
Citation: Zhang, M.; Sutcliffe, M.;

Nicholson, P.I.; Yang, Q. Efficient

Autonomous Path Planning for

Ultrasonic Non-Destructive Testing:

A Graph Theory and K-Dimensional

Tree Optimisation Approach.

Machines 2023, 11, 1059. https://

doi.org/10.3390/machines11121059

Academic Editor: Dimitrios

Chronopoulos

Received: 24 October 2023

Revised: 17 November 2023

Accepted: 27 November 2023

Published: 29 November 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

machines

Article

Efficient Autonomous Path Planning for Ultrasonic
Non-Destructive Testing: A Graph Theory and K-Dimensional
Tree Optimisation Approach
Mengyuan Zhang 1,2,*, Mark Sutcliffe 2 , P. Ian Nicholson 2 and Qingping Yang 1

1 Department of Mechanical and Aerospace Engineering, Brunel University London, Kingston Lane,
Uxbridge UB8 3PH, UK; qingping.yang@brunel.ac.uk

2 TWI Technology Centre (Wales), Harbourside Business Park, Harbourside Rd, Port Talbot SA13 1SB, UK;
mark.sutcliffe@twi.co.uk (M.S.); ian.nicholson@twi.co.uk (P.I.N.)

* Correspondence: myra.zhang@brunel.ac.uk

Abstract: Within the domain of robotic non-destructive testing (NDT) of complex structures, the
existing methods typically utilise an offline robot-path-planning strategy. Commonly, for robotic
inspection, this will involve full coverage of the component. An NDT probe oriented normal to the
component surface is deployed in a raster scan pattern. Here, digital models are used, with the user
decomposing complex structures into manageable scan path segments, while carefully avoiding
obstacles and other geometric features. This is a manual process that requires a highly skilled robotic
operator, often taking several hours or days to refine. This introduces several challenges to NDT,
including the need for an accurate model of the component (which, for NDT inspection, is often not
available), the requirement of skilled personnel, and careful consideration of both the NDT inspection
method and the geometric structure of the component. This paper addresses the specific challenge of
scanning complex surfaces by using an automated approach. An algorithm is presented, which is able
to learn an efficient scan path by taking into account the dimensional constraints of the footprint of an
ultrasonic phased-array probe (a common inspection method for NDT) and the surface geometry. The
proposed solution harnesses a digital model of the component, which is decomposed into a series of
connected nodes representing the NDT inspection points within the NDT process—this step utilises
graph theory. The connections to other nodes are determined using nearest neighbour with KD-Tree
optimisation to improve the efficiency of node traversal. This enables a trade-off between simplicity
and efficiency. Next, movement restrictions are introduced to allow the robot to navigate the surface
of a component in a three-dimensional space, defining obstacles as prohibited areas, explicitly. Our
solution entails a two-stage planning process, as follows: a modified three-dimensional flood fill is
combined with Dijkstra’s shortest path algorithm. The process is repeated iteratively until the entire
surface is covered. The efficiency of this proposed approach is evaluated through simulations. The
technique presented in this paper provides an improved and automated method for NDT robotic
inspection, reducing the requirement of skilled robotic path-planning personnel while ensuring full
component coverage.

Keywords: NDT; graph theory; KD-Tree; raster scan

1. Introduction

NDT is a critical technique used to assess the integrity of materials or structures and
is widely employed in aerospace, nuclear energy, construction, and manufacturing indus-
tries [1]. With continuous advancements in society and science, intelligent robotics technol-
ogy (machines with the ability to take actions and make choices) is gaining widespread
application in the field of NDT. Intelligent robots offer the potential to enhance efficiency,
reduce human errors, and mitigate risks through autonomous scanning and testing ca-
pabilities. Such systems are becoming increasingly feasible for NDT application due to

Machines 2023, 11, 1059. https://doi.org/10.3390/machines11121059 https://www.mdpi.com/journal/machines

https://doi.org/10.3390/machines11121059
https://doi.org/10.3390/machines11121059
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/machines
https://www.mdpi.com
https://orcid.org/0000-0002-1546-9691
https://orcid.org/0000-0002-2557-8752
https://doi.org/10.3390/machines11121059
https://www.mdpi.com/journal/machines
https://www.mdpi.com/article/10.3390/machines11121059?type=check_update&version=1

Machines 2023, 11, 1059 2 of 14

recent innovations in collaborative robotics [2]. Katerina recently introduced a robotic
human–machine collaborative system designed to fulfil the automation requirements of
NDT measurement processes within the steel production industry [3]. Canzhi, through
studying dual-robot synchronous motion systems, proposed a trajectory-planning -based
solution to tackle NDT challenges specific to semi-enclosed regions of complex curved
composite material components. This method allows for precise trajectory planning and
the successful detection of all artificial porosity defects with diameters equal to or greater
than 3 mm [4]. The IntACom project, led by the TWI Technology Centre (Wales) and backed
by aviation partners and the Welsh Government, has successfully developed a robotic
NDT system for the rapid inspection of complex geometric composite components [5]. In
addition, reference [6] presents a robot-assisted ultrasonic non-destructive testing system
designed for the automated inspection of aerospace engine blades. The system effectively
detects defects as small as 0.15 mm and offers high precision in thickness measurement.

In the domain of robotic NDT, path planning plays a pivotal role in achieving efficient
autonomous inspection [7]. In the case of complex geometric structures, such as those
found in the aerospace or automotive sector, it is usual for a highly skilled robotic and NDT
operator to decompose the problem into a series of manageable inspection regions (typically
a small raster region), taking care to avoid any obstacles during the planning phase, as
evident from the current research methods [8]. Some efforts have been made to automate
this process, utilising live feedback from vision or other sensors. For example, reference [9]
proposed an innovative approach that combines force sensors, laser sensors, and RGB
cameras to achieve multi-scale, collision-free robotic path planning and execution for
NDT. This novel method allows for efficient path planning on noisy and incomplete point
clouds generated by low-cost sensors, without relying on surface primitives. However,
these approaches have some limitations with respect to the NDT probe footprint and/or
geometric structure, while still requiring some level of manual optimisation. Similarly,
the study in reference [10], focusing on path planning within substation environments,
underscores the importance of optimising algorithms for specific contexts, particularly
where the frequency and angle of turns are key evaluative metrics.

To address these challenges, a novel method is proposed for an autonomous path-
planning solution based on graph-theory techniques. This approach is inspired by the
algorithm introduced in reference [11], which effectively implements path planning by
incorporating specific constraints in a weighted directed graph. This has provided a signif-
icant theoretical basis for our study in navigating complex environments. This solution
leverages the digital model of the component and NDT probe footprint to generate paths
autonomously with a greater degree of coverage, without the need for user interventions.
Additionally, it addresses the need for the avoidance of obstacles and explores optimisation
algorithms to improve the connectivity and traversal of nodes. In sum, this innovative au-
tonomous path-planning solution offers a significant advancement in NDT within complex
environments, setting a new benchmark for efficiency and precision.

Furthermore, the path-planning process incorporates movement restrictions, whereby
the robot is limited to moving towards the nearest connected node with a preferred direction
(the one with the least cost) and defines prohibited areas as obstacles. The proposed
solution adopts a two-stage planning approach, initially utilising graph-based techniques
and relevant concepts to determine the preferred travel directions (those that limit a sudden
change in robotic movement) and subsequently employing Dijkstra’s algorithm [12] to find
paths to the next enclosed node, as needed.

2. Background Theory
2.1. Ultrasonic Inspection and Robotics for NDT

NDT plays a critical role in various industrial sectors, from aerospace to nuclear en-
ergy, and from healthcare to power generation. Among these, ultrasonic testing serves as
an essential NDT method, employing high-frequency sound waves to detect defects in
components or structures. However, manual ultrasonic inspection methods pose challenges

Machines 2023, 11, 1059 3 of 14

when applied to large components with high curvature or complex geometries. Refer-
ence [13] utilises the offline-generated scanning path technique to achieve automated eddy
current non-destructive testing, specially designed for complex geometric test specimens.
Furthermore, this study substantiates the exceptional performance of employing a robotic
system for PAUT TWI [14], which has developed an automated ultrasonic NDT solution
aimed primarily at optimising the inspection process of complex geometric components in
aerospace and maritime industries by utilising robotic systems. This solution provides a
platform that allows for the use of phased-array ultrasonic testing (PAUT) probes, which
can be mounted to the robotic system. This offers several benefits, as PAUT allows for
the electronic excitation and control of the ultrasonic signal. PAUT can swiftly sweep
the ultrasonic array, meaning that robots can cover larger areas more quickly during the
raster scanning process. In the context of automated robotic path planning, the important
factor is the footprint of the end-effector—in this instance, the PAUT probe. These are
typically larger and of different dimensions to the conventional ultrasonic probes in order
to accommodate the additional elements of the array. The use of such probes allows the
robot to more quickly cover the surface; however, the asymmetric footprint introduces
some path-planning challenges.

Therefore, the goal of this research is to ensure that the proposed solution allows for the
accuracy of ultrasonic inspection of the test components while optimising scan path planning
to cover all specified areas (i.e., ensuring the probe is oriented optimally for PAUT).

2.2. Decomposition of CAD Model

A 3D CAD model typically provides a vector-based representation of a real-world
object. These models are commonly reconstructed through a series of triangular meshes
and are an important component in the use of robotic path planning. However, in the case
of NDT inspection, a primary consideration is to ensure that the surface of a component
is sufficiently scanned. This is achieved by defining NDT inspection positions along the
surface of the CAD model [15]. These positions may be evenly spaced (e.g., every 5 mm
based on the defect size) or more sparsely distributed for complex geometric shapes. It is
also important to ensure that areas can be marked as non-inspectable, as the NDT technique
may cause damage to the surface of the component or the component may cause damage
to the probe. As discussed, the inspection footprint of the PAUT probe may cover a wider
inspection area, thus ensuring quicker robotic scanning than would otherwise be the case.

The first challenge is to decompose the triangles that make up the CAD mesh into
discrete points in the 3D space representative of the inspection points to be visited and the
non-inspection points or prohibited areas. These points, being of a higher resolution than
the triangles defining the surface, will ultimately form the nodes of the graph in the solution
outlined within this paper. This decomposition process is well documented within the
literature [16], with several approaches available. For the purpose of this work, and to avoid
confusion on the specific implementations, the decomposition was performed using third
party software. The CAD model was imported into MeshLab (version 2022.02), and the
Poisson disk sampling algorithm was employed for random point sampling. This algorithm
ensures a minimum distance between points, resulting in a more uniform distribution of
the point cloud sample. This provided the set of approximately evenly distributed points
along the surface of the component that were used as the input to the graph structure.

2.3. Graph Theory, KD-Tree Optimisation, and Dijkstra Algorithm

Graph theory, a pivotal discipline within mathematics and computer science, explores
the intricacies of graphs [17]. These graphs are defined by vertices (or nodes) connected by
edges, capturing distinct relationships between entities. Such relationships can be either
directed or undirected. Graph theory is evident in various domains, including operational
research, network theory, and control theory [18]. The study of the shortest path problem, a
cornerstone within graph theory, has garnered extensive attention due to its relevance in
practical scenarios like engineering [19].

Machines 2023, 11, 1059 4 of 14

Recognising the intrinsic benefits of graph theory for path optimisation and planning
within intricate environments, we have adopted it as the foundational approach for NDT
robotic path planning.

Dijkstra’s algorithm stands as a seminal technique within graph theory for addressing
the shortest path. It operates upon an abstract network model, where paths are conceptu-
alised as edges and their associated weights depict parameters like distance [20]. When
applied, Dijkstra’s algorithm pinpoints the shortest path from a designated starting node
to all of the other nodes within a weighted graph. This algorithm is particularly suitable
for graphs with non-negative weights and is widely used in fields such as networks and
transportation. Given these attributes, Dijkstra’s algorithm provides an initial starting
method for NDT robotic path planning. However, Dijkstra is primarily concerned with
finding the shortest path between two or more nodes, and not an optimal strategy for
NDT path planning with the number of nodes (inspection points) potentially becoming
computationally prohibitive.

One method of graph theory optimisation is the use of a K-dimensional-Tree (KD-Tree)
supporting structure. Here, a specialised tree data structure facilitates efficient key data
searches within multi-dimensional spaces [21] (making it suitable for 3D path-planning en-
vironments). Rooted in space partitioning, a KD-Tree is similar to other spatial partitioning
methodologies like Octree, Ball Tree, and Uniform Grid [22]. The KD-Tree’s adaptability is
its standout feature, enabling space division based on optimal search trajectories, effectively
pinpointing the ideal candidate regions for complex search tasks. Its ability to accelerate
searches in k-dimensional spaces has earned the KD-Tree a significant footprint in areas
like cluster analysis, image matching, and information retrieval, primarily by streamlining
searches and mitigating computational demands. Given its distinct advantages, our work
leverages the KD-Tree as a mechanism for data structure optimisation, with the overarching
goal of enhancing algorithmic efficiency.

In its implementation, the KD-Tree utilises a depth-first search (DFS) strategy, initiating
binary searches from the root node and implementing backtracking when necessary [23].
This structure is not only applicable for range-based searches, but also for K- nearest-
neighbour searches, swiftly identifying all of the data points within a preset distance
threshold of a specific query point or locating the closest K neighbours to the query point,
as shown in Figure 1. In summary, by adopting a KD-Tree for spatial partitioning and
data structure optimisation, our algorithm achieves significant computational efficiency
improvements in high-dimensional-path-planning tasks.

Machines 2023, 11, x FOR PEER REVIEW 5 of 15

Figure 1. KD-Tree flowchart.

3. Method
While the use of graph theory provides a mechanism to represent the NDT robotic

path-planning problem in 3D space, it does not in itself provide a mechanism for robotic
path planning and traversal. For this, several challenges need to be overcome. Firstly, hav-
ing represented the surface of a component to be inspected as a series of 3D points in
space, a method is needed to optimally connect the relevant nodes (those most favourable
to the robotic movement). Secondly, weights need to be computed for node connections
to establish the best next movement. Thirdly, obstacles need to be accounted for (those
areas prohibited for robotic movement), as does keeping track of the visited nodes. Fi-
nally, there may be scenarios where the graph traversal will become trapped (traversed
into a corner). For this, a solution is needed to ensure that full surface coverage is achieved.

Our solution is to leverage graph theory, KD-Tree data structure optimisation, a
novel algorithm for computing node weights, and Dijkstra’s algorithm to provide an effi-
cient NDT robotic path-planning solution in both two-dimensional and three-dimensional
spaces. The following outlines our novel solution:

Initially, continuous surface data extracted from the CAD models are represented as
a discrete triangular mesh. This is usually the starting point in any NDT path-planning
step, with a CAD model being a digital twin of the component and environment. Using
the Poisson disk sampling algorithm, these triangular meshes are converted into finer
NDT inspection points. The output is a list of randomly ordered points in a 3D space, each
representing an NDT inspection point. For example, the surface of a component may be
several meters in size (represented as a triangular mesh within the CAD model). The NDT
process (depending on the inspection requirements) may require that data are captured
every 5 mm or so. The Poisson disk sampling algorithm provides a mechanism to generate
these points, which will form the nodes of the graph (in this example, approximately 5
mm separation between points). An example is given in Figure 2.

Figure 1. KD-Tree flowchart.

Machines 2023, 11, 1059 5 of 14

3. Method

While the use of graph theory provides a mechanism to represent the NDT robotic
path-planning problem in 3D space, it does not in itself provide a mechanism for robotic
path planning and traversal. For this, several challenges need to be overcome. Firstly,
having represented the surface of a component to be inspected as a series of 3D points in
space, a method is needed to optimally connect the relevant nodes (those most favourable
to the robotic movement). Secondly, weights need to be computed for node connections to
establish the best next movement. Thirdly, obstacles need to be accounted for (those areas
prohibited for robotic movement), as does keeping track of the visited nodes. Finally, there
may be scenarios where the graph traversal will become trapped (traversed into a corner).
For this, a solution is needed to ensure that full surface coverage is achieved.

Our solution is to leverage graph theory, KD-Tree data structure optimisation, a novel
algorithm for computing node weights, and Dijkstra’s algorithm to provide an efficient
NDT robotic path-planning solution in both two-dimensional and three-dimensional spaces.
The following outlines our novel solution:

Initially, continuous surface data extracted from the CAD models are represented as
a discrete triangular mesh. This is usually the starting point in any NDT path-planning
step, with a CAD model being a digital twin of the component and environment. Using the
Poisson disk sampling algorithm, these triangular meshes are converted into finer NDT
inspection points. The output is a list of randomly ordered points in a 3D space, each
representing an NDT inspection point. For example, the surface of a component may be
several meters in size (represented as a triangular mesh within the CAD model). The NDT
process (depending on the inspection requirements) may require that data are captured
every 5 mm or so. The Poisson disk sampling algorithm provides a mechanism to generate
these points, which will form the nodes of the graph (in this example, approximately 5 mm
separation between points). An example is given in Figure 2.

Machines 2023, 11, x FOR PEER REVIEW 6 of 15

Figure 2. Visual representation of CAD triangle mesh.

Represented as vertices in the graph, G = (V, E, W). Here, 푉 is the vertex set, E is the
edge set, and 푊 is the set of weights. The vertices 푉 denote the inspection points ex-
tracted from the CAD model, the edges 퐸 indicate the potential paths between these
points, and the weights 푊 are determined based on the actual inspection cost or time
complexity based on robotic movement. In the specific implementation of this paper, the
weights 푊 represent the robotic movement priority in the following four directions: for-
ward, backward, left, and right. Considering the presence of restricted areas within the
path-planning environment, we have designed a hybrid path-planning strategy. This is
illustrated in Figure 3.

Figure 3. Hybrid path-planning strategy with directional priority weights (circle denotes graph
nodes).

Represented here in a two-dimensional space for simplicity, each inspection point is
an un-ordered list. Based on an initial robotic start position (the start node of the graph),
KD-Tree optimisation is used to find the inspection point to the current node. This search
is limited to a narrow field of view and repeated for four quadrants, such that the nearest
points forward, back, left, and right are computed. These points are added to the graph as

Figure 2. Visual representation of CAD triangle mesh.

Represented as vertices in the graph, G = (V, E, W). Here, V is the vertex set, E is the
edge set, and W is the set of weights. The vertices V denote the inspection points extracted
from the CAD model, the edges E indicate the potential paths between these points, and
the weights W are determined based on the actual inspection cost or time complexity based
on robotic movement. In the specific implementation of this paper, the weights W represent
the robotic movement priority in the following four directions: forward, backward, left, and

Machines 2023, 11, 1059 6 of 14

right. Considering the presence of restricted areas within the path-planning environment,
we have designed a hybrid path-planning strategy. This is illustrated in Figure 3.

Machines 2023, 11, x FOR PEER REVIEW 6 of 15

Figure 2. Visual representation of CAD triangle mesh.

Represented as vertices in the graph, G = (V, E, W). Here, 푉 is the vertex set, E is the
edge set, and 푊 is the set of weights. The vertices 푉 denote the inspection points ex-
tracted from the CAD model, the edges 퐸 indicate the potential paths between these
points, and the weights 푊 are determined based on the actual inspection cost or time
complexity based on robotic movement. In the specific implementation of this paper, the
weights 푊 represent the robotic movement priority in the following four directions: for-
ward, backward, left, and right. Considering the presence of restricted areas within the
path-planning environment, we have designed a hybrid path-planning strategy. This is
illustrated in Figure 3.

Figure 3. Hybrid path-planning strategy with directional priority weights (circle denotes graph
nodes).

Represented here in a two-dimensional space for simplicity, each inspection point is
an un-ordered list. Based on an initial robotic start position (the start node of the graph),
KD-Tree optimisation is used to find the inspection point to the current node. This search
is limited to a narrow field of view and repeated for four quadrants, such that the nearest
points forward, back, left, and right are computed. These points are added to the graph as

Figure 3. Hybrid path-planning strategy with directional priority weights (circle denotes graph nodes).

Represented here in a two-dimensional space for simplicity, each inspection point is
an un-ordered list. Based on an initial robotic start position (the start node of the graph),
KD-Tree optimisation is used to find the inspection point to the current node. This search
is limited to a narrow field of view and repeated for four quadrants, such that the nearest
points forward, back, left, and right are computed. These points are added to the graph
as new nodes and connected directly to the current node. A weight is then computed for
each node edge based on the following preferred order of movement: forward, back, left,
and right.

This ensures that robotic movement has a preferred direction of forward (least travel
time to next node), with back, left, and right being optional choices when no forward
node is present. This results in a natural raster path as the preferred robotic movement.
This concept has previously been explored by the authors through the complete-surface-
finding algorithm (CSFA) [24], which incorporates flood-fill algorithms (FFAs) as a heuristic
process to propagate through maps or networks, thereby discovering all positions within a
connected surface or graph. Building upon this foundation, our current work introduces
a modified flood-fill algorithm that enhances the process by incorporating graph theory,
where localised knowledge and movement are used instead of this new approach based on
graph theory. This new approach is particularly suited for un-ordered points, as it does not
enforce a raster path. Instead, the algorithm computes node–node connections based on
the least costly movement.

Extending Figure 3, in this example, the final graph after computation of weights
is given in Figure 4. In this illustration, the green point denotes the starting point, the
arrows indicate the direction of path traversal, and the grey points represent the restricted
areas. As shown in Figure 4, there are some use cases where the path planning will
reach a “dead-end”—meaning that all surrounding nodes are either already visited or are
within restricted areas with no other eligible nodes available—whereafter the algorithm
automatically switches to Dijkstra’s algorithm for localised path planning. This is illustrated
in Figure 4, where the red point indicates the switch. The final escape path is depicted in
Figure 5. This mechanism allows the algorithm to effectively escape the “dead-end” while
avoiding the restricted areas, thereby identifying the next unvisited compliant node. This
is repeated recursively until all nodes have been visited.

Machines 2023, 11, 1059 7 of 14

Machines 2023, 11, x FOR PEER REVIEW 7 of 15

new nodes and connected directly to the current node. A weight is then computed for each
node edge based on the following preferred order of movement: forward, back, left, and
right.

This ensures that robotic movement has a preferred direction of forward (least travel
time to next node), with back, left, and right being optional choices when no forward node
is present. This results in a natural raster path as the preferred robotic movement. This
concept has previously been explored by the authors through the complete-surface-find-
ing algorithm (CSFA) [24], which incorporates flood-fill algorithms (FFAs) as a heuristic
process to propagate through maps or networks, thereby discovering all positions within
a connected surface or graph. Building upon this foundation, our current work introduces
a modified flood-fill algorithm that enhances the process by incorporating graph theory,
where localised knowledge and movement are used instead of this new approach based
on graph theory. This new approach is particularly suited for un-ordered points, as it does
not enforce a raster path. Instead, the algorithm computes node–node connections based
on the least costly movement.

Extending Figure 3, in this example, the final graph after computation of weights is
given in Figure 4. In this illustration, the green point denotes the starting point, the arrows
indicate the direction of path traversal, and the grey points represent the restricted areas.
As shown in Figure 4, there are some use cases where the path planning will reach a
“dead-end”—meaning that all surrounding nodes are either already visited or are within
restricted areas with no other eligible nodes available—whereafter the algorithm automat-
ically switches to Dijkstra’s algorithm for localised path planning. This is illustrated in
Figure 4, where the red point indicates the switch. The final escape path is depicted in
Figure 5. This mechanism allows the algorithm to effectively escape the “dead-end” while
avoiding the restricted areas, thereby identifying the next unvisited compliant node. This
is repeated recursively until all nodes have been visited.

Figure 4. Resultant path planning after application of new algorithm (green denotes start and red
end nodes).

Figure 5. Escape route from “dead-end” using Dijkstra algorithm.

Figure 4. Resultant path planning after application of new algorithm (green denotes start and red
end nodes).

Machines 2023, 11, x FOR PEER REVIEW 7 of 15

new nodes and connected directly to the current node. A weight is then computed for each
node edge based on the following preferred order of movement: forward, back, left, and
right.

This ensures that robotic movement has a preferred direction of forward (least travel
time to next node), with back, left, and right being optional choices when no forward node
is present. This results in a natural raster path as the preferred robotic movement. This
concept has previously been explored by the authors through the complete-surface-find-
ing algorithm (CSFA) [24], which incorporates flood-fill algorithms (FFAs) as a heuristic
process to propagate through maps or networks, thereby discovering all positions within
a connected surface or graph. Building upon this foundation, our current work introduces
a modified flood-fill algorithm that enhances the process by incorporating graph theory,
where localised knowledge and movement are used instead of this new approach based
on graph theory. This new approach is particularly suited for un-ordered points, as it does
not enforce a raster path. Instead, the algorithm computes node–node connections based
on the least costly movement.

Extending Figure 3, in this example, the final graph after computation of weights is
given in Figure 4. In this illustration, the green point denotes the starting point, the arrows
indicate the direction of path traversal, and the grey points represent the restricted areas.
As shown in Figure 4, there are some use cases where the path planning will reach a
“dead-end”—meaning that all surrounding nodes are either already visited or are within
restricted areas with no other eligible nodes available—whereafter the algorithm automat-
ically switches to Dijkstra’s algorithm for localised path planning. This is illustrated in
Figure 4, where the red point indicates the switch. The final escape path is depicted in
Figure 5. This mechanism allows the algorithm to effectively escape the “dead-end” while
avoiding the restricted areas, thereby identifying the next unvisited compliant node. This
is repeated recursively until all nodes have been visited.

Figure 4. Resultant path planning after application of new algorithm (green denotes start and red
end nodes).

Figure 5. Escape route from “dead-end” using Dijkstra algorithm. Figure 5. Escape route from “dead-end” using Dijkstra algorithm.

In this context, Dijkstra’s algorithm solves for the shortest path from a source vertex
v0 to all other vertices in a weighted directed graph G = (V, E, W). Initially, a vertex
set S is established, containing vertices for which the shortest path has already been
determined—initially including only v0. Concurrently, we maintain a distance vector dist,
where dist(w) signifies the current shortest path length from v0 to w.

The complete algorithm can be summarised as follows:

1. Initialisation

Within the directed graph framework, each vertex vi is assigned a state value, denoted
as S(vi). Initially, this state value is set to positive infinity, represented by ∞, indicating
that the shortest path length from the starting vertex to vi remains undetermined. The
only exception is the source vertex, which has its state value set to 0, representing a 0
distance from itself. The current node is assigned as the initial starting node—vertex v0.
This can be any node within the graph, but preferably user-selected based on the optimal
starting position.

2. State Propagation

Upon evaluating a vertex vi, it acts as a vertex of a triangle, extending towards the
following four primary directions: front, back, left, and right. Consequently, four triangular
regions are associated with it, each containing a set of points, as shown in Figure 2. Within
each triangular extension, the algorithm sifts through the enclosed points, and, based on
the Euclidean distance coupled with directional priority, it selects an optimal adjacent point.
This strategy ensures that the adjacent points are chosen not only based on distance, but
also on directional preference, ensuring path continuity and maximising spatial utilisation.

3. Data Structure Optimisation

Machines 2023, 11, 1059 8 of 14

Considering the complexity of navigation in a three-dimensional space and potential
data scalability challenges, the adoption of the KD-Tree data structure becomes imperative.
Storing vertices from the graph within a KD-Tree ensures an efficient nearest-neighbour
query within a time complexity of O(logn), thereby significantly improving the algorithm’s
performance efficiency.

4. State Update

Once the least costly path from the current node to the connected nodes is deter-
mined, the current node is updated to this new position and the previous node marked
as visited—vi is marked as processed. Furthermore, vi is incorporated into the set S,
which contains all vertices for which the least costly path has been determined. This is
repeated until the current node has no available unvisited connections (i.e., a dead-end
state encountered).

5. Dead-end Escape

A “dead-end” is met when all proximal points in the four primary directions from a
vertex have either been traversed, fallen within an obstacle, or aligned with the model’s
edge. Dijkstra’s algorithm is used to allow the probe to escape based on the principle of the
shortest path to the nearest unvisited nodes traversing through the graph. Then, we return
to Step 4 and repeat until all nodes are visited.

The pseudocode of the hybrid algorithm used in this study is presented in Algorithm 1.

Algorithm 1: The pseudocode of the hybrid algorithm

Function calculate_distance(nodeA, nodeB):
return sqrt((x_b − x_a)2 + (y_b − y_a)2) // Euclidean distance

Function find_nearest_unvisited_node(n_current):
n_unvisited = {n_i ∈ Node s | n_i.visited = false} // Set of unvisited nodes
return argmin_{n ∈ n_unvisited} calculate_distance(n_current, n)

Function update_robot_footprint(n_current):
Nodes within the range of robot width from n_current -> visited = true

Function move_robot(n_current, direction):
n_current = n_current.direction if n_current.direction != null and

n_current.direction.visited = false

Function find_path(n_start, n_target):
for each n ∈ Nodes:

n.tested = false
n.w = infinity

n_start.w = 0
Queue = {n_start}
while Queue != empty:

n_current = dequeue(Queue)
n_current.tested = true
for each n_adjacent ∈ {n_current.forward, n_current.backward, n_current.left,

n_current.right}:
dist = n_current.w + calculate_distance(n_current, n_adjacent)
if dist < n_adjacent.w:

n_adjacent.w = dist
if n_adjacent.tested = false:

enqueue(Queue, n_adjacent)

Path = empty stack
n_current = n_target
push(Path, n_current)

Machines 2023, 11, 1059 9 of 14

Algorithm 1: Cont.

while n_current ! = n_start:
n_min = argmin_{n ∈ {n_current.forward, n_current.backward, n_current.left,

n_current.right}} n.w
n_current = n_min
push(Path, n_current)

return Path
Main program:

while there exist n ∈ Nodes such that n.visited = false:
n_current = find_nearest_unvisited_node(n_current)
if n_current exists:

update_robot_footprint(n_current)
move_robot(n_current, direction) // direction ∈ {forward, backward, left, right}
find_path(n_current, n_target)

At initialisation, if there is an edge from v0 to w, then dist(w) is the weight of the edge.
If there is no path from v0 to w, then dist(w) is set to infinity.

During the iterative process of the algorithm, a vertex u is chosen where dist(u) is the
minimum among all vertices not in set S, as follows:

dist(u) = min{dist(w)|w /∈ S, w ∈ V(G)} (1)

This vertex u is then added to S. At this time, dist(u) is the shortest path length from
v0 to u. Moreover, for all vertices w not in S, if a shorter path can be obtained through the
newly added vertex u to S, we carry out the following:

dist(u) + cost(u, w) < dist(w) (2)

then update as follows:
dist(w) = cost(u, w) + dist(u) (3)

Once all vertices are added to S, the algorithm ends, and the dist value of each vertex
v is the shortest path length from v0 to v. For completeness, the full Dijkstra algorithm
applied in this paper is shown in Algorithm 2.

Algorithm 2: Application of Dijkstra’s Algorithm for Determining Shortest Path Lengths in
a Graph

function Dijkstra(G, v0):
// Initialize distance array and set of vertices S
dist[] = {infinity} // An array to store the shortest distance from v0 to each vertex
dist[v0] = 0
S = empty set while S does not contain all vertices in G:

// Find the vertex u with minimum dist value and add it to S
minDist = infinity
u = None
for each vertex v in G:

if v not in S and dist[v] < minDist:
minDist = dist[v]
u = v

add u to S
// Update the shortest distance to other vertices through u
for each neighbor w of u:

if w not in S:
newDist = dist[u] + cost(u, w)
dist[w] = min(dist[w], newDist)

return dist

Machines 2023, 11, 1059 10 of 14

4. Simulation and Results

In the simulation configuration, a two-dimensional sample space was computationally
generated, structured as a grid with discrete vertices, denoted as vi, at intervals of six units.
Each vi encapsulates explicit x and y coordinate values, representing its spatial position
within the bi-dimensional domain. Additionally, within this sample space, a specified
area with x and y coordinates ranging between 15 and 50 is explicitly demarcated as a
prohibited area. This area serves as a simulation mechanism to represent physical obstacles
or impassable regions within the sample space. In Figure 6, the red region denotes the
coverage area of the probe, with a width of three units. The blue dots signify the discrete
vertices vi within the sample space grid.

Machines 2023, 11, x FOR PEER REVIEW 11 of 15

Figure 6. Two-dimensional sample space visualisation with prohibited zones.

Se ing off from the coordinate (0, 0), the algorithm operates according to its pre-de-
termined logic to identify the next feasible node, whilst steering clear of the prohibited
zones. It proceeds in this fashion until it has traversed all of the nodes within the sample,
thereby formulating an optimal path for probe inspection. The global path is indicated by
the red line with an arrow in Figure 7. The resultant route embodies the algorithm’s effi-
cacy in manoeuvring through a constrained environment, and it is potentially the most
efficient trajectory under the given parameters.

Figure 7. Results of the 2D sample pathfinding.

In order to assess the reliability and generalisation capability of the hybrid algorithm,
we devised a series of diverse sample scenarios for validation. Figure 8 shows a distinct
L-shaped domain. This configuration is bifurcated into the following two segments: the
first is a vertically oriented rectangle with dimensions of 60 units in width and 240 units
in height, originating at the coordinates (40, 40); the second is a horizontally oriented rec-
tangle measuring 200 units in width and 60 units in height, spanning from (40, 40) to (240,
100). Within this L-shape, an obstacle of 30 units in width and 40 units in height is posi-
tioned, ranging from (50, 80) to (80, 120). Figure 9 presents an inverted “T” configuration.
The main body is a vertically aligned rectangle of 80 units in width and 240 units in height,
with starting coordinates of (100, 40). Atop this, a horizontal rectangle extends, sized at
200 units in width and 60 units in height, ranging from (40, 40) to (240, 100). An internal
obstacle, measuring 40 units in width and 70 units in height, is located between coordi-
nates (120, 80) and (160, 150). Figure 10 shows a specimen reminiscent of a “rectangular

Figure 6. Two -dimensional sample space visualisation with prohibited zones.

Setting off from the coordinate (0, 0), the algorithm operates according to its pre-
determined logic to identify the next feasible node, whilst steering clear of the prohibited
zones. It proceeds in this fashion until it has traversed all of the nodes within the sample,
thereby formulating an optimal path for probe inspection. The global path is indicated
by the red line with an arrow in Figure 7. The resultant route embodies the algorithm’s
efficacy in manoeuvring through a constrained environment, and it is potentially the most
efficient trajectory under the given parameters.

Machines 2023, 11, x FOR PEER REVIEW 11 of 15

Figure 6. Two-dimensional sample space visualisation with prohibited zones.

Se ing off from the coordinate (0, 0), the algorithm operates according to its pre-de-
termined logic to identify the next feasible node, whilst steering clear of the prohibited
zones. It proceeds in this fashion until it has traversed all of the nodes within the sample,
thereby formulating an optimal path for probe inspection. The global path is indicated by
the red line with an arrow in Figure 7. The resultant route embodies the algorithm’s effi-
cacy in manoeuvring through a constrained environment, and it is potentially the most
efficient trajectory under the given parameters.

Figure 7. Results of the 2D sample pathfinding.

In order to assess the reliability and generalisation capability of the hybrid algorithm,
we devised a series of diverse sample scenarios for validation. Figure 8 shows a distinct
L-shaped domain. This configuration is bifurcated into the following two segments: the
first is a vertically oriented rectangle with dimensions of 60 units in width and 240 units
in height, originating at the coordinates (40, 40); the second is a horizontally oriented rec-
tangle measuring 200 units in width and 60 units in height, spanning from (40, 40) to (240,
100). Within this L-shape, an obstacle of 30 units in width and 40 units in height is posi-
tioned, ranging from (50, 80) to (80, 120). Figure 9 presents an inverted “T” configuration.
The main body is a vertically aligned rectangle of 80 units in width and 240 units in height,
with starting coordinates of (100, 40). Atop this, a horizontal rectangle extends, sized at
200 units in width and 60 units in height, ranging from (40, 40) to (240, 100). An internal
obstacle, measuring 40 units in width and 70 units in height, is located between coordi-
nates (120, 80) and (160, 150). Figure 10 shows a specimen reminiscent of a “rectangular

Figure 7. Results of the 2D sample pathfinding.

In order to assess the reliability and generalisation capability of the hybrid algorithm,
we devised a series of diverse sample scenarios for validation. Figure 8 shows a distinct
L-shaped domain. This configuration is bifurcated into the following two segments: the

Machines 2023, 11, 1059 11 of 14

first is a vertically oriented rectangle with dimensions of 60 units in width and 240 units in
height, originating at the coordinates (40, 40); the second is a horizontally oriented rectangle
measuring 200 units in width and 60 units in height, spanning from (40, 40) to (240, 100).
Within this L-shape, an obstacle of 30 units in width and 40 units in height is positioned,
ranging from (50, 80) to (80, 120). Figure 9 presents an inverted “T” configuration. The
main body is a vertically aligned rectangle of 80 units in width and 240 units in height, with
starting coordinates of (100, 40). Atop this, a horizontal rectangle extends, sized at 200 units
in width and 60 units in height, ranging from (40, 40) to (240, 100). An internal obstacle,
measuring 40 units in width and 70 units in height, is located between coordinates (120,
80) and (160, 150). Figure 10 shows a specimen reminiscent of a “rectangular ring”. This
construct predominantly comprises the following two elements: the external perimeter is a
rectangle of 200 units in width and 240 units in height, with its origin at (40, 40), while the
internal component is a rectangle of 80 units in width and 160 units in height, commencing
at (100, 70). Within this “rectangular ring,” another obstacle, spanning 40 units in width
and 70 units in height, occupies the region from (100, 10) to (150, 50). Through validation
across various two-dimensional geometric samples, the hybrid algorithm demonstrates
pronounced reliability in the bi-dimensional space. The algorithm not only adapts efficiently
to a myriad of geometric scenarios, but also adeptly avoids obstacles, ensuring pathway
integrity and superior optimisation, whilst navigating clear of a dead-end.

In order to more profoundly and intuitively elucidate the advantages of the appli-
cation of the KD-Tree in data processing, this study tabulates the data processing speeds
when employing the KD-Tree data structure versus those without it, as shown in Table 1.
Furthermore, to quantify the performance discrepancy between the two, we have also
calculated the performance enhancement rate.

Machines 2023, 11, x FOR PEER REVIEW 12 of 15

ring”. This construct predominantly comprises the following two elements: the external
perimeter is a rectangle of 200 units in width and 240 units in height, with its origin at (40,
40), while the internal component is a rectangle of 80 units in width and 160 units in
height, commencing at (100, 70). Within this “rectangular ring,” another obstacle, span-
ning 40 units in width and 70 units in height, occupies the region from (100, 10) to (150,
50). Through validation across various two-dimensional geometric samples, the hybrid
algorithm demonstrates pronounced reliability in the bi-dimensional space. The algo-
rithm not only adapts efficiently to a myriad of geometric scenarios, but also adeptly
avoids obstacles, ensuring pathway integrity and superior optimisation, whilst navigating
clear of a dead-end.

Figure 8. Path planning result of L-shaped sample.

Figure 9. Path planning result of inverted “T” sample.

Figure 10. Path planning result of “rectangular ring” sample.

Figure 8. Path planning result of L-shaped sample.

Machines 2023, 11, x FOR PEER REVIEW 12 of 15

ring”. This construct predominantly comprises the following two elements: the external
perimeter is a rectangle of 200 units in width and 240 units in height, with its origin at (40,
40), while the internal component is a rectangle of 80 units in width and 160 units in
height, commencing at (100, 70). Within this “rectangular ring,” another obstacle, span-
ning 40 units in width and 70 units in height, occupies the region from (100, 10) to (150,
50). Through validation across various two-dimensional geometric samples, the hybrid
algorithm demonstrates pronounced reliability in the bi-dimensional space. The algo-
rithm not only adapts efficiently to a myriad of geometric scenarios, but also adeptly
avoids obstacles, ensuring pathway integrity and superior optimisation, whilst navigating
clear of a dead-end.

Figure 8. Path planning result of L-shaped sample.

Figure 9. Path planning result of inverted “T” sample.

Figure 10. Path planning result of “rectangular ring” sample.

Figure 9. Path planning result of inverted “T” sample.

Machines 2023, 11, 1059 12 of 14

Machines 2023, 11, x FOR PEER REVIEW 12 of 15

ring”. This construct predominantly comprises the following two elements: the external
perimeter is a rectangle of 200 units in width and 240 units in height, with its origin at (40,
40), while the internal component is a rectangle of 80 units in width and 160 units in
height, commencing at (100, 70). Within this “rectangular ring,” another obstacle, span-
ning 40 units in width and 70 units in height, occupies the region from (100, 10) to (150,
50). Through validation across various two-dimensional geometric samples, the hybrid
algorithm demonstrates pronounced reliability in the bi-dimensional space. The algo-
rithm not only adapts efficiently to a myriad of geometric scenarios, but also adeptly
avoids obstacles, ensuring pathway integrity and superior optimisation, whilst navigating
clear of a dead-end.

Figure 8. Path planning result of L-shaped sample.

Figure 9. Path planning result of inverted “T” sample.

Figure 10. Path planning result of “rectangular ring” sample. Figure 10. Path planning result of “rectangular ring” sample.

In order to further assess the performance of the algorithm, this study tested it on a
3D point cloud data model of a car door. This model was processed using the open-source
software MeshLab and transformed into a point cloud representation, as shown in Figure 11,
consisting of 9709 sampled points. The path result of the 3D data processed through a
hybrid algorithm is shown in Figure 12, where the coordinate system is represented red,
green, and blue arrows corresponding to the X, Y, and Z axes, respectively.

Machines 2023, 11, x FOR PEER REVIEW 13 of 15

In order to more profoundly and intuitively elucidate the advantages of the applica-
tion of the KD-Tree in data processing, this study tabulates the data processing speeds
when employing the KD-Tree data structure versus those without it, as shown in Table 1.
Furthermore, to quantify the performance discrepancy between the two, we have also cal-
culated the performance enhancement rate.

Table 1. Performance comparison between KD-Tree and Non-KD-Tree.

X Y
KD-Tree

Time (ms)
Non-KD-Tree

Time (ms)
Performance
Improvement

500 800 336 3376 90.04%
800 1000 1380 10,907 87.34%

1200 1400 3000 45,251 93.37%
1600 1800 5857 134,769 95.64%
2400 2600 19,002 790,297 97.60%
3200 3400 50,162 980,996 94.89%
4000 4200 95,388 2,570,809 96.29%

In order to further assess the performance of the algorithm, this study tested it on a
3D point cloud data model of a car door. This model was processed using the open-source
software MeshLab and transformed into a point cloud representation, as shown in Figure
11, consisting of 9709 sampled points. The path result of the 3D data processed through a
hybrid algorithm is shown in Figure 12, where the coordinate system is represented red,
green, and blue arrows corresponding to the X, Y, and Z axes, respectively.

Figure 11. Three-dimensional point cloud model of the car door.

Figure 12. The scan path result processed from the 3D data.

Figure 11. Three-dimensional point cloud model of the car door.

Machines 2023, 11, x FOR PEER REVIEW 13 of 15

In order to more profoundly and intuitively elucidate the advantages of the applica-
tion of the KD-Tree in data processing, this study tabulates the data processing speeds
when employing the KD-Tree data structure versus those without it, as shown in Table 1.
Furthermore, to quantify the performance discrepancy between the two, we have also cal-
culated the performance enhancement rate.

Table 1. Performance comparison between KD-Tree and Non-KD-Tree.

X Y
KD-Tree

Time (ms)
Non-KD-Tree

Time (ms)
Performance
Improvement

500 800 336 3376 90.04%
800 1000 1380 10,907 87.34%

1200 1400 3000 45,251 93.37%
1600 1800 5857 134,769 95.64%
2400 2600 19,002 790,297 97.60%
3200 3400 50,162 980,996 94.89%
4000 4200 95,388 2,570,809 96.29%

In order to further assess the performance of the algorithm, this study tested it on a
3D point cloud data model of a car door. This model was processed using the open-source
software MeshLab and transformed into a point cloud representation, as shown in Figure
11, consisting of 9709 sampled points. The path result of the 3D data processed through a
hybrid algorithm is shown in Figure 12, where the coordinate system is represented red,
green, and blue arrows corresponding to the X, Y, and Z axes, respectively.

Figure 11. Three-dimensional point cloud model of the car door.

Figure 12. The scan path result processed from the 3D data.

Figure 12. The scan path result processed from the 3D data.

Machines 2023, 11, 1059 13 of 14

Table 1. Performance comparison between KD-Tree and Non-KD-Tree.

X Y KD-Tree
Time (ms)

Non-KD-Tree
Time (ms)

Performance
Improvement

500 800 336 3376 90.04%
800 1000 1380 10,907 87.34%

1200 1400 3000 45,251 93.37%
1600 1800 5857 134,769 95.64%
2400 2600 19,002 790,297 97.60%
3200 3400 50,162 980,996 94.89%
4000 4200 95,388 2,570,809 96.29%

5. Conclusions

In the realm of NDT robotic scanning of intricate structures, offline methods neces-
sitate precise digital models and user intervention, posing challenges linked to model
accuracy, skilled personnel, and integrating both the NDT inspection modality and the
component’s geometric intricacies. Addressing efficient complex surface coverage, we
introduce a scanning technique using a hybrid algorithm approach tailored to the dimen-
sional constraints of ultrasonic phased-array probes, with scan rasterization during robot
movement. By synergising computer-aided design (CAD) principles, we advocate for an
autonomous path generation method devoid of direct user involvement. Our methodology
incorporates ultrasonic inspection system considerations, particularly phased-array trans-
ducers, and harnesses graph theory and KD-Tree optimisation, striking a balance between
straightforwardness and efficiency. To facilitate robot navigation, explicit prohibitive areas
are identified as obstacles. We propose a dual-stage planning model intertwining a modi-
fied flood-fill algorithm with Dijkstra’s algorithm, ensuring continuity in the presence of
movement constraints. The entire process is cyclic, persisting until comprehensive surface
coverage is attained. Simulative evaluations validate our method’s efficacy, underscor-
ing the potential of amalgamating graph-theory principles, KD-Tree optimisation, and
Dijkstra’s algorithm in pioneering autonomous ultrasonic scanning path planning.

This paper sets the stage for future research that will delve deeper into human–robot
interactions within our autonomous path planning in NDT, acknowledging the complexities
of such collaborations. Additionally, we will conduct further experiments to validate our
algorithm’s efficiency and assess its practical robustness and applicability in varied real-
world NDT contexts. This approach aims to ensure that our methodology not only excels
in theoretical development, but also proves its practical worth in industrial settings.

Author Contributions: Conceptualisation and Methodology, M.Z. and M.S.; Writing—original draft
preparation, M.Z.; Supervision, M.S., P.I.N. and Q.Y. All authors have read and agreed to the published
version of the manuscript.

Funding: This project was part of an initiative known as AEMRI (Advanced Engineering Materials
Research Institute), which is funded by the Welsh European Funding Office (WEFO) using European
Regional Development Funds (ERDF) WEFO contract no. 80854.

Data Availability Statement: Data are contained within the article.

Acknowledgments: This work was enabled through the National Structural Integrity Research Centre
(NSIRC), a postgraduate engineering facility for industry-led research into structural integrity estab-
lished and managed by TWI Ltd. through a network of both national and international universities.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Dwivedi, S.K.; Vishwakarma, M.; Soni, A. Advances and Researches on Non Destructive Testing: A Review. Mater. Today Proc.

2018, 5, 3690–3698. [CrossRef]
2. Bogue, R. The Role of Robotics in Non-destructive Testing. Ind. Robot: Int. J. 2010, 37, 421–426. [CrossRef]

https://doi.org/10.1016/j.matpr.2017.11.620
https://doi.org/10.1108/01439911011063236

Machines 2023, 11, 1059 14 of 14

3. Bakopoulou, K.; Michalos, G.; Mparis, K.; Gkournelos, C.; Dimitropoulos, N.; Makris, S. A Human Robot Collaborative Cell for
Automating NDT Inspection Processes. Procedia CIRP 2022, 115, 214–219. [CrossRef]

4. Sensors|Free Full-Text|Ultrasonic Non-Destructive Testing System of Semi-Enclosed Workpiece with Dual-Robot Testing System.
Available online: https://www.mdpi.com/1424-8220/19/15/3359 (accessed on 18 October 2023).

5. Cooper, I.; Nicholson, I.; Yan, D.; Wright, B.; Liaptsis, D.; Mineo, C. Development of a Fast Inspection System for Aerospace
Composite Materials—The IntACom Project: 5th International Symposium on NDT in Aerospace. 13 November 2013. Available
online: https://strathprints.strath.ac.uk/61717/ (accessed on 5 May 2023).

6. Ma, P.; Xu, C.; Xiao, D. Robotic Ultrasonic Testing Technology for Aero-Engine Blades. Sensors 2023, 23, 3729. [CrossRef] [PubMed]
7. Aparicio Secanellas, S.; Gauna León, I.; Parrilla, M.; Acebes, M.; Ibáñez, A.; De Matías Jiménez, H.; Martínez-Graullera, Ó.;

Álvarez De Pablos, A.; González Hernández, M.; Anaya Velayos, J.J. Methodology for the Generation of High-Quality Ultrasonic
Images of Complex Geometry Pieces Using Industrial Robots. Sensors 2023, 23, 2684. [CrossRef] [PubMed]

8. Zhou, Z.; Zhang, Y.; Tang, K. Sweep Scan Path Planning for Efficient Freeform Surface Inspection on Five-Axis CMM. Comput.
-Aided Des. 2016, 77, 1–17. [CrossRef]

9. Poole, A.; Sutcliffe, M.; Pierce, G.; Gachagan, A. Autonomous, Digital-Twin Free Path Planning and Deployment for Robotic NDT:
Introducing LPAS: Locate, Plan, Approach, Scan Using Low Cost Vision Sensors. Appl. Sci. 2022, 12, 5288. [CrossRef]

10. Zhang, X.; Liu, S.; Xiang, Z. Optimal Inspection Path Planning of Substation Robot in the Complex Substation Environment. In
Proceedings of the 2019 Chinese Automation Congress (CAC), Hangzhou, China, 22–24 November 2019; IEEE: Piscataway, NJ,
USA, 2019; pp. 5064–5068.

11. Sun, Q.; Wan, W.; Chen, G.; Feng, X. Path Planning Algorithm under Specific Constraints in Weighted Directed Graph. In
Proceedings of the 2016 International Conference on Audio, Language and Image Processing (ICALIP), Shanghai, China, 11–12
July 2016; IEEE: Piscataway, NJ, USA, 2016; pp. 635–640.

12. Wayahdi, M.R.; Ginting, S.H.N.; Syahputra, D. Greedy, A-Star, and Dijkstra's Algorithms in Finding Shortest Path. Int. J.
Adv. Data Inf. Syst. 2021, 2, 45–52. [CrossRef]

13. Holmes, C.; Drinkwater, B.; Wilcox, P. Post-Processing of the Full Matrix of Ultrasonic Transmit-Receive Array Data for Non-
Destructive Evaluation. NDT E Int. 2005, 38, 701–711. [CrossRef]

14. Liaptsis, D.; Yan, D.; Cooper, I.; Papadimitriou, V.; Roditis, G. Development of an Automated Scanner and Phased Array
Ultrasonic Testing Technique for the Inspection of Nozzle Welds in the Nuclear Industry. In Proceedings of the 9th International
Conference on NDE in Relation to Structural Integrity for Nuclear and Pressurized Components, Seattle, WA, USA, 22–24 May
2012. Available online: https://www.ndt.net/?id=14746 (accessed on 12 March 2023).

15. Khan, A.; Mineo, C.; Dobie, G.; MacLeod, C.; Pierce, G. Vision Guided Robotic Inspection for Parts in Manufacturing and
Remanufacturing Industry. J. Remanufacturing 2020, 11, 49–70. [CrossRef]

16. Corsini, M.; Cignoni, P.; Scopigno, R. Efficient and Flexible Sampling with Blue Noise Properties of Triangular Meshes. IEEE
Trans. Vis. Comput. Graph. 2012, 18, 914–924. [CrossRef] [PubMed]

17. Chen, J.; Luo, C.; Krishnan, M.; Paulik, M.; Tang, Y. An Enhanced Dynamic Delaunay Triangulation-Based Path Planning Algorithm
for Autonomous Mobile Robot Navigation; Casasent, D.P., Hall, E.L., Röning, J., Eds.; Electronic imaging: San Jose, CA, USA, 2010;
p. 75390P.

18. Foulds, L.R. Graph Theory Applications; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2012; ISBN 978-1-4612-0933-1.
19. Cheng, K.P.; Mohan, R.E.; Nhan, N.H.K.; Le, A.V. Graph Theory-Based Approach to Accomplish Complete Coverage Path

Planning Tasks for Reconfigurable Robots. IEEE Access 2019, 7, 94642–94657. [CrossRef]
20. Bento, L.M.S.; Boccardo, D.R.; Machado, R.C.S.; de Sá, V.G.P.; Szwarcfiter, J.L. Dijkstra Graphs. CoRR 2016, abs/1602.08653.

Available online: http://arxiv.org/abs/1602.08653 (accessed on 4 April 2023).
21. Pinkham, R.; Zeng, S.; Zhang, Z. QuickNN: Memory and Performance Optimization of k-d Tree Based Nearest Neighbor Search

for 3D Point Clouds. In Proceedings of the 2020 IEEE International Symposium on High Performance Computer Architecture
(HPCA), San Diego, CA, USA, 22–26 February 2020; pp. 180–192.

22. Bentley, J.L. Multidimensional Binary Search Trees Used for Associative Searching. Commun. ACM 1975, 18, 509–517. [CrossRef]
23. Hu, L.; Nooshabadi, S. Massive Parallelization of Approximate Nearest Neighbor Search on KD-Tree for High-Dimensional

Image Descriptor Matching. J. Vis. Commun. Image Represent. 2017, 44, 106–115. [CrossRef]
24. Poole, A.; Sutcliffe, M.; Pierce, G.; Gachagan, A. A Novel Complete-Surface-Finding Algorithm for Online Surface Scanning with

Limited View Sensors. Sensors 2021, 21, 7692. [CrossRef] [PubMed]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1016/j.procir.2022.10.076
https://www.mdpi.com/1424-8220/19/15/3359
https://strathprints.strath.ac.uk/61717/
https://doi.org/10.3390/s23073729
https://www.ncbi.nlm.nih.gov/pubmed/37050789
https://doi.org/10.3390/s23052684
https://www.ncbi.nlm.nih.gov/pubmed/36904889
https://doi.org/10.1016/j.cad.2016.03.003
https://doi.org/10.3390/app12105288
https://doi.org/10.25008/ijadis.v2i1.1206
https://doi.org/10.1016/j.ndteint.2005.04.002
https://www.ndt.net/?id=14746
https://doi.org/10.1007/s13243-020-00091-x
https://doi.org/10.1109/TVCG.2012.34
https://www.ncbi.nlm.nih.gov/pubmed/22291147
https://doi.org/10.1109/ACCESS.2019.2928467
http://arxiv.org/abs/1602.08653
https://doi.org/10.1145/361002.361007
https://doi.org/10.1016/j.jvcir.2017.01.013
https://doi.org/10.3390/s21227692
https://www.ncbi.nlm.nih.gov/pubmed/34833768

	Introduction
	Background Theory
	Ultrasonic Inspection and Robotics for NDT
	Decomposition of CAD Model
	Graph Theory, KD-Tree Optimisation, and Dijkstra Algorithm

	Method
	Simulation and Results
	Conclusions
	References

