝛼𝑛 + 𝛼𝑚) + 𝜎

2) + |ℎ𝑓|
2
𝑃𝑡𝛼𝑓]

(|ℎ𝑓|
2
𝑃𝑡(𝛼𝑛 + 𝛼𝑚 + 𝛼𝑓) + 𝜎

2)
2
  (|ℎ𝑓|

2
𝑃𝑡(𝛼𝑛 + 𝛼𝑚) + 𝜎

2)
2)}   (3.29) 

 

 

𝜕2𝑅𝑆𝑢𝑚

𝜕𝛼𝑚
2

= −
1

𝑙𝑛2
{(

(|ℎ𝑚|
2𝑃𝑡)

2

(|ℎ𝑚|
2𝑃𝑡(𝛼𝑛 + 𝛼𝑚)  + 𝜎

2)2
)

− (
(|ℎ𝑓|

2
𝑃𝑡)

3
𝛼𝑓 [ 2 (|ℎ𝑓|

2
𝑃𝑡(𝛼𝑛 + 𝛼𝑚) + 𝜎

2) + |ℎ𝑓|
2
𝑃𝑡𝛼𝑓]

(|ℎ𝑓|
2
𝑃𝑡(𝛼𝑛 + 𝛼𝑚 + 𝛼𝑓) + 𝜎

2)
2
 (|ℎ𝑓|

2
𝑃𝑡(𝛼𝑛 + 𝛼𝑚) + 𝜎

2)
2)}      (3.30) 

 

𝜕2𝑅𝑆𝑢𝑚

𝜕𝛼𝑓
2 = −

1

𝑙𝑛2
  {(

(|ℎ𝑓|
2
𝑃𝑡)

2

(|ℎ𝑓|
2
𝑃𝑡(𝛼𝑛+𝛼𝑚+𝛼𝑓)+𝜎

2)
2)}                (3.31)   

A general formula can also be found for the second derivative of the objective function in terms 

of 𝛼 as follows: 

𝜕2𝑅𝑆𝑢𝑚(𝛼)

𝜕𝛼𝑖
2

= −
1

𝑙𝑛2
  {(

(|ℎ𝑖|
2𝑃𝑡)

2

(|ℎ𝑖|
2𝑃𝑡∑ 𝛼𝑗

𝑖
𝑗=1  + 𝜎2)

2) 

−∑{(
(|ℎ(𝑖+𝑘)|

2
𝑃𝑡)

3
𝛼𝑖+𝑘 [2 (|ℎ(𝑖+𝑘)|

2
𝑃𝑡∑ 𝛼𝑗

𝑘+𝑖−1
𝑗=1 + 𝜎2) + |ℎ(𝑖+𝑘)|

2
𝑃𝑡𝛼𝑖+𝑘]

(|ℎ(𝑖+𝑘)|
2
𝑃𝑡 ∑ 𝛼𝑗

𝑖+𝑘
𝑗=1 + 𝜎2)

2 )

𝑁−𝑖

𝑘=1

× (
1

(|ℎ(𝑖+𝑘)|
2
𝑃𝑡∑ 𝛼𝑗

𝑖+𝑘−1
𝑗=1 + 𝜎2)

2)}

}
 
 

 
 

                              (3.32) 
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3.8 Lagrange Function and Optimality Condition  

Based on the objective function, and 
𝜕𝑅𝑆𝑢𝑚(𝛼)

𝜕𝛼𝑖
 and 

𝜕2𝑅𝑆𝑢𝑚(𝛼)

𝜕𝛼𝑖
2 , it can be proved that the objective 

function is concave and has a unique global maximum [4][10][12][69]. The Lagrange function 

and the KKT necessary conditions could be applied to achieve optimal power factors as follows 

[70]: 

ℒ(𝛼𝑛, 𝛼𝑚, 𝛼𝑓 , 𝜇1, 𝜇2,, 𝜇3) = 𝑅𝑆𝑢𝑚 − 𝜇1𝐶1(𝛼) − 𝜇2𝐶2(𝛼) − 𝜇3𝐶3(𝛼)   (3.33)  

where 𝜇1, 𝜇2, and 𝜇3 represent Lagrange multipliers for the three user scenarios, and the 

optimality conditions can be written as follows [4][10][12][68]: 

𝜕𝑅𝑆𝑢𝑚
𝜕𝛼𝑛

− 𝜇1
𝜕𝐶1(𝛼)

𝜕𝛼𝑛
− 𝜇2

𝜕𝐶2(𝛼)

𝜕𝛼𝑛
− 𝜇3

𝜕𝐶3(𝛼)

𝜕𝛼𝑛
= 0         (3.34)  

𝜕𝑅𝑆𝑢𝑚
𝜕𝛼𝑚

− 𝜇1
𝜕𝐶1(𝛼)

𝜕𝛼𝑚
− 𝜇2

𝜕𝐶2(𝛼)

𝜕𝛼𝑚
− 𝜇3

𝜕𝐶3(𝛼)

𝜕𝛼𝑚
= 0         (3.35)  

𝜕𝑅𝑆𝑢𝑚
𝜕𝛼𝑓

− 𝜇1
𝜕𝐶1(𝛼)

𝜕𝛼𝑓
− 𝜇2

𝜕𝐶2(𝛼)

𝜕𝛼𝑓
− 𝜇3

𝜕𝐶3(𝛼)

𝜕𝛼𝑓
= 0     (3.36)  

Slackness conditions can also be expressed as follows: 

𝜇1(𝛼𝑛 + 𝛼𝑚 + 𝛼𝑓 − 1) = 0                                                                          (3.37)  

𝜇2 ((2
𝑅𝑚𝑖𝑛 − 1) − 𝜌|ℎ𝑓|

2
(𝛼𝑓 − (2

𝑅𝑚𝑖𝑛 − 1)(𝛼𝑛 + 𝛼𝑚)) = 0            (3.38)  

𝜇3((2
𝑅𝑚𝑖𝑛 − 1) − 𝜌|ℎ𝑚|

2(𝛼𝑚 − (2
𝑅𝑚𝑖𝑛 − 1)(𝛼𝑛)) = 0                      (3.39)  

Lagrange multipliers also need to satisfy the following: 

𝜇1 ≥ 0, 𝜇2 ≥ 0, 𝜇3 ≥    0                                       (3.40)  

In the subsequent steps, Lagrange multipliers should be proved to be positive. This could be 

accomplished as follows: 
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𝜕𝐶1(𝛼)

𝜕𝛼𝑛
=
𝜕𝐶1(𝛼)

𝜕𝛼𝑚
=
𝜕𝐶1(𝛼)

𝜕𝛼𝑓
= 1                                                                (3.41)  

 
𝜕𝐶2(𝛼)

𝜕𝛼𝑛
=
𝜕𝐶2(𝛼)

𝜕𝛼𝑚
= 𝜌|ℎ𝑓|

2
(2𝑅𝑚𝑖𝑛 − 1)                                                     (3.42)  

𝜕𝐶3(𝛼)

𝜕𝛼𝑛
= 𝜌|ℎ𝑚|

2(2𝑅𝑚𝑖𝑛 − 1)                                                                         (3.43)   

𝜕𝐶2(𝛼)

𝜕𝛼𝑓
= −𝜌|ℎ𝑓|

2
                                                                                              (3.44)  

 

 

 
𝜕𝐶3(𝛼)

𝜕𝛼𝑚
= −𝜌|ℎ𝑚|

2                                                                                            (3.45)  

Based on Equations 3.41 up to 3.45, this can be substituted in the optimality conditions for 

Lagrange and obtain the following: 

 
𝜕𝑅𝑆𝑢𝑚
𝜕𝛼𝑛

− 𝜇1(1) − 𝜇2𝜌|ℎ𝑓|
2
(2𝑅𝑚𝑖𝑛 − 1)  − 𝜇3𝜌|ℎ𝑚|

2(2𝑅𝑚𝑖𝑛 − 1) = 0   (3.46)  

𝜕𝑅𝑆𝑢𝑚
𝜕𝛼𝑚

− 𝜇1(1) − 𝜇2𝜌|ℎ𝑓|
2
(2𝑅𝑚𝑖𝑛 − 1) − 𝜇3(−𝜌|ℎ𝑚|

2) = 0                    (3.47)  

𝜕𝑅𝑆𝑢𝑚
𝜕𝛼𝑓

− 𝜇1(1) − 𝜇2(−𝜌|ℎ𝑓|
2
) − 𝜇3(0) = 0                                                  (3.48) 

 

To simplify the above expressions, Let 𝛽1 = 𝜌|ℎ𝑓|
2
(2𝑅𝑚𝑖𝑛 − 1), 𝛽2 = 𝜌|ℎ𝑚|

2(2𝑅𝑚𝑖𝑛 − 1),         

𝛾1 = (−𝜌|ℎ𝑓|
2
), and 𝛾2 = (−𝜌|ℎ𝑚|

2). Therefore, the above written optimality conditions for 

Lagrange can be rewritten as: 

𝜕𝑅𝑆𝑢𝑚
𝜕𝛼𝑛

− 𝜇1 − 𝜇2 𝛽1 − 𝜇3 𝛽2 = 0                                          (3.49)  

𝜕𝑅𝑆𝑢𝑚
𝜕𝛼𝑚

− 𝜇1 − 𝜇2 𝛽1 − 𝜇3 𝛾2 = 0                                           (3.50)  

𝜕𝑅𝑆𝑢𝑚
𝜕𝛼𝑓

− 𝜇1 − 𝜇2 𝛾1 = 0                                                           (3.51)  
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After a few mathematical substitutions, the above written optimality conditions can be solved 

and rewritten as follows: 

(
𝜕𝑅𝑆𝑢𝑚
𝜕𝛼𝑚

−
𝜕𝑅𝑆𝑢𝑚
𝜕𝛼𝑓

) − (
𝜕𝑅𝑆𝑢𝑚
𝜕𝛼𝑛

−
𝜕𝑅𝑆𝑢𝑚
𝜕𝛼𝑓

)(
𝛾2

𝛽2
)

=  𝜇2 (−𝛾1 +  𝛽1 + (𝛾1 − 𝛽1) (
𝛾1

𝛽1
))        (3.52) 

 

Based on the fact that |ℎ𝑛|
2 > |ℎ𝑚|

2 > |ℎ𝑓|
2
, we can simply prove that (

𝜕𝑅𝑆𝑢𝑚

𝜕𝛼𝑚
−
𝜕𝑅𝑆𝑢𝑚

𝜕𝛼𝑓
) and 

(
𝜕𝑅𝑆𝑢𝑚

𝜕𝛼𝑛
−
𝜕𝑅𝑆𝑢𝑚

𝜕𝛼𝑓
) are positive and the left-hand side of Equation 3.52 is positive. Furthermore, 

since (
𝛾1

𝛽1
) are negative scalar, the right-hand side Equation 3.52 can be proved to be also 

positive, which concludes that 𝜇2 is positive.  

 

Additionally, Equation 3.51 can be reformulated as follows: 

𝜕𝑅𝑆𝑢𝑚
𝜕𝛼𝑓

− 𝜇2 𝛾1 = 𝜇1                                                                   (3.53)  

where 
𝜕𝑅𝑆𝑢𝑚

𝜕𝛼𝑓
 is positive by inspection and (𝜇2𝛾1) is negative quantity; therefore, the left-hand 

side of Equation 3.53 must be positive, which implies that 𝜇1 is a positive quantity. Similarly, 

𝜇3 can be proved to be positive value. In accordance with the above-mentioned analysis, the 

examined constraints are feasible, and the closed form representation for the power factors can 

be determined from the slackness conditions as follows [4][10][68]: 

𝛼𝑛 + 𝛼𝑚 + 𝛼𝑓 = 1                                                                       (3.54)  

(2𝑅𝑚𝑖𝑛 − 1) = 𝜌|ℎ𝑓|
2
(𝛼𝑓 − (2

𝑅𝑚𝑖𝑛 − 1)(𝛼𝑛 + 𝛼𝑚))         (3.55)  

(2𝑅𝑚𝑖𝑛 − 1) = 𝜌|ℎ𝑚|
2(𝛼𝑚 − (2

𝑅𝑚𝑖𝑛 − 1)(𝛼𝑛))                   (3.56)  

To simplify the derivation, it can be assumed that 𝐴1 = (2𝑅𝑚𝑖𝑛 − 1) and 𝐴2 = 𝜌|ℎ𝑓|
2
, 

𝐴3 = 𝜌|ℎ𝑚|
2, After performing some mathematical substitutions and arrangements, the closed 
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form expression for each of the power coefficients for the user devices can be derived as 

follows: 

𝛼𝑓 = (
𝐴1
𝐴2
) (
1 + 𝐴2
1 + 𝐴1

) =  (
(2𝑅𝑚𝑖𝑛 − 1)

2𝑅𝑚𝑖𝑛
)(1 +

1

𝜌|ℎ𝑓|
2)                                (3.57)  

𝛼𝑚 = (
1 +

1
𝐴3
− 𝛼𝑓

1 +
1
𝐴1

)  

𝛼𝑚 = ((
(2𝑅𝑚𝑖𝑛 − 1)

2𝑅𝑚𝑖𝑛
)(1 +

1

𝜌|ℎ𝑚|
2
) − (

2𝑅𝑚𝑖𝑛 − 1

2𝑅𝑚𝑖𝑛
)

2

(1 +
1

𝜌|ℎ𝑓|
2))     (3.58) 

 

𝛼𝑛 = 1 − (𝛼𝑚 + 𝛼𝑓) 

𝛼𝑛 = 
(
1
𝐴2
) (
1 + 𝐴2
1 + 𝐴1

) − (
𝐴3 − 𝐴1𝐴2
𝐴2𝐴3

)

1 + 𝐴1
 

𝛼𝑛 = 
1

(2𝑅𝑚𝑖𝑛)
((

1 + 𝜌|ℎ𝑓|
2

(2𝑅𝑚𝑖𝑛)𝜌|ℎ𝑓|
2) + (

(2𝑅𝑚𝑖𝑛 − 1)

𝜌|ℎ𝑚|
2

−
1

𝜌|ℎ𝑓|
2))                 (3.59) 

 

3.9 MISO-NOMA System  

Due to the QoS demands that critically required for future wireless networks, non-orthogonal 

multiple access (NOMA) supported by practical successive interference cancellation (SIC) at 

the receiver side can be considered as a motivating multiple access technique for sixth 

generation (6G) networks. Typically, power domain NOMA (PD-NOMA) is designed to 

handle signals that have significant difference in power levels, therefore, PD-NOMA is 

observed as one of the multiple access candidate’s schemes that can achieve high spectral 

efficiency and huge connectivity in upcoming wireless networks. The integration of NOMA 

and multiple antenna system is also an appropriate scheme to improve the system performance, 

therefore analyzing NOMA system with multiple antenna structure can be inspiring towards 

identifying the substantial improvement that can be achieved in the achievable user’s data rates 

[4][71].  
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3.9.1 Multiuser Environment 

In this section, a multiuser environment with a one Base Station (BS) and multiple user devices 

(UDs) is inspected. The BS is supplied with 𝑁 antennas and all the UDs are provided with a 

single antenna. The network is assumed to work with a specified time slots and each time slot 

involves one transmission, that includes either uplink or downlink transmissions. Generally, 

the pilot-assisted channel prediction is considered in our work, where pilot symbols can be 

identified by BS and UDs [4][11][72]. Usually, each user device initially transmits its pilot 

symbols to BS via an uplink channel, then, prior to downlink data transmission, the BS can 

inspect the pilot symbols and the accessible network information to facilitate estimating the 

downlink CSI. The main aim of this section is to derive and manage the power allocation 

scheme when 𝑁 antennas are considered at the BS. Assume we have one BS with 𝑁 antennas, 

we can represent the matrix of channel coefficients between BS and UD i as follows: 

𝑯𝑖 = [𝒉1𝑖;  𝒉2𝑖; … ; 𝒉𝑁𝑖]                         (3.60)  

where 𝒉𝑗𝑖 represents the vector of channel parameters from 𝑗𝑡ℎ antenna at BS to the 𝑖𝑡ℎ UD, 

with 𝑗 ∈ [1, 2, … ,𝑁] and 𝑖 ∈ [1, 2, … ,𝑀], where 𝑁 is the number of antennas at BS and 𝑀 is 

the number of users in MISO-NOMA cell. Furthermore, we can denote the data signal 

transmitted to UD i as 

𝒔𝑖 = [𝑠𝑖1, 𝑠𝑖2, … , 𝑠𝑖𝐾]                               (3.61)   

where K is the length of the signal. Then, the matrix that represents all the UD’s sequences can 

be shown as 

𝑺 = [𝒔1; 𝒔2; … ; 𝒔𝑀]                                 (3.62)  

The received kth signal at jth UD can be denoted as: 

𝒚𝑘𝑗 =∑ 𝒉𝑖𝑗
𝑁

𝑖=1
𝑠𝑘𝑖 + 𝑧𝑘𝑗                      (3.63)  

where 𝑧𝑘𝑗 denotes the AWGN with zero mean and variance 𝜎2 at jth UD through kth signal 

duration. The received kth symbol at all UDs is: 
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𝒀𝒌 =∑ 𝒉𝑖
𝑁

𝑖=1
𝑠𝑘𝑖 + 𝒛𝑘                            (3.64)  

where 

𝒀𝑘 = [𝒚𝑘1; 𝒚𝑘2 ;  … ; 𝒚𝑘𝑀]                     (3.65)  

𝒛𝑘 = [𝑧𝑘1;  𝑧𝑘2;  … ; 𝑧𝑘𝑀]                         (3.66)  

Many of the current research count on pilot symbols to approximate the uplink channel 

parameters and then utilize reciprocity of the channel to realize the prediction of the downlink 

channel weights [72]. These such schemes for predicting the CSI may not be reliable, especially 

in circumstances of inadequate channel reciprocity owing to hardware limitations. Besides, this 

kind of estimator may introduce estimation errors in case the uplink and downlink channel 

parameters are not stationary within a certain transmission. 

As stated before, in our work, we manage to get assistance from pilot symbols, and network 

information to explicitly predict the downlink channel parameters. The set of estimated channel 

coefficients between the BS and M user devices can be shown as 

�̂� = [�̂�1;  �̂�2;… ; �̂�𝑀]                                           (3.67)  

where �̂�𝒊 is the predicted channel coefficients between the ith UD and the BS that contains N 

antennas and �̂�𝒊 can be expressed as follows: 

�̂�𝒊 = [�̂�1𝑖;  �̂�2𝑖; … ; �̂�𝑁𝑖]                                         (3.68)  

where �̂�𝑗𝑖 represents the vector of predicted channel parameters between 𝑗th antenna at BS and 

the ith UD. 

3.9.2 MISO-NOMA System Model  

The fundamental concept of NOMA system is to provide a non-orthogonal resource allocation 

between user devices while increasing the processing at the receiver side. With non-orthogonal 

resource allocation, NOMA can achieve a massive connectivity and accomplish high spectral 

efficacy. Existing research on NOMA schemes mainly focuses on the code domain and power 

domain. In the code domain NOMA, featured spread spectrum codes are designated for 
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different users and then these users can be multiplexed over the same time-frequency resource 

block. In the power domain NOMA, the transmitter can superimpose signals with different 

power levels to be sent to several users on the shared spectrum. At the receiver, each user 

equipment can decode his own desired signal by means of successive interference cancellation 

(SIC) [72]. 

In this section, the downlink MISO-NOMA system is analysed where each user device is linked 

by different fading channels to N antennas at the BS. To simplify our analysis, NOMA cell is 

considered with one BS, and the BS has two antennas, while each user device has one antenna. 

As stated before, in PD-NOMA, each user device will receive the superimposed signal sent 

from BS which involves the target and interfering signals sent through the same resources. 

Thus, combining different signals supported by unique power levels is critical to distinguish 

these signals and strengthen the successive interference cancellation (SIC) procedure. The 

system structure for the basic components that describe the examined MISO-NOMA system is 

shown in Figure 3.1. 

 

Figure 3.1 MISO-NOMA system basic Structure. 

In this section, MISO-NOMA cell will be analysed, with three user devices are considered in 

the cell. The examined user devices can be characterized based on their fading channels models 

and the distances from BS. Fading channels with Rayleigh distribution are adopted to describe 

the channel model for every user in the MISO-NOMA cell. The user equipment at the boundary 

of the cell is realized as a far user, while the nearest user equipment is specified as a near user. 

The examined MISO-NOMA cell includes three user devices and the fading path for every 

user can be observed as follows [4][11]: 𝒉𝑛~(0, 𝑑𝑛
−𝑘) for near users, 𝒉𝑚~(0, 𝑑𝑚

−𝑘) for the 

middle user, and 𝒉𝑓~(0, 𝑑𝑓
−𝑘) for the user at the edge of the cell, where 𝒉𝑖 implies the vector 

that represents the fading channel coefficients among BS and user i, k represents the path loss 
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exponent, and   AWGN is considered with noise power indicated as 𝜎2. In terms of channel 

gains, the relation between user devices can also be indicated as |𝒉𝑛|
2 > |𝒉𝑚|

2 > |𝒉𝑓|
2
 

[4][20], and the overall power transmitted from BS to all users in the cell is labelled as 𝑃𝑡. Each 

user device has a receiver that can activate the SIC process to get rid of signals related to other 

devices with bad channel characteristics. In contrast, signals related to user devices with good 

link conditions may not be eliminated and regarded as interference. According to the 

aforementioned assumptions, the superposition-coded signal 𝒙 sent from BS can be stated as 

follows: 

𝒙 = √𝑃𝑡(√𝜂𝑛𝑥𝑛 +√𝜂𝑚𝑥𝑚 +√𝜂𝑓𝑥𝑓)               (3.69)  

where 𝜂𝑓, 𝜂𝑚 and 𝜂𝑛 represent power factors given for a far user device, middle user device, 

and near user device separately. Furthermore, 𝑥𝑓, 𝑥𝑚 and 𝑥𝑛 refer to the information signals 

related to far, middle, and near users respectively. The downlink received signal at a far user 

device in the MISO-NOMA cell can be written as: 

            𝒚𝑓 = 𝒙𝒉𝑓1 + 𝒙𝒉𝑓2 + 𝑧𝑓                                                      (3.70)  

where 𝒉𝑓1 represents the fading channel among far user device and the 1st antenna at BS, 𝒉𝑓2 

represents the fading channel between the far user device and 2nd antenna at BS and 𝑧𝑓 is the 

AWGN noise component at the far user device with mean zero and variance 𝜎2. The far user 

is denoted by weak channel condition, therefore signal 𝑥𝑓 is usually given additional power 

level by BS where 𝜂𝑓 > 𝜂𝑚 > 𝜂𝑛. The received signal at a far user device can be shown in 

detail as follows: 

𝒚𝑓 = √𝑃𝑡𝜂𝑓𝑥𝑓(𝒉𝑓1 + 𝒉𝑓2) + (√𝑃𝑡𝜂𝑚𝑥𝑚 +√𝑃𝑡𝜂𝑛𝑥𝑛)(𝒉𝑓1 + 𝒉𝑓2) + 𝑧𝑓    (3.71)  

The 1st term in Equation 3.71 implies the target signal for far user and the 2nd term indicates 

to the interference term coming from other user devices. Based on the above-mentioned 

analysis, the possible bit rate for a far user in MISO-NOMA system could be written as follows 

[4][11][72]: 
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𝑅𝑓 = 𝑙𝑜𝑔2 (1 +
|𝒉𝑓1 + 𝒉𝑓2|

2
𝑃𝑡𝜂𝑓

|𝒉𝑓1 + 𝒉𝑓2|
2
𝑃𝑡(𝜂𝑛 + 𝜂𝑚) + 𝜎

2
)                                    (3.72)  

Similarly, the near user equipment has a good channel status alongside BS, therefore, a low 

power level can be assigned to 𝑥𝑛, and the received signal for the near user can be stated as: 

𝒚𝑛 = √𝑃𝑡𝜂𝑛𝒙𝑛(𝒉𝑛1 + 𝒉𝑛2) + (√𝑃𝑡𝜂𝑚𝒙𝑚 +√𝑃𝑡𝜂𝑓𝒙𝑓) (𝒉𝑛1 + 𝒉𝑛2) + 𝑧𝑛    (3.73)  

In Equation 3.73, the 1st term represents the expected near user signal, and the 2nd term implies 

interference from other user devices. It can be noted from Equation 3.73, that the interference 

can affect the received signal, since that the far user may be assigned a further power level. To 

recover the desired signal at the near user device, SIC is activated, where direct decoding for 

the far user signal 𝑥𝑓 is implemented first, then eliminated the decoded signal from the 

aggregate signal. Afterwards, the middle device signal 𝑥𝑚 is decoded and remove it from the 

resultant signal. Finally, the potential rate for the near user 𝑅𝑛 can be shown as: 

𝑅𝑛 = log2 (1 +
|𝒉𝑛1 + 𝒉𝑛2|

2𝑃𝑡𝜂𝑛
𝜎2

)                                    (3.74) 
 

 

3.10 Optimization Problem Characterization 
The key point here is to maximize the sum rates for the user devices in the examined MISO-

NOMA cell. Sum rate maximization will be considered based on optimizing the power 

allocation factor for each user device while take in consideration the total power and the 

minimum rate constraints. In the examined downlink MISO-NOMA, the objective function or 

the sum rates for M user devices can be expressed as [4][11][66][67]: 

𝑅𝑠𝑢𝑚 =∑log2 (1 +
|𝒉𝑖1 + 𝒉𝑖2|

2𝑃𝑡𝜂𝑖

|𝒉𝑖1 + 𝒉𝑖2|
2𝑃𝑡 ∑ 𝜂𝑗

𝑖−1
𝑗=1 + 𝜎2

)                          (3.75)

𝑀

𝑖=1

  

In the subsequent analysis, the constraints will be presented as follows: 

3.10.1 Power Constraint 

The power given for every user device in the MISO-NOMA cell is a portion of the whole power 



49  

𝑃𝑡  sent from the BS, therefore the power factor for each device must conform with: 

 ∑𝜂𝑖

𝑀

𝑖=1

≤ 1                                                                                (3.76)  

where 𝜂𝑖 is the power percentage allocated for the 𝑖𝑡ℎ user. 

3.10.2 QoS Constraints 

In our analysis, we assume that all the user devices in the examined MISO-NOMA cell need 

to realize a QoS requirement where the minimum rate 𝑅𝑚𝑖𝑛 is required to be fulfilled in the 

system, this constraint can be expressed as follows: 

𝐿𝑜𝑔2(1 +𝑆𝐼𝑁𝑅𝑖) ≥ 𝑅𝑚𝑖𝑛                                                    (3.77)  

where 𝑆𝐼𝑁𝑅𝑖 is the signal to interference plus noise ratio for 𝑖𝑡ℎ user and 𝑅𝑚𝑖𝑛 is the minimum 

required transmission rate in the examined MISO-NOMA cell. Equation 3.77 can be 

reformulated as follows [4][11][67][72]: 

|𝒉𝑖1 + 𝒉𝑖2|
2𝜌(𝜂𝑖 − (2

𝑅𝑚𝑖𝑛 − 1)∑𝜂𝑗

𝑖−1

𝑗=1

) > (2𝑅𝑚𝑖𝑛 − 1)      (3.78)  

where 𝜌 represents the SNR. 

3.11 Optimization Framework 
The primary goals in this section can be listed as follows: (1) introduce the objective function 

and the constraints in a standard form, (2) derive a general expression for the 1st and 2nd 

derivative for the objective function, (3) based on the mathematical analysis and the derived 

formulas, we can inspect that 
𝜕2𝑅𝑆𝑢𝑚

𝜕𝜂𝑖
2

 is a negative, which supports that the objective function 

is a concave with a distinctive global maximum (4) finally, we can deduce the optimal power 

factors for each user in the MISO-NOMA cell based on applying the Lagrange function and 

the optimality conditions [4][11][69][70]. 

Based on the objective function in Equation 3.75 and the constraints in Equations 3.76 and 

3.77, the standard optimization problem can be generally reformulated as follows: 
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max
𝜂
 𝑅𝑠𝑢𝑚 = ∑𝑙𝑜𝑔2 (

|𝒉𝑖1 + 𝒉𝑖2|
2𝑃𝑡∑ 𝜂𝑗

𝑖−1
𝑗=1 + 𝜎2 + |𝒉𝑖1 + 𝒉𝑖2|

2𝑃𝑡𝜂𝑖

|𝒉𝑖1 + 𝒉𝑖2|
2𝑃𝑡 ∑ 𝜂𝑗

𝑖−1
𝑗=1 + 𝜎2

)  (3.79) 

𝑀

𝑖=1

  

such that 

∑𝜂𝑗

𝑀

𝑗=1

≤ 1                                                                                                                   (3.80) 

 (2𝑅𝑚𝑖𝑛 − 1) − 𝜌|𝒉𝑖1 + 𝒉𝑖2|
2(𝜂𝑖 − (2

𝑅𝑚𝑖𝑛 − 1)∑𝜂𝑗

𝑖−1

𝑗=1

) ≤ 0                      (3.81) 

𝜂𝑖 ≥ 0     ∀𝑖 = 1, 2,… ,𝑀 

 

Similarly, in this part, the power optimization framework for the MISO-NOMA cell is 

accomplished with regards to three user devices. Therefore, the examined constraints can be 

also represented as shown: 

 𝜓1(𝜂) = 𝜂𝑛 + 𝜂𝑚 + 𝜂𝑓 − 1                                                                                   (3.82)  

𝜓2(𝜂) = (2
𝑅𝑚𝑖𝑛 − 1) − 𝜌|𝒉𝑓1 + 𝒉𝑓2|

2
(𝜂𝑓 − (2

𝑅𝑚𝑖𝑛 − 1)(𝜂𝑚 + 𝜂𝑛)         (3.83)  

𝜓3(𝜂) = (2
𝑅𝑚𝑖𝑛 − 1) − 𝜌|𝒉𝑚1 + 𝒉𝑚2|

2(𝜂𝑚 − (2
𝑅𝑚𝑖𝑛 − 1)(𝜂𝑛)                 (3.84)  

Since the constraints 𝜓1(𝜂), 𝜓2(𝜂) & 𝜓3(𝜂) are linear in terms of 𝜂, they are considered 

convex. One way to prove that the objective function 𝑅𝑆𝑢𝑚 is concave with a distinctive global 

maximum, is to find a general expression for the first derivative 
𝜕𝑅𝑆𝑢𝑚

𝜕𝜂𝑖
 and the second 

derivative 
𝜕2𝑅𝑆𝑢𝑚

𝜕𝜂𝑖
2   of the objective function. The first derivative of the objective function can 

be derived in general form as follows [4][11][69][70]: 
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𝜕𝑅𝑆𝑢𝑚
𝜕𝜂𝑖

=
1

𝑙𝑛2
  (

|𝒉𝑖1 + 𝒉𝑖2|
2𝑃𝑡

|𝒉𝑖1 + 𝒉𝑖2|
2𝑃𝑡 ∑ 𝜂𝑗

𝑖
𝑗=1  + 𝜎2

)

−
1

𝑙𝑛2
∑ {(

(|𝒉(𝑖+𝑘)1 + 𝒉(𝑖+𝑘)2|
2
𝑃𝑡)

2
𝜂𝑖+𝑘

(|𝒉(𝑖+𝑘)1 + 𝒉(𝑖+𝑘)2|
2
𝑃𝑡 ∑ 𝜂𝑗

𝑖+𝑘
𝑗=1 + 𝜎2)

)

𝑀−𝑖

𝑘=1

× (
1

(|𝒉(𝑖+𝑘)1 + 𝒉(𝑖+𝑘)2|
2
𝑃𝑡∑ 𝜂𝑗

𝑖+𝑘−1
𝑗=1 + 𝜎2)

)}                                         (3.85) 

 

Similarly, the second derivative of the objective function can be derived in general form as 

follows: 

𝜕2𝑅𝑆𝑢𝑚
𝜕𝜂𝑖

2
= −

1

𝑙𝑛2
  {(

(|𝒉𝑖1 + 𝒉𝑖2|
2𝑃𝑡)

2

(|𝒉𝑖1 + 𝒉𝑖2|
2𝑃𝑡∑ 𝜂𝑗

𝑖
𝑗=1  + 𝜎2)

2)

−∑ {(|𝒉(𝑖+𝑘)1 + 𝒉(𝑖+𝑘)2|
2
𝑃𝑡)

3
𝜂𝑖+𝑘

𝑀−𝑖

𝑘=1

  

× (
[2 (|𝒉(𝑖+𝑘)1 + 𝒉(𝑖+𝑘)2|

2
𝑃𝑡∑ 𝜂𝑗

𝑘+𝑖−1
𝑗=1 + 𝜎2) + |𝒉(𝑖+𝑘)1 + 𝒉(𝑖+𝑘)2|

2
𝑃𝑡𝜂𝑖+𝑘]

(|𝒉(𝑖+𝑘)1 + 𝒉(𝑖+𝑘)2|
2
𝑃𝑡∑ 𝜂𝑗

𝑖+𝑘
𝑗=1 + 𝜎2)

2 )

× (
1

(|𝒉(𝑖+𝑘)1 + 𝒉(𝑖+𝑘)2|
2
𝑃𝑡 ∑ 𝜂𝑗

𝑖+𝑘−1
𝑗=1 + 𝜎2)

2)}

}
 
 

 
 

          (3.86) 

 

Based on the above mathematical analysis and the derived formulas, we can check that 
𝜕2𝑅𝑆𝑢𝑚

𝜕𝜂𝑖
2

 

is a negative function, which verifies that the objective function is a concave with a distinctive 

maximum [4][69][70]. As demonstrated in the previous section, to derive the optimal power 

factors, the Lagrange function and the KKT optimality conditions can be applied 

[4][11][69][70]: 

ℒ(𝜂𝑛, 𝜂𝑚, 𝜂𝑓 , 𝜇1, 𝜇2,, 𝜇3) = 𝑅𝑆𝑢𝑚 − 𝜇1𝜓1(𝜂) − 𝜇2𝜓2(𝜂) − 𝜇3𝜓3(𝜂)    (3.87)  

where 𝜇1 , 𝜇2, and 𝜇3 represent Lagrange multipliers for the 3 users’ scenario. Optimality 
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conditions can be written as follows: 

𝜕𝑅𝑆𝑢𝑚
𝜕𝜂𝑛

− 𝜇1
𝜕𝜓1(𝜂)

𝜕𝜂𝑛
− 𝜇2

𝜕𝜓2(𝜂)

𝜕𝜂𝑛
− 𝜇3

𝜕𝜓3(𝜂)

𝜕𝜂𝑛
= 0                            (3.88)  

𝜕𝑅𝑆𝑢𝑚
𝜕𝜂𝑚

− 𝜇1
𝜕𝜓1(𝜂)

𝜕𝜂𝑚
− 𝜇2

𝜕𝜓2(𝜂)

𝜕𝜂𝑚
− 𝜇3

𝜕𝜓3(𝜂)

𝜕𝜂𝑚
= 0                            (3.89)  

𝜕𝑅𝑆𝑢𝑚
𝜕𝜂𝑓

− 𝜇1
𝜕𝜓1(𝜂)

𝜕𝜂𝑓
− 𝜇2

𝜕𝜓2(𝜂)

𝜕𝜂𝑓
− 𝜇3

𝜕𝜓3(𝜂)

𝜕𝜂𝑓
= 0                            (3.90)  

Following the same mathematical analysis and manipulations performed in previous section, 

and given the fact that |𝒉𝑛|
2 > |𝒉𝑚|

2 > |𝒉𝑓|
2
, we can demonstrate that the analyzed 

constraints are feasible and after a few further mathematical simplifications, the closed form 

expression for the power factors 𝜂𝑓, 𝜂𝑚, and 𝜂𝑛 can also be derived and deduced as follows 

[4][11][70]: 

𝜂𝑓 = (
(2𝑅𝑚𝑖𝑛 − 1)

2𝑅𝑚𝑖𝑛
)(1 +

1

𝜌|𝒉𝑓1 + 𝒉𝑓2|
2)                                                        (3.91)  

𝜂𝑚 = ((
(2𝑅𝑚𝑖𝑛 − 1)

2𝑅𝑚𝑖𝑛
)(1 +

1

𝜌|𝒉𝑚1 + 𝒉𝑚2|
2
) − (

2𝑅𝑚𝑖𝑛 − 1

2𝑅𝑚𝑖𝑛
)

2

(1 +
1

𝜌|𝒉𝑓1 + 𝒉𝑓2|
2))  (3.92)  

𝜂𝑛 = 1 − (𝜂𝑚 + 𝜂𝑓) 

𝜂𝑛 = 
1

(2𝑅𝑚𝑖𝑛)
((

1 + 𝜌|𝒉𝑓1 + 𝒉𝑓2|
2

(2𝑅𝑚𝑖𝑛)𝜌|𝒉𝑓1 + 𝒉𝑓2|
2) + (

(2𝑅𝑚𝑖𝑛 − 1)

𝜌|𝒉𝑚1 + 𝒉𝑚2|
2
−

1

𝜌|𝒉𝑓1 + 𝒉𝑓2|
2))      (3.93) 

 

3.12 Simulation Results and Discussion  

In this section, system simulation is conducted to evaluate the efficiency of incorporating the 

optimum power coefficients that derived in section 3.11 and compare the results for that 

optimized scheme with the fixed power scheme scenario. Simulation files are considering a 

single base station with two antennas serving three users and each user is equipped with one 

antenna and the simulation is accomplished over 106 random channel generations. In fixed 

power scenario, the power factors are allocated as follows: 𝛼𝑛 = 0.1 , 𝛼𝑚 = 0.2 while              
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𝛼𝑓 = 0.7. The fading channels between each user and the BS is generated based on flat 

Rayleigh fading distribution, and the channel parameters are changing at each transmission 

time slot. The transmitted signals are modulated using Quadrature phase shift keying (QPSK) 

and the path loss is assigned to 4. Bandwidth of the system is B = 1 MHz, the noise spectral 

density is  𝑁0 = −174 dBm/Hz and 𝑅𝑚𝑖𝑛 is specified to be 1 bps. Figure 3.2 shows results for 

two distinct simulation environments: the first environment primarily relies on applying a fixed 

power scheme for each user device in the system. The second environment depends on 

employing the optimized power scheme that is derived in section 3.11 in this chapter. 

Simulation outcomes for far and middle users prove the superiority of the optimized power 

policy over the fixed power scheme in terms of BER versus transmitted power. For the near 

user results, the fixed power scheme provides some sort of improvement in terms of the 

received bits error over the optimized power scheme, and this could be clarified that for the 

near user environment, the stable channel condition is more valuable than the allocated power. 

 

Figure 3.2 BER vs power (optimized power - fixed power). 

Figure 3.3 shows the outage probability results versus the power for far, middle, and near users 

when the optimized power and the fixed power scenarios are implemented. Far user outcomes 

clearly show an improvement in outage probability and also a power saving is recorded to 



54  

approximately 5 dBm when the optimized power scheme is employed compared to the fixed 

power scheme. Likewise, for the middle user case, the optimized power scheme provides an 

obvious enhancement in the outage probability with a power saving nearly 3 dBm. Otherwise, 

the near user with the fixed power scenario, shows a noticeable enhancement in outage 

compared to the optimized power case. These outcomes also approve the results attained for 

the BER performance metric in Figure 3.2, which confirm that fixed power scheme jointly with 

high channel gain, are more adequate for near user than the optimized power scheme. 

 

Figure 3.3 Outage probability vs power (optimized power - fixed power). 

In Figure 3.4, the simulation outcomes for the sum rate for the examined users in the inspected 

NOMA cell are shown versus transmitted power. Both of the optimized power scheme and the 

fixed power scheme is incorporated with NOMA parameters prior to calculate the rate for each 

user device. Based on the simulation results, it can be observed that the examined NOMA cell 

combined with the optimized power scheme indicate a little improvement in the sum rate 

compared to the fixed power scenario when the applied power level is low. Starting from 15 

dBm, both the fixed power scheme and the optimized power structure provide a comparable 

sum rate at high transmitted power levels. 
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Figure 3.4. Sum rate vs power (optimized power - fixed power). 

3.13 SIMO-NOMA System Model 
In this section, downlink SIMO-NOMA system is investigated, where all users encounter 

diverse channel gains. SIMO-NOMA cell is examined where a single base station with one 

antenna is considered to serve three users concurrently on the same time-frequency block and 

each user device is equipped with two antennas. In NOMA system, each user receives the joint 

signal sent by the BS, and this combined signal includes the desired and interfering signals 

transmitted via same resource block, thus multiplexing numerous signals using various power 

levels is demanding to enable discriminating the signals and to enhance the successive 

interference cancellation (SIC) process at the receiver side [73]. In downlink NOMA system, 

users that labelled by high channel conditions are frequently given low power level while user 

devices with low channel gains are allocated high power levels. At each transmission, each 

user can be characterised according to its distance from BS. The nearest user is indicated as 

near user and the outmost user or user at the cell edge is regarded as far user. In this section, 

also Rayleigh fading channel with zero mean is assumed for the communication links between 

the antenna at the BS and user’s antennas at the receiver side. 

The fading channel between the BS and each user device can be mathematically represented 
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as  ℎ𝑖~(0, 𝑑𝑖
−𝑘) where 𝑑𝑖 is the distance between the BS and the 𝑖𝑡ℎ  user and k represents the 

path loss exponent. Additive white Gaussian noise (AWGN) is considered with zero mean and 

𝜎2 variance. Typically, and without loss of generality, it can be assumed that |ℎ𝑛|
2 > |ℎ𝑚|

2 >

|ℎ𝑓|
2
, where ℎ𝑛, ℎ𝑚 and ℎ𝑓 are the fading channels amongst the BS and near user, middle user 

and far user respectively. It also assumed that the channel state information (CSI) is known and 

entire transmitted power from BS to users is indicated as 𝑃𝑡. As showed before, each receiver 

has the capability to perform SIC to eliminate signals related to other users with weak channel 

conditions. Whereas signals from users with robust channel gains cannot be taken away and 

can be managed as interference. In this section, it is assumed that there is one antenna at the 

BS and two antennas at each user equipment at the receiver side [73] [74].  

Based on the above-mentioned analysis, we can introduce the following terms as follows:ℎ1𝑓 

denotes the fading channel between the BS and the first receiving antenna at far user device. 

Similarly, ℎ2𝑓 denotes the fading channel between the BS and the second receiving antenna at 

far user device. The antenna at the BS can transmit the superposition coded signal 𝑥 which can 

be written as [10][11][68][73]: 

           𝒙 = √𝑃𝑡(√𝛼𝑓𝑥𝑓 +√𝛼𝑚𝑥𝑚 +√𝛼𝑛𝑥𝑛)          (3.94) 

where 𝛼𝑓, 𝛼𝑚 and 𝛼𝑛 are the power factors for far, middle, and near users respectively. Also 

𝑥𝑓, 𝑥𝑚 and 𝑥𝑛 represent the target symbols related to far, middle, and near users respectively. 

Therefore, the received signal at the far user can be formed as follows [73]: 

                         𝑦1𝑓 = ℎ1𝑓𝑥 + 𝑛1𝑓                                 (3.95) 

                         𝑦2𝑓 = ℎ2𝑓𝑥 + 𝑛2𝑓                                 (3.96) 

where 𝑦1𝑓 and 𝑦2𝑓 are the received signals at the far user side via two dissimilar fading paths 

and 𝑛1𝑓 , 𝑛2𝑓 represent the corresponding noise components at the far user side. Noise 

components at each receiver are considered as a gaussian in nature with zero mean and 𝜎2 

variance. Furthermore, it is assumed that 𝐸{𝑛1𝑓𝑛2𝑓} = 0  which basically implies that these 

noise components are uncorrelated. According to our examined SIMO-NOMA system, the 

received signals at the far user can be also represented as a vector form as follows: 
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                   [
𝑦1𝑓
𝑦2𝑓

] =  [
ℎ1𝑓
ℎ2𝑓

] 𝑥 + [
𝑛1𝑓
𝑛2𝑓

]                     (3.97) 

                         𝒚𝒇 = 𝒉𝒇𝑥 + 𝒏𝒇                                 (3.98) 

Similarly, the vector representation for the received signals at the near user can be shown as 

follows [73]: 

                 [
𝑦1𝑛
𝑦2𝑛

] =  [
ℎ1𝑛
ℎ2𝑛

] 𝑥 + [
𝑛1𝑛
𝑛2𝑛

]                      (3.99) 

                   𝒚𝒏 = 𝒉𝒏𝑥 + 𝒏𝒏                                     (3.100) 

Based on the aforementioned analysis, there are two received signals 𝑦1 and 𝑦2 at any user 

receiver, and these two received signals can be combined into a new resultant signal 

represented by new variable �̃� and mathematically can be represented as follows [73] [74]: 

                       �̃�  = 𝑤1
∗𝒚1 +𝑤2

∗𝒚2                            (3.101) 

where 𝑤1
∗ and 𝑤2

∗ are called complex combining weights, and in vector form the composite 

resultant signal �̃� can be shown as in (3.102). 

                 �̃� = [𝑤1
∗ 𝑤2

∗] [
𝒚1
𝒚2
] = 𝒘

H
𝒚                 (3.102) 

where 𝑤
H

 is the Hermitian combining weight vector. By substituting vector 𝑦 from (3.100) 

into (3.102), the following is obtained:   

           �̃� = 𝒘
H
(𝒉𝑥 + 𝒏) = 𝒘

H
𝒉𝑥 +𝒘

H
𝒏          (3.103) 

The first term on the right-hand side of (3.103) represents the signal component while the 

second term represents the noise component. Hence, the signal to noise ratio (SNR) at the 

receiver side for any user in the proposed SIMO-NOMA system can be shown as [73][75]     

               𝑆𝑁𝑅 =
|𝒘

H
𝒉|
2
𝑃𝑡𝛼

𝐸 {|𝒘
H
𝒏|
2
}
                               (3.104) 

where 𝑃𝑡  is the entire transmitted power from BS and 𝛼  is the assigned power factor for each 

user in the cell. The denominator of (3.104) can be simplified as follows: 

𝐸 {|𝒘
H
𝒏|
2
} = 𝐸{(𝑤1

∗𝑛1 +𝑤2
∗𝑛2)

2} 
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= 𝐸{(𝑤1
∗2𝑛1

2 +𝑤2
∗2𝑛2

2 + 2𝑤1
∗𝑤2

∗𝑛1𝑛2)} 

                        = {(𝑤1
∗2𝐸(𝑛1

2) + 𝑤2
∗2𝐸(𝑛2

2))} = (𝑤1
∗2𝜎2 +𝑤2

∗2𝜎2) 

             = 𝜎2(𝑤1
∗2 +𝑤2

∗2) = 𝜎2 ‖𝒘
H
‖
2
             (3.105) 

where ‖𝑤‖represents the norm for the combining vector 𝑤. Substituting (3.105) into (3.104) 

yields a new expression for SNR which can be written as:  

  𝑆𝑁𝑅 =
|𝒘

H
𝒉|
2
𝑃𝑡𝛼

𝐸 {|𝒘
H
𝒏|
2
}
=
𝑃𝑡𝛼 |𝒘

H
𝒉|
2

𝜎2 ‖𝒘
H
‖
2                (3.106) 

Also, 𝒘
H
𝒉 can be factorized as follows: 

𝒘
H
𝒉 = 𝑤1

∗ℎ1 +𝑤2
∗ℎ2 = 𝒘

H
. 𝒉                  (3.107) 

where 𝒘
H
. 𝒉 is the dot product between 𝒘

H
 and 𝒉, and according to that,  |𝒘

H
. 𝒉|

2

can be 

factorized as:  

          |𝒘
H
. 𝒉|

2
= ‖𝒘

H
‖
2
‖𝒉‖

2
𝑐𝑜𝑠2𝜃                    (3.108) 

where 𝜃 is the angle between the vectors 𝒘 and 𝒉. Substituting (3.108) into (3.106) and the 

SNR can now be expressed as follows:  

 𝑆𝑁𝑅 =
𝑃𝑡𝛼 |𝒘

H
𝒉|
2

𝜎2 ‖𝒘
H
‖
2 =

𝑃𝑡𝛼‖𝒘
H
‖
2
‖𝒉‖

2
𝑐𝑜𝑠2𝜃

𝜎2 ‖𝒘
H
‖
2     (3.109) 

     𝑆𝑁𝑅 =
𝑃𝑡𝛼‖𝒉‖

2
𝑐𝑜𝑠2𝜃

𝜎2
                                         (3.110) 

The signal to noise ratio SNR in (3.110) can be maximized when 𝜃 = 0, which means that 𝒘 

has to be pointed along the direction of  𝒉, also SNR can be maximized based on the optimal 

weight combining vector which can be written as [76]. 

𝒘𝒐𝒑𝒕 =
𝒉

‖𝒉‖
                                                                (3.111) 

When the optimum weight vector 𝒘𝒐𝒑𝒕 is also adopted to maximize the SNR at the receiver 
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side of each user, this is called maximum ratio combining (MRC). The SNR based on MRC 

can also be reformulated as follows [73][76]:  

 𝑆𝑁𝑅𝑚𝑎𝑥 =
𝑃𝑡𝛼‖𝒉‖

2

𝜎2
=
𝑃𝑡𝛼(|ℎ1|

2 + |ℎ2|
2)

𝜎2
                     (3.112) 

Based on aforementioned analysis, the achievable channel capacity for far user can be written 

as follows [73]:   

 𝑅𝑓 = log2(1 +
𝑃𝑡𝛼𝑓 (|ℎ1𝑓|

2
+ |ℎ2𝑓|

2
)

(|ℎ1𝑓|
2
+ |ℎ2𝑓|

2
)𝑃𝑡(𝛼𝑛 + 𝛼𝑚) + 𝜎

2
)     (3.113)  

Similarly, the rate for the middle user can be written as [73] 

    𝑅𝑚 = log2 (1 +
𝑃𝑡𝛼𝑚(|ℎ1𝑚|

2 + |ℎ2𝑚|
2)

(|ℎ1𝑚|
2 + |ℎ2𝑚|

2)𝑃𝑡(𝛼𝑛) + 𝜎
2)           (3.114)  

Conventionally, near user has good channel status with the BS, hence the transmitted signal to 

near user is assigned less power 𝛼𝑛 < 𝛼𝑚 < 𝛼𝑓. After implementing the SIC procedure, the 

expected near user rate to decode the required signal can be shown as:  

    𝑅𝑛 = log2 (1 +
𝑃𝑡𝛼𝑛(|ℎ1𝑛|

2 + |ℎ2𝑛|
2)

𝜎2
)                          (3.115) 

3.14 Optimization Problem  
Based on the aforementioned analysis applied in the previous sections for SISO-NOMA and 

MISO-NOMA, in this section we also aim is to maximize the sum throughput and allocating 

the optimum power factors for each user according to the inspected constraints and the offered 

channel model. In the proposed scenario, we also consider three users classified as far, middle, 

and near users in a SIMO-NOMA system, therefore the sum of the possible rates can be written 

as shown: 

                           𝑅𝑠𝑢𝑚 = 𝑅𝑛+𝑅𝑚+𝑅𝑓                                      (3.116) 

The constraints and objective function accounted for our optimization problem in the SIMO-

NOMA system can also be introduced as follows [66][73]:    

• Total power  

The power percentage given for each user device should follows: 
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   ∑ 𝛼𝑥

𝑁

𝑥=1

≤ 1                                                          (3.117)  

where  𝛼𝑥 is the power sharing fraction for the 𝑥𝑡ℎ user in SIMO-NOMA network with N users. 

• Minimum transmission rate    

log2(1 +𝛿𝑛) ≥ 𝑅𝑚𝑖𝑛                                      (3.118) 

where 𝑅𝑚𝑖𝑛 is the minimum transmission rate in the SIMO-NOMA cell, and 𝛿𝑛 is the SINR 

for 𝑛𝑡ℎ user. According to the analysis shown in the previous systems, the expression in (3.118) 

can be rewritten as follows [66][67][73]:   

(|ℎ1𝑘|
2 + |ℎ2𝑘|

2)𝜌(𝛼𝑘 − (2
𝑅𝑚𝑖𝑛 − 1)∑𝛼𝑖

𝑘−1

𝑖=1

) > (2𝑅𝑚𝑖𝑛 − 1)       (3.119) 

where 𝜌 is the SNR and 𝑅𝑚𝑖𝑛 is the minimum target rate for any user in the SIMO-NOMA cell 

and ℎ1𝑘 and ℎ2𝑘 are the first and second fading channels between the BS and user k. 

• Objective function   

According to the constraints in (3.117) & (3.118) and the sum rate expression and the fact that 

there is only 1 antenna at the base station and two receiver antennas at each user device, the 

objective function can be generally defined as [73]: 

max
𝛼
    𝑅𝑠𝑢𝑚 =∑ log2 (1 +

(|ℎ1𝑘|
2 + |ℎ2𝑘|

2)𝑃𝑡𝛼𝑘

(|ℎ1𝑘|
2 + |ℎ2𝑘|

2)∑ 𝑃𝑡𝛼𝑗
𝑘−1
𝑗=1 + 𝜎2

)

𝑁

𝑘=1

      (3.120) 

3.15 Optimization Problem Analysis   
Similar to SISO-NOMA, and MISO-NOMA systems earlier discussed in the previous sections, 

the optimization analysis in this section will be also discussed with respect to three users as 

follows [10][11][73] 

max
𝛼

      𝑅𝑆𝑢𝑚 = 𝑅𝑛 + 𝑅𝑚  + 𝑅𝑓                             (3.121) 

                                  Subject to: 

  𝛼𝑛 + 𝛼𝑚 + 𝛼𝑓 − 1 ≤ 0                                             (3.122) 

𝛼𝑛 , 𝛼𝑚 , 𝛼𝑓  ≥ 0                                                            (3.123) 
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(|ℎ1𝑘|
2 + |ℎ2𝑘|

2)𝜌(𝛼𝑘 − (2
𝑅𝑚𝑖𝑛 − 1)∑𝛼𝑖

𝑘−1

𝑖=1

) > (2𝑅𝑚𝑖𝑛 − 1)     (3.124) 

where 𝑅𝑚𝑖𝑛 is the minimum rate required in the system. The sum of the achievable rates for 

the three users SIMO -NOMA system can be formulated as follows:  

𝑅𝑠𝑢𝑚 =∑ log2 (
(|ℎ1𝑘|

2 + |ℎ2𝑘|
2)𝑃𝑡 ∑ 𝛼𝑗

𝑘−1
𝑗=1 + 𝜎2 + (|ℎ1𝑘|

2 + |ℎ2𝑘|
2)𝑃𝑡𝛼𝑘

(|ℎ1𝑘|
2 + |ℎ2𝑘|

2)𝑃𝑡 ∑ 𝛼𝑗
𝑘−1
𝑗=1 + 𝜎2

) (3.125)

3

𝑘=1

 

                                                              

The constraints can also be expressed as follows: 

𝐶1(𝛼) = 𝛼𝑛 + 𝛼𝑚 + 𝛼𝑓 − 1                                                                                     (3.126) 

𝐶2(𝛼) = (2
𝑅𝑚𝑖𝑛 − 1) − 𝜌(|ℎ1𝑘|

2 + |ℎ2𝑘|
2)(𝛼𝑓 − (2

𝑅𝑚𝑖𝑛 − 1)(𝛼𝑛 + 𝛼𝑚)  (3.127) 

𝐶3(𝛼) = (2
𝑅𝑚𝑖𝑛 − 1) − 𝜌(|ℎ1𝑘|

2 + |ℎ2𝑘|
2)(𝛼𝑚 − (2

𝑅𝑚𝑖𝑛 − 1)(𝛼𝑛)             (3.128) 

where 𝛼𝑓 , 𝛼𝑚 and 𝛼𝑛 are the power factors for far, middle, and near users respectively. Since 

both 𝐶1(𝛼) , 𝐶2(𝛼) and  𝐶3(𝛼) are linear in terms of 𝛼 , then the constraints are convex. The 

objective function in Equation (3.125) is considered as nonlinear optimization problem, hence 

𝜕𝑅𝑆𝑢𝑚

𝜕𝛼𝑖
  and 

𝜕2𝑅𝑆𝑢𝑚

𝜕𝛼𝑖
2   need to be derived to be used to check if the objective function either convex 

or concave [69][70]. After some mathematical handling, a general formula can be derived for 

the first derivative for the objective function in terms of 𝛼𝑖 as follows [73]:  

𝜕𝑅𝑆𝑢𝑚
𝜕𝛼𝑖

=
1

𝑙𝑛2
  (

(|ℎ𝑖1|
2 + |ℎ𝑖2|

2)𝑃𝑡

(|ℎ𝑖1|
2 + |ℎ𝑖2|

2)𝑃𝑡∑ 𝛼𝑗
𝑖
𝑗=1  + 𝜎2

)        

−
1

𝑙𝑛2
∑{(

((|ℎ(𝑖+𝑘)1|
2
+ |ℎ(𝑖+𝑘)2|

2
)𝑃𝑡)

2
𝛼𝑖+𝑘

((|ℎ(𝑖+𝑘)1|
2
+ |ℎ(𝑖+𝑘)2|

2
)𝑃𝑡 ∑ 𝛼𝑗

𝑖+𝑘
𝑗=1 + 𝜎2)

)

𝑁−𝑖

𝑘=1

× 

(
1

((|ℎ(𝑖+𝑘)1|
2
+ |ℎ(𝑖+𝑘)2|

2
)𝑃𝑡 ∑ 𝛼𝑗

𝑖+𝑘−1
𝑗=1 + 𝜎2)

)}                         (3.129)    

In addition, the second derivative for objective function in terms of  𝛼𝑖 can also be derived and 

formulated in general form as follows:   
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𝜕2𝑅𝑆𝑢𝑚
𝜕𝛼𝑖

2
= −

1

𝑙𝑛2
  {(

((|ℎ𝑖1|
2 + |ℎ𝑖2|

2)𝑃𝑡)
2

((|ℎ𝑖1|
2 + |ℎ𝑖2|

2)𝑃𝑡 ∑ 𝛼𝑗
𝑖
𝑗=1  + 𝜎2)

2)        

−∑{(
((|ℎ(𝑖+𝑘)1|

2
+ |ℎ(𝑖+𝑘)2|

2
)𝑃𝑡)

3
𝛼𝑖+𝑘

((|ℎ(𝑖+𝑘)1|
2
+ |ℎ(𝑖+𝑘)2|

2
)𝑃𝑡∑ 𝛼𝑗

𝑖+𝑘
𝑗=1 + 𝜎2)

2)

𝑁−𝑖

𝑘=1

× ([2((|ℎ(𝑖+𝑘)1|
2
+ |ℎ(𝑖+𝑘)2|

2
)𝑃𝑡 ∑ 𝛼𝑗

𝑘+𝑖−1

𝑗=1

+ 𝜎2)+ (|ℎ(𝑖+𝑘)1|
2
+ |ℎ(𝑖+𝑘)2|

2
)𝑃𝑡𝛼𝑖+𝑘])

× (
1

((|ℎ(𝑖+𝑘)1|
2
+ |ℎ(𝑖+𝑘)2|

2
)𝑃𝑡 ∑ 𝛼𝑗

𝑖+𝑘−1
𝑗=1 + 𝜎2)

2)}

}
 
 

 
 

                                             (3.130) 

Based on the objective function and 
𝜕2𝑅𝑆𝑢𝑚

𝜕𝛼𝑖
2 , it can be proved that the objective function is 

negative and consequently it is strictly concave and has a unique global maximum. Lagrange 

function and the KKT optimality conditions can be applied to obtain optimum power 

coefficients [69][70][73]:       

ℒ(𝛼𝑛, 𝛼𝑚, 𝛼𝑓 , 𝜇1, 𝜇2,, 𝜇3) = 𝑅𝑆𝑢𝑚 − 𝜇1𝐶1(𝛼) − 𝜇2𝐶2(𝛼) − 𝜇3𝐶3(𝛼)      (3.131)  

where 𝜇1 , 𝜇2, and 𝜇3 are Lagrange multipliers for the three users’ scenario. Optimality 

condition can be formulated as follows:   

𝜕𝑅𝑆𝑢𝑚
𝜕𝛼𝑛

− 𝜇1
𝜕𝐶1(𝛼)

𝜕𝛼𝑛
− 𝜇2

𝜕𝐶2(𝛼)

𝜕𝛼𝑛
− 𝜇3

𝜕𝐶3(𝛼)

𝜕𝛼𝑛
= 0   (3.132) 

𝜕𝑅𝑆𝑢𝑚
𝜕𝛼𝑚

− 𝜇1
𝜕𝐶1(𝛼)

𝜕𝛼𝑚
− 𝜇2

𝜕𝐶2(𝛼)

𝜕𝛼𝑚
− 𝜇3

𝜕𝐶3(𝛼)

𝜕𝛼𝑚
= 0    (3.133) 

𝜕𝑅𝑆𝑢𝑚
𝜕𝛼𝑓

− 𝜇1
𝜕𝐶1(𝛼)

𝜕𝛼𝑓
− 𝜇2

𝜕𝐶2(𝛼)

𝜕𝛼𝑓
− 𝜇3

𝜕𝐶3(𝛼)

𝜕𝛼𝑓
= 0    (3.134) 

Slackness conditions can be represented as follows: 

𝜇1(𝛼𝑛 + 𝛼𝑚 + 𝛼𝑓 − 1) = 0                                                                                      (3.135) 

𝜇2 ((2
𝑅𝑚𝑖𝑛 − 1) − 𝜌(|ℎ1𝑘|

2 + |ℎ2𝑘|
2)(𝛼𝑓 − (2

𝑅𝑚𝑖𝑛 − 1)(𝛼𝑛 + 𝛼𝑚)) = 0   (3.136) 

𝜇3((2
𝑅𝑚𝑖𝑛 − 1) − 𝜌(|ℎ1𝑘|

2 + |ℎ2𝑘|
2)(𝛼𝑚 − (2

𝑅𝑚𝑖𝑛 − 1)(𝛼𝑛)) = 0              (3.137) 
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Lagrange multipliers need to satisfy the following. 

           𝜇1 ≥ 0, 𝜇2 ≥ 0  , 𝜇3 ≥    0                                         (3.138) 

In the following steps, the Lagrange multipliers should be proved to be positive. This can be 

achieved as follows:                                        

𝜕𝐶1(𝛼)

𝜕𝛼𝑛
=
𝜕𝐶1(𝛼)

𝜕𝛼𝑚
=
𝜕𝐶1(𝛼)

𝜕𝛼𝑓
= 1                                                        (3.139) 

𝜕𝐶2(𝛼)

𝜕𝛼𝑛
=
𝜕𝐶2(𝛼)

𝜕𝛼𝑚
=
𝜕𝐶3(𝛼)

𝜕𝛼𝑛
= 𝜌(|ℎ1𝑘|

2 + |ℎ2𝑘|
2)(2𝑅𝑚𝑖𝑛 − 1)  (3.140) 

𝜕𝐶2(𝛼)

𝜕𝛼𝑓
=
𝜕𝐶3(𝛼)

𝜕𝛼𝑚
= −𝜌(|ℎ1𝑘|

2 + |ℎ2𝑘|
2)                                         (3.141) 

After some mathematical manipulations and based on the fact that  

|ℎ𝑛|
2 > |ℎ𝑚|

2 > |ℎ𝑓|
2
                                                (3.142) 

(
𝜕𝑅𝑆𝑢𝑚
𝜕𝛼𝑚

−
𝜕𝑅𝑆𝑢𝑚
𝜕𝛼𝑓

) > 0                                                (3.143) 

(
𝜕𝑅𝑆𝑢𝑚
𝜕𝛼𝑛

−
𝜕𝑅𝑆𝑢𝑚
𝜕𝛼𝑓

) > 0                                                (3.144) 

It can be proven that 𝜇1, 𝜇2  and  𝜇3 are positive [70][73], and according to the aforementioned 

analysis, the examined constraints are feasible, and the closed form expression for the power 

coefficient for each ser device in SIMO-NOMA can be deduced from the slackness conditions. 

After performing some mathematical manipulations and substitutions, the closed form 

expression for the optimum power allocation for each user device in SIMO-NOMA cell can be 

expressed as follow [70][73][76]:  

𝛼𝑛 = 
1

(2𝑅𝑚𝑖𝑛)2
+

1

𝜌(|ℎ1𝑛|
2 + |ℎ2𝑛|

2)
(

1

(2𝑅𝑚𝑖𝑛)2
− 1)    (3.145)  

𝛼𝑚 = (
(2𝑅𝑚𝑖𝑛 − 1)

(2𝑅𝑚𝑖𝑛)2
)(1 +

1

𝜌(|ℎ1𝑚|
2 + |ℎ2𝑚|

2)
)            (3.146) 

𝛼𝑓 = (
(2𝑅𝑚𝑖𝑛 − 1)

2𝑅𝑚𝑖𝑛
)(1 +

1

𝜌 (|ℎ1𝑓|
2
+ |ℎ2𝑓|

2
)
)            (3.147) 
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3.16 Simulation Results and Discussions     
In this section, system simulation is conducted to evaluate the efficiency of incorporating the 

power optimized scheme that derived earlier in section 3.15 for the examined SIMO-NOMA 

system and compare the results for that optimized scheme with the fixed power scheme 

scenario. Simulation files are considering a single base station with 1 antenna serving three 

users and each user is equipped with two antennas and the simulation is accomplished over 

106 random channel generations. In fixed power scenario, the power factors are allocated as 

follows: 𝛼𝑛 = 0.1 , 𝛼𝑚 = 0.2 while 𝛼𝑓 = 0.7. The fading channels between each user and the 

BS is generated based on flat Rayleigh fading distribution, and the channel parameters are 

changing randomly at each transmission time slot. The transmitted signals are modulated using 

Quadrature phase shift keying (QPSK) and the path loss is assigned to 4. Bandwidth of the 

system is B = 1 MHz, the noise spectral density is  𝑁0 = −174 dBm/Hz and 𝑅𝑚𝑖𝑛 is specified 

to be 1 bps and SIMO-TDMA is used as a traditional OMA scheme for the sake of comparison.  

 

In Figure 3.5, simulation results for SIMO-NOMA based fixed power allocation and power 

optimized schemes are compared in terms of the possible sum rate versus transmitted power. 

Simulation results for SIMO-OMA system is also created in the figure for the purpose of 

comparison. It can be noticed that the sum rate for the SIMO-NOMA based optimized power 

scheme is showing a dominance over the SIMO-NOMA scenario based on fixed power 

allocation. In addition, it is clearly observed that existence of multiple antennas at receiver side 

in NOMA system has meaningful impact in boosting the sum rate compared to OMA case with 

more than 3 b/s/Hz.  
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Figure 3.5 Sum rate vs Power for SIMO-NOMA and SIMO-OMA. 

 

Figure 3.6 shows the outage probability versus transmitted power for far, middle, and near 

users in SIMO-NOMA system when both the optimized power scheme and fixed power 

scheme are considered. Simulation results for far user and middle user based optimized power 

scheme are clearly indicating an enhancement in power saving with approximately 2-3 dBm 

compared to the fixed power setting. On the other hand, near user with fixed power scheme 

shows some sort of improvement in outage compared to the power optimization case. This can 

be justified that both the good quality channel with fixed power factors can be more effective 

for near user than the optimized power case.  
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Figure 3.6 Outage probability vs Power for SIMO-NOMA (optimized - FPA). 

 

In Figure 3.7, the achieved capacity is simulated versus transmitted power for every user in the 

examined SIMO-NOMA system, when both the optimized and fixed power scenarios are 

implemented. The simulation outcomes for the near user show dominance in the achievable 

rate compared to other users, and results based on the optimized power scheme show 

improvement by 1 b/s approximately over the fixed power scheme. In middle user case, a 

substantial reduction in the rate is noticed due to interference, but still the optimized power 

scheme can show some sort of enhancement than the fixed power scenario. On the other hand, 

the simulation results indicate that the optimized power scheme is not sufficient for far user, 

and it is noticed that fixed power scheme can provide a little enhancement over the optimized 

power scenario, this can reveal that the optimized power scheme may not be an appropriate 

selection for far user in SIMO-NOMA system. 
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Figure 3.7 Individual rates vs Power for SIMO-NOMA (optimized - FPA). 

3.17 Summary 

A downlink NOMA system is discussed and evaluated on the basis of sum rate maximization 

problem subject to the constraints of total power budget and minimum transmission rate. In 

this chapter, a structured mathematical analysis is presented to derive a closed form expression 

for the optimum power factor for each user device in the examined SISO-NOMA, MISO-

NOMA, and SIMO-NOMA systems. The achievable rate for the three users in the inspected 

NOMA systems is formulated, then the objective function is verified to be concave. Lagrange 

function and KKT optimality conditions are applied to find the optimum power factors. Several 

performance metrics such as BER, sum rate, outage probability and achievable capacity are 

utilized to inspect the enhancement accomplished in the system performance based on the 

optimized power scheme. Overall, simulation outcomes showed that NOMA system with 

optimized power policy can deliver higher sum rate and capacity compared to fixed power 

scheme. In terms of outage probability, simulation results for near user based fixed power 

allocation showed better results compared to optimized scenario, which may clarify that the 

channel condition is more valuable for near user than the assigned power. 
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Chapter 4 

Deep Neural Networks based 

Long Short-Term Memory 

Architecture and Framework 

4.1 Introduction 

In a non-orthogonal multiple access (NOMA) system, the successive interference cancellation 

(SIC) procedure is classically employed at the receiver side, where several user’s signals can 

be decoded in a successive manner. Fading channels may scatter the transmitted signal and this 

may initiate dependencies among its samples, which may affect the channel estimation process 

and consequently disturb the SIC process which correspondingly may degrade the signal 

detection accuracy [77]. In this chapter, the influence of deep neural network (DNN) in 

explicitly estimating the channel parameters for each user equipment in the considered NOMA 

cell is investigated in different fading channels such as Rayleigh and Rician channels. The 

proposed approach mainly integrates the Long Short-Term Memory (LSTM) network into the 

NOMA system and the LSTM network will be accountable to estimate the channel coefficients 

before the signal detection process. Initially, the DNN is trained using different channel 

statistics and the DNN model is trained to update the weights, afterward the trained network 

will be utilized to predict the desired channel parameters, and these channel coefficients will 

be exploited by the receiver to retrieve the original data [78].  

In addition, in this chapter we will investigate how the channel estimation procedure based on 

LSTM network and the optimized power scheme that derived in chapter 3 can both jointly 

utilized for multiuser (MU) detection in the considered downlink Power domain NOMA 

system. Simulation results for different performance metrics, such as bit error rate (BER), sum 
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rate, outage probability and individual user capacity, have proved the dominance of the 

proposed DNN based LSTM network to estimate the channel parameters for each user device 

in the examined NOMA system. Furthermore, the performance of the optimized power scheme 

and the fixed power scheme are evaluated and compared when DNN based LSTM is 

implemented as a channel estimator.  

4.2 Related Works  
In [79], authors have proposed a recognition system based on deep learning (DL) scheme in 

downlink OFDM-NOMA system. Authors mostly count on the pilot signals for predicting the 

channel information and according to the pilot’s feedback, symbol detection can be realized 

using DL scheme without the need for a separate channel estimation phase. Simulation’s results 

revealed that the suggested DL scheme outperforms the standard SIC procedure. On the other 

hand, the proposed model needs to be initially trained offline for different channel conditions 

and the simulation outcomes were presented in terms of BER.  

In [80], authors suggested a deep learning framework to retrieve the desired signal for each 

user in MIMO-NOMA system when Rayleigh fading channel is applied. The presented deep 

learning method can accomplish the channel prediction and signal detection concurrently. In 

terms of symbol error rate (SER) and throughput, simulations were conducted, and results were 

compared with the conventional SIC procedure. According to the simulation outcomes, the 

recommended deep learning scheme can address channel impairments, but the examined 

NOMA cell was restricted for two users. Also, an offline training stage is mandatory where the 

DNN depend on the received signal with the labels, and these labels are considered as 

supervised data to help the neural network to optimize the network parameters. 

Authors in [81], introduced a data driven deep learning channel estimator for frequency 

selective channels. The proposed framework is developed such that a pre-training scheme and 

pilot symbols are employed as inputs for the DNN to realize the desired initialization for the 

network to further augment the performance of the estimator. The presented DNN is trained 

offline in both the pre-training (initialize the network) and training stages (update weights). In 

the testing stage, the features or changes in the channel can be dynamically tracked by the DNN 

when only pilot symbols are used, and then the transmitted information can be recovered. 

Different number of layers has been investigated in that DNN estimator and numerical results 
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demonstrate that the proposed estimator can outperform the traditional channel estimator 

scheme in terms of efficiency and robustness (dependability).  

Deep learning approach is also introduced in [82], to approximate the downlink channel 

parameters and to reduce the training overhead in a fog radio access network. Gated Recurrent 

Unit (GRU) is employed to learn the correlations between fading channels related to various 

users in the system, and to further enhance the estimation process. Simulation outcomes are 

provided to show the performance gains, but the examined performance metrics were limited 

to mean square error (MSE) and loss function.  

On the basis of deep Learning algorithm, authors in [83] introduced a sliding window estimator 

that implement Gated Recurrent Unit (GRU) to learn the characteristics associated with a time 

varying Rayleigh fading channel. Channel coding and Interleaving schemes are also adopted 

with the proposed channel estimator to boost the system performance. Simulation results 

showed the ability of the indicated technique to follow or track the changes in the channel in a 

reliable way and achieve better mean square error (MSE). Besides, the presented GRU 

estimator is examined with various numbers of pilot symbols, and the robustness of that 

estimator against the variations in the channel parameters is inspected.  

In [84], authors went to conclude that deep learning algorithm can also be exploited in signal 

detection in uplink NOMA transmission. Authors proposed a DNN approach to differentiate 

the complex channel parameters, and restricted Boltzmann machines (RBM) is implemented 

as a pre-training phase for the input sequence transmitted in the network. In the suggested deep 

learning scheme, offline learning is applied, and the proposed LSTM layer is designed to track 

the environment statistics automatically and then an iterative detection procedure is 

implemented to identify the transmitted symbols. Performance analysis for the suggested DNN 

scheme is evaluated simply in terms of sum data rate and block error rate.   

Based on DNN, authors proposed a semi-blind detection method in [85] to distinguish users’ 

symbols in co-operative NOMA system. The presented DNN model has proven the capability 

to detect the user signal based on the assistance from pilot responses without the need for 

additional channel estimation process. The DNN model is trained offline over Rayleigh fading 

channel and then the trained network is adopted in the online detection phase. Additionally, 

the trained DNN model is further examined using Nakagami and Rician fading channels and 
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simulation outcomes have demonstrated the ability of the suggested DNN scheme in 

outperforming the classical detectors.  

In an OFDM system, authors in [86] have introduced a DNN structure for joint channel 

estimation and signal detection. This joint structure considers OFDM system and the fading 

channel as black box and the presented DNN network is trained offline using simulated data. 

Simulation results declared that the joint approach has the potential to learn and investigate the 

complicated attributes of the wireless channels. Besides, the joint approach has proven its 

dominance over conventional methods (MMSE) when limited pilots’ symbols are employed.  

4.3 Recurrent Neural Networks and long short-term memory Networks  
Recurrent Neural Networks (RNNs) are observed as a class of supervised learning procedures, 

where they can exploit consecutive sequences for prediction and detection [87]. As shown in 

Figure 4.1, RNN involves hidden layer that composed of artificial neurons with feedback loop. 

Therefore, RNNs have dual inputs, i.e., the current input and the recent previous response. 

Typically, in RNNs, hidden layers are qualified to play a role as the storage for the network at 

any given time, hence this structure enables RNN to handle the preceding data for an extended 

period of time. Typically, RNN can be used to solve problems with sequential input data such 

as time series. On the other hand, traditional RNN encounters slow learning and a vanishing 

gradient problem. Accordingly, RNNs may not be the best candidate for signals that may be 

sent through fading channels, where these fading channels may scatter the signal and initiate 

long-term dependencies among its samples [10][87]. Long short-term memory (LSTM) 

network, which is a one category of RNNs, is commonly used with time series data and 

sequences for classification, where LSTM layer can take a benefit or manage the long-term 

dependency for the time series data [10][57][58]. 

Based on LSTM underlying design, the LSTM network includes LSTM cells, and each cell 

contains a set of gates that are capable of storing and gaining access to data over extended 

periods of time. In addition, LSTM cell can manage a vector of complex data, hence 

encompassing the magnitude and phase parts of the received sequence instantaneously. 

Therefore, LSTM layer can be considered as an appropriate selection to realize channel 

estimation process when time series data or simulated data for different channel environments 

are available [88].   
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Figure 4.1 RNN network architecture. 

4.3.1 Proposed Deep Neural Networks Architecture and Framework 

A framework that combines the LSTM network with NOMA system is introduced in this 

section, where the LSTM model is mainly trained to be employed to estimate the channel 

coefficients for each user device in the cell. Data driven communication scheme is generally 

depending on empirical observations to determine the amount of LSTM cells in each layer and 

the numbers of LSTM layers that are essential for the estimation process. Furthermore, it is 

important to take in consideration that adding more LSTM layers may not offer an evident gain 

in learning phase, or it may not positively affect the network convergence [10][12][88]. 

Figure 4.2 illustrates the architecture of the proposed DNN network for channel estimation that 

consists of four layers [10][12], and each layer contains several neurons, and the weighted sum 

of each neuron will be the input to an activation function. The length of each training sequence 

is specified as L, which is the size of the input layer. We decide that the size of the input layer 

is L =128, and the construction for the 128 inputs for the input layer can be clarified as follows: 

• Initially generate random channel coefficients with vector size 120 based on the  

a. channel model parameters  

b. User distance  

c. Path loss  

• Estimate the channel coefficients based on the pilot symbols with vector size 8. 
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• Combine the random generated channel coefficients and the estimated channel 

coefficients to form a vector of channel parameters with size 128.  

• The constructed channel parameters frame will be used as input for the first layer in 

the proposed DNN Architecture. 

Accordingly, the first input layer involves 128 neurons, and the inputs to the input layer will 

be shifted to the subsequent layer (LSTM layer). In the second layer, one LSTM layer is 

implemented which includes 300 hidden cells. The learnable weights of LSTM layer are the 

input weights W, the recurrent weights R, and the bias b. LSTM cell structure and mechanism 

will be discussed in the next section. The third layer is a fully connected layer that is 

accountable for processing the outputs of the LSTM layer. The fully connected layer will 

multiply the input by a weight matrix W and then adds a bias vector b. All neurons in a fully 

connected layer are connected to all the neurons in the preceding layer, which indicate that the 

fully connected layer can bring together all of the features and internal information gathered 

by the prior layers. 

 

Figure 4.2 Architecture of the proposed DNN network. 
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The last adopted layer in the proposed DNN framework is the regression layer, which is liable 

of updating the network weights, cell status, and biases. A regression layer can also compute 

the mean square error (MSE) and predicts the responses of a trained network [89]. Normalizing 

the training data can facilitate stabilizing and accelerating the training process of the neural 

networks. For a single observation, the mean square error can be calculated as [10][88][89]. 

𝑀𝑆𝐸 =∑
(𝑦𝑇𝑗 − 𝑦𝑃𝑗)

2

𝑟

𝑟

𝑗=1

                                    (4.1)  

where r is the number of responses, 𝑦𝑇𝑗 is the target output, and 𝑦𝑃𝑗 is the predicted output at 

response 𝑗.  

4.3.2 LSTM Cell Structure and Mechanism 

In LSTM cell, the output is created based on the cell state, and the previous hidden state, and 

the current input. In order to remember the preceding cell state and decide if the prior state will 

be used or not, the LSTM cell consists of different types of gates, these gates are the forget 

gate, the input gate, and the output gate. In LSTM, there are two states, the hidden state ℎ𝑡−1, 

which is used for computing the output and the cell state 𝐶𝑡−1, which is called internal memory 

where all information is accumulated [10][88][89]. 

Figure 4.3 illustrates the internal configuration of LSTM cell [10][12][90], where 𝑥𝑡 is the 

current input, and ℎ𝑡𝑖 represents next hidden state and also it can represent the output channel 

coefficients for user 𝑖 at time 𝑡. In addition, 𝐶𝑡−1 represents the previous cell state, and at same 

time it will be one of the inputs to the current LSTM cell at time instant 𝑡. At every time step, 

the LSTM cell can add up information or remove information from the cell state and LSTM 

cell can control these updates using numerous gates that can be simply described as follows: 

1. The forget gate is responsible for controlling the level of cell state that need to be reset:                                      

𝒇𝑡 = 𝜎(𝑾𝑓𝑥𝑡 + 𝑹𝑓ℎ𝑡−1 + 𝒃𝑓). 

2. The input gate is responsible for controlling the level of cell state that need to be updated:                                

𝒊𝑡 = 𝜎(𝑾𝑖𝑥𝑡 + 𝑹𝑖ℎ𝑡−1 + 𝒃𝑖). 

3. The candidate state is responsible for adding information to the cell state:                                                                 

 𝒈𝑡 = 𝑡𝑎𝑛ℎ(𝑾𝑔𝑥𝑡 + 𝑹𝑔ℎ𝑡−1 + 𝒃𝑔). 
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4. Updated cell state: 𝑪𝑡 = (𝑪𝑡−1⊙𝒇𝑡) + (𝒊𝑡 ⨀𝒈𝑡), where ⊙ is element-wise multiplication. 

5. The output gate is responsible for controlling the level of cell state added to hidden state:                                  

𝑶𝑡 = 𝜎(𝑾𝑜𝑥𝑡 + 𝑹𝑜ℎ𝑡−1 + 𝒃𝑜). 

6. Estimated output coefficients: 𝒉𝑡 = 𝑶𝑡⊙ 𝑡𝑎𝑛ℎ(𝑪𝑡). 

 

Figure 4.3 Internal structure of LSTM cell [10]. 

4.3.3 Channel Estimation Based DNN Model  

The transmitted frame involves data and pilot symbols. The applied channel model is assumed 

to be static during transmission of one frame of pilot and data symbols and the channel 

coefficients are changing from one frame to another. In the proposed DNN scheme, two major 

phases are implemented to achieve an effective DNN model for channel parameters estimation. 

The first phase involves two stages, the training stage, and the testing stage and both stages 

include the usage of the combination between the random generation of the channel 

coefficients and estimated channel parameters based on the pilot symbols. During the model 

iterations, we use 70 % of the iterations for training, and 30 % of the iterations for testing [91]. 

In the second phase, the trained DNN model will be utilized to explicitly predict the practical 

channel parameters for each user based on the assistance from pilot symbols only. and these 
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estimated channel parameters will be employed to recover the desired transmitted data symbols 

for each user.  

4.3.4 Dataset Generation  

At the beginning of every training stage, the weights and bias values of LSTM layer are 

initialized, and during the training phase, weights and biases are updated according to a 

gradient descent procedure [10][46][92]. The distance of each user from the BS and the path 

loss needs to be assigned in the dataset, so that the channel parameters for each user can be 

randomly initialized to model the Rayleigh fading channel between the user and BS. Pilot 

symbols are also generated at random and recognized at the BS and at the receiver side of each 

user in order to assist in the channel estimation process. 

Based on the initial channel parameters generated and the pilot symbols, the size of the training 

and testing frames can be identified. The training model are carefully designed based on the 

selected layers, the quantity of the hidden cells assigned for LSTM layer, and the training 

parameters [93]. In order to further accelerate and stabilize the training process for the training 

network, we choose to normalize the training data. 

Throughout the training phase, the performance of the proposed DNN scheme based on LSTM 

model is assessed using RMSE function. In the testing period, a new fading coefficient will be 

randomly generated, such that these coefficients are not the same as those generated for 

training. Once the training and testing stages are inspected by the training network, the trained 

model will be employed as online channel estimator with the help of pilot symbols only. The 

proposed channel estimation algorithm based on LSTM can be outlined as shown in Algorithm 

4.1. 

Algorithm 4.1 Proposed Channel Estimation scheme based on LSTM.   

1. Initialize the learnable weights of an LSTM layer (W, R, b ), W is the input weights, R is the 

recurrent weights, and b is the bias. 

Inputs  

▪ Number of Iterations. 

▪ The distance of each user from the BS.  

▪ Path loss exponent. 

▪ Generate Initial random Rayleigh channel coefficients for each user based on channel model. 

▪ Specify the pilot symbols.  

▪ Assign the initial power factors for each user.  
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▪ Identify the size of training frame (𝑳𝑻) and size of testing frame (𝑳𝑺).  

Procedure  

2. Assign the training sequence (𝒁𝑻), testing sequence (𝒁𝑺) and the desired coefficients (𝒁𝑫). 

3. Calculate the mean and variance (𝝁𝑻, 𝝈𝑻
𝟐) for channel coefficients in training sequence at each 

iteration. 

4. Normalizing the training data 𝒁𝑻 → 𝒁𝑵𝑻 based on (𝝁𝑻, 𝝈𝑻
𝟐). 

5. Characterize the relationship between Consecutive normalized training sequences as 

𝒁𝑵𝑻≈(𝑿𝑵𝑻, 𝒀𝑵𝑻). 

6. Initialize the training network (𝑻𝒏𝒆𝒕), and assign the following: 

▪ Number of layers. 

▪ Number of hidden units. 

▪ Training parameters. 

7. Use  𝒁𝑵𝑻≈(𝑿𝑵𝑻, 𝒀𝑵𝑻) as inputs for the training model (𝑻𝒏𝒆𝒕) 

8. Predict the output normalized coefficients (𝒀𝑵𝑷) . 

9. Update the state of training model (𝑻𝒏𝒆𝒕). 

For i =1 : 𝑳𝑻 

[𝑻𝒏𝒆𝒕 , 𝒀𝑵𝑷] = Predict and Update state (𝑻𝒏𝒆𝒕 , 𝒁𝑵𝑻) 

End 

10. Denormalize 𝒀𝑵𝑷 → 𝒀𝑷  

11. Calculate RMSE (𝒁𝑫 − 𝒀𝑷) & Loss function 

12. Update the network and the state of (𝑻𝒏𝒆𝒕 ) and reset the values for 𝒀𝑷   

13. Normalize testing data 𝒁𝑺 → 𝒁𝑵𝑺, using (𝝁𝑻, 𝝈𝑻
𝟐),  

14. Use Normalized testing data (𝒁𝑵𝑺) as inputs for updated trained network (𝑻𝒏𝒆𝒕) 

For i =1:𝑳𝑺 

[𝑻𝒏𝒆𝒕 , 𝒀𝑵𝑷] = Predict and Update state (𝑻𝒏𝒆𝒕 , 𝒁𝑵𝑺) 

End 

Outputs  

15. Predicted normalized channel coefficients 𝒀𝑵𝑷   

16. Denormalize 𝒀𝑵𝑷 → 𝒀𝑷 . 

17. Calculate RMSE (𝒁𝑫 − 𝒀𝑷) & Loss function. (update weights for trained model)   

18. Estimate channel parameters based on the trained DNN model and assisted pilot symbols. 

Detailed LSTM Procedure and Workflow: 

Based on algorithm 4.1, the detailed LSTM procedure and workflow for estimating the channel 

parameters for each user in NOMA cell can be listed as follows:  

1. In the first phase, we initially generate random channel parameters with vector size 120 

based on the applied channel model parameters such as the user distance, and path loss.  

2. Estimate the channel coefficients based on the pilot symbols with vector size 8. 
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3. Combine the random generated channel coefficients in step 1, and the estimated channel 

coefficients in step 2, to compose a vector of channel parameters with size 128.  

4. Based on (3), The LSTM will generate one vector of channel coefficients for each frame 

of data symbols  

5. In each iteration (repeat steps 1-4) for 106 

6. 70% of the iterations is used for training, and 30% of the iterations is used for testing.  

7. In the second phase, we start estimating the channel coefficients based on the learned 

LSTM model + assistance from pilot symbols). 

8. Activation functions used in hidden layers are sigmoid and tanh, while activation 

functions at output layer can be a linear, sigmoid, or Relu.   

9. We generate 10 frames of data bits. 

 

4.4 Simulation Environment 
In this section, a clarification for the simulation settings and parameters is presented. Our 

examined downlink NOMA cell contains one base station (BS) and three different user devices 

in which the BS and each user in the cell is equipped with one antenna. For the downlink 

NOMA scenario, the modulated signals for each user are superimposed and transmitted by BS 

to all users via uncorrelated Rayleigh or Rician fading channels. At the receiver side, additive 

white gaussian noise (AWGN) is considered and the noise spectral density is  𝑁0 = −174 

dBm/Hz and path loss is 4. 

In this chapter, simulations mainly are conducted using MATLAB to simulate and to highlight 

the following: first, to evaluate the efficiency of adopting the proposed DL based LSTM 

network to accurately estimate the channel parameters for each device in downlink NOMA 

cell. Second, to combine the proposed LSTM algorithm as a channel estimator with the derived 

optimized power allocation scheme and compare this integrated model with NOMA system 

when fixed power factors are considered along with the proposed LSTM network. Monte-Carlo 

simulations are conducted with 106 iterations, and at the start of every set of iterations, pilot 

symbols are generated at random and identified at the BS and at the receiver side of each 

device. The main simulation parameters are summarized in Table 4.1. In our simulation 

environment, we assume that the channel state information (CSI) is not available at the receiver 
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side. Therefore, for the sake of comparison and in order to verify the efficiency of the proposed 

DL algorithm, two methods for channel parameters estimation are implemented at the receiver 

side for each device. The first method, which is our proposed approach that employs DNN-

based LSTM layer to estimate the desired channel parameters, and the gradient descent 

algorithm is applied in conjunction with LSTM layer to update the network weights. The 

second implemented channel estimation scheme at each receiver side is initiated based on the 

minimum mean square error (MMSE) procedure [62][94]. The MMSE procedure will be 

applied as a conventional channel estimation technique for each user in the NOMA cell, and in 

the simulations results, we refer to the MMSE procedure as conventional NOMA, to clarify 

that users are using the MMSE procedure for estimating the channel parameters before 

recovering the desired signal. 

Channel taps that are employed to model the Rayleigh fading wireless channel are generated 

on the basis of ITU channel models. Throughout the simulations, NOMA system parameters 

are created [95]. Training and testing phases are conducted online throughout the simulations, 

and the fading parameters in the testing stage are generated such that these parameters are not 

the same as in the training stage. At the end of the training stage, which involves adopting 

training and testing data, the trained network will be prepared to be utilized as online channel 

estimator. 

Initially, different power factors are allocated for each user device according to their distance 

from the BS and the current channel status. Power allocation coefficients 𝛼𝑛, 𝛼𝑚, and 𝛼𝑓 are 

defined for near, middle, and far users, respectively. In the fixed power allocation (FPA) 

scenario, we can assign 𝛼𝑓 = 0.7, 𝛼𝑚 = 0.2, and 𝛼𝑛 = 0.1. Alternatively, in the optimized 

power scheme, power factors are assigned for users according to the analytical forms derived 

earlier in chapter 3 for each user  . The propagation distance for each user with respect to BS 

is initially assigned in the simulation files as follows: 𝑑𝑓 = 1000 m, 𝑑𝑚 = 500 m, and 𝑑𝑛 =

200 m. Quadrature phase shift keying QPSK is employed as a modulation scheme for the data 

symbols and pilot sequences. The applied transmitted power mainly varies from 0 to 30 dBm. 
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Table 4.1 Summary of the simulation parameters. 

Parameter Value 

Simulation Tool MATLAB 

Modulation type QPSK 

Number of Users 3, [2–10] 

System Bandwidth B 1 MHz 

Fading channel (Rayleigh, Rician) 

Path loss  4 

Number of Iterations 106 

Optimizer ADAM 

Learning Rate 𝛼 0.001 

Number of LSTM cells 300 

Pilot symbols  8 

Frame size  128 

 

4.5 Simulation Results and Discussion 

In Figure 4.4, the simulation results show the comparison between the proposed DL based 

LSTM scheme for channel estimation and the conventional NOMA scheme that applies MMSE 

technique for estimating the channel coefficients. The estimated channel parameters using both 

procedures will be used in recovering the desired signals for far, middle, and near users and 

the simulation results are shown in terms of bit error rate (BER) versus transmitted power. All 

users in the NOMA cell-based LSTM for channel estimation show noticeable improvement in 

lowering the bit errors compared to the standard NOMA scenario, especially when the assigned 

power is keep increasing. It can be noticed that for certain BER values, such as 10−2, the power 

saving achieved by DL based LSTM network is approximately between 5–8 dBm for far and 

middle users, while for the near user, the power saving is up to 5 dBm. 
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Figure 4.4 BER vs. power-for proposed DL-NOMA and conventional NOMA (Rayleigh). 

 

Figure 4.5 shows the results for outage probability metric versus transmitted power for the 

three examined users in NOMA system when DL based LSTM and conventional NOMA 

procedures are adopted for channel estimation. Far and near users’ simulation results indicate 

an approximately 5 dBm improvement in power saving to achieve a certain outage probability 

(10−2) when DL based LSTM method is implemented compared to the conventional estimation 

scheme. Also, the middle user with the DL estimation scheme shows more enhancement in 

power saving compared to the MMSE procedure, by 5–7 dBm approximately, which verifies 

the superiority of the proposed DL based LSTM estimation scheme. 
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Figure 4.5 Outage probability vs. power for DL and conventional NOMA (Rayleigh). 

Figure 4.6 shows the simulation outcomes for the sum rate versus the transmitted power for 

the three examined users in the NOMA cell. In this Figure, and as a benchmark comparison, 

three different channel estimation schemes are inspected, i.e., the proposed DL based LSTM 

approach, conventional NOMA based on the MMSE scheme, and the DL algorithm for joint 

channel estimation and signal detection that was applied in [86]. Based on the simulation 

outcomes, it can be evidently noticed that the developed LSTM channel estimation scheme 

shows dominance over the conventional NOMA scenario, nearly with 6 b/s/Hz. The results 

also indicate an improvement over the DL algorithm implemented in [86] by 2 b/s/Hz. These 

results support the efficiency of the developed DL based LSTM scheme in estimating the 

channel parameters before being employed in the decoding process. 
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Figure 4.6 Sum rate vs. power for conventional NOMA, joint DL-NOMA, and proposed DL-

NOMA (Rayleigh). 

Figure 4.7 shows the simulation outcomes for the individual capacity metric for each device in 

the NOMA cell when the developed DL based LSTM and the traditional NOMA based MMSE 

are both utilized for channel estimation process. As expected, when power level starts to 

increase, the achieved capacity for the near user provides a substantial difference by at least 5 

b/s/Hz over far and middle users’ rates. This may be justified by the good channel state for the 

near user compared to other users in the cell. Furthermore, for far and middle users the 

developed LSTM approach still can deliver a visible improvement compared to MMSE 

procedure, but with little impact especially for the far user, due to interference and weak 

channel environment. 
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Figure 4.7 Individual capacity vs. power for conventional NOMA and DL-NOMA 

(Rayleigh). 

Figure 4.8 shows the simulation results for BER versus power when the Rician channel is 

applied. The developed LSTM channel estimation scheme and traditional MMSE procedure 

will be further inspected using the Rician distribution. Rician fading is a stochastic model for 

radio propagation, where the signal arrives at the receiver by different paths, and hence, 

exhibits multipath fading. Typically,  Rician fading happens when one of the paths is a  line of 

sight (LOS) signal or some strong reflection signals, are much stronger than the other received 

components [96][97]. A Rician fading channel can be described by two parameters The first 

one is the Rician factor K defined as the ratio of the signal power in the line-of-sight component 

to the scattered power in other components. The other primary parameter is Ω, which signifies 

the total power from both paths and can be considered as a scaling factor to the distribution. In 

our simulation file for the Rician channel, we assign K = 10, sample rate = 9600 Hz, and 

maximum doppler shift = 100 Hz, which is consider as small compared to transmitted signal 

frequency 104 Hz. 

https://en.wikipedia.org/wiki/Stochastic
https://en.wikipedia.org/wiki/Radio
https://en.wikipedia.org/wiki/Wave_propagation
https://en.wikipedia.org/wiki/Multipath_interference
https://en.wikipedia.org/wiki/Line-of-sight_propagation
https://en.wikipedia.org/wiki/Line-of-sight_propagation
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In Figure 4.8, simulation results for middle and near users show a visible improvement in 

lowering the BER when the developed DL based LSTM method is applied compared to the 

MMSE scenario. The near user exhibits a substantial improvement in terms of power saving 

due to the elimination of interference by the SIC procedure and the relaxed channel condition. 

In the far user situation, the impact of DL in tracking the channel features is limited due to the 

weak channel conditions and noise effect from other users. 

 

Figure 4.8 BER vs. power for conventional NOMA and DL-NOMA (Rician). 

Figure 4.9 shows the simulation outcomes for outage probability metric versus power when 

Rician channel is applied, and both LSTM and MMSE channel estimation schemes are 

adopted. Overall, when DL based LSTM channel estimation scenario is conducted, far and 

middle users’ simulation outcomes show an improvement within approximately 4 dBm in 

terms of power saving compared to the MMSE procedure. In terms of the near user, the 

simulation results reveal that the developed DL channel estimation scheme starts showing clear 

enhancement regarding the outage probability when the power assigned to the near user is more 

than 5 dBm. 
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Figure 4.9 Outage probability vs. power for conventional NOMA and DL-NOMA (Rician). 

In Figure 4.10, the simulation outcomes regarding the individual capacity for each device are 

shown where the Rician channel model is applied, and both the DL based LSTM and 

conventional NOMA based on MMSE procedures are considered as channel estimator. It is 

clearly noticed that for both far and middle users, DL based LSTM shows comparable capacity 

compared to the MMSE scheme. This can be clarified that the current LSTM parameters are 

not sufficient enough to mitigate the interference coming from other users in the cell when 

Rician distribution is considered. In contrast, and comparable to the Rayleigh fading results in 

Figure 4.7, the achieved capacity for the near user shows a substantial difference by at least 6 

b/s/Hz compared to far and middle users for same applied power level. This improvement in 

capacity can be defended by the line of site component between transmitter and receiver in the 

Rician channel and the relaxed fading channel between BS and the near user device. 
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Figure 4.10 Individual capacity vs. power for conventional NOMA and DL-NOMA (Rician). 

Figure 4.11 shows the simulation outcomes for the sum rate versus number of users considered 

in the NOMA cell when the Rayleigh fading model is applied. In addition to our developed 

LSTM scheme and conventional MMSE procedure that both used as a channel estimator, in 

this figure, and as an additional benchmark comparison, we have created the simulation 

parameters related to the work in [86], that implements the DL structure for the purpose of joint 

channel estimation and signal detection as a one-shot process. As revealed from the results, our 

proposed DL based LSTM scheme can achieve a significant higher sum rate compared to both 

the MMSE procedure, and the DL scheme for joint channel estimation and signal detection 

presented in [86]. It can be clearly observed that while increasing the number of users in the 

cell, our developed DL channel estimation scheme remains superior in showing higher rates 

compared to other approaches. These outcomes imply that reliability can be ensured by the 

proposed DL scheme even when the cell capacity is increased. On the other hand, it is worth 

mentioning that as the total number of users keeps increasing in the NOMA cell, the 

interference will also increase, and accordingly, the performance will be degraded.  
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Figure 4.11 Sum rate vs. number of users for conventional NOMA, joint DL-NOMA, and           

DL-NOMA (Rayleigh). 

In Figure 4.12, two different simulation scenarios are performed here to produce this figure. 

The first scenario mainly depends on applying a fixed power allocation (FPA) scheme for each 

user in the system. The second scenario depends on applying the optimized power scheme that 

is derived earlier in chapter 3. Both scenarios are conducted when the proposed DNN based 

LSTM approach is implemented as a channel estimator. Simulation results for far and middle 

users verify the dominance of the power optimized structure over the FPA structure in terms 

of BER. For the near user results, the developed DL based LSTM for channel estimation jointly 

with FPA scheme provides little enhancement in terms of the received bits error over the 

optimized power scheme, and this could be justified that for the near user scenario, the good 

channel condition is more valuable than the assigned power. 
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Figure 4.12 BER vs. power for DL-based optimized and FPA schemes (Rayleigh). 

 

Figure 4.13 displays the outage probability results versus the power for far, middle, and near 

users when the optimized power and FPA scenarios are applied, and both scenarios are 

conducted in combination with the proposed DL based LSTM for channel estimation task. Far 

user results show an improvement in outage probability and the power saving is recorded to 

approximately 5–6 dBm when the optimized power scheme is applied compared to the FPA 

scheme. Likewise, for the middle user case, both the DL and optimized scheme provide an 

evident enrichment in the outage probability, with power saving nearly 2–3 dBm. Otherwise, 

the near user with DL for channel estimation and FPA scenario, shows a considerable outage 

amelioration compared to the optimized power case. These results also confirm the results 

obtained for the BER metric, which indicates that FPA jointly with high channel gain, are more 

sufficient for the near user than the power optimization scheme. 
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Figure 4.13 Outage probability vs. power for DL-based optimized and FPA schemes 
(Rayleigh). 

 

In Figure 4.14, the simulation results for the sum rate for the three examined users in NOMA 

cell are shown. Each of the optimized power scheme and FPA scheme is incorporated with the 

proposed DL algorithm utilized for estimating the channel coefficients prior to calculating the 

rate for each user. On the basis of the simulation outcomes, it can be clearly noticed that the 

channel estimation based on DL combined with the optimized power scheme show little 

improvement in the sum rate compared to the FPA scenario when the applied power level is 

low. Starting from 15 dBm, both the optimized power and FPA schemes provide a comparable 

sum rate when our proposed DL channel estimation scheme is implemented. 
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Figure 4.14 Sum rate vs. power for DL-based optimized and FPA schemes (Rayleigh). 

4.6 Results Summary 

In this section, we decide to provide a sort of summary for the simulation results in terms of a 

sample statistics to highlight the average percentage improvement achieved by the inspected 

performance metrics when DL based LSTM is applied as a channel estimator. Table 4.2 

presents the average numerical values that reflects the estimated amount of improvement 

attained by DL based LSTM compared to conventional NOMA scheme when different 

performance metrics such as BER, outage probability, sum rate, and the individual capacity are 

considered. Sample power values 5 dBm, and 20 dBm are selected to record the percentage 

improvements for each metric in Rayleigh fading channel. Based on the sample measurements 

shown in the table, it is clearly noticed DL based LSTM is providing a sufficient improvement 

for different performance metrics for all users. In same scenario, Table 4.3 is indicating to the 

average improvement realized by DL based LSTM over the conventional NOMA scheme when 

both   are implemented as channel estimator for the examined users in Rician channel. It can 

be noticed that the average improvement in Rician channel is not as that shown in the Rayleigh 

channel, and this was justified by the line-of-sight component in Rician model that clearly 
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enhance the conventional NOMA scheme based on MMSE procedure. The numerical values 

that reflect the comparison between the Optimized power scheme and the fixed power 

allocation (FPA) scheme is shown in Table 4.4 when the DL based LSTM is employed for the 

channel estimation process.  As noticed from recorded values, the optimized power scheme is 

showing a noticeable improvement over the FPA scheme when far and middle users are 

considered. On the other hand, the metrics values related to the FPA scheme are indicating the 

dominance of the FPA scheme over the optimized power scheme when the near user is 

considered. Also, it is worth mentioning that both optimized power and FPA schemes are 

providing a comparable performance at high power level when sum rate metric is examined 

and the DL based LSTM is employed for the channel estimation.  

Table 4.2 Sample statistics for average percentage improvement (DL- LSTM vs Conventional 

NOMA - Rayleigh) 

Performance 

metric  

5 dBm 20 dBm Criteria Improvement Users Channel  

BER ≈ 70.6% ≈ 68% DL-LSTM vs Conventional NOMA All Rayleigh 

Outage Prob. ≈ 64.5% ≈ 71.6% DL-LSTM vs Conventional NOMA All Rayleigh 

Sum Rate ≈ 42% ≈ 26% DL-LSTM vs Conventional NOMA All Rayleigh 

Individual 

Capacity 

≈ 11.5% ≈ 14.7% DL-LSTM vs Conventional NOMA All Rayleigh 

 

Table 4.3 Sample statistics for average percentage improvement (DL- LSTM vs Conventional 

NOMA- Rician) 

Performance 

metric  

5 dBm 20 dBm Criteria Improvement Users Channel 

BER ≈ 31.2% ≈ 27.7% DL-LSTM vs Conventional NOMA All Rician 

Outage Prob. ≈ 44% ≈ 91.3% DL-LSTM vs Conventional NOMA All Rician 

Individual 

Capacity 

≈ 4% ≈ 4% DL-LSTM vs Conventional NOMA All Rician 
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Table 4.4 Sample statistics for average percentage improvement (Optimization vs FPA) 

Performance 

metric  

5 dBm 20 dBm Criteria Improvement Users Channel 

BER  ≈ 16.5% ≈ 24 % Optimization vs FPA (DL-LSTM) Far & Middle Rayleigh 

BER  ≈ 22% ≈ 37 % FPA vs Optimization (DL-LSTM) Near Rayleigh 

Outage Prob.  ≈ 72.5% ≈ 67.5 % Optimization vs FPA (DL-LSTM) Far & Middle Rayleigh 

Outage Prob.  ≈ 83% ≈ 62.5 % FPA vs Optimization (DL-LSTM) Near Rayleigh 

Sum Rate ≈ 5% ≈ 1 % Optimization vs FPA (DL-LSTM) All Rayleigh 

 

4.7 Summary 

In this work, the impact of the Deep Neural Network (DNN) in explicitly estimating the 

channel coefficients for each user in the NOMA cell is investigated, where the LSTM network 

is developed for complex data processing. In the proposed DL algorithm, the DNN model is 

trained online based on both the normalized channel statistics and the relationship between 

successive training sequences. The validity and efficiency of the proposed DL channel 

estimation scheme is emphasized by inspecting the proposed DNN model using the Rayleigh 

fading channel and Rician fading channel. Furthermore, we introduce a framework that 

investigates how the proposed channel estimation based on the DL and the power optimization 

scheme are jointly utilized for multiuser detection in the PD-NOMA system. A systematic 

mathematical analysis for the optimization problem is introduced and the Lagrange function 

and KKT conditions are employed to deduce the optimal power factors. The simulation results 

in terms of the BER, outage probability, sum rate, and individual capacity have verified that 

the proposed DL model-assisted NOMA can realize reliable performance compared to the 

conventional NOMA scheme, even when cell capacity is increased. 
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Chapter 5   

Reinforcement Learning based 

Q-Learning for Channel 

Estimation in MISO-NOMA 

System 

5.1 Introduction 
In downlink NOMA system, each user equipment can receive a multiplexing of signals and 

these signals are related to several user devices in the NOMA cell and this multiplexed signal 

is transmitted by the base station (BS). Therefore, excluding the interference generated by other 

user devices come to be important for the sake of coordinated detection. Frequently in power 

domain NOMA (PD-NOMA), multiuser detection can be handled via successive interference 

cancellation (SIC) [98]. In the SIC procedure, signals related to different users are decoded 

successively on the basis of the power percentage assigned for each user and the channel state 

information (CSI). A broad investigation of CSI for various users in NOMA cell is demanding 

because pilot data that traditionally exploited in channel prediction, might interfere with 

symbols from other user terminals, which may lead to disturb the performance of a 

conventional prediction scheme that based on the minimum mean square error (MMSE) 

estimator [94]. Besides, power allocation policy is also considered as a critical process for user 

devices when PD-NOMA is applied in different communication networks. 

Deep Learning (DL) and Reinforcement Learning (RL) techniques, have the possibility to track 

the changes in the channels between user devices and BS, thus, they are recently considered a 



95  

powerful tool for the forthcoming radio systems [99]. Hence, estimating the channel parameters 

or allocating the power factors for user terminals based on the machine learning (ML) 

algorithms, prompted the authors for more deep investigations in this field in order to boost the 

system performance and enhance the quality of the signal reconstruction process. 

5.2 Related Works 
Authors in [100], introduced two approaches to approximate the optimal MMSE channel 

estimator when the reconfigurable intelligent surfaces (RIS) based MISO system is considered. 

Basically, the reconfigurable intelligent surface is a programmable surface structure that can 

be used to control the reflection of electromagnetic (EM) waves by changing the electric and 

magnetic properties of the surface. In the first presented approach in [100], authors suggest an 

analytical linear channel estimator to control the phase shift matrix of the RIS scheme during 

the training phase, and the estimator based on that technique exhibited a sensible accuracy 

when the statistical properties of the applied channel and noise are both considered. In the 

second approach, authors analysed the channel estimation problem as an image denoising 

problem, then they adopt a convolutional neural network (CNN) to achieve the denoising and 

predict the channel parameters. Numerical outcomes have illustrated that the channel estimator 

based on CNN approach can offer a better performance compared to the linear estimation 

method and low computational complexity is also attained. 

A neural network model for wireless channel estimator is suggested in [101] to be used with 

uncoded multi-input multi-output (MIMO) system, to enhance the channel estimation process 

reliability. Based on the presented neural network structure, a channel estimator is proposed, 

and also a mathematical scheme is introduced to derive an optimum power scheme to assist in 

the lowering the channel prediction bandwidth utilization. Simulation outcomes proved that 

the channel estimator based on the presented neural network structure, can deliver an 

improvement in mean square error (MSE) and bit error rate (BER) compared to the traditional 

MMSE channel estimation technique. 

Based on deep autoencoder scheme, authors in [102] performed experimental verifications in 

a massive MIMO system on two tasks, the first task is related to investigate a channel model 

for wireless links, and the second task is associated with managing the power allocation policy. 

The proposed deep learning autoencoder scheme is also adopted to handle the issue raised from 
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inadequate training datasets that may produce critical overfitting problems and therefore affect 

the model's reliability. Results based on the proposed autoencoder model, have clarified that 

the suggested structure could successfully enhance the performance particularly when the 

extent of the training dataset is within a specified threshold selection. 

The work in [103] introduced a deep learning framework to handle the limitations raised up 

when standard iterative techniques for power control are utilized, such as unnecessary latency 

and high complexity. In the presented DNN framework, the outdated and partial CSI is 

exploited, to construct an optimization problem that can boost the spectral efficiency in device-

to-device communication system. User fairness and energy efficiency constraints were 

considered, and simulation outcomes showed that the suggested deep learning framework can 

attain better spectral and energy efficiency compared to the MMSE estimator when several 

channel correlation factors are considered. 

Based on the position of the user device with respect to BS, the path loss, and the CSI, a deep 

learning model labelled PowerNet is introduced in [104]. The authors attempt to prove that 

PowerNet scheme has the capability to avoid the time consuming with complex channel 

estimation procedures, and at the same time, power control can be also achieved. Different 

from conventional DNNs that depend on a fully connected structure, the proposed PowerNet 

model is implementing a CNN layer to differentiate the interference characteristics through 

several channels in wireless networks. Simulation outcomes verified that the introduced 

PowerNet scheme can attain a stable performance with no explicit channel estimation 

procedure. 

Recently, predicting the channel parameters or assigning the power factors with the assistance 

of Reinforcement learning (RL), has been explored by many researchers. The authors in [105] 

provided an end-to-end channel estimation framework based on actor-critic procedure for a 

downlink multiuser multiple antenna system. Authors principally relies on the agent to utilize 

the pilot symbols to estimate the channel parameters that will be utilized to create a downlink 

beamforming matrix. To achieve the purpose of maximizing the sum rate reward, the deep 

network parameters are updated based on the deep policy gradient method. Simulation 

outcomes proved that the suggested RL based actor critic procedure for channel estimation can 

provide a stable performance under diverse channel statistics and can show noticeable 
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convergence compared to the typical MMSE procedure when the sum rate metric is inspected. 

In [106], authors have developed a deep reinforcement learning (DRL) framework for device 

to device pairing to distinguish the correlation (relationship) patterns in wireless networks. The 

presented DRL algorithm is implemented to jointly explore the channel selection and the power 

control problem for device-to-device pairing in order to enhance the weighted sum rate in the 

system. The proposed DRL learning procedure, can make use of the outdated and local channel 

information to update the network parameters and perform decisions independently for each 

device-to-device pair. Simulation results indicated that even without a global channel state 

information, the suggested DRL scheme is capable to attain a steady performance close to that 

attained using ordinary analytical approaches. 

5.3 Reinforcement Learning Theory and Framework 
Reinforcement learning (RL) is typically developed on the basis of a Markov Decision Process 

(MDP) design, that includes a group of elements [107] as follows: a state space ‘S’, which is 

the set of observations or states in the environment and these states can be recognized or 

observed by the agent. An action space ‘A’, which is the set of all actions that can be chosen 

by the agent at each state. An instant reward ‘R’, which is the direct reward that is sent to the 

agent after selecting a certain action a ∈ 𝐴 to transfer to another state 𝑠 ∈ 𝑆 . The policy ‘P’ 

that characterizes how the agent can move from the current observed state to the new state 

based on the action decided by an agent. Another important element in the RL process is the 

State-action value function 𝑄(𝑠, 𝑎), which is formally labelled as the expectation of the 

cumulative discounted rewards when a specific action a ∈ 𝐴 is chosen by an agent and a 

particular policy is considered. Typically, RL can be observed as a approach for understanding 

the agent’s interaction in a stochastic environment where the agent is progressively selecting 

actions during a sequence of time slots. Based on the aforementioned discussion, we can 

conclude that the main objective of reinforcement learning algorithm is to train an agent to 

carry out a certain task within non static environment [108]. 

The interaction between the RL agent and the environment can be described by this scenario: 

at each time step, the agent can observe or recognize the states in the environment, and based 

on the current state, the agent can decide and perform a specific action. Then, an instant reward 

will be sent to the agent from the environment. The reward reflects how effective the action is, 
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when the agent decides a certain action to achieve a specific goal. Principally, at each learning 

iteration, the RL agent can interact with the environment by following a predefined policy that 

can regulate the transition between states [109]. 

Based on the above-mentioned discussion and as shown in Figure 5.1, the RL agent can be 

represented by two components: the policy and the learning algorithm. The policy is the 

mapping criterion that decides actions based on the states observed in the environment. In DRL, 

the policy can be represented as a function approximator with tuneable parameters, such as 

DNN. The learning algorithm constantly update the weights, or the parameters of the policy 

based on observations, actions, and rewards. Overall, the objective of the learning algorithm is 

to realize the optimum or the best possible policy that can maximize the received cumulative 

reward. 

 

Figure 5.1 Reinforcement Learning Framework. 

5.4 Channel Estimation Based Q-Learning Algorithm 
In this chapter and in the channel estimation process, we assume that the action space is 

discrete, therefore, we manage to use an RL based Q-learning algorithm as one of the RL 

candidate’s procedures to decide the channel parameters in the examined NOMA cell [110]. 

The Q-learning algorithm is categorized as a model free, and off policy reinforcement learning 

procedure. Also, a Q-learning agent is described as a value-based RL agent that has the role of 

updating a specific Q-value function to enhance the future rewards. At a certain state, the agent 

can examine and decide the action for which the expected reward can be maximized. In this 
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section, RL based Q-learning is employed for channel estimation task in the MISO-NOMA 

cell and pilot symbols are also utilized to assist in the channel approximation process. 

Therefore, it is assumed that there is coordination between user devices and BS, such that the 

pilot symbols can be identified at the BS and the user terminals.  

In this chapter, we have considered the BS as the Q-learning agent, and we assume that the BS 

will start estimating the channel parameters for each user once each user equipment finishes 

sending the pilot signals in uplink transmission [111]. Therefore, the proposed Q-learning 

algorithm can be utilized to estimate the channel parameters based on the assistance from the 

received pilot symbols. 

Based on our developed Q learning algorithm, the scenario for the channel estimation process 

can be summarized in this way. Firstly, at the start of each transmission time slot, user devices 

can send pilot symbols to BS through the uplink channel. Secondly, based on our developed 

Q-learning algorithm and the availability of network information such as the distance from the 

BS, power allocation factor for each user device and the path loss, the BS (agent) can 

approximate the channel coefficients for user devices. Thirdly, BS will create the superposition 

coding signal and performs downlink data transmission. Finally, the receiver of each device 

will receive the superimposed downlink transmitted signal beside the channel parameters that 

have been estimated based on Q learning algorithm. The predicted channel coefficients will be 

utilized to decode the desired signal and each device can feedback the SINR or the achieved 

rate to the BS to boost the detection scenario [11][112]. 

In this chapter, the main aim of our developed RL based Q-learning algorithm is to maximize 

the downlink sum rate and minimize the estimation loss. Rather than estimating the received 

signal, we principally focus on incorporating the developed Q-learning algorithm in the NOMA 

system for the purpose of channel estimation. The Q agent (BS) is planned to estimate the 

channel parameters by interacting with the environment, and during the learning iteration, the 

Q learning agent can decide on the action that may both enhance the estimated state-action 

value function 𝑄(𝑠, 𝑎) and the long-term reward. It is worth mentioning that increasing the 

number of learning iterations, can sufficiently update the Q-values which may results in 

improving the channel approximation process and the sum rate reward [112]. 

In the proposed Q-learning procedure, the instantaneous sum rate 𝑅𝑡 at time instant 𝑡 can be 
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expressed as follows [11][105][113]: 

 𝑅𝑡 =∑log(1 + 𝑆𝐼𝑁𝑅𝑖𝑡)

𝑀

𝑖=1

                                  (5.1)  

where 𝑆𝐼𝑁𝑅𝑖𝑡 is the signal to interference plus noise ratio of user i at time instant t, and 𝑀 is 

the number of users in the examined MISO-NOMA cell. In this chapter, the optimum goal of 

the developed Q-learning algorithm is to maximize the total discounted reward 𝑅𝛾 starting 

from time instant t, which can be denoted as 

 𝑅𝑡
𝛾
=∑γ𝑘−𝑡

∞

𝑘=𝑡

𝑅𝑘+1                                                 (5.2) 
 

 

where 𝑅𝑡
𝛾
 is the discounted reward at time slot t, and γ is the discount factor. Substituting the 

sum rate from Equation (5.1) into Equation (5.2), then the discounted sum rate reward, can be 

expressed as: 

𝑅𝑡
𝛾
=∑𝛾𝑙−𝑡

∞

𝑙=𝑡

∑log (1 + 𝑆𝐼𝑁𝑅𝑖(𝑙+1))

𝑀

𝑖=1

              (5.3)  

As stated earlier, the Q-learning agent is the BS, whose target is to enhance the accumulative 

sum rate. Accordingly, two value functions can be inspected while considering the RL 

maximization problem [11][105], the first function is called the state value function 𝑉(𝑠) 

 𝑉(𝑠) = 𝐸[𝑅𝛾 (𝑆𝑡⁄ = 𝑠)]                                        (5.4)  

and the other function is the state-action value function 𝑄(𝑠, 𝑎) 

𝑄(𝑠, 𝑎) = 𝐸[𝑅𝛾 (𝑆𝑡⁄ = 𝑠, 𝐴𝑡 = 𝑎)]                       (5.5)  

where 𝐸 denotes the expectation parameter given that the agent can follow a certain policy 

within the applied procedure. Owing to the unspecified transition probabilities and limited 

observed states, an optimal policy is not easy to achieve. Therefore, in this chapter the Q-

learning procedure is developed to approximately achieve the best possible policy to select the 
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best action. In our developed Q-learning algorithm, the state-action value function 𝑄(𝑠, 𝑎) 

values can be learned via trial and error and are updated according to the following formula 

[11][105][113]: 

𝑄(𝑠, 𝑎) ← (1 − 𝛼)𝑄(𝑠, 𝑎) + 𝛼 [𝑅(𝑠, 𝑎) + 𝛾max
𝑎′∈𝐴

𝑄(𝑠′, 𝑎′)]     (5.6)   

where 𝛼 is the learning rate, 𝑠′ and 𝑎′ denote the new state, and the new action that will be 

considered and decided by the agent to maximize the new state-action value function 𝑄(𝑠′, 𝑎′). 

5.5 Q-Learning Network Architecture 

In data transmission, the transmitted frame involves data and pilot symbols, and in our analysis, 

we assumed that the applied channel model is stationary throughout one frame transmission 

and these channel parameters can be changed from one frame to another. The basic framework 

for the channel estimation process using the developed Q algorithm that employed in our 

examined MISO-NOMA system is illustrated in Figure 5.2. This structure can be principally 

described as a sequence of stages [11[113]. The steps for the first stage can be listed as follows:   

1- Initialize the Q table (rows = states, columns = Actions) 

2- States (initial distance, initial power factor, path loss) 

3- Actions (generate random channel coefficients based on the channel model parameters 

with size 12 + estimate channel coefficients based on the pilot symbols with size 8) 

4- We create 10 different states (Increase or decrease the initial distance by a step size 5)  

5- We create 10 different actions (10 different channel realizations)  

6- Each channel realization is a combination between the random channel coefficients 

generated from the channel model parameters and channel coefficients estimated based 

on pilot symbols.   

7- The Q table size is 10×10.  

8- Each cell in the Q table is now representing a state-action value function 𝑄(𝑠, 𝑎) which 

is in our model is represented by the channel parameters vector with size 20  

9- Assign the target rate ”𝑹𝑇” 

10-  Based on  

a. Average generated channel coefficients ℎ𝑘 

b. Power factor for each user 𝛼𝑘 
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c. Total assigned power 𝑃𝑡 

d. Noise power 𝜎2 

We can calculate the rate for each user based on the following expression  

𝑅𝑘 = log2 (1 +
|ℎ𝑘|

2𝑃𝑡𝛼𝑘
|ℎ𝑘|

2∑ 𝑃𝑡𝛼𝑗
𝑘−1
𝑗=1 + 𝜎2

) 

 

and compare with target rate to update the Q values.  

In the second stage, the reward matrix R is initialized with zero values. In our scenario, the 

state-action value function 𝑄(𝑠, 𝑎) can be adjusted based on the difference between the 

assigned target rate 𝑅𝑇 and the calculated user rate 𝑅𝑘 for every device 𝑘.  

 

 

Figure 5.2 Architecture of the proposed Channel prediction scheme based on the 

developed Q- algorithm. 

As mentioned above, the state space S contains the distance between the BS and each user 

device, the power allocation factor for each user in the NOMA cell, and the path loss. Similarly, 

the actions that can be chosen by the agent can be selected from the action space A. Based on 

the aforementioned analysis we created 10 different actions (10 different channel realizations.  

Hence, in the third stage, based on the trial-and-error scheme, the best policy can be explored, 

where the best action can be decided and implemented by the Q agent (BS), and then updating 

the values for the Q table. Additionally, the reward matrix R values can be dynamically 

assigned according to the actions decided by the Q agent [11][113]. In the fourth stage, the 

values for the Q-table can be further adjusted according to a Q algorithm procedure with the 
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aid of the following parameters, the discount factor 𝛾, the learning rate 𝛼 , and the assigned 

immediate reward matrix 𝑅. It is worth mentioning, that throughout the learning phase, the 

generated state action values 𝑄(𝑠, 𝑎) will be sampled to calculate the new user rate and at the 

same time update the Q table values till the optimum rate or the terminal state is attained 

[11][113][114]. 

5.5.1 Dataset Preparation  

Principally, the distance between each user device and the BS and the path loss parameters 

need to be identified in the dataset to enable random initialization of the channel weights for 

every user device in the considered MISO-NOMA system. Pilot symbols are generated, 

transmitted, and identified at the BS and at the receiver side of every user to assist in channel 

estimation process. As mentioned earlier in section 5.5, based on the state space S and the 

action space A, the Q-table values can be set up and during the algorithm iterations, and the    

Q-values can be adjusted according to a Q-learning procedure [11][113]. Throughout the 

learning process and for the sake of adjusting the values of the Q-table, the discount factor 𝛾, 

learning rate 𝛼, the target rate 𝑅𝑇, current state, and the terminal state should be identified.  

In our developed Q-learning algorithm, the Q-agent will decide the next state at random and 

set it as the next state, then the Q learning agent will inspect all possible actions available in 

the next state. Next, the Q agent will carefully identify the best action 𝑎, that satisfies the 

maximum value for 𝑄(𝑠, 𝑎). After deciding the most suitable action among all available 

actions, a reward value will be given to the agent as a measure of how successful this action 

was in order to move to the new state [11][112][113].  

In the update phase, we can compute ∆𝑄, which denotes the difference between the new 

resultant value function and the preceding value function of 𝑄(𝑠, 𝑎). Then, the state action 

value function in the Q-table will be updated according to the following formula. 

𝑄(𝑠, 𝑎) = 𝑄(𝑠, 𝑎) + 𝛼 · ∆𝑄                    (5.7)  

Based on the updated Q-values in the Q-table, the channel coefficients and the channel gain 

for each user can also updated. Concurrently, a new attained rate can be calculated and 

compared to the target assigned rate for each user device. In our developed Q-learning 

algorithm, once the terminal state or the optimum rate is attained, the developed Q-matrix will 
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be employed to compose the channel taps for each user device. The developed Q-learning 

algorithm for channel parameters estimation can be summarized as presented in algorithm 5.1. 

Algorithm 5.1 Developed Q-learning Channel Prediction Structure 

1. Initialize the 𝑸 table values and initialize the reward matrix R with zeroes.    

Inputs  

2. Number of Iterations and the size for the channel parameters for every user    

               device.  

3. Initial distance “𝒅𝑖” between each user device and the BS.  

4. Path loss parameter “𝝑”.  

5. Assign the pilot symbols to assist in the channel estimation process.  

6. Initialize the random channel parameters for each user “𝒉𝑖𝑗” based on the fading  

              Channel model parameters, 𝑗 ∈ [1, 2,… ,𝑁] and 𝑖 ∈ [1, 2, … ,𝑀]. 𝑁 is the number  

              of antennas at BS and 𝑀 is the number of users in the cell. 

7. Assign the power factor for each user.  

             Determine the total transmit power “𝑷𝑇”, and noise power spectral density ”𝑵𝑜” 

8. Assign the target rate ”𝑹𝑇”  

Procedure  

9. Based on the following parameters: channel gain |𝒉𝑖𝑗|
2
, total transmit power  

               “𝑷𝑇”, and initial power factor for each user, the signal to interference noise ratio  

            “𝑺𝑰𝑵𝑹𝒊” and minimum required rate ”𝑹𝑖” can be calculated for each device. 

10. At each iteration, compare the initial generated rate ”𝑹𝑖” with the target rate   

              ”𝑹𝑇”, to update the initial values for the Q-table. 

Q-algorithm  

11. 13.        Identify the discount factor “𝜸”, learning rate “𝜶”, the current state, and the terminal  

12.             state.   

13. Choose the next state at random and set it as the next new state.  

14. Inspect all possible actions   “𝒂𝑖”  in the next state.      

15. Select the best action 𝒂𝑖 ∈ 𝑨, which satisfies the maximum value for the Q-value  

               function argmax 𝑸(𝒔, 𝒂) . 

16. Identify the immediate Reward “𝑹”  

17. Based on the following: maximum Q-value 𝑸(𝒔, 𝒂) obtained in step 15, the  

               corresponding reward “𝑹”, and the discount factor “𝜸”, then 𝑸(𝒔, 𝒂) can be  

               updated based on bellman’s equation as follows: 

               𝑸(𝒔, 𝒂) ← 𝑹 + 𝜸 argmax 𝑸(𝒔, 𝒂) 

Outputs  

18. Move to a new state with different distance and different power factor.  

19. Use the new state with the updated Q values (updated channel parameters) to  

              calculate the new rate until reach target rate or terminal state.  

20. Compute the difference “∆𝑸”  between the updated Q value function 𝑸𝒏𝒆𝒘(𝒔, 𝒂)   

               and the old  𝑸(𝒔, 𝒂). 
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21. Based on (20), 𝑸(𝒔, 𝒂) value in the Q-table can be further updated  

              according to  𝑸(𝒔, 𝒂) ← 𝑸(𝒔, 𝒂) + 𝜶 · ∆𝑸  

22. Check whether the terminal state or optimum rate has been reached or the  

              episode completed.  

23.  Compose the predicted channel parameters �̂�𝑖 

Detailed Q learning Procedure and Workflow: 

Based on algorithm 5.1, we can list the detailed workflow for the proposed Q learning 

algorithm that is developed for estimating the channel parameters for each user in the examined 

MISO-NOMA system as follows: 

1- Initialize the Q table (rows = states, columns = Actions) 

2- States are represented by (initial distance, initial power factor, path loss) 

3- Actions are represented by (generate a random channel coefficient based on the channel 

model parameters with size 12 + estimate the channel coefficients based on the pilot 

symbols with size 8) 

4- We create 10 different states (Increase or decrease the initial distance by a step size 5)  

5- We create 10 different actions (10 different channel realizations)  

6- Each channel realization is a combination between the random channel coefficients 

generated from the channel model parameters and the channel coefficients estimated 

based on pilot symbols.   

7- The Q table size is 10×10.  

8- Each cell in the Q table is now representing a state-action value function 𝑄(𝑠, 𝑎) and 

each 𝑄(𝑠, 𝑎) will initially represent the channel parameters ℎ𝑘 vector with vector size 

20.  

9- Assign a certain target rate ”𝑹𝑇” 

10- Based on the generated channel coefficients ℎ𝑘, Power factor for each user 𝛼𝑘 , total 

assigned power 𝑃𝑇 , noise power 𝜎2 , we can calculate the rate ”𝑹𝑘 for each user. 

11- Compare the calculated rate ”𝑹𝑘 with target rate”𝑹𝑇 to update the initial Q values.  

12- Choose the next state by random and inspect all available actions (all available 

generated channel parameters in step 6) and choose one that can provide the highest 

rate.  

13- Assign the Reward 𝑹 
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14- Use bellman equation  𝑸(𝒔, 𝒂) ← 𝑹 + 𝜸 argmax 𝑸(𝒔, 𝒂) to update the Q values.  

15- Move to a new state with different distance and different power factor.   

16- Use the new state with the updated Q values (updated channel parameters) to calculate 

the new rate until reach target rate or terminal state.  

17- For each user, repeat steps (1-16) for 105 

18- We create 10 frames of data bits.  

19- For each data frame, we estimate the channel coefficients by averaging the updated 

channel parameters with vector size 20, from the Q table at the end of each iteration.  

 

5.6 Simulation Parameters   
Characterization of the simulation parameters and settings is discussed in this section. The 

examined downlink MISO-NOMA system contains three distinct user devices and one BS in 

which the BS is supplied with two antennas and every user device in the cell is provided with 

a single antenna. In the examined NOMA structure, the modulated signals in downlink 

transmission are superimposed and transferred by BS to user devices via independent Rayleigh 

or Rician fading channels that are influenced by AWGN with noise power density assigned as 

𝑁0 = −174 dBm/Hz and the path loss is set to 3.5.  

MATLAB platform has been utilized as a simulation tool to satisfy the following aims, (1) 

inspect, characterize, and evaluate the performance of the developed RL based Q-learning 

algorithm when implemented as a channel estimator in the considered MISO-NOMA system, 

(2) investigate the reliability of incorporating the developed Q-algorithm as channel estimator 

scheme with the derived optimized power policy derived in chapter 3, for the examined MISO-

NOMA network, and different performance metrics are considered to explore the impact of 

this integration process. (3) The optimized power allocation scheme and fixed power allocation 

scheme are both compared when the developed RL based Q algorithm is utilized as a channel 

estimator in the MISO-NOMA cell. Monte-Carlo simulations are performed with 𝑁 = 105 

iterations, and at the beginning of each iteration, pilot symbols are randomly generated and 

recognized at the BS and each device. The main simulation parameters are summarized in 

Table 5.1. 
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Table 5.1: Simulation environment parameters. 

Parameter Value 

Simulation Tool MATLAB 

Modulation type QPSK 

Number of Users 3, [2–10] 

System Bandwidth B 1000 kHz 

Fading channel (Rayleigh, Rician) 

Path loss exponent 𝝑 3.5 

Number of Iterations 105 

Noise PSD 𝑁0 −174 dBm/Hz 

Learning Rate 𝛼 0.1 

Discount factor 𝛾 0.99 

Epoch  1 

 

 

5.6.1 Simulation Setup 

The simulation figures are generated based on the assumption that the explicit channel 

coefficients are not available at each user device in advance. Thus, in order to examine the 

effectiveness of the developed RL based Q-learning procedure, and for the sake of comparison, 

we established four additional simulation environments for the channel estimation process.    

(1) Standard minimum mean square error (MMSE) for channel prediction scheme [94]; (2) 

DNN algorithm based on LSTM network for channel estimation applied in [11]; (3) RL based 

actor-critic procedure for channel prediction applied in [105]; (4) the fourth simulation 

environment is created depending on RL based State-Action-Reward-State-Action (SARSA) 

procedure [115]. Throughout the simulations, we point out to MMSE technique as conventional 

NOMA, to denote that user devices are applying the MMSE technique for predicting the 

channel parameters prior to reconstructing the desired signal. 

In the simulation environment, NOMA parameters are generated, and the channel parameters 

are created to initially model the Rayleigh fading channels. In our developed Q-learning 

algorithm, at the end of the training episode, or if the terminal state is reached, the updated 
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𝑄(𝑠, 𝑎) values in the Q-table will be employed to generate a practical channel coefficient for 

the user devices. Different power percentages are initially assigned for every user device 

according to channel gain and based on the current distance from the BS. Power factors 𝜂𝑛, 

𝜂𝑚, and 𝜂𝑓 are specified for near, middle, and far users respectively. In a fixed power allocation 

setup, we designate 𝜂𝑓 = 0.65, 𝜂𝑚 = 0.25, and 𝜂𝑛 = 0.1. In the optimized power structure 

(OPS), power factors are allocated for the devices in proportion to the analytical formula 

concluded for every device in chapter 3. In the simulation files, the transmission distance for 

each user device with respect to BS is assigned as follows: 𝑑𝑓 = 900 m, 𝑑𝑚 = 400 m, and 

𝑑𝑛 = 100 m. Data and pilot symbols are modulated using Quadrature phase shift keying 

(QPSK) as the modulation format and the applied transferred power is mostly varying from 0 

to 30 dBm. 

5.6.2 Results Discussion and Analysis 

Simulation results that illuminate the comparison between the proposed RL based Q-learning 

algorithm and the conventional NOMA scheme that adopts MMSE procedure to estimate the 

channel parameters for each user device are shown in Figure 5.3 in terms of BER versus power. 

The estimated channel parameters based on Q algorithm and MMSE procedure are employed 

for the signal detection for each device and the simulated results are shown where fixed power 

allocation (FPA) scheme is applied. When the proposed Q-algorithm is applied for channel 

estimation, every user equipment in the examined MISO-NOMA cell offers a visible 

enhancement in lowering the BER compared to the MMSE technique. At particular BER value 

such as 10−2, the achieved power saving by the Q-learning algorithm is within 2 dBm for far 

and middle user devices, while 1 dBm power reduction is observed for the near user. 
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Figure 5.3 BER vs. power (Q-learning & Conventional NOMA (MMSE)). 

In terms of the outage probability metric versus power, Figure 5.4 shows the results for the 

examined user devices in the MISO-NOMA cell when the proposed Q-learning algorithm and 

standard MMSE are utilized as a channel estimator. Far, and middle user devices simulation 

results point toward 2 dBm improvement in saving power to realize 10−2 outage probability 

when the proposed Q-learning algorithm scenario is applied compared to the MMSE 

procedure. Likewise, a near user with the developed Q-learning procedure exhibits a 1 dBm 

enhancement in power saving with respect to the MMSE scheme. This clear improvement in 

power saving can verify the advantage of the developed Q-model as a channel estimator 

compared to the MMSE procedure. 
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Figure 5.4 Outage Prob. vs. power (Q-learning & Conventional NOMA (MMSE)). 

In Figure 5.5, we simulate three benchmarks’ environments for comparison: (1) standard 

minimum mean square error (MMSE) procedure for channel estimation [94]; (2) DNN 

algorithm based on LSTM for channel estimation applied in [10]; and RL based actor-critic 

procedure for channel prediction applied in [105].  

Based on Equation (5.3), for the discounted sum rate reward, and the detailed workflow for the 

proposed Q learning algorithm, Figure 5.5 displays the simulation results for the sum rate for 

all users in the MISO-NOMA cell versus power. Based on the simulation results, it is 

apparently shown that the developed RL based Q algorithm shows superiority over the classical 

MMSE procedure by 12 b/s/Hz. Moreover, the proposed Q learning scheme performs an 

improvement over the DL based LSTM scheme presented in [10] by 2 b/s/Hz. For the third 

benchmark in [105], we create the simulation environment according to the following 

parameters: the actor and critic networks are both consist of two hidden layers with 400 and 

300 nodes, respectively. The learning rate for actor and critic networks are 10-4 and 10−3 

respectively. The discount factor γ is set to be 0.9 and has a buffer size of 105. Our proposed 

RL based Q-learning procedure, shows superiority over the RL based actor-critic procedure at 
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low power levels while starting from 23 dBm the actor-critic procedure starts showing clear 

improvement in terms of sum rates compared to the Q-learning algorithm. These results can 

simply verify that the developed Q-learning algorithm can be a competitive procedure 

compared to other algorithms that primarily depend on hidden layers to estimate the channel 

parameters. 

 

Figure 5.5 Sum rate vs. power (MMSE, LSTM, RL Actor-Critic, RL Q-learning). 

Simulation results for sum rate maximization against different number of users in MISO-

NOMA cell are shown in Figure 5.6, where the reference power is assumed to be 1 dBm. In 

addition to our developed Q-learning algorithm, three different channel estimation procedures 

are explored as a benchmark comparison: (1) standard minimum mean square error (MMSE) 

procedure for channel estimation [94]; (2) DL algorithm based on LSTM for channel 

estimation applied in [10]; and RL based actor-critic procedure for channel prediction applied 

in [105]. As shown in the results, our proposed RL based Q-learning algorithm can realize a 

noticeable greater sum rate compared to MMSE procedure, by at least 2 b/s/Hz. It can be 

noticed that as the number of the users in the cell is increasing, the performance of RL based 
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Q-learning algorithm still shows dominance in achieving higher rates compared to MMSE and 

LSTM channel estimation schemes. Similar to Figure 5.5, the RL actor-critic procedure applied 

in [105] is created in our MISO-NOMA environment with the following parameters: the actor 

and critic networks are both consist of two hidden layers with 400 and 300 nodes, respectively. 

The learning rate for actor and critic networks are 10−4 and 10−3 respectively. The discount 

factor γ is set to be 0.9 and has a buffer size of 105. As shown in the results, the proposed Q-

learning algorithm is showing an advantage over the actor-critic scheme with up to 6 users in 

the cell. Then, the two hidden layers feature in the actor-critic procedure starts showing 

enhancement in the sum rates compared to the Q-learning algorithm while the number of users 

in the cell is increasing. Overall, these outcomes confirm that dependability can be guaranteed 

by the developed Q-learning algorithm even when the devices in the cell are increased. 

Furthermore, it is worth saying that while raising the user devices in the system, the interference 

will also grow up, hence the sum rate could be affected. 

 

Figure 5.6 Sum rate vs. number of users (MMSE, LSTM, RL actor-critic, RL Q-learning). 

The proposed Q-learning algorithm and conventional MMSE procedure will be further judged 

when the Rician channel is applied for the path among BS and each device. Rician channel is 
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a stochastic model for wireless transmission where the signal gets at the receiver device via 

various scattered paths. Figure 5.7 illustrate simulation results for BER against power 

transmitted when the Rician fading channel is applied. In the Rician simulation environment, 

we assign parameter K = 10, where K is described as the fraction of the signal power of the 

line-of-sight path to the signal power of the remaining scattered components. In addition, 

maximum doppler shift = 100 and sample rate = 9600 Hz are assumed. Results for the Rician 

channel reveal that the Q-learning scheme still can present some sort of improvement in 

decreasing the BER compared to the MMSE technique. This slight improvement can be 

justified by the presence of a line of site component among BS and user device which can also 

enhance the work of the MMSE technique. 

 

Figure 5.7 BER vs. Power (Q-learning, Conventional NOMA (MMSE) – Rician channel) 

In addition to the three benchmarks comparisons realized in Figures 5.5 and 5.6, we also create 

and implement RL based State-Action-Reward-State-Action (SARSA) algorithm [115] in 

Figures (5.8–5.10) for the sake of more explorations and comparisons. The parameters and 

features of the SARSA algorithm are designed in order that the SARSA technique can be used 

https://en.wikipedia.org/wiki/Stochastic
https://en.wikipedia.org/wiki/Radio
https://en.wikipedia.org/wiki/Wave_propagation


114  

as a channel estimator and compare the results of SARSA algorithm with the outcomes attained 

based on our proposed Q-learning algorithm. 

The Q-learning algorithm and SARSA algorithm are two efficient RL algorithms, they are both 

table-based techniques with a Q-table to record the equivalent Q-values of each state-action 

pair. However, when the dimension of state space increases, it will require a considerable 

amount of memory. Similar to Q-learning procedure, the SARSA algorithm also working based 

on the exploration and exploitation procedures, and it also uses a Q-table to record 𝑄(𝑠t, 𝑎t) 

value corresponding to state 𝑠t and action 𝑎t. Differently, the running steps of the SARSA 

algorithm [115] are as follows. First, according to the action selection policy, the gent at the 

current state 𝑠t, can select the action 𝑎t randomly not based on maximum value. Then, the 

agent will get an immediate reward 𝑅 based on the corresponding 𝑄(𝑠t, 𝑎t) value. Then, 𝑠t will 

transfer to 𝑠t+1 and the agent will choose the next action 𝑎t+1 based on same action selection 

policy happened in last selection. Hence, the SARSA algorithm is a bit different from the Q-

learning procedure, where the Q-value in SARSA algorithm is updated based on the action 𝑎t 

selected by the agent at the state 𝑠t. While in the Q-learning procedure, the action that has the 

greatest Q-value in the next state 𝑠t+1 will be selected to update Q-table. 

In Figure 5.8, the BER performance metric is simulated against the transmitted power, when 

the proposed Q-learning algorithm, SARSA algorithm, and Actor-critic algorithm are all 

implemented in the simulation environment.  It can be noticed that the both the proposed Q-

learning algorithm and SARSA algorithm show a comparable performance. However, at high 

power levels, our developed Q-learning algorithm shows some improvement compared to the 

SARSA algorithm, which is expected since that the Q agent can decide or select the greedy 

action, which is the action that offers the maximum Q value for the current state. As a 

benchmark comparison, the RL based actor-critic algorithm applied in [105] is created in 

simulation environment with the following parameters: the actor and critic networks are both 

consist of two hidden layers with 400 and 300 nodes, respectively. The learning rate for actor 

and critic networks are 10−4 and 10−3 respectively. The discount factor γ is set to be 0.9 and has 

a buffer size of 105. As shown in the results, with respect to far user, the proposed Q- algorithm, 

SARSA algorithm, and Actor-Critic algorithm all show a comparable performance up to 20 

dBm level. Afterward, Actor-Critic algorithm start showing a noticeable improvement in terms 
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of lowering the error rate. In terms of the middle user results, the simulation outcomes indicate 

a clear performance improvement starts from 15 dBm when Actor-critic algorithm is applied. 

For the near user scenario, it can be noticed that a apparent enhancement in the BER is achieved 

when actor-critic algorithm is applied compared to the Q algorithm and SARSA algorithm. 

This apparent enhancement can be justified by the two hidden layers feature in the actor-critic 

procedure, and the good channel condition for the near user after applying the SIC procedure.  

 

Figure 5.8 BER vs. power (Q-learning, SARSA, Actor-Critic). 

In Figure 5.9, The outage probability metric is simulated against transmitted power where both 

the proposed Q-learning algorithm and the SARSA algorithm exhibit a comparable 

performance. Similar to Figure 5.8, at high power levels, our developed Q-learning algorithm 

shows some improvement compared to the SARSA algorithm, which can be justified that the 

Q agent apply the greedy action, which is the action that offers the maximum Q value in the 

current state. 
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Figure 5.9 Outage probability vs. power (Q-learning, SARSA). 

 

More simulation outcomes for the comparison between our developed Q-learning algorithm 

and SARSA algorithm are shown in Figure 5.10, where the user’s sum rates versus transmitted 

power are simulated and it is apparent that our developed Q-learning algorithm can deliver 

more rates over the SARSA algorithm, and at same time a power saving is recorded by 1–2 

dBm approximately at any power level applied. 
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Figure 5.10 Sum rate vs. power (Q-learning, SARSA). 

In Figure 5.11, two independent simulation environments are accomplished here to produce 

these results. In the first simulation environment, the Fixed Power Allocation (FPA) scheme is 

applied for every user device in the MISO-NOMA cell. The second simulation environment 

depends on the optimized power scheme (OPS) that previously derived in chapter 3.  Both FPA 

and OPS will be applied in conjunction with the developed Q-learning algorithm that will be 

adopted as a channel estimator. Simulation results in terms of BER indicate that far and middle 

devices confirm the dominance of the OPS over the FPA. It can be noted that at specific BER 

values such as 10−2, the attained power saving by OPS is about 5 dBm for the far device, and 

1–2 dBm approximately for the middle user device. On the other hand, for near user results, 

the proposed Q-learning algorithm jointly with the FPA scheme provide obvious improvement 

in terms of BER than the OPS, this could be explained that for near device scenario, the stable 

channel condition plays a major impact in enhancing the system performance than the assigned 

power scheme. 
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Figure 5.11 BER vs. Power (Q-learning, Optimization, FPA). 

 

Based on the OPS scheme and the FPA scheme, Outage probability results versus power are 

displayed in Figure 5.12 and both schemes of OPS and FPA are applied in conjunction with 

the developed Q-learning algorithm as a channel estimator in our examined MISO-NOMA cell. 

Both far user and middle user results still show an amelioration in outage probability where a 

power saving can be detected within 1–2 dBm when OPS scheme is applied compared to the 

FPA scheme. Alternatively, near user with a Q-learning algorithm and FPA scenario exhibits 

a noticeable outage amelioration compared to the OPS case. Approximately, a power reduction 

within 4 dBm is realized when the FPA scheme is applied. These outcomes validate the results 

obtained for BER in Figure 5.11, which indicate that the FPA scheme can provide a more 

satisfactory performance for user devices with good channel condition. 
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Figure 5.12 Outage Prob. vs. Power (Q-learning, Optimization, FPA). 

In Figure 5.13, the expected bit rates for the examined user devices in the considered MISO-

NOMA cell are simulated against power transmitted when the OPS scheme and the FPA 

scheme are applied in conjunction with the developed RL based Q-learning algorithm that is 

utilized as a channel estimator. Results for far and middle users indicate that OPS provides 1 

b/s/Hz improvement compared to the FPA scheme. This limited enhancement might be 

justified that the management of the power allocation for the users is not necessarily adequate 

enough to reduce the effect of interference particularly for far and middle users that mainly 

experience unstable links environments. As expected, results for near user device reveal 

dominance in the attained rate with respect to middle and far devices with at least 10 b/s/Hz. 

Likewise, the results for the near user with FPA point out a evident improvement compared to 

OPS, and this outcomes also validate the results obtained in Figure 5.11, and Figure 5.12. 
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Figure 5.13 Individual rate vs. Power (Q-learning, Optimization, FPA). 

 

5.7 Results Summary 
In this section, we can present a sort of summary for the simulation results in terms of a sample 

statistics to emphasize the average percentage improvement attained in different performance 

metrics when RL based Q algorithm is applied as a channel estimator. Table 5.2 contains a 

sample numerical values and these values represent the estimated amount of improvement 

achieved by RL based Q algorithm compared to conventional NOMA scheme when different 

performance metrics such as BER, outage probability, sum rate, and the individual capacity are 

examined. Sample power values 5dBm, and 20dBm are chosen to record the percentage 

improvements for each metric in Rayleigh and Rician fading channel. Table 5.2 clearly 

indicates that RL based Q algorithm is providing an adequate improvement for different 

performance metrics in Rayleigh and Rician channel, and the most substantial enhancement is 

shown for sum rate metric. Table 5.3 is providing the comparison between RL based Q 

algorithm and RL based SARSA algorithm when both methods are implemented as channel 

estimator for the users in Rayleigh channel. When BER metric is inspected, the recorded values 
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reflect the improvement in Q algorithm when far middle users are inspected, while for near 

user case the SARSA algorithm verifies some dominance of Q algorithm. Overall, the Q 

algorithm recodes some enhancement over SARSA procedure when outage probability metric 

and sum rate metric are considered. This little enhancement was justified that the framework 

functionality of each algorithm is nearly similar. 

The statistical values that facilitate the comparison between the Optimized power scheme and 

the fixed power allocation (FPA) scheme is shown in Table 5.4 when the RL based Q algorithm 

is utilized for the channel estimation scenario. As perceived from recorded values, the 

optimized power scenario is indicating a visible improvement over the FPA scheme when far 

and middle users are examined. In contrast, performance metrics values related to the FPA 

scheme are pointing to the dominance of the FPA scheme over the optimized power scheme 

when the near user is measured. Also, it is worth mentioning that both the optimized power 

and FPA schemes are recording a slight enhancement when the individual capacity metric is 

examined compared to other performance metrics.  

Table 5.2 Sample statistics for average percentage improvement (RL- Q learning vs 

Conventional NOMA). 

Performance 

metric  

5 dBm 20 dBm Criteria Improvement Users  Channel  

BER ≈ 39 % ≈ 37 % RL- Q learning vs Conventional NOMA All Rayleigh  

Outage Prob. ≈ 32 % ≈ 30 % RL- Q learning vs Conventional NOMA All Rayleigh 

Sum Rate ≈ 115 % ≈ 65 % RL- Q learning vs Conventional NOMA All Rayleigh 

BER ≈ 24 % ≈ 28.3 % RL- Q learning vs Conventional NOMA All Rician  

 

Table 5.3 Sample statistics for average percentage improvement (RL- Q learning vs RL- 

SARSA). 

Performance 

metric  

5 dBm 20 dBm Criteria Improvement Users Channel 

BER  ≈ 26.5 % ≈ 24.5 % RL- Q learning vs RL- SARSA Far & 

Middle 

Rayleigh 

BER                                    ≈ 14 % ≈ 22 % RL- SARSA vs RL- Q learning Near  Rayleigh 

Outage Prob. ≈ 1 % ≈ 16 % RL- Q learning vs RL- SARSA All Rayleigh 

Sum Rate ≈ 2 % ≈ 2 % RL- Q learning vs RL- SARSA All Rayleigh 
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Table 5.4 Sample statistics for average percentage improvement (Optimization vs FPA). 

Performance 

metric  

5 dBm 20 dBm Criteria Improvement Users Channel 

BER                                     ≈ 32 % ≈ 50 % Optimization vs FPA (RL- Q learning) Far & Middle Rayleigh 

BER  ≈ 40 % ≈ 33.3 % FPA vs Optimization (RL- Q learning) Near Rayleigh 

Outage Prob.  ≈ 33.5 % ≈ 38.3 % Optimization vs FPA (RL- Q learning) Far & Middle Rayleigh 

Outage Prob.  ≈ 65 % ≈ 69 % FPA vs Optimization (RL- Q learning) Near Rayleigh 

Individual 

Capacity  

≈ 7.5 % ≈ 12.5 % Optimization vs FPA (RL- Q learning) Far & Middle Rayleigh 

Individual 

Capacity  

≈ 11 % ≈ 11 % FPA vs Optimization (RL- Q learning) Near Rayleigh 

 

 

5.8 Summary 
In this study, the influence of adopting a developed RL based Q-learning algorithm to distinctly 

predict the channel parameters for every user device in the MISO-NOMA system is analysed. 

In the developed Q-learning algorithm, the Q-model is created on the basis of the initialized 

channel statistics then updated based on the interaction between the Q-agent and the 

environment to maximize the received downlink sum rate and minimize the estimation loss. 

The efficacy of the developed Q-learning procedure is investigated by inspecting the 

performance of the proposed algorithm against different benchmark channel estimation 

schemes. The first benchmark scheme is based on standard MMSE procedure, the second 

approach is applying DL based LSTM network, the third scheme is implementing RL based 

actor-critic algorithm, and the fourth benchmark scheme is using RL based SARSA algorithm. 

In addition, the reliability of the proposed Q-learning procedure is validated by analysing the 

behaviour of the developed Q-learning algorithm in different fading channels. 
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Chapter 6                             

Deep Reinforcement Learning 

Framework in NOMA System 

6.1 Introduction 
It can be noticed that the high energy consumption by connected terminals in wireless networks 

can create an essential challenge in designing the upcoming 6G wireless networks, that are 

planned to enable an extensive range of important applications but with additional energy 

consuming [116]. Hence, it is important to consider the energy consumption issue in the future 

wireless communication networks while preserving the required quality of service (QoS). In 

this context, it is valuable to indicate that the utilization of superposition coding in NOMA can 

contribute to the energy efficient wireless transmission scheme. Thus, with the aim to ensure a 

desired quality of service (QoS) levels for all superimposed user devices, numerous research 

efforts have been dedicated to find out an efficient design of power allocation mechanisms. To 

that end, a resource allocation problem is analysed in NOMA system, and the channel 

estimation task is also investigated [117]. 

Furthermore, many authors recently have investigated the machine learning and artificial 

intelligence tools to optimize the resource allocation problems in NOMA system [118]. 

Recently, reinforcement learning (RL) based Q-learning algorithm and deep reinforcement 

learning based Q network (DQN) have achieved a remarkable interest by authors `in various 

fields. Q-learning algorithm is a subclass of reinforcement learning that depends on Q tables 

to store the optimal Q-values for state and action pairs, in order to maximize the future reward. 

6.2 Related Works  
In the context of optimizing communication networks, several works have employed Q-

learning algorithm to enhance the performance of wireless systems based on different 

perspectives. The work in [119] used the Q-learning algorithm to introduce a framework for 
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enabling mobile edge computing in NOMA system. In [120], authors suggested dynamic 

reinforcement learning scheme-based power allocation to maximize the sum rate and the 

spectral efficacy in MIMO-NOMA system when smart jamming is considered. Authors have 

employed the Q-learning algorithm to allocate a power to user terminals to mitigate the 

jamming effects.  

By incorporating deep learning into RL, deep reinforcement learning (DRL) can address the 

challenges associated with Q-learning in terms of Q-table storage. Based on that, the work in 

[121] used a deep Q-network (DQN) to model a multiuser NOMA offloading problem, while 

the work in [122], proposed a power allocation procedure in systems using deep reinforcement 

learning. In addition, authors in [123] have introduced the actor-critic based RL algorithm to 

handle a dynamic power allocation mechanism. Likewise, RL based actor-critic procedure was 

also applied in [124] to attain the optimal policy for user scheduling and resource allocation in 

HetNets. Authors designed the actor network to decide the parameters of the policy network to 

decide a stochastic action based on gaussian distribution, while the critic network evaluates the 

value function and assists the actor network to discover or learn the optimal policy.  

Deep reinforcement learning was also introduced in [125] to arrive at sub-optimal power 

allocation for an uplink multicarrier NOMA cell. The work in [126], has discussed a joint 

channel assignment and power distribution procedure for NOMA system using deep 

reinforcement learning. Authors have derived a near-optimal power allocation scheme by 

considering two users per channel and the channel assignment has been performed using DRL 

algorithm to boost the overall sum rate while minimum capacity for user terminals is 

considered.  

6.3 System Model   
In NOMA cell, numerous user devices can be served via the same resource block (RB) based 

on employing the power domain in both uplink and downlink transmissions. In this chapter, 

we are considering a downlink NOMA cell, where the BS can serve distinct types of users or 

devices at same time and via different fading channels. The BS can assign one channel to every 

set of user devices, and the signals of the that user devices can be multiplexed using unique 

power levels. Then, user devices will receive their desired signals beside the signals of the 

other devices in same channel as interference or noise. The undesirable received signals will 
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be considered as noise if the power level of the desired signal is high, otherwise, the additional 

signals will be regarded as interference. To decode the required signal, each user device will 

use the successive interference cancelation (SIC) procedure. SIC technique will decode the 

signal with the highest power and then subtracts that signal from the principal signal until the 

desired signal is decoded.  

Typically, SIC technique depends on the channel state information (CSI) [127] for each user 

device such as signal to interference plus noise ratio (SINR). In fact, the SINR itself may 

include the channel gain |ℎ𝑖|
2 and power allocation 𝛼𝑖, where ℎ𝑖 is the fading channel between 

BS and user device i, and 𝛼𝑖 is the power level allocated to user 𝑖 . In NOMA scenario, the data 

rate 𝑅𝑖 for user device i can be expressed as follows: 

𝑅𝑖 = log2 (1 +
𝑃𝑇𝛼𝑖𝜂𝑖

∑ 𝑃𝑇𝛼𝑗𝜂𝑖 + 1
𝑖−1
𝑗=1

)                             (6.1) 

where 𝜂𝑖 is the channel to noise ratio (CNR) for user 𝑖 and 𝑃𝑇 is the total power transferred by 

the BS. The channel to noise ratio 𝜂𝑖 for user 𝑖, can be expressed as   

𝜂𝑖 =
|ℎ𝑖|

2

𝜎𝑛2
                                                                         (6.2) 

As mentioned above, ℎ𝑖 is the fading channel between BS and user device i, while 𝜎𝑛
2 is the 

noise power. In this chapter, we are considering a downlink of NOMA system, and the total 

number of devices in the cell is N, and for a practical wireless environment, we can assume 

that the channel parameters are not perfectly known. In the NOMA cell, the signals related to 

the N user devices are combined, and the BS will transmit this composed signal. The composed 

signal 𝑋  can be represented as follows [128]: 

𝑋 =∑√𝑃𝑇𝛼𝑖

𝑁

𝑖=1

𝑥𝑖            𝑖 = 1,2, … . , 𝑁                      (6.3) 

where 𝑥𝑖  is the modulated desired signal for user device i. The resultant transmitted signal 𝑋  

will be received at the receiver side of each user terminal, with path loss and additive white 

Gaussian noise (AWGN), hence the received signal 𝑌 can be represented as  

𝑌 =∑√𝑃𝑇𝛼𝑖

𝑁

𝑖=1

ℎ𝑖𝑥𝑖 + 𝑛           𝑖 = 1,2, … . , 𝑁          (6.4) 
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where ℎ𝑖 is the fading channel between BS and user device i and 𝑛 denotes the AWGN 

component. After receiving the composed signal, the receiver at each user device will activate 

the SIC procedure to decode its signal and perfect SIC depends on the availability of SINR of 

that device. The SINR itself varies according to the channel gain and power allocation for each 

user device. In PD-NOMA, a distinct power levels will be given to user terminals in the cell, 

and the highest power will be given to the user device with the lowest CNR and contrariwise. 

Therefore, for user devices having CNR’s as follows: 

𝜂1 > 𝜂2 >. . . . > 𝜂𝑁                                     (6.5) 
 

These user devices will be given power levels as follows:   

       𝑃1 < 𝑃2 <. . . . < 𝑃𝑁                                             (6.6) 
 

The SINR for user device i can be represented as shown [127][128]  

 

𝑆𝐼𝑁𝑅𝑖 =
𝑃𝑇𝛼𝑖𝜂𝑖

∑ 𝑃𝑇𝛼𝑗𝜂𝑖 + 1
𝑖−1
𝑗=1

                𝑖 = 1,2, … . , 𝑁           (6.7) 

 

Basically, to implement the SIC, the BS can allocate power 𝑃𝑖 to any user terminal as shown 

in the following expression:   

𝑃𝑖 = (𝑃𝑇 − (∑𝑃𝑇𝛼𝑗

𝑖−1

𝑗=1

)) ≥ 𝑃𝑡ℎ                                        (6.8)  

The expression in (6.8), can be interpreted as follows: for proper achievement for the SIC 

technique, the user device with low CNR must have a higher power than the sum of power 

levels for other devices that have high CNR. 

6.4 Channel Estimation in Multiuser Environment 
In this section, the channel estimation task will be analysed based on a distributed user devices 

and single base station (BS) in a NOMA cell. The BS is supplied with single antenna and each 

user terminal is also equipped with a one antenna. The network is assumed to work with a 

specific length time slots and each time slot allows for a one frame transmission, either uplink 

or downlink transmission. The pilot assisted channel prediction is considered in this chapter, 
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where pilot symbols can be recognized by BS and user devices [10][11][105]. Initially, each 

user terminal can transmit its pilot symbols to BS via the uplink channel. Then, prior to 

downlink data transmission, BS can examine or inspect both the pilot symbols and the available 

network information to facilitate estimating the channel features and parameters.  

The principal aim of this chapter is to use deep Q-network (DQN) to realize the channel 

estimation task. The matrix 𝐻, that includes the downlink channel coefficients vectors that 

describe the channel properties from BS to each user device in the NOMA cell can simply be 

shown as follows:  

𝑯 = [𝒉1;  𝒉2; … ; 𝒉𝑁]                                            (6.9)  

where ℎ𝑖 is the vector that represents the channel coefficients from BS to user device 𝑖, where            

 𝑖 ∈ [1, 2, … ,𝑁], and 𝑁 is the number of user terminals in the examined NOMA cell. 

Furthermore, we can denote the data signal transmitted to each user i as 

𝒔𝑖 = [𝑠𝑖1, 𝑠𝑖2, … , 𝑠𝑖𝐾]                                             (6.10)  

where 𝐾 is the length of the data signal, and the matrix that contains the desired information 

transmitted for all the user devices can be expressed as follows: 

𝑺 = [𝒔1; 𝒔2; … ; 𝒔𝑁]                                                     (6.11)  

Many of the current research depend on pilot symbols to estimate the uplink channel 

parameters and then utilize the channel reciprocity to realize the prediction of downlink 

channel parameters [11][105]. Using channel reciprocity for channel prediction may not be a 

reliable scheme, especially in cases of imperfect channel reciprocity owing to hardware 

impairments [105]. Hardware impairments are mainly introduced by phase noise of the radio 

frequency (RF) components that negatively affects the system performance. Hardware 

impairments have been studied and can be modelled as an additive distortion noise or nonlinear 

multiplicative factor [128]. Furthermore, using channel reciprocity for channel prediction may 

introduce estimation errors when the uplink and downlink channel parameters are not 

stationary within a particular transmission slot.  

In this chapter, the deep reinforcement algorithm based deep Q-network (DQN) [129] will be 
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developed to explicitly predict the downlink channel parameters for every user device in the 

NOMA cell based on the support given from the network information and the pilot symbols. 

The matrix Ĥ, that represents the estimated channel parameters vectors between BS and N 

users, can be shown as follows: 

Ĥ = [ℎ̂1;  ℎ̂2; … ; ℎ̂𝑁]                                                   (6.12)  

where ℎ̂𝑖 represents the vector of generated channel parameters between BS and user device 𝑖.  

6.5 Deep Reinforcement Learning Basic Concept 
In this section, we will introduce the concept of deep reinforcement learning (DRL), which is 

a special case of reinforcement learning procedure [130]. Reinforcement learning is a fork of 

machine learning, where an agent interacts with the environment to carry out the best sequences 

of actions that can maximize the expected future reward in an interactive environment. 

Generally, reinforcement learning (RL) can be classified as single-agent or multi-agent based 

on the quantity of agents in the environment. In the scenario of a single agent RL, the 1) agent 

can recognize the entire states in the environment and the 2) decision-making task can be 

modelled using Markov decision process (MDP) framework. In this chapter, our proposed 

structure assumes a single agent, and the best sequence of actions that can be chosen by an 

agent will be determined based on the deep neural network (DNN), therefore, the combination 

between DNN and reinforcement learning (RL) can exemplify the universal function 

approximator. 

The fundamental elements for deep reinforcement learning (DRL) can be listed as follows 

[11][129][130]: 

• Observations: the continuous measurements of the properties of the environment, and 

all of the observed properties in the environment can be included in the state space 𝑆. 

• States: the discretized observations at time step t can be denoted as state 𝑠𝑡 ∈ 𝑆. 

• Actions: an action 𝑎𝑡 is one of the valid decisions that the agent can select at time step 

t from the action space 𝐴. 

• Policy: a policy denoted by π(.), is the criteria that control how to select a certain action 

in the environment at any given state. 



129  

• Rewards: the immediate reward 𝑟𝑡,  is obtained after an agent carries out a specific 

action 𝑎𝑡 in a given state 𝑠𝑡, which leads to move to new state 𝑠𝑡+1 . 

• State-action value function: denoted by 𝑄𝜋(𝑠, 𝑎), and represents the expected 

discounted reward when the agent starts at state 𝑠𝑡 and selects a certain action 𝑎𝑡 based 

on the policy π. 

When an agent selects an action 𝑎𝑡 at a given time step t, then the agent’s state will change 

from the current state 𝑠𝑡 to the subsequent state 𝑠𝑡+1 and as a result of this transition, the agent 

will receive an immediate reward 𝑟𝑡 from the environment.  Based on that scenario, the network 

can generate an experience tuple 𝑒 = (𝑠𝑡, 𝑎𝑡, 𝑟𝑡, 𝑠𝑡+1) that can be stored in experience replay 

buffer 𝒟. Hence, the primary target of the agent is to maximize the long-term cumulative 

discounted reward 𝑅𝑡
𝛾
, which is defined as follows [11][105][130]: 

𝑅𝑡
𝛾
=∑γ𝑖

∞

𝑖=0

𝑟𝑡+𝑖                                                  (6.13) 

where discount factor γ ∈ [0:1]. To satisfy 𝑅𝑡
𝛾
, an optimal policy 𝜋∗ is essential to map the best 

actions to states. In other words, the optimal policy 𝜋∗ can assist the agent to decide which 

action should be taken at any given state, to enhance the long-term cumulative reward. 

Typically, the state action Q-value function is defined as the expectation of the cumulative 

reward 𝑅𝑡
𝛾
.  

Based on the following: starting state 𝑠𝑡, the considered policy π, and the selected action 𝑎𝑡, 

the Q value function can be expressed as follows [11][105]: 

𝑄𝜋(𝑠𝑡, 𝑎𝑡) = 𝔼[𝑅𝑡
𝛾|𝑠𝑡, 𝑎𝑡] = 𝔼 [∑γ𝑖

∞

𝑖=0

𝑟𝑡+𝑖|𝑠𝑡, 𝑎𝑡]  

    = [𝑟𝑡 + 𝛾𝑄𝜋(𝑠𝑡+1, 𝑎𝑡+1)|𝑠𝑡, 𝑎𝑡]                           (6.14) 

where 𝔼[ . ] denotes the expectation parameter. When the optimal policy 𝜋∗ is adopted for 

maximizing for all states and actions pairs, then the optimal Q value function 𝑄𝜋∗ that follows 

the optimal policy 𝜋∗ can be expressed as follows: 

𝑄𝜋∗(𝑠𝑡, 𝑎𝑡) =  [𝑟𝑡 + 𝛾𝑄𝜋∗(𝑠𝑡+1, 𝑎𝑡+1)|𝑠𝑡, 𝑎𝑡]       (6.15) 
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The expression in (6.15) is known as the Bellman equation. The benefit of Bellman equation 

is to represent the state-action Q value function into two components: the instantaneous reward 

𝑟𝑡 and the long-term discounted reward. However, the Bellman equation is nonlinear, and 

hence, there is no closed form solution to it. As a result, an iterative procedure such as the Q-

learning algorithm has been emerged to converge the Bellman equation to obtain the optimal 

Q value function [11][105]. On the other hand, the computation of the Q-learning algorithm 

will become complex in multi-user environments that have a huge state and action spaces, and 

as a result the size of the Q-table will be extremely large. Hence, the regular solution to this 

problem is to estimate the Q-values using a function approximation, by adopting deep neural 

networks (DNN), which is the core component in our proposed deep Q-network (DQN) 

[11][105][130]. Basically, the basic DQN structure, shown in Figure 6.1, consists of three main 

phases: the first phase represents the input layer that shows the states of the environment. The 

second phase is the hidden layers that act as a function approximator. Mainly in the hidden 

layer, the Rectified Linear Unit (ReLU) activation function can be applied to compute the 

hidden layer values. The primary gain of utilizing ReLU as an activation function is the 

computational efficiency [131], that may lead to faster convergence. At the end stage, the 

output layer is responsible to predict optimal state-action value function, 𝑄𝜋∗(𝑠, 𝑎,𝑊𝑡), where 

𝑊𝑡 is the weights at time instant t.    

 

Figure 6.1 DQN basic structure with two hidden layers. 
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6.6 DQN Training phase  
In this section, we will discuss how the proposed DRL based DQN network is trained, and 

Figure 6.2 illustrates the structure of the developed DQN algorithm that mainly relies on the 

LSTM network to achieve the most appropriate performance. The DQN network will be 

trained, and the weights of the hidden layers will be updated to approximate the state-action 

value function 𝑄π(𝑠, 𝑎). As indicated in the aforementioned discussion, each experience tuple 

is described as 𝑒𝑡 = (𝑠𝑡, 𝑎𝑡, 𝑟𝑡, 𝑠𝑡+1), and the agent will store all experience tuples in an 

experience replay buffer 𝒟 = {𝑒1  𝑒2  𝑒3   …   𝑒𝑡}, and these learned experience tuples can be 

utilized  to train the DQN [46][132]. It is optimal for the DQN algorithm to exploit all 

experiences tuples in each training iteration, but this will be costly when the training set is 

huge. A more effective procedure is to update the DQN network weights in each iteration using 

an arbitrary subset from the replay buffer 𝒟, and this subset is described as mini batch. Hence, 

the loss function can be defined as follows [11][129][130]: 

ℒ(𝑊) =∑(𝑟𝑡 + 𝛾 𝑚𝑎𝑥𝑄𝜋∗(𝑠𝑡+1, 𝑎𝑡+1, �̂�) − 𝑄𝜋∗(𝑠𝑡, 𝑎𝑡,𝑊))
2

𝑒∈𝒟

      (6.16) 

where ℒ(𝑊) denotes the DQN loss function for a random mini batch sampled from the replay 

buffer 𝒟 at time slot t and �̂� represents the nearly static target weights that are updated every 

T time steps. With the purpose of minimizing the loss function ℒ(𝑊), the weights 𝑊 of the 

policy DQN will be updated at every time step t using a stochastic gradient descent (SGD) 

algorithm on a mini batch sampled from the replay buffer 𝒟. Also, the SGD algorithm can 

update the DNN weights 𝑊 in an iterative process with a learning rate of μ > 0 as follows:  

𝑊𝑡+1 = 𝑊𝑡 − 𝜇 ∇ℒ𝑡(𝑊𝑡)                                                    (6.17) 

6.7 DQN Based LSTM Network  
Long short-term memory (LSTM) network is a developed design from recurrent neural 

network (RNN), which can 1) inspect long term dependencies and has 2) the ability to 

remember previous information for future usage. The 3) LSTM network has a chain structure 

consists of multiple LSTM cells [89][90] and the proposed DQN structure shown in Figure 6.2 

is clearly adopting the LSTM network as the DNN hidden layers. The DNN based LSTM is 

mainly consists of four layers, and each layer contains several neurons, where the weighted 

sum of each neuron will be the input to an activation function. In our proposed DQN approach, 
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the length of each training sequence is specified as L, which is the dimension of the input layer. 

In our scenario, we choose the input layer to include 128 neurons (same number of input states), 

In the second layer, we have applied one LSTM layer that includes 300 hidden cells.  

 

 

 

 

 

 

 

 

 

 

𝐓𝐚𝐫𝐠𝐞𝐭 𝐐 𝐕𝐚𝐥𝐮𝐞𝐬  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.2 Proposed DQN Architecture.  
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For each hidden cell the learnable weights are specified as follows [10][90]: the input weights 

W, the recurrent weights R, and the bias b. The third layer is a fully connected layer that 

processes the outputs of the LSTM layer, and it assembles all of the characteristics and internal 

information that gathered by the prior layers. Also, the fully connected layer multiplies the 

input by a weight matrix W and then adds a bias vector b. In addition, the fully connected layer 

behaves separately at each time step, and all neurons in a fully connected layer are connected 

to all the neurons in the previous layer. 

The last adopted layer in the DNN in the DQN structure, is the regression layer, which is       1) 

accountable to compute the mean square error (MSE), improve the cell status, and update the 

cell weights. A 2) regression layer can also predict response of the trained network. It is worth 

mentioning that normalizing the training data in LSTM network enable stabilizing and 

accelerating training process for neural networks. In the proposed DQN structure, it is shown 

in Figure 6.2, that the input states are established according to the size of the input layer, then 

these states will be passed through the DNN policy network to generate the state action value 

functions at the output of the policy DNN. 

The proposed DQN Architecture in Figure 6.2, can be simplified as a sequence of blocks or 

stages as shown in Figure 6.3, and these blocks can be briefly explained as follows:  

Stage 1: Initialization and generation of training data 

1. Perform a few random actions with the environment to initialize the experience 

replay data. 

2. Initialize the weights for the policy DNN and copy these weights to the target 

DNN. 

3. Starting with the first-time step, do the following: 

• Based on the initial interaction with the environment, random states can be 

generated to be used as input for the policy DNN. 

• The policy DNN will predict the Q-values for all actions that can be decided 

in the current state, and then those Q-values will be inspected to select or 

identify a certain Q-value based on the most suitable action. 
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• Based on the selected and executed action, the experience replay will 

receive the reward and move to the next state. 

• The experience replay will store these results in the replay buffer. 

• Each of these results will be considered as sample training data, that can be 

later used as training data. 

Stage 2: Select a random batch for training. 

• Select a batch of random samples from the replay buffer and use these 

selected samples as an input for both the policy DNN and the target DNN. 

• From the random sample, use the current state as input to the policy DNN. 

• The policy DNN can predict the Q-values for all actions that can be 

performed in the current state. 

• Based on the decided or selected action, the policy DNN will identify the 

predicted Q-value. 

• From the selected random sample, the next state will be used as input to the 

target DNN. 

• The target network will predict the Q-values for all actions that can be 

performed in the next state, then the target DNN will select the maximum 

of those Q-values. 

Stage 3: Get the Target Q-value. 

1- The Target Q-value can be decided based on two components. 

• The immediate reward from the environment 

• The max Q value that has been predicted by the target DNN in the next state. 

Stage 4: Compute the Loss function. 

1. Compute the loss function between the Target Q value and the predicted Policy 

Q value in terms of mean squared error (MSE) as shown in equation (6.16). 
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Stage 5: Back-propagate the Loss function. 

1- Back-propagate the loss in order to update the weights of the policy DNN using 

SGD. 

2- At this stage, the weights of the Target DNN are not updated and remain fixed, 

and this completes the processing for this time step. 

Stage 6: Repeat for next time step 

1. The process will be repeated for the next time step. 

• The policy DNN weights will be updated but not the Target DNN. 

• This allows the policy DNN to learn to predict more accurate Q-values, 

while the weights for the target DNN remain fixed for a while. 

Stage 7: After T time steps, copy the policy DNN weights to the target DNN. This step will 

enable the target DNN to get the updated weights so that it can also predict more accurate target 

Q-values. 

 

Figure 6.3 Basic DQN Architecture.  

The design of a single LSTM cell is shown in Figure 6.4 [10][90]. Each LSTM cell has three 

inputs and two output parameters. The hidden state ℎ𝑡−1 and the cell state 𝑐𝑡−1 are the shared 
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parameters between inputs and outputs and the other parameter is the current input. The LSTM 

cell also includes three sigmoid functions and two tanh functions to control the flow of 

information. In the initialization stage, a random hidden states will be generated along with the 

input for the first LSTM cell. Then the current outputs that include the hidden state ℎ𝑡 and cell 

state 𝑐𝑡 and the new input 𝑥𝑡 will comprise the three inputs to the next cell.  

 

Figure 6.4 LSTM Cell Structure [10]. 

6.8 DQN Dataset Generation  
Typically, the DQN scheme involves an agent, deep neural network (DNN), and an 

environment. The agent works together with the environment and decides which action to take. 

In our proposed scheme, the BS will be considered as an agent and interacts with the 

environment that involve the user devices and fading channels. At the start, the agent (BS) will 

start exploring the environment to collect the sample information for each user device such as 

power distribution, user distance, channel model, and path loss [11][130][133].  

At each time step 𝑡 and based on the current state 𝑠𝑡 for each user device, the agent can take a 

decision on a certain action 𝑎𝑡 using the DNN to maximize the sum rate for all users in NOMA 

network. Accordingly, the agent will receive an instant reward 𝑟𝑡 and move to the next state 

𝑠𝑡+1 in the environment. By taking decisions on actions, the agent (BS) can learn more about 

the environment to achieve an optimal channel prediction policy 𝜋𝑐. This optimal policy 𝜋𝑐 for 

predicting or estimating the channel parameters for each user device can be learned and 
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enhanced at each time step t via the target DNN as shown in Figure 6.2. Furthermore, the   agent 

can adjust and enhance the policy 𝜋𝑐 by repeating the channel estimation process for multiple 

episodes. Based on the aforementioned discussion, it is clearly noticed that in this chapter, the 

DNN replaces the Q-table to estimate the Q-values for each state-action pair in the 

environment, and this designed DNN can be considered as the policy controller for channel 

parameters estimation. 

6.8.1 Near-Greedy Action Policy  

The period of time slot in which the agent interacts with the environment is termed as episode, 

and every episode has a total duration time of T time steps. At each episode, the main aim is to 

maximize the sum rates for all users in the NOMA cell while minimizing the total loss. In our 

proposed DQN architecture, the dimension of the input layer for either the policy DNN or the 

target DNN is set to equal to the available states in state space S and correspondingly, the 

dimension of the output layer is equal to the number of possible actions in the action space A 

[10][11][90][134].  

As stated before, we decide to choose four layers as a depth of the implemented DNN hidden 

layers, this may provide a reasonable balance between the network performance and 

computational complexity. Typically, the Q learning procedure is considered as an off-policy 

algorithm, which means that without applying any greedy policy, the Q algorithm can 

iteratively estimate the best action for future reward. In this chapter, and in our proposed DQN 

procedure, we decide to apply a near-greedy action selection policy, that has two approaches 

[113]: 

1) Exploration: the agent discovers and carries out random actions at every time step t. 

2) Exploitation: Based on the previous experience and the current network weights, the agent 

can decide an action to maximize the state-action value function 𝑄𝜋(𝑠𝑡, 𝑎𝑡,𝑊𝑡). 

In our proposed near-greedy action policy, the agent has an exploration rate of 𝜖 and an 

exploitation rate of  (1 − 𝜖) where 0 < 𝜖 < 1, and 𝜖 is considered as a hyper-parameter that 

can control the trade-off between exploitation and exploration during the training process. 

Hence and based on that designated action selection policy, the agent can select a specific 

action 𝑎𝑡 at a given state 𝑠𝑡 at every time step t and correspondingly, the agent can receive a 
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positive or negative reward and moves to a new state 𝑠𝑡+1.  

6.8.2 DQN Algorithm    

In this subsection, we will discuss the channel estimation task based on DQN framework. In 

the channel estimation process, we need to predict the channel parameters of each user device 

in NOMA cell, and also, we need to maximize the sum rate for all users in the considered 

NOMA system at each time step 𝑡. The state space S contains the user distance 𝑑𝑖 that 

represents the distance between base station (BS) and the user device 𝑖, the power allocation 

coefficient 𝛼𝑖 for each user in the NOMA cell, and the path loss 𝜗. Accordingly, the resultant 

state space can be represented as [10][113][134]  

𝑺 = {𝑑1  𝑑2  𝑑3…𝑑𝑁  𝛼1  𝛼2  𝛼3  … 𝛼𝑁…𝜗}                 (6.18) 

All the actions that can be chosen by the agent are selected from the action space A. The 

possible actions in the action space A can be described as follows: change the distance of the 

user device, change the path loss exponent, and increase or decrease the power distribution 

factor 𝛼𝑖 by a certain step size.  

The reward function plays an essential role in the DQN algorithm, and there are many ways to 

assign the rewards based on the selected action. In our proposed scenario, we decide to 

calculate the rate for each user in NOMA system using (6.1), to represent the instant reward 𝑟𝑖 

returned from environment to the agent after choosing a certain action 𝑎𝑡 at state 𝑠𝑡. Hence, 

based on the selected action, the higher data rate will reflect a good reward for the agent, while 

lower data rate will reflect a bad reward. Based on the proposed DQN framework, we can 

describe in algorithm 6.1, the algorithm steps for approximating the channel parameters for 

each user device in NOMA cell. 

 

Algorithm 6.1 Proposed DQN Algorithm for channel estimation  

 

1. Initialize policy DNN and target DNN networks with random weights  (𝑊,𝑊)̂. 

2. Initialize experience replay memory (ERM). 

3. Initialize exploration rate 𝜖.  

4. for each episode do 

5.      for each instance (step) do 

6.            for each user device do 
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7. based on 𝜖, and based on the current state 𝑠𝑖 ,  Select the channel parameters and add 

to action space 𝑎𝑖 

8.            end for 

9. Observe the immediate rewards 𝑟𝑖 (based on data rate) and move to the next state  𝑠𝑡+1. 

10. Insert (Store) (𝑠𝑖 , 𝑎𝑖, 𝑟𝑖, 𝑠𝑡+1) in ERM. 

11. Create a mini batch with random sample of tuple (𝑠𝑖 , 𝑎𝑖, 𝑟𝑖, 𝑠𝑡+1) from ERM. 

12.  for each tuple in mini batch do 

13.      Obtain or generate Q-values (length 128 taps) using policy DNN (Q network). 

14.       Approximate 𝑄∗ values (Target value) using target DNN. (Target Network) 

15.       Calculate the loss between Q values from Policy DNN and  𝑄∗ values from Target DNN. 

16.      Optimize the parameters 𝑊 of the policy DNN using SGD. 

17.  end for 

18. end for 

19. �̂� ←  𝑊  after a certain number of steps. 

20. end for 

 

Detailed DQN Procedure and Workflow 

Based on algorithm 6.1, we can list the detailed workflow for the developed DQN 

algorithm that is responsible for estimating the channel parameters for each user in the 

examined NOMA system: 

• Initialize the weights for both the policy DNN and the target DNN. 

• Initialize the ERM with a typical size of 10,000 (it can be 106). 

• Initialize the ϵ parameter for near-greedy action selection policy with a large value of         

ϵ = 0.999  (start by exploration then decay). 

• Initialize data records (tuples). 

a) Generate a random channel coefficient based on the fading model parameters with 

size = 120). 

b) Based on the pilot symbols, approximate the channel coefficients with size = 8). 

c) For each user, both the randomly generated channel parameters and the channel 

coefficients estimated based on the pilot symbols will be combined and used as 

initial channel parameters with size 120.  
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• For each user, assign the initial distance, initial power factor, and path loss, and prepare 

the state space 𝑺. 

• Select a random state 𝑠𝑡 from the sate space and use it as an input for policy DNN. 

• The policy DNN will select a random action and correspondingly select a random Q value, 

and the selected Q value will actually represent the channel coefficients for current state. 

• Calculate the rate, and based on the calculated rate the reward can be assigned. 

• Go to the next state 𝑠𝑡+1  

• Compose a tuple 𝑒1 = (𝑠𝑡, 𝑎𝑡, 𝑟, 𝑠𝑡+1) 

• Store a tuple 𝑒1 in ERM. 

• Generate experience tuples = 1000 and store these tuples in ERM. 

• Select a random batch of the tuples from ERM with batch size 32 tuples. 

• Number of episodes = 20, and number of steps T = 104 

• For each tuple in the random batch do the following: 

a) From the policy DNN, select the Q-values (channel coefficients) randomly. 

b) From the Target DNN select the Q-values based on the greedy policy 

c) Assign the Reward. 

d) Calculate the Loss function as follows:  

Loss= (Target Q value (Reward + Qmax value) - Policy Q value). 

e) Based on the Loss function, update the weights of the policy DNN using the gradient 

descent (GD) procedure. 

• Every T = 102 steps, copy the weights of the policy DNN to the Target DNN. 

• Activation functions used in LSTM layers are (sigmoid and tanh), while the activation 

functions used at the output layer are (linear or Relu). 

• SGD optimizer is utilized for weight updates. 
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6.9 Simulation Parameters 
Discussion for the simulation parameters and settings is described in this section. The simulated 

downlink NOMA system includes three distinct user devices and one BS in which the BS is 

equipped with single antenna and each user device in the cell is also equipped with a single 

antenna. In the examined NOMA environment, the user’s modulated signals in the downlink 

transmission are superimposed and transmitted by the BS to each user device via an 

independent Rayleigh channel that are affected by AWGN at the receiver side, and the noise 

power density is allocated as 𝑁0 = −174 dBm/Hz and the path loss is set to 3.  

MATLAB simulation tool is employed to realize the following objectives, inspect, 

characterize, and measure the performance of the proposed deep reinforcement learning (DRL) 

based deep Q network (DQN) algorithm that will be utilized as a channel estimator in the 

examined NOMA system, explore the reliability of integrating the proposed DQN algorithm 

as channel estimator scheme with the optimized power scheme in the examined NOMA cell. 

Standard performance metrics will be utilized to evaluate the impact of adopting DQN 

algorithm as a channel estimator. Monte-Carlo simulations are accomplished with 𝑁 = 104 

iterations, and at the start of the iteration, pilot symbols are generated and recognized at the BS 

and each user. The main simulation parameters can be summarized in Table 6.1. 

Table 6.1: Simulation parameters for DQN Framework. 

Parameter Value 

Simulation Tool MATLAB 

Modulation type QPSK 

Number of Users 3, [2–10] 

System Bandwidth B 1000 kHz 

Fading channel Rayleigh 

Path loss exponent 3 

Number of steps  104 

Noise PSD 𝑁0 −174 dBm/Hz 

Learning Rate 𝛼 0.01 

Discount factor 𝛾 0.99 
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Episode  20 

Optimizer  SGD 

ERM size  10,000 

 

 

6.10 Simulation Environment 

The simulation figures are created based on the assumption that the channel parameters are not 

perfectly available at each user device. Therefore, in order to examine the impact of the 

proposed DRL based DQN procedure, the standard minimum mean square error (MMSE) 

based channel estimation technique [94] is also simulated for the sake of comparison. In the 

simulation environment, NOMA parameters are assigned, and channel parameters are initially 

generated to model the Rayleigh fading channel. In our developed DQN algorithm, at the end 

of each training episode, the predicted 𝑄(𝑠, 𝑎) values generated from the policy DNN will be 

employed as a practical channel parameters for each user device to recover the desired signal 

for each user. Distinct power factors are initially assigned for every user device according to 

the current distance from the BS and the channel condition. Power factors 𝜂𝑛, 𝜂𝑚, and 𝜂𝑓 are 

assigned for near, middle, and far users respectively. In a fixed power allocation setup, we 

assign 𝜂𝑓 = 0.65, 𝜂𝑚 = 0.3, and 𝜂𝑛 = 0.05. In the simulation files, the transmission distance 

for every user device with respect to BS is initially defined as follows: 𝑑𝑓 = 1000 m, 𝑑𝑚 =

500 m, and 𝑑𝑛 = 100 m. user’s data and pilot symbols are modulated using Quadrature phase 

shift keying (QPSK) modulation format and the applied transmitted power is mostly varying 

from 0 to 30 dBm. 

6.11 Results Discussion and Analysis 

Simulation results that describe the comparison between the proposed DRL based DQN 

algorithm and the MMSE procedure when being utilized to estimate the channel parameters 

for each device are shown in Figure 6.5 in terms of BER versus power. The estimated channel 

parameters using both procedures will be employed for the signal recovery for each user and 

the simulated results are generated where fixed power allocation (FPA) scheme is considered. 

It is clearly noticed that when the developed DQN algorithm is applied for channel estimation, 

task, each user device in the examined NOMA cell shown the ability to provide a visible 
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enhancement in lowering the BER compared to the MMSE technique. As an example, at 

particular transmitted power 20 dBm, the realised BER value for far user using MMSE 

procedure is 10-1, while the achieved BER in case of DQN is 10-2 . Similarly, the amelioration 

in the BER for middle and near users are obviously observed when the developed DQN 

algorithm is applied compared to MMSE scenario.   

 

Figure 6.5 BER vs. power (DQN - MMSE). 

 

In terms of the outage probability against applied power, Figure 6.6 illustrates the simulation 

results for the inspected user devices in the NOMA cell when both the developed DRL based 

DQN algorithm and the standard MMSE technique are implemented as a channel estimator. 

Similar to BER results, all user devices simulation outcomes indicate about 10dBm 

enhancement in the power saving when the developed DRL based DQN algorithm scenario is 

applied compared to the MMSE technique. The reduction in the power transmitted also 

supports the improvement noticed in minimizing the outage probability when DQN algorithm 



144  

is adopted. These results verify the advantage of the developed DQN as a channel estimator 

compared to the traditional MMSE technique. 

 

Figure 6.6 Outage Probability vs. power (DQN - MMSE). 

Figure 6.7 shows simulation results for the attainable capacity for each device in the examined 

NOMA system when both the proposed DRL based DQN algorithm and the standard MMSE 

channel estimation procedures are applied. The achieved rate for the near device shows 

significant enhancement by more than 20 b/s/Hz over far and middle users’ rates. The 

dominance of the near user in terms of the possible rate can be imagined, due to the stable 

channel condition for the near user plus SIC effect compared to other users in the system. 

Moreover, the proposed DQN algorithm still can deliver a stable capacity compared to the 

MMSE technique for far and middle users’ scenarios, and this slight amelioration can be 

justified by the existing interference and inadequate link conditions for far and middle user 

devices. 
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Figure 6.7 Capacity vs. power (DQN - MMSE). 

In Figure 6.8, we establish three benchmarks for comparisons: (1) standard minimum mean 

square error (MMSE) procedure for channel estimation [94]; (2) DL based LSTM structure for 

channel prediction applied in [10]; and RL based Q algorithm for channel estimation applied 

in [11]. Figure 6.8 displays the simulation outcomes for the sum rate for all user devices in the 

NOMA cell versus applied power. It is evidently apparent that the developed DRL based DQN 

algorithm shows superiority over the standard MMSE procedure by more than 20 b/s/Hz 

approximately. Furthermore, the developed DQN algorithm performs an improvement over the 

DL based LSTM procedure presented in [10] by nearly 10 b/s/Hz. For the third benchmark in 

[11], The proposed DQN procedure, performs an amelioration over the RL based Q algorithm 

by 8 b/s/Hz approximately. These findings can support that the developed DQN algorithm can 

be a strong candidate technique compared to other procedures when it is being utilized as a 

channel estimator.  
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.   

Figure 6.8 Sum rate vs. power (MMSE, LSTM, RL Q-learning, DQN). 

Simulation results for the sum rate performance metric versus different number of users in the 

examined NOMA cell are shown in Figure 6.9, where the reference power is assigned to be     

1 dBm. Similar to the simulation environment in Figure 6.8, three distinct channel prediction 

schemes are also investigated here as a benchmark comparison: (1) standard minimum mean 

square error (MMSE) procedure for channel estimation [94]; (2) DNN based LSTM structure 

for channel prediction applied in [10]; and RL based Q algorithm for channel estimation 

applied in [11]. As revealed from the results in Figure 6.9, it is clearly noticed that our 

developed DQN algorithm can realize a substantial greater sum rate with respect to the MMSE 

procedure, by at least 4 b/s/Hz when the cell capacity is initialized with 2 users. It can also be 

noticed that as the number of user devices in the cell is keep increasing, the developed DQN 

algorithm still shows dominance in accomplishing higher sum rates compared to DNN based 

LSTM procedure by 2 b/s/Hz approximately. likewise, the hidden layers feature in the DQN 

procedure is showing a noticeable enhancement in the sum rates compared to the Q-learning 
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procedure when the number of user devices in NOMA cell is increasing. Overall, these findings 

reveal that reliability can be ensured by our suggested DQN algorithm even when the user 

devices in the cell increased. Furthermore, it is worth saying that while increasing the user 

devices in the cell, the interference will also grow up, thus the performance and the sum rate 

could be affected. 

 

Figure 6.9 Sum rate vs. number of users (MMSE, LSTM, RL Q-learning, DQN). 

In Figure 6.10, simulation results in terms of BER versus power are shown where both the 

proposed DRL based DQN technique, and the RL based Q-learning algorithm [11] are utilized 

as a different approaches for channel estimation. In addition, the optimized power coefficients 

that previously derived in chapter 3 for the examined NOMA cell are also applied in this 

simulation environment. Simulation results, indicate that all user devices in the cell can provide   

a perceivable enhancement in the performance when the developed DQN algorithm is applied 

as a channel estimator scheme compared to the case when the Q learning algorithm is adopted. 

Furthermore, and based on the simulation outcomes, it can be clearly noticed that when both 
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the optimized power scheme and DQN algorithm for channel estimation are combined, the 

achieved power saving is recorded at least to 5 dBm compared to Q algorithm procedure 

scenario.  

 

Figure 6.10 BER vs. power (DQN – Q learning - Optimization). 

6.12 Results Summary 
In this section, a kind of summary is presented for the above-generated simulation results in 

terms of a sample statistics to highlight the average percentage enhancement achieved in the 

examined performance metrics when RL based DQN algorithm is implemented as a channel 

estimator. Table 6.2 includes a sample numerical values and these values characterize the 

estimated amount of enhancement achieved by RL based DQN algorithm compared to 

conventional MMSE scheme when various performance metrics such as BER, outage 

probability, and the individual capacity are inspected. Sample power values 5dBm, and 20dBm 

are selected to record the percentage improvements for each metric in Rayleigh fading channel. 

Table 6.2 clearly indicates that the proposed RL based DQN procedure is providing a 

significant improvement for different performance metrics in Rayleigh channel for all users.  
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Table 6.3 is providing the comparison between the proposed RL based DQN algorithm, and 

the following benchmarks schemes: MMSE scheme, DL based LSTM, and RL based Q 

algorithm when all of these approaches are realized as channel estimator for all users in 

Rayleigh fading channel. Sum rate metric is inspected at two different power levels, and the 

recorded values reflect a sufficient improvement in the sum rate when DQN algorithm is 

applied compared to other benchmark schemes. It is clearly noticed that the DQN algorithm 

recodes a major enhancement over MMSE procedure when sum rate metric is considered. This 

huge improvement was clarified based on the policy and target networks in DQN approach that 

play a sufficient role maximizing the long-term reward.  

Similarly, Table 6.4 also shows the comparison between the proposed RL based DQN 

algorithm, and the following benchmarks schemes: MMSE scheme, DL based LSTM, and RL 

based Q algorithm when all of these approaches are realized as channel estimator. Sum rate 

metric is inspected when the number of users in NOMA cell is 5 or 20. As expected the highest 

gain is mainly achieved when DQN algorithm is compared to MMSE procedure, while for 

LSTM scheme and Q learning scheme the rate enhancement is noticeable because of the 

resemblance in the technique of estimation for DQN algorithm, LSTM network, and Q 

algorithm.     

Table 6.2 Sample statistics for average percentage improvement (DQN vs MMSE) 

Performance 

metric  

5dBm 20dBm Criteria Improvement Users Channel  

BER ≈ 88.7% ≈ 89.2% DQN vs MMSE All Rayleigh 

Outage Prob. ≈ 88.4% ≈ 89.3% DQN vs MMSE All Rayleigh 

Individual 

Capacity 

≈ 94.8% ≈ 61.6% DQN vs MMSE All Rayleigh 

 

Table 6.3 Sample statistics for average percentage improvement (Sum rate vs Power) 

Performance 

metric  

5dBm 20dBm Criteria Improvement Users Channel 

Sum Rate  ≈ 500% ≈ 160% DQN vs MMSE All Rayleigh 

Sum Rate  ≈ 50% ≈ 34% DQN vs LSTM  All Rayleigh 

Sum Rate  ≈ 36% ≈ 25% DQN vs Q-algorithm All Rayleigh 
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Table 6.4 Sample statistics for average percentage improvement (Sum rate vs Number of 

users) 

Performance 

metric  

5 users 20 users Criteria Improvement Users Channel 

Sum Rate  ≈ 23% ≈ 30% DQN vs MMSE All Rayleigh 

Sum Rate  ≈ 7% ≈ 10.7% DQN vs LSTM  All Rayleigh 

Sum Rate  ≈ 4.8% ≈ 4% DQN vs Q-algorithm All Rayleigh 

 

 

6.13 Summary 
In this chapter, the impact of utilizing a developed DRL based DQN algorithm to specifically 

estimate the channel coefficients for each user device in NOMA system is discussed. In the 

developed DRL based DQN algorithm, the DQN model is initialized based on random channel 

statistics then DQN model is updated based on the interaction between the Q-agent and the 

environment to minimize the estimation loss and at same time maximize the received downlink 

sum rate. The reliability of the proposed DQN procedure to estimate the channel parameters is 

explored by inspecting the performance of the proposed algorithm against selective benchmark 

channel estimation schemes, such as MMSE, LSTM, RL based actor-critic procedure, and RL 

based SARSA algorithm. Also, the reliability of the proposed DQN procedure is validated by 

inspecting the behaviour of the proposed DQN algorithm when the cell capacity is increased. 
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Chapter 7  

Conclusions and Future Work 

7.1 Introduction  

Next generation of communication networks are not just an outspread form of the previous 

generation because of the growing request of network data traffic, but the upcoming generation 

must support the new emerged technologies such as the internet of things (IoT) devices, and 

the web-based artificial intelligence (AI) applications. Also, the forthcoming generation should 

have the capability to assist the massive connectivity and enhance the spectral efficiency. 

Typically, orthogonal multiple access (OMA) scheme can be considered as the standard 

multiple access scheme but in limited communication environment, and OMA scheme may not 

have the capability to serve huge networks that may require a diverse quality of services (QoS).  

In addition, OMA may suffer from the issue of restricted degrees of freedom (DoF), where user 

with a good channel condition is served first with respect to user with weak channel condition 

who need to postpone for channel access. In order to achieve the requirements of QoS and DoF 

that needed for high scale communication networks, non-orthogonal multiple access (NOMA) 

was introduced as a new multiple access scheme to enhance the system capacity. To achieve 

high spectral efficiency and huge connectivity, power domain NOMA (PD-NOMA) is 

considered as one of the multiple access candidate’s schemes, since it can handle signals that 

have significant difference in power levels. Also, the integration between PD-NOMA and 

multiple antenna system is considered as a suitable approach to improve the system capacity.  

To enhance the system capacity, we work on maximizing the sum rates for user devices in the 

PD-NOMA system based on optimizing the power factors for each user in accordance with the 

channel conditions and based on the overall power transmitted and the QoS constraints. A 

systematic mathematical analysis for the optimization problem is introduced and the Lagrange 

function and optimality conditions are employed to derive the optimal power factors. The 

simulation results in terms of the BER, outage probability, and sum rate have verified that the 



152  

PD-NOMA can provide a reliable performance compared to OMA counterpart.  

7.2 Conclusions 

In this thesis, the impact of the utilizing deep neural network (DNN) in explicitly estimating 

the channel parameters for each user in NOMA system is investigated, where the LSTM layer 

is developed and implemented for complex data processing. In the proposed DNN based 

LSTM, the LSTM model is trained online based on both the generated normalized channel 

statistics and the relationship between the successive training sequences. The validity and 

efficiency of the proposed channel estimation scheme based on LSTM is emphasized by 

inspecting the proposed model in Rayleigh and Rician fading channels. Compared to the 

classical channel estimation schemes, the simulation results based on the proposed LSTM layer 

have recorded performance improvement in terms of different performance metrics such as 

BER, outage probability and sum rate by about 70%, 68%, and 35% respectively when 

Rayleigh fading channel is considered. Furthermore, performance enhancement was also 

achieved in terms of metrics such as BER, outage probability and capacity by about 29%, 77%, 

and 4% respectively when Rician fading channel model is applied. Moreover, the proposed 

DNN based LSTM for channel estimation and the optimized power scheme are both jointly 

utilized to examine how this joint model can be used for multiuser detection in the PD-NOMA 

system. As expected, an enhancement is achieved by about 31%, 65%, and 3% for BER, outage 

probability and sum rate performance metrics respectively compared to the detection scheme 

achieved when fixed power allocation is applied. 

In addition, in this thesis, the impact of implementing a developed model for reinforcement 

learning based Q algorithm to distinctly estimate the channel parameters for user devices in the 

MISO-NOMA system is also investigated. In the developed Q learning algorithm, the Q model 

is created and initialized based on a random channel statistics, then the Q model is updated 

based on the interaction between the Q agent and the environment to maximize the received 

downlink sum rates for all users and at same time minimize the estimation loss. The efficiency 

of the developed Q learning procedure is explored by inspecting the performance of the 

proposed algorithm against different benchmark channel estimation techniques. The first 

considered benchmark scheme is based on the classical MMSE procedure, the second 

benchmark is DNN based LSTM structure, the third adopted scheme is RL based actor-critic 

algorithm, and the fourth applied benchmark technique is based on RL based SARSA 
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algorithm.  

The dependability of the developed Q learning algorithm in estimating the channel parameters 

is validated by analysing the behaviour of the proposed Q algorithm against conventional 

NOMA channel estimation scheme in terms of diverse performance metrics in different fading 

channels. The simulation results for the proposed Q model emphasized a performance 

improvement in terms of several performance metrics such as BER, outage probability and 

sum rate by about 38%, 31%, and 94% respectively when Rayleigh fading channel is 

considered. Furthermore, Q learning performance enhancement against conventional NOMA 

channel estimation scheme was also noticed in terms of BER by about 26%, when Rician 

fading channel is considered. 

In addition, we have also simulated a new scenario that explores how the channel estimation 

process based on the developed Q algorithm and the optimized power scheme can both 

cooperatively exploited for multiuser detection in the MISO-NOMA system. The simulation 

results in terms of BER, Outage probability, and individual capacity have demonstrated that 

the developed Q learning procedure for channel estimation jointly with the optimized power 

scheme can both realize a consistent performance. In the joint scenario, an improvement is 

recorded by about 50%, 38%, and 12% for BER, outage probability and individual capacity 

performance metrics respectively when being compared with the fixed power allocation 

scenario. 

Moreover, in this thesis, the deep reinforcement learning (DRL) approach based deep Q-

network (DQN) is developed and proposed to clearly estimate the downlink channel parameters 

for users in the NOMA cell based on the support given from the network information and the 

pilot symbols. As a benchmark comparison, a distinct channel prediction schemes are also 

implemented such as MMSE procedure, DNN based LSTM structure, and RL based Q 

algorithm. Simulation results have verified that developed DQN algorithm can realize a 

substantial performance improvement compared to the simulated benchmark channel 

prediction schemes. DQN simulation outcomes have clarified a performance enhancement in 

terms of sum rate metric by about 500%, 50%, 36% respectively when compared with MMSE 

procedure, LSTM network, and Q algorithm respectively in Rayleigh fading channel and at 5 

dBm power level. Similarly, when 20 users are considered in NOMA cell, DQN simulation 
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results also have proved a performance improvement in terms of sum rate metric, by about 

30%, 10%, 4% respectively when compared with MMSE procedure, LSTM network, and Q 

algorithm respectively in Rayleigh fading channel. Based on these outcomes, we can claim that 

the reliability can be ensured by our developed DQN algorithm even when the users in the 

NOMA cell is increased.  

Finally, the simulation outcomes have also verified that when both the optimized power scheme 

and the proposed DQN algorithm for channel estimation are both applied in NOMA system, 

an enhancement in the BER is also achieved and a reduction in the power needed can be 

recorded approximately by 10 dBm. 

7.3 Future Work 

In this section we will introduce and outline some future research directions that can clarify 

how ML algorithms can make NOMA system more flexible, and easier to implement. Most of 

the current research in NOMA systems is based on stationary environments. Power allocation 

scheme, user pairing, and SIC technique are mainly discussed based on the static behaviour of 

the user devices. As the user device is moving from one location to another location, then the 

channel gain will vary with respect to the user’s location with respect to the BS. Therefore, 

proposing a dynamic ML algorithms that can globally adapt or react with the continuous 

change of the channel condition for the user devices can be considered as one of the future 

research areas. 

In NOMA cell, the user devices are multiplexed at the transmitter side using SC procedure and 

decoded at the receiver side using the SIC technique. As the number of devices in the NOMA 

cell increases, the allocation of powers to the devices may need additional time and the 

complexity can increase. At receiver side, decoding the high-power user and continue this 

process until reaching the low power user is an exhausting task, and this process can increase 

the latency when the number of multiplexed devices is huge. Therefore, a powerful ML 

algorithm is needed to manage the complexity and latency either at the transmitter side or at 

the receiver side especially for huge NOMA networks, and this can be a one of the challenging 

research areas. 

Deep reinforcement learning (DRL) is an alternative method for solving resource allocation 

issues. For the next generation of wireless communication technologies, there exist a numerous 
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resource allocation tasks to be considered, the resource allocation can vary between power 

allocation, channel assignment, transmission scheduling, user selection, beamforming, and 

joint schemes of these techniques. The current level of deep learning knowledge is still not 

sufficient to handle this large amounts of tasks. Therefore, DRL can be a suggesting candidate 

algorithm that needs to be investigated carefully for future communication networks for the 

purpose of jointly handling more than one resource allocation task.    

Furthermore, there are some major challenges that need to be considered in 6G such as global 

coverage considering both terrestrial and non-terrestrial networks, big data sets generated using 

extremely heterogeneous networks, and security need to be strengthened. Also, the wide range 

of channel encoding techniques, can also be exploited in 6G digital communication systems to 

improve the reliability and efficiency of data transmission over noisy channels. There are 

different types of channel coding schemes such as Low-Density Parity-Check (LDPC) coding 

scheme. LDPC is characterized by their excellent error correction capabilities and low 

encoding and decoding complexity. Hence, as a future research areas, all the above-mentioned 

fields can be investigated and integrated with ML algorithms and then exploited by NOMA 

system to further enhance the system performance.  
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