
Manuscript submitted to The Econometrics Journal , pp. 1–20.

Two-Stage Instrumental Variable Estimation of
Linear Panel Data Models with Interactive Effects
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Summary
This paper analyses the instrumental variables (IV) approach put forward by Norkute

et al. (2021), in the context of static linear panel data models with interactive effects
present in the error term and the regressors. Instruments are obtained from transformed
regressors, thereby it is not necessary to search for external instruments. We consider
a two-stage IV (2SIV) and a mean-group IV (MGIV) estimator for homogeneous and
heterogeneous slope models, respectively. The asymptotic analysis reveals that: (i) the√
NT -consistent 2SIV estimator is free from asymptotic bias that may arise due to

the estimation error of the interactive effects, whilst (ii) existing estimators can suffer
from asymptotic bias; (iii) the proposed 2SIV estimator is asymptotically as efficient
as existing estimators that eliminate interactive effects jointly in the regressors and
the error, whilst; (iv) the relative efficiency of the estimators that eliminate interactive
effects only in the error term is indeterminate. A Monte Carlo study confirms good
approximation quality of our asymptotic results.

Keywords: Large panel data, Interactive effects, Common factors, Principal compo-
nents analysis, Instrumental variables.

1. INTRODUCTION

Panel data sets with large cross-section and time-series dimensions (N and T , respec-
tively) have become increasingly available in the social sciences. As a result, regression
analysis of large panels has gained an ever-growing popularity. A central issue in these
models is how to properly control for rich sources of unobserved heterogeneity, includ-
ing common shocks and interactive effects (see e.g. Sarafidis and Wansbeek (2020) for a
recent overview).
Broadly speaking, there are two popular estimation approaches currently advanced in

the field. The first one involves eliminating the interactive effects from the error term
and the regressors jointly, in a single stage. Representative methods include the Common
Correlated Effects approach of Pesaran (2006), which involves least-squares on a regres-
sion model augmented by cross-sectional averages (CA) of observables; and the Principal
Components (PC) estimator considered first by Kapetanios and Pesaran (2005) and
analysed subsequently by Westerlund and Urbain (2015). The second approach asymp-
totically eliminates the interactive effects from the error term only. The representative
method is the Iterative Principal Components (IPC) estimator of Bai (2009), further de-
veloped by Moon and Weidner (2015, 2017), among many others. An attractive feature
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of CA (as well as PC) is that it permits estimation of models with heterogeneous slopes.
On the other hand, an advantage of IPC is that it does not assume that regressors are
subject to a factor structure.
In models with homogeneous slopes, Westerlund and Urbain (2015) showed that both

CA and PC estimators suffer from asymptotic bias due to the incidental parameter
problem (see Juodis et al. (2021) for additional results on the asymptotic properties of
CA). A similar outcome was shown by Bai (2009) for the IPC estimator. Thus in all
three cases, bias correction is necessary for asymptotically valid inferences. In addition,
the CA estimator requires the so-called rank condition, which assumes that the number
of factors does not exceed the rank of the (unknown) matrix of cross-sectional averages
of the factor loadings. On the other hand, IPC involves non-linear optimisation, and so
convergence to the global optimum might not be guaranteed (see e.g. Jiang et al. (2017)).

This paper analyses the instrumental variables (IV) approach put forward by Norkute
et al. (2021) in the context of a static linear panel data model. Their approach differs
from CA, PC and IPC because it asymptotically eliminates the interactive effects in the
error term and in the regressors separately, in two stages. In particular, for models with
homogeneous slopes, in the first stage the interactive effects are projected out from the
regressors. Subsequently, the transformed regressors are used as instruments to obtain
consistent estimates of the model parameters. This way, it is not necessary to search
for external instruments. In the second stage, the interactive effects in the error term
are eliminated using the first-stage residuals, and a second IV regression is run. That
is, IV regression is performed in both of two stages. The resulting two-stage IV (2SIV)
estimator is shown to be

√
NT -consistent and asymptotically normal. For models with

heterogeneous slopes, we analyse a mean-group IV (MGIV) estimator and establish
√
N -

consistency and asymptotic normality. The asymptotic results established in this paper
are completely new, as we permit weak cross-section and time-series dependence in the
idiosyncratic errors. The weak dependence assumption is typically employed by the static
panel data literature, such as Bai (2009). In contrast, Norkute et al. (2021) focus on
dynamic panels with interactive effects, assuming cross-sectional and serial independence
of the idiosyncratic disturbances.
In addition, the present paper offers new insights into the literature by comparing and

contrasting the asymptotic properties of 2SIV, IPC, PC and CA. Such a task was not
considered by Norkute et al. (2021). To be more specific, we analytically show why the
proposed two-stage approach makes the 2SIV estimator free from asymptotic bias, whilst
under the same conditions IPC, PC and CA are subject to biases. In brief, the reason for
the lack of asymptotic bias of 2SIV is that the factors in the regressors and the errors are
estimated separately in two stages. This makes the endogeneity caused by the estimation
errors of the interactive effects asymptotically negligible. Moreover, our analysis reveals
that 2SIV is asymptotically as efficient as the bias-corrected versions of PC and CA,
whereas the relative efficiency of the bias-corrected IPC estimator is indeterminate, in
general. This is because the IPC estimator (i) does not necessarily eliminate the factors
contained in the regressors; (ii) requires a transformation of the regressors, which is due
to the estimation error of the interactive effects.
A Monte Carlo study confirms good approximation quality of our asymptotic results

and competent performance of 2SIV and MGIV relative to existing estimators. Further-
more, the results demonstrate that the bias-corrections of IPC and PC can noticeably
inflate the dispersion of the estimators in finite samples. We apply our methodology to
study the effect of climate shocks on economic growth using an unbalanced panel of 125
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countries over the period 1961-2003. The implications of our results are different from
those obtained in existing literature.
A Stata algorithm that implements our approach, has been recently developed by

Kripfganz and Sarafidis (2021) and is available to all Stata users.1

The remainder of this paper is organised as follows. Section 2 introduces a panel
data model with homogeneous slopes and interactive effects, and describes the set of
assumptions employed. Section 3 studies the asymptotic properties of the proposed 2SIV
estimator. Section 4 analyses a mean-group IV estimator for models with heterogeneous
slopes and establishes its properties in large samples. Section 5 provides an asymptotic
comparison among 2SIV, IPC, CA and PC. Section 6 studies the finite sample perfor-
mance of these estimators and Section 7 provides an empirical illustration. Section 8
concludes. Proofs of main theoretical results with necessary lemmas and auxiliary lem-
mas are relegated to Online Supplement.
Notation: Throughout, we denote the largest eigenvalues of the N ×N matrix A =

(aij) by µmax(A), its trace by tr(A) =
∑N

i=1
aii, its Frobenius norm by ‖A‖ =

√
tr(A′A).

The projection matrix on A′ is PA = A(A′A)−1A′ and MA = I − PA. C is a generic
positive constant large enough, Cmin is a small positive constant sufficiently away from
zero, δ2NT = min{N,T}. We use N,T → ∞ to denote that N and T pass to infinity
jointly.

2. MODEL AND ASSUMPTIONS

We consider the following panel data model:

yit = x′
itβ + ui; ui = ϕ0′

i h
0
t + εit,

xit = Γ0′
i f

0
t + vit; i = 1, ..., N ; t = 1, ..., T,

(2.1)

where yit denotes the value of the dependent variable for individual i at time t, xit is a
k×1 vector of regressors and β is the corresponding vector of slope coefficients. ui follows
a factor structure, where h0

t is an r2 × 1 vector of latent factors, ϕ0
i is the associated

factor loading vector, and εit denotes an idiosyncratic error. The regressors are assumed
to be strictly exogenous with respect to εit, however they are subject to a factor model,
where f0t denotes an r1×1 vector of latent factors, Γ0

i is a r1×k matrix of factor loadings,
and vit is an idiosyncratic error of dimension k × 1. We treat r1 and r2 as given.2

Estimation of the model above has been studied by Pesaran (2006), Bai and Li (2014),
Westerlund and Urbain (2015), Juodis and Sarafidis (2020, 2021), Cui et al. (2019) to
mention a few. Such model has been employed in a wide variety of fields, including
economics and finance.

Remark 2.1. Permitting different sets of interactive effects in xit and uit is important
not only from the empirical perspective but also from the theoretical perspective. It plays
a crucial role when we analytically compare the estimators that eliminate the factors in

1See http://www.kripfganz.de/stata/xtivdfreg.html.
2In practice, r1 can be estimated from the raw data {Xi}

N
i=1 using methods already available in

the literature, such as the information criteria of Bai and Ng (2002) or the eigenvalue-based tests of
Kapetanios (2010) and Ahn and Horenstein (2013). r2 can be estimated in the same way from the residual
covariance matrix. An asymptotic justification of such practice is discussed in Bai (2009b, Section C.3). In
the Monte Carlo section of the paper we show that these methods provide quite accurate determination
of the number of factors.
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the error term and the regressors separately (as in our approach), and those estimators
that eliminate the factors in the error term only (as in the IPC approach of Bai (2009)).
This remark does not apply to estimators that extract factors in xit and uit jointly, as
in the approaches considered by Pesaran (2006) and Westerlund and Urbain (2015)); see
Section 5 for more details.

Stacking Eq. (2.1) over t, we have

yi = Xiβ + ui; ui = H0ϕ0
i + εi,

Xi = F0Γ0
i +Vi,

(2.2)

where yi = (yi1, . . . , yiT )
′, Xi = (xi1, · · · ,xiT )

′, F0 = (f01 , · · · , f0T )′, H0 = (h0
1, · · · ,h0

T )
′,

εi = (εi1, · · · , εiT )′ and Vi = (vi1, . . . ,viT )
′.

Following Norkute et al. (2021), we consider an IV estimation approach that involves
two stages. In the first stage, the common factors in Xi are asymptotically eliminated
using principal components analysis. Next, the transformed regressors are used to con-
struct instruments and estimate the model parameters. To illustrate the first-stage IV
estimator, suppose that F0 is observed. Pre-multiplying Xi by MF0 yields

MF0Xi = MF0Vi. (2.3)

Assuming Vi is independent of εi,H
0 and ϕ0

i , it is easily seen that E[X′
iMF0ui] =

E[V′
iMF0(H0ϕ0

i + εi)] = 0. Together with the fact that MF0Xi is correlated with Xi

through Vi, MF0Xi can be regarded as an instrument for Xi.
The first-stage (infeasible) estimator is defined as

β̂
inf

1SIV =

(
N∑

i=1

X
′

iMF0Xi

)−1 N∑

i=1

X
′

iMF0yi. (2.4)

In the second stage, the space spanned by H0 is estimated from the residual ûinf
i = yi−

Xiβ̂
inf

and then it is projected out. To illustrate, suppose that H0 is also observed; one
can instrumentXi usingMH0MF0Xi. Note that E[X′

iMF0MH0ui] = E[V′
iMF0MH0εi] =

0. The (infeasible) second-stage IV (2SIV) estimator of β is given by

β̂
inf

2SIV =

(
N∑

i=1

X
′

iMF0MH0Xi

)−1 N∑

i=1

X
′

iMF0MH0yi. (2.5)

In practice, F0 and H0 are typically unobserved. As it will be discussed in detail below,
we replace these quantities with estimates obtained using principal components analysis,
as advanced in Bai (2003) and Bai (2009).
To obtain our theoretical results it is sufficient to make the following assumptions.

Assumption 2.1. (idiosyncratic error in y) : We assume that

1 E (εit) = 0 and E|εit|8+δ ≤ C for some δ > 0;
2 Let σij,st ≡ E (εisεjt). We assume that there exist σ̄ij and σ̃st, |σij,st| ≤ σ̄ij

for all (s, t), and |σij,st| ≤ σ̃st for all (i, j), such that N−1
∑N

i=1

∑N
j=1

σ̄ij ≤
C; T−1

∑T
s=1

∑T
t=1

σ̃st ≤ C; N−1T−1
∑N

i=1

∑N
j=1

∑T
s=1

∑T
t=1

|σij,st| ≤ C .

3 For every (s, t), E
∥∥N−1/2

∑N
i=1

[εisεit − σii,st]
∥∥4 ≤ C.
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4 For each j, E
∥∥N−1/2T−1/2

∑N
i=1

∑T
t=1

[
εitεjt−E (εitεjt)

]
ϕ0

i

∥∥2 ≤ C. Also, for each

s, E
∥∥N−1/2T−1/2

∑N
i=1

∑T
t=1

[εisεit − E (εisεit)]g
0
t

∥∥2 ≤ C, where g0
t = (f0′t ,h0′

t )
′.

5 N−1T−2
∑N

i=1

∑N
j=1

∑T
s1=1

∑T
s2=1

∑T
t1=1

∑T
t2=1

∣∣cov(εis1εis2 , εjt1εjt2)
∣∣ ≤ C .

Assumption 2.2. (idiosyncratic error in x) Let Σij,st ≡ E
(
visv

′
jt

)
. We assume

that

1 vit is group-wise independent from εit, E (vit) = 0 and E ‖vit‖8+δ ≤ C;
2 There exist τ̄ij and τ̃st, ‖Σij,st‖ ≤ τ̄ij for all (s, t), and ‖Σij,st‖ ≤ τ̃st for all (i, j),

such that N−1
∑N

i=1

∑N
j=1

τ̄ij ≤ C; T−1
∑T

s=1

∑T
t=1

τ̃st ≤ C;

N−1T−1
∑N

i=1

∑N
j=1

∑T
s=1

∑T
t=1

‖Σij,st‖ ≤ C . Additionally, the largest eigenvalue
of E (ViV

′
i) is bounded uniformly in i.

3 For every (s, t), E
∥∥N−1/2

∑N
i=1

[visv
′
it −Σii,st]

∥∥4 ≤ C.

4 For each j, E
∥∥N−1/2T−1/2

∑N
i=1

∑T
t=1

ϕ0
i ⊗
[
vitv

′
jt−E

(
vitv

′
jt

) ]∥∥2 ≤ C. Addition-

ally, for each s, E
∥∥N−1/2T−1/2

∑N
i=1

∑T
t=1

[v′
isvit − E (v′

isvit)]g
0
t

∥∥2 ≤ C.

5 N−1T−2
∑N

i=1

∑N
j=1

∑T
s1=1

∑T
s2=1

∑T
t1=1

∑T
t2=1

∣∣cov(v′
is1

vis2 ,v
′
jt1

vjt2)
∣∣ ≤ C .

Assumption 2.3. (factors) E‖f0t ‖4 ≤ C, T−1F0′F0 p−→ Σ0
F as T → ∞ for some

non-random positive definite matrix Σ0
F . E‖h0

t‖4 ≤ C, T−1H0′H0 p−→ Σ0
H as T → ∞

for some non-random positive definite matrix Σ0
H .

Assumption 2.4. (loadings) E
∥∥Γ0

i

∥∥4 ≤ C, Υ0 = N−1
∑N

i=1
Γ0
iΓ

0′
i

p−→ Ῡ
0
as N →

∞, and E
∥∥ϕ0

i

∥∥4 ≤ C, Υ0
ϕ = N−1

∑N
i=1

ϕ0
iϕ

0′
i > 0

p−→ Ῡ
0

ϕ as N → ∞ for some non-

random positive definite matrices Ῡ
0
and Ῡ

0

ϕ. In addition, Γ0
i and ϕ0

i are independent
groups from εit, vit, f

0
t and h0

t .

Assumption 2.5. (identification) The matrix T−1X′
iMF0Xi has full column rank

and E
∥∥T−1X′

iMF0Xi

∥∥2+2δ ≤ C for all i.

Unlike Norkute et al. (2021), Assumptions 2.1 and 2.2 permit weak cross-sectional and
serial dependence in εit and vit, in a similar manner to Bai (2009). Assumptions 2.3 and
2.4 on the moments and the limit variance of factors and factor loadings are standard and

in line with Bai (2009). Note that these assumptions permit that T−1G0′G0 p−→ Σ0
G,

a positive semi-definite matrix, where G0 = (F0,H0). Assumption 2.5 is sufficient for
identification of heterogeneous slope coefficients.

3. ESTIMATION OF MODELS WITH HOMOGENEOUS SLOPES

In line with Norkute et al. (2021), we propose the following two-stage IV procedure:

1 Estimate the span of F0 by F̂, defined as
√
T times the eigenvectors corresponding

to the r1 largest eigenvalues of the T×T matrixN−1T−1
∑N

i=1
XiX

′
i. Then estimate

β as

β̂1SIV =

(
N∑

i=1

X′
iMF̂

Xi

)−1 N∑

i=1

X′
iMF̂

yi. (3.6)
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2 Let ûi = yi−Xiβ̂1SIV . Define Ĥ to be
√
T times the eigenvectors corresponding to

the r2 largest eigenvalues of the T ×T matrix (NT )−1
∑N

i=1
ûiû

′
i. The second-stage

estimator of β is defined as follows:3

β̂2SIV =

(
N∑

i=1

X
′

iMF̂
M

Ĥ
Xi

)−1 N∑

i=1

X
′

iMF̂
M

Ĥ
yi. (3.7)

In order to establish the asymptotic properties of these estimators, we first expand
(3.6) as follows:

√
NT (β̂1SIV − β) =

(
1

NT

N∑

i=1

X
′

iMF̂
Xi

)−1

1√
NT

N∑

i=1

X
′

iMF̂
ui. (3.8)

The following Proposition shows the
√
NT -consistency of the first-stage estimator, β̂1SIV :

Proposition 3.1. Under Assumptions 2.1-2.5, we have

N−1/2T−1/2
N∑

i=1

X′
iMF̂

ui = N−1/2T−1/2
N∑

i=1

V′
iMF0ui+b0F+b1F+b2F+Op(

√
NTδ−3

NT )

with

b0F =−N−1/2T−1/2
N∑

i=1

N−1

N∑

ℓ=1

Γ0′
i (Υ

0)−1Γ0
ℓV

′
ℓMF0ui;

b1F =−
√

T

N

1

NT 2

N∑

i=1

N∑

h=1

E(V′
iVh)Γ

0′
h (Υ

0)−1(T−1F0′F0)−1F0′H0ϕ0
i

+

√
T

N

1

N2T 2

N∑

i=1

N∑

h=1

N∑

ℓ=1

Γ0′
i (Υ

0)−1Γ0
ℓE(V

′
ℓVh)Γ

0′
h (Υ

0)−1(T−1F0′F0)−1F0′H0ϕ0
i ;

b2F =−
√

N

T

1

NT

N∑

i=1

Γ0′
i (Υ

0)−1(T−1F0′F0)−1F0′ΣMF0H0ϕ0
i ,

where Υ0 =
∑N

i=1
Γ0
iΓ

0′
i /N , Σ = N−1

∑N
i=1

E(V′
iVi), and N−1/2T−1/2

∑N
i=1

V′
iMF0ui,

b0F , b1F and b2F are Op(1) when N/T −→ C. Consequently,
√
NT (β̂1SIV − β) = Op(1).

Proposition 3.1 implies that β̂1SIV is consistent but asymptotically biased. Rather
than bias-correcting this estimator, we show that the second-stage IV estimator is free
from asymptotic bias. To begin with, we make use of the following expansion:

√
NT (β̂2SIV − β) =

(
1

NT

N∑

i=1

X
′

iMF̂
M

Ĥ
Xi

)−1

1√
NT

N∑

i=1

X
′

iMF̂
M

Ĥ
ui. (3.9)

The next proposition provides an asymptotic representation of β̂2SIV .

3An alternative estimator, (
∑N

i=1 X
′
iMF̂

Xi)
−1

∑N
i=1 X

′
iMF̂

(yi − P
Ĥ
ûi), was considered but not in-

cluded as the finite sample performance was worse than that of β̂2SIV .
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Proposition 3.2. Under Assumptions 2.1-2.5, as N,T → ∞, N/T → C, we have

√
NT (β̂2SIV − β) =

(
1

NT

N∑

i=1

X′
iMF0MH0Xi

)−1

1√
NT

N∑

i=1

X′
iMF0MH0εi +Op(

√
NTδ−3

NT )

=

(
1

NT

N∑

i=1

V′
iVi

)−1

1√
NT

N∑

i=1

V′
iεi +Op(

√
NTδ−3

NT ).

Proposition 3.2 shows that the effects of estimating F0 from Xi and H0 from ûi =
yi−Xiβ̂1SIV are asymptotically negligible. Moreover, β̂2SIV is asymptotically equivalent
to a least-squares estimator obtained by regressing (yi −H0ϕ0

i ) on (Xi − F0Γ0
i ).

To establish asymptotic normality under weak cross-sectional and serial error depen-
dence, we place additional assumption, which is in line with Assumption E in Bai (2009).

Assumption 3.1. plimN−1
∑N

i=1

∑N
j=1

V′
iεiε

′
jVj/T = B, and 1√

NT

∑N
i=1

V′
iεi

d−→ N(0,B),

for some non-random positive definite matrix B.

Using Proposition 3.2 and Assumption 3.1, it is straightforward to establish the asymp-
totic distribution of β̂2SIV :

Theorem 3.1. Under Assumptions 2.1-3.1, as N,T → ∞, N/T → C, we have
√
NT (β̂2SIV − β)

d−→ N(0,Ψ)

where Ψ = A−1BA−1.

Note that despite the fact that our assumptions permit serial correlation and het-
eroskedasticity in vit and εit, β̂2SIV is not subject to any asymptotic bias. We discuss
this property in more detail in Section 5.
As discussed in Bai (2009) and Norkute et al. (2021), in general consistent estimation

of Ψ is not feasible when the idiosyncratic errors are both cross-section and time-series
dependent. Following Norkute et al. (2021) and Cui et al. (2019), we propose using the
following estimator:

Ψ̂ = Â−1B̂Â−1 (3.10)

with Â = 1

NT

∑N
i=1

X′
iMF̂

M
Ĥ
Xi and B̂ = 1

NT

∑N
i=1

X′
iMF̂

M
Ĥ
u̇iu̇

′
iMĤ

M
F̂
Xi, where

u̇i = yi −Xiβ̂2SIV . In line with the discussion in Hansen (2007), it can be shown that
when {v′

it, εit} follows a certain strong mixing process over t and is independent over i,

Ψ̂−Ψ
p−→ 0 as N,T → ∞, N/T → C.

4. MODELS WITH HETEROGENEOUS SLOPES

We now turn our focus on models with heterogeneous coefficients:

yi = Xiβi +H0ϕ0
i + εi ,

Xi = F0Γ0
i +Vi.

(4.11)

We first consider the following individual-specific estimator

β̂i = (X′
iMF̂

Xi)
−1X′

iMF̂
yi.
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Proposition 4.1. Under Assumptions 2.1-2.5, for each i we have
√
T (β̂i − βi) =

(
T−1X′

iMF0Xi

)−1 × T−1/2X′
iMF0ui +Op

(
δ−1
NT

)
+Op

(
T 1/2δ−2

NT

)

and

T−1/2X′
iMF0ui

d−→ N(0,Ωi)

where Ωi = T−1plimT→∞
∑T

s=1

∑T
t=1

ũisũitE(visv
′
it) and ũi = MF0ui ≡ (ũi1, · · · , ũiT )

′.

We also consider inference on the mean of βi. We make the following assumptions.

Assumption 4.1. (random coefficients) βi = β+ei, where ei is independently and
identically distributed over i with mean zero and variance Σβ. Furthermore, ei is inde-
pendent with Γ0

j , ϕ
0
j , εjt, vjt, f

0
t and h0

t for all i, j, t.

Assumption 4.2. (moments) For each i, E
∥∥T−1/2V′

iF
0
∥∥4 ≤ C,

∥∥T−1/2ε′iΣF0‖4 ≤ C,

E‖ 1√
NT

∑N
ℓ=1

ε′iVℓΓ
0′
ℓ ‖4 ≤ C, E

∥∥T−1/2
∑T

t=1
[V′

iVi −Σ]
∥∥4 ≤ C,

E
∥∥N−1/2T−1/2

∑N
ℓ=1

(
V′

iVℓ − E
(
V′

iVℓ

))
Γ0′
ℓ ‖4 ≤ C, and 0 < Cmin ≤ ‖Σ‖ ≤ C.

In line with Norkute et al. (2021), we propose the following mean-group IV (MGIV)
estimator:

β̂MGIV = N−1

N∑

i=1

β̂i. (4.12)

Theorem 4.1. Under Assumptions 2.1-2.5 and 4.1-4.2, we have

√
N(β̂MGIV − β) = N−1/2

N∑

i=1

ei +Op(N
3/4T−1) +Op(NT−3/2) +Op(N

1/2δ−2
NT ),

such that for N3/T 4 → 0 as N,T → ∞, we obtain

√
N(β̂MGIV − β)

d−→ N(0,Σβ).

Furthermore, Σ̂β −Σβ
p−→ 0, where

Σ̂β =
1

N − 1

N∑

i=1

(β̂i − β̂MGIV )(β̂i − β̂MGIV )
′. (4.13)

5. ASYMPTOTIC COMPARISON OF β̂2SIV WITH EXISTING ESTIMATORS

This section investigates asymptotic bias properties and relative efficiency of the 2SIV,
IPC, PC and CA estimators for the models with homogeneous slopes. For this purpose,
let G0 = (F0,H0) denote a T × r matrix, where r = r1 + r2. We shall assume that

G0′G0/T
p→ Σ0

G > 0, a positive definite matrix. Note that, together with Assumption
2.3, this implies that F0 and H0 are linearly independent of each other (and can be
correlated), which is slightly stronger than Assumption 2.3.
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5.1. 2SIV estimator

Recall that Xi = F0Γ0
i +Vi and ui = H0ϕ0

i +εi. Proposition 3.2 in Appendix B demon-

strates that under Assumptions 2.1-2.5
(
N−1T−1

∑N
i=1

X′
iMF̂

M
Ĥ
Xi

)√
NT

(
β̂2SIV − β

)

can be expanded as follows:

1√
NT

N∑

i=1

X′
iMF̂

M
Ĥ
ui =

1√
NT

N∑

i=1

V′
iεi + b0FH + b1FH + b2FH +Op

(√
NTδ−3

NT

)
,

(5.14)
where

b0FH = − 1

N1/2

1

NT 1/2

N∑

i=1

N∑

j=1

(Γ0′
i (Υ

0)−1Γ0
j +ϕ0′

j (Υ
0
ϕ)

−1ϕ0
i )V

′
jεi;

b1FH = − 1

N1/2

1

N2T 1/2

N∑

i=1

N∑

ℓ=1

N∑

j=1

Γ0′
i (Υ

0)−1Γ0
ℓ (V

′
ℓεj)ϕ

0′
j (Υ

0
ϕ)

−1ϕ0
i ;

b2FH = − 1

T 1/2

1

N3/2T

N∑

i=1

N∑

j=1

Γ0′
i (Υ

0)−1Γ0
jV

′
jΣεH

0

(
H0′H0

T

)−1

(Υ0
ϕ)

−1ϕ0
i ,

with Σε =
1

N

∑N
j=1

E
(
εjε

′
j

)
. It is easily seen that (see proof of Proposition 3.2) b0FH =

Op

(
N−1/2

)
, b1FH = Op

(
N−1/2

)
and b2FH = Op

(
T−1/2

)
. Hence, we have

1√
NT

N∑

i=1

X′
iMF̂

M
Ĥ
ui =

1√
NT

N∑

i=1

V′
iεi + op (1) .

5.2. Asymptotic bias of Bai’s (2009a) IPC-type estimator

It is instructive to consider a PC estimator that is asymptotically equivalent to Bai (2009)
but avoids iterations:

β̃2SIV =

(
N∑

i=1

X′
iMĤ

Xi

)−1 N∑

i=1

X′
iMĤ

yi.

Observe that this estimator projects out Ĥ from (Xi,yi), but it does not eliminate F̂ from

Xi. Ĥ is estimated using the residuals of the first-stage IV estimator, ûi = yi−Xiβ̂1SIV .

Using similar derivations as in Section 5.1, Proposition 5.1 below shows that
(
N−1T−1

∑N
i=1

X′
iMĤ

Xi

)
×

√
NT

(
β̃2SIV − β

)
has the following asymptotic expansion:

Proposition 5.1. Under Assumptions 2.1-2.5, we have

1√
NT

N∑

i=1

X′
iMĤ

ui =
1√
NT

N∑

i=1

X′
iMH0εi+b0H +b1H +b2H +Op

(√
NTδ−3

NT

)
(5.15)
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with

b0H = − 1

N3/2T 1/2

N∑

i=1

N∑

j=1

aijX
′
jMH0εi;

b1H = −
√

T

N

1

NT

N∑

i=1

N∑

j=1

X
′
iH

0

(
H0′H0

T

)−1

(Υ0
ϕ)

−1ϕ0
jE
(
ε′jεi/T

)
;

b2H = −
√

N

T

1

NT

N∑

i=1

X′
iMH0ΣεH

0

(
H0′H0

T

)−1

(Υ0
ϕ)

−1ϕ0
i ,

where aij = ϕ0′
j (Υ

0
ϕ)

−1ϕ0
i , X i = Xi −N−1

∑N
ℓ=1

aiℓXℓ and Σε =
1

N

∑N
j=1

E
(
εjε

′
j

)
.

The above asymptotic bias terms are identical to those of the IPC estimator of Bai (2009).

As a result, it suffices to compare β̂2SIV with β̃2SIV . Incidentally, as shown in Bai (2009),
the term b0H tends to a normal random vector, which necessitates the transformation
of the regressor matrix to X i; see equation (5.16) below.
The terms b0H , b1H and b2H in (5.15) are comparable to the terms b0FH , b1FH

and b2FH , respectively, in (5.14). One striking result is that b0H , b1H and b2H are not
asymptotically ignorable, whereas b0FH , b1FH and b2FH are. This difference stems solely
from the fact that β̂2SIV asymptotically projects out F0Γ0

i from Xi and H0ϕ0
i from ui

separately, whereas β̃2SIV projects out H0ϕ0
i from ui only. Therefore, the asymptotic

bias terms of β̃2SIV , b0H , b1H and b2H , contain correlations between the regressors

Xi and the disturbance ui(= H0ϕ0
i + εi) since the estimation error of Ĥ contains ui.

Recalling that Xi = F0Γ0
i +Vi, such correlations may not be asymptotically negligible

because H0′F0/T = Op (1) and
∑N

i=1
ϕ0′

i vec
(
Γ0
i

)
/N = Op (1).

On the other hand, β̂2SIV asymptotically projects out F0Γ0
i from Xi as well as H

0ϕ0
i

from ui. Therefore, b0FH , b1FH and b2FH contain correlations between MF0Xi =
MF0Vi and ui. Since Vi, H

0ϕ0
i and εi are independent of each other, such correla-

tions are asymptotically negligible. As a result, our estimator β̂2SIV does not suffer from
asymptotic bias.
Using similar reasoning, it turns out that in some special cases, some of the bias terms

of β̃2SIV may disappear as well. For instance, when F0 ⊆ H0, we haveMH0Xj = MH0Vj

because MH0F0 = 0. Thus, b0H = Op

(
N−1/2

)
and b2H = Op

(
T−1/2

)
although b1H

remains Op (1). Note that under our assumptions all three bias terms, b0H , b1H and
b2H , are asymptotically negligible only if H0 = F0, which can be a highly restrictive
condition in practice.4

5.3. Asymptotic bias of PC and CA estimators

Pesaran (2006) and Westerlund and Urbain (2015) put forward pooled estimators in
which the whole set of factors in Xi and ui are estimated jointly, rather than separately.
This feature makes these estimators asymptotically biased. To show this, we rewrite the

4When εit ∼ i.i.d.(0, σ2), b0H remains Op(1) whilst b1H and b2H become asymptotically negligible.
See Corollary 1 in Bai (2009).
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model as

Zi = (yi,Xi) = G0Λ0
i +Ui,

where

Λ0
i =

(
Γ0
iβ Γ0

i

ϕ0
i 0

)
, Ui = (Viβ + εi,Vi) .

We also define Υ0
Λ = N−1

∑N
i=1

Λ0
iΛ

0′
i which is assumed to be positive definite.

In the PC approach of Westerlund and Urbain (2015), a span of G0 is estimated as
√
T

times the eigenvectors corresponding to the first r largest eigenvalues of
∑N

i=1
ZiZ

′
i/N ,

which is denoted by Ĝz. The resulting PC estimator is defined as

β̂PC =

(
N∑

i=1

X′
iMĜz

Xi

)−1 N∑

i=1

X′
iMĜz

yi.

In line with Pesaran (2006), the CA estimator of Westerlund and Urbain (2015) approx-

imates a span of G0 by a linear combination of Z̄ = N−1
∑N

i=1
Zi. The associated CA

estimator is given by

β̂CA =

(
N∑

i=1

X′
iMZ̄Xi

)−1 N∑

i=1

X′
iMZ̄yi.

As discussed in Westerlund and Urbain (2015), both PC and CA are asymptotically

biased due to the correlation between the estimation error of Ĝz and {Xi,ui}. The

estimation error of Ĝz contains the error term of the system equation Ui, which is a
function of both Vi and εi. Therefore, the estimation error of Ĝz is correlated with
MGXi and MGui, which causes the asymptotic bias. In what follows, we shall focus on
the PC estimator as the bias analysis for the CA estimator is very similar.

FollowingWesterlund and Urbain (2015), we expand
(
N−1T−1

∑N
i=1

X′
iMĜz

Xi

)√
NT

(
β̂PC − β

)

as follows:

Proposition 5.2. Under Assumptions 2.1-2.5

1√
NT

N∑

i=1

X′
iMĜz

ui =
1√
NT

N∑

i=1

V′
iεi + b1G + b2G + b3G +Op

(√
NTδ−3

NT

)
,

with

b1G = −
√

T

N

1

N

N∑

i=1

N∑

j=1

(
Γ0′
i ,0

′) (Υ0
Λ)

−1Λ0
jE
(
U′

jεi/T
)
;

b2G = −
√

T

N

1

N2

N∑

i=1

N∑

ℓ=1

N∑

j=1

(
Γ0′
i ,0

′) (Υ0
Λ)

−1Λ0
ℓE (U′

ℓUj/T )Λ
0′
j (Υ

0
Λ)

−1

(
G0′G0

T

)−1
G0′H0

T
ϕ0

i ;

b3G = −
√

T

N

1

N

N∑

i=1

N∑

j=1

V′
iUj

T
Λ0′

j (Υ
0
Λ)

−1

(
G0′G0

T

)−1
G0′H0

T
ϕ0

i .

It is easily seen that b1G, b2G and b3G are all Op (1). Note that the asymptotic bias
terms are functions of Λ0

ℓ and Υ0
Λ, which depend on the slope coefficient vector β.
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5.4. Relative asymptotic efficiency of 2SIV, IPC, PC and CA estimators

Finally, we compare the asymptotic efficiency of the estimators. To make the problem
tractable and as succinct as possible, we shall assume that εit is i.i.d. over i and t with
E (εit) = 0 and E

(
ε2it
)
= σ2

ε . In this case, it is easily seen that the asymptotic variance

of β̂2SIV is

Ψ = σ2
ε

(
plimN−1T−1

N∑

i=1

V′
iVi

)−1

.

Next, using Proposition 5.2, consider the bias-corrected PC estimator

β̂
∗
PC = β̂PC −N1/2T 1/2

(
N∑

i=1

V′
iVi

)−1

(b1G + b2G + b3G).

We can see that the asymptotic variance of the bias-corrected PC estimator is identi-
cal to Ψ. Therefore, the 2SIV and the bias-corrected PC estimators are asymptotically
equivalent.
Consider now β̃2SIV . Noting that b0H tends to a normal distribution, and following

Bai (2009), the bias-corrected estimator with transformed regressors can be written as:

β̃
∗
2SIV = β̃

+

2SIV −N1/2T 1/2

(
N∑

i=1

X
′
iMH0X i

)−1

(b1H + b2H),

where

β̃
+

2SIV =

(
N∑

i=1

X
′
iMH0X i

)−1 N∑

i=1

X
′
iMH0yi. (5.16)

The asymptotic variance of this bias-corrected estimator is given by

Ψ̃ = σ2
ε

(
plimN−1T−1

N∑

i=1

X
′
iMH0X i

)−1

.

There exist two differences compared to Ψ. First, in general MH0Xi 6= MH0Vi as the
factors in Xi may not be identical to the factors in ui. Second, regressors are to be
transformed as X i = Xi − N−1

∑N
ℓ=1

aiℓXℓ. Therefore, Ψ − Ψ̃ can be positive semi-
definite or negative-semi-definite. Thus, the asymptotic efficiency of the bias-corrected
IPC estimator of Bai (2009) relative to 2SIV and the bias-corrected PC/CA estimators, is
indeterminate. However, in the special case where F0 ⊆ H0, we have MH0X i = MH0V i,
with V i = Vi −N−1

∑N
ℓ=1

aiℓVℓ. The second term of V i is Op(N
−1/2) because Vℓ and

aiℓ are independent. Hence, in this case Ψ̃ = Ψ, and the bias-corrected IPC estimator is
asymptotically as efficient as the bias-corrected PC/CA estimator and 2SIV.

6. MONTE CARLO SIMULATIONS

We conduct a Monte Carlo simulation exercise in order to assess the finite sample be-
haviour of the statistics discussed above in terms of bias, standard deviation (s.d.), root
mean squared error (RMSE), empirical size and power of the t-test. More specifically,
we investigate the performance of 2SIV, defined in (3.7), and MGIV defined in (4.12).
For the purposes of comparison, we also consider the (bias-corrected) IPC of Bai (2009)
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and the PC estimator, labeled as (BC-)IPC and (BC-)PC respectively, the CA estima-
tor, as well as the mean-group versions of PC and CA (denoted as MGPC and MGCA),
which were put forward by Pesaran (2006), Westerlund and Urbain (2015) and Reese and
Westerlund (2018). The t-statistics for 2SIV and MGIV are computed using the variance
estimators defined by (3.10) and (4.13), respectively. The t-statistics for IPC, PC and
CA estimators and their MG versions (if any) employ analogous variance estimators.

6.1. Design

We consider the following panel data model:

yit = αi +

k∑

ℓ=1

βℓixℓit + uit; uit =

r2∑

s=1

γ0
sif

0
s,t + εit, (6.17)

i = 1, ..., N , t = −49, ..., T , where the process for the covariates is given by

xℓit = µℓi +

r1∑

s=1

γ0
ℓsif

0
s,t + vℓit; i = 1, 2, ..., N ; t = −49,−48, ..., T. (6.18)

We set k = 2, r2 = 2 and r1 = 3. This implies that the first two factors in uit, f
0
1t and

f0
2t, are also in the DGP of xℓit for ℓ = 1, 2, while f0

3t is included in xℓit only. Observe
that, using notation of earlier sections, h0

t = (f0
1t, f

0
2t)

′ and f0t = (f0
1t, f

0
2t, f

0
3t)

′. 5

The factors f0
s,t are generated using the following AR(1) process f0

s,t = ρfsf
0
s,t−1 +

(1− ρ2fs)
1/2ζs,t where ρfs = 0.5 and ζs,t ∼ i.i.d.N(0, 1) for s = 1, ..., 3. The idiosyncratic

error of yit, εit, is non-normal and heteroskedastic across both i and t, such that εit =
ςεσit(ǫit − 1)/

√
2, ǫit ∼ i.i.d.χ2

1, with σ2
it = ηiϕt, ηi ∼ i.i.d.χ2

2/2, and ϕt = t/T for
t = 0, 1, ..., T and unity otherwise. We define πu := ς2ε /

(
r2 + ς2ε

)
which is the proportion

of the average variance of uit due to εit. This implies ς2ε = πur2 (1− πu)
−1

. We set ς2ε
such that πu ∈ {1/4, 3/4}.

The idiosyncratic errors of the covariates follow an AR(1) process vℓit = ρυ,ℓvℓit−1 +
(1− ρ2υ,ℓ)

1/2̟ℓit; ̟ℓit ∼ i.i.d.N(0, ς2υ) for ℓ = 1, 2. We set ρυ,ℓ = 0.5 for all ℓ. We define

the signal-to-noise ratio (SNR) as SNR :=
(
β2
1 + β2

2

)
ς2υς

−2
ε where ρυ = ρυ,ℓ for ℓ = 1, 2.

Solving for ς2υ gives ς2υ = ς2εSNR
(
β2
1 + β2

2

)−1
. We set SNR = 4, which lies within the

values considered by Bun and Kiviet (2006) and Juodis and Sarafidis (2018, 2020).
The individual-specific effects are generated by drawing initially mean-zero random

variables as µ∗
ℓi = ρµ,ℓα

∗
i + (1− ρ2µ,ℓ)

1/2ωℓi, where α∗
i ∼ i.i.d.N(0, 1), ωℓi ∼ i.i.d.N(0, 1),

for ℓ = 1, 2. We set ρµ,ℓ = 0.5 for ℓ = 1, 2. Subsequently, we set αi = α + α∗
i and

µℓi = µℓ + µ∗
ℓi where α = 1/2, µ1 = 1, µ2 = −1/2, for ℓ = 1, 2.

Similarly, the factor loadings in uit are generated at first instance as mean-zero random
variables such that γ0∗

si ∼ i.i.d.N(0, 1) for s = 1, ..., r2 = 2, ℓ = 1, 2; the factor loadings
in x1it and x2it are generated as

γ0∗
ℓsi = ργ,ℓsγ

0∗
si + (1− ρ2γ,ℓs)

1/2ξℓsi; ξℓsi ∼ i.i.d.N(0, 1) for s = 1, 2; (6.19)

γ0∗
13i = ργ,13γ

0∗
1i + (1− ρ2γ,13)

1/2ξ13i; ξ13i ∼ i.i.d.N(0, 1); (6.20)

5Tables E1-E3 in Appendix E present results for a different specification, where r2 = 3 and r1 = 2. To
save space, we do not discuss these results here but it suffices to say that the conclusions are similar to
those in Section 6.2.
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γ0∗
23i = ργ,23γ

0∗
2i + (1− ρ2γ,23)

1/2ξ23i; ξ23i ∼ i.i.d.N(0, 1). (6.21)

The process (6.19) allows the factor loadings to f0
1,t and f0

2,t in x1it and x2it to be
correlated with the factor loadings to f0

1,t and f0
2,t in uit. On the other hand, (6.20) and

(6.21) ensure that the factor loadings to f0
3,t in x1it and x2it can be correlated with the

factor loadings to f0
1,t and f0

2,t in uit. We consider ργ,11 = ργ,12 = ργ,21 = ργ,22 = ργ,13 =
ργ,23 = 0.5. The factor loadings that enter into the model are then generated as

Γ0
i = Γ0 + Γ0∗

i (6.22)

where

Γ0
i =




γ0
1i γ0

11i γ0
21i

γ0
2i γ0

12i γ0
22i

0 γ0
13i γ0

23i


 and Γ0∗

i =




γ0∗
1i γ0∗

11i γ0∗
21i

γ0∗
2i γ0∗

12i γ0∗
22i

0 γ0∗
13i γ0∗

23i


 .

Observe that, using notation of earlier sections, γ0
yi = (γ0

1i, γ
0
2i)

′ and Γ0
x,i = (γ0

1i,γ
0
2i,γ

0
3i)

′

with γ0
ℓi = (γ0

ℓ1i, γ
0
ℓ2i, γ

0
ℓ3i)

′ for ℓ = 1, 2. It is easily seen that the average of the factor
loadings is E

(
Γ0
i

)
= Γ0. We set

Γ0 =




γ0
1 γ0

11 γ0
21

γ0
2 γ0

12 γ0
22

0 γ0
13 γ0

23


 =




1/4 1/4 −1
1/2 −1 1/4
0 1/2 1/2


 . (6.23)

The slope coefficients in (6.17) are generated as

β1i = β1 + ηβ1i; β2i = β2 + ηβ2i, (6.24)

such that β1 = 3 and β2 = 1. In the case of homogeneous slopes, we impose ρi = ρ,
β1i = β1 and β2i = β2, whereas in the case of heterogeneous slopes, we specify ηρi ∼
i.i.d.U [−c,+c], and ηβℓi =

[
(2c)2/12

]1/2
ρβξβℓi +

(
1− ρ2β

)1/2
ηρi, where ξβℓi is the stan-

dardised squared idiosyncratic errors in xℓit, computed as ξβℓi =
(
v2ℓi − v2ℓ

)[
N−1

∑N
i=1

(
v2ℓi − v2ℓ

)2]−1/2

,

with v2ℓi = T−1
∑T

t=1
v2ℓit, v

2
ℓ = N−1

∑N
i=1

v2ℓi, for ℓ = 1, 2. We set c = 1/5, ρβ = 0.4 for
ℓ = 1, 2.

We consider various combinations of (T,N), i.e. T ∈ {25, 50, 100, 200} and N ∈
{25, 50, 100, 200}. The results are obtained based on 2,000 replications, and all tests
are conducted at the 5% significance level. For the size of the “t-test”, H0 : βℓ = β0

ℓ

for ℓ = 1, 2, where β0
1 and β0

2 are the true parameter values. For the power of the test,
H0 : βℓ = β0

ℓ + 0.1 for ℓ = 1, 2 against two sided alternatives are considered.

Prior to computing the estimators except for CA and MGCA , the data are demeaned
using the within transformation in order to eliminate individual-specific effects. For the
CA and MGCA estimators, the untransformed data are used, but a T × 1 vector of ones
is included along with the cross-sectional averages. The number of factors r1 and r2 are
estimated in each replication using the eigenvalue ratio (ER) statistic proposed by Ahn
and Horenstein (2013).
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6.2. Results

Tables 1–2 report results for β1 in terms of bias, standard deviation, RMSE, empirical
size and power for the model in (6.17).6

Table 1 focuses on the case where N = T = 200 and πu alternates between {1/4, 3/4}.
Consider first the homogeneous model with πu = 3/4. As we can see, the bias (×100)
for 2SIV and MGIV is very close to zero and takes the smallest value compared to the
remaining estimators. The bias of BC-IPC is larger in absolute value than that of IPC
but of opposite sign. This may suggest that bias-correction over-corrects in this case.
MGPC and PC perform similarly and exhibit larger bias than IPC. Last, both CA and
MGCA are subject to substantial bias, which is not surprising as these estimators may
require bias-correction in the present DGP.

In regards to the dispersion of the estimators, the standard deviation of 2SIV and PC
is very similar, which is in line with our theoretical results. For this specific design, IPC
takes the smallest s.d. value among the estimators under consideration. On the other
hand, when it comes to the bias-corrected estimators, bias-correction appears to inflate
dispersion and thus the standard deviation of BC-IPC and BC-PC is relatively large
(equal to 0.805 and 0.885, respectively). As a result, 2SIV outperforms BC-IPC and
BC-PC, with a s.d. value equal to 0.586.

In terms of RMSE, IPC appears to perform best, although this estimator is not rec-
ommended in practice due to its asymptotic bias. 2SIV takes the second smallest RMSE
value, followed by MGIV. CA and MGCA exhibit the largest RMSE values, an outcome
that reflects the large bias of these estimators.

Next, we turn our attention to the model with heterogeneous slopes and πu = 3/4. In
comparison to the homogeneous model, all estimators suffer a substantial increase in bias;
the only exception is MGIV, which has the smallest bias. MGPC and MGCA are severely
biased, both in absolute magnitude as well as relative to the remaining inconsistent
estimators. The s.d. values of MGIV and MGPC are very similar and relatively small
compared to the other estimators. The smallest RMSE value is that of MGIV.

We now discuss the results in the lower panel of Table 1, which correspond to πu = 1/4.
The relative performance of the estimators is similar to the case where πu = 3/4, except
for a noticeable improvement in the performance of BC-IPC. Thus, the results for BC-
IPC and IPC are quite comparable, suggesting that the bias-correction term is close to
zero and so over-correction is avoided. The results for 2SIV are very similar to those for
πu = 3/4, which indicates that the estimator is robust to different values of the variance
ratio. The conclusions with heterogeneous slopes for πu = 1/4 are similar to those for
πu = 3/4.
In regards to inference, the size of the t-test associated with 2SIV and MGIV is close

to the nominal value of 5% under the setting of homogeneous slopes. The same appears
to hold true for BC-IPC when πu = 1/4, although there are substantial distortions
when πu = 3/4. The t-test associated with BC-PC is oversized when πu = 3/4 and the
distortion becomes more severe with πu = 1/4. CA and MGCA have the largest size
distortions. In the case of heterogeneous slopes, MGIV performs well and size is close to
5%. MGPC and MGCA have substantial size distortions regardless of the value of πu.
Table 2 presents results for the case where (N,T ) = (200, 25) (i.e. N is large relative

6The results for β2 are qualitatively similar and so we do not report them to save space. These results
are available upon request.
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to T ) and (N,T ) = (25, 200) (N is small relative to T ) for πu = 3/4. In the former case,
2SIV performs best in terms of bias. IPC has the smallest RMSE, followed by 2SIV. CA
has the largest bias and RMSE. In the case of heterogeneous slopes, MGIV has smaller
absolute bias than MGPC and MGCA. Therefore, MGIV is superior among mean-group
type estimators, which are the only consistent estimators in this design. In the case where
T is large relative to N , 2SIV and MGIV again outperform BC-IPC, BC-PC and CA in
terms of bias, standard deviation and RMSE. As for the properties of the t-test, 2SIV and
MGIV have the smallest size distortions relative to the other estimators, and inference
based on 2SIV and MGIV remains credible even for small values of N or T . Moreover,
2SIV and MGIV exhibit good power properties, whereas MGPC has the lowest power
when N is small relative to T .

7. ILLUSTRATION

In this section we apply our methodology to study the effect of climate shocks on economic
growth using an unbalanced panel of 125 countries over the period 1961-2003. The data
set is taken from Dell et al (2012).
In line with existing literature (e.g. Dell et al 2014), we consider the following bench-

mark static panel data model:

git = β1tempit + γ1precit + β2Ditempit + γ2Diprecit + ηi + τt + uit, (7.25)

where git denotes the growth rate of per-capita output for country i at year t, while
tempit and precit denote the level of temperature (in degrees Celcius) and precipitation
(in units of 100 mm) for country i at year t, i = 1, ..., 126, t = 1, ..., Ti, where min {Ti} =

21, max{Ti} = 43 and T = N−1
∑N

i=1
Ti ≈ 40. Di denotes a binary variable that

equals one if the country i is characterised as “developing” and zero if it is characterised
as “developed”. Thus, β1 and γ1 reflect the effect of temperature and precipitation,
respectively, on economic growth rate for developed economies, whereas β2 and γ2 capture
the corresponding differential effects between developing and developed economies. The
main reason for such a distinction is that developing economies are often reliant on
agriculture or outdoor activities, and therefore they are vulnerable to climate shocks.
Following Dell et al (2012), in the present application a country is defined as developing
if it has below-median PPP-adjusted per capita GDP in the first year the country enters
the dataset, otherwise it is defined as developed.
As it is common practice in the literature (e.g. Colacito et al, 2018), we include country

effects effects, ηi and year effects, τt. In addition to these additive effects, we also allow
for unobserved interactive effects. This offers wider scope for controlling for omitted
variables, including situations where there is cross-sectional dependence. In particular,
uit is given by

uit = ϕ0′
i h

0
t + εit,

where h0
t is a r2×1 vector of year-specific unobserved common shocks with corresponding

country-specific loadings given by ϕ0
i , whereas εit is a purely idiosyncratic error.

We employ four estimators; namely, the two-stage IV (2SIV) estimator analysed in
this paper, a fixed effects (FE) estimator that allows for two-way clustering per country
and region-year7, as in Cameron et al (2011), the pooled common correlated effects (CA)

7See footnote 12 in Del et al. (2012; p.74) for the definition of geographical regions.
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estimator of Pesaran (2006), and the iterative principal components (IPC) estimator of
Bai (2009).
The FE estimator imposes uit = εit by construction, i.e. it assumes there exists no

factor structure. However, in order to try and neutralise the effect of common shocks, we
follow Dell et al (2012) and include year fixed effects interacted with region dummies,
as well as year fixed effects interacted with the developing country dummy.8 For 2SIV,
the number of factors in regressors and uit, r1 and r2 respectively, is estimated using
the eigenvalue ratio test of Ahn and Horenstein (2013). In order to carry out a speci-
fication test of our model (the well-known overidentifying restrictions J-test), we make
use of present and lagged values of all defactored regressors as instruments. Thus, the
total number of instruments equals 8. Since temperature and precipitation are measured
in rather different units, we defactor these variables separately. The CA estimator is
implemented using year-specific cross-sectional averages of all regressors. For the IPC
estimator of Bai (2009), the number of factors in uit is estimated using the Bai and Ng
(2002) model information criteria.
The results are presented in Table 3. For all estimators, we run two different models.

Column (A) corresponds to a specification that imposes the restriction β2 = γ2 = 0; that
is, developing and developed economies are pooled together. The estimates of the coeffi-
cients of temperature and precipitation are negative across all four estimators. However,
the temperature effect is statistically significant only for 2SIV and CA, both at the 10%
level. Moreover, the precipitation coefficient is statistically significant only for 2SIV (at
the 5% level). The J-test statistic of 2SIV rejects the specification of the model, which
implies that developing and developed economies may be affected in a different manner.

Column (B) corresponds to the specification in (7.25), which relaxes the pooling re-
striction. In this case, FE replicates the main panel results reported in Table 3, Column
(3), by Dell et al (2012). As we can see, the effect of temperature on growth appears to
be positive for developed economies and highly negative for developing ones, indicating
substantial heterogeneity between the two groups. However, the estimate of β1 is sta-
tistically significant only for 2SIV and IPC but not FE or CA. Thus, the implications
are substantially different. In particular, the results obtained by 2SIV indicate that a
1oC rise in temperature appears to increase (decrease) growth rates for developed (de-
veloping) economies by .530 (1.42) percentage points (hereafter, p.p.), all other things
being equal.9 The specification of the model is not rejected by the J-test statistic. The
estimated effect of temperature obtained by IPC is somewhat smaller in absolute mag-
nitude than that of 2SIV, both in terms of developing and developed economies. Last,
for FE (CA) the estimated coefficients indicate that a 1oC rise in temperature decreases
the growth rate for developing economies by 1.61 (1.76) p.p., whereas it does not exert
a statistically significant impact on developed economies.
In regards to precipitation, the results obtained by 2SIV indicate that an extra 100 mm

of annual rainfall is expected to decrease growth rates for both developed and developing
economies by approximately .08 p.p. all other things being equal. On the other hand,
the estimated effect of precipitation obtained from IPC and CA is not statistically sig-
nificant for either group of economies. Finally, for FE the estimated precipitation effect
for developed economies is very close to that obtained by 2SIV. However, the estimated
precipitation effect is significantly positive for developing economies.

8Thus, τt cannot be separately identified per se.
9The latter estimate is obtained by adding β̂1 and β̂2.



18 G. Cui, M. Norkute, V. Sarafidis and T. Yamagata

8. CONCLUSIONS

We have analysed the IV estimation approach put forward by Norkute et al. (2021),
in the context of a static, linear panel data model with interactive effects in the error
term and regressors. For models with homogeneous slopes, we studied a two-stage IV
estimator (2SIV), and established

√
NT -consistency and asymptotic normality, under

weak cross-section and time-series dependence in the idiosyncratic errors. For models with
heterogeneous slopes, we studied a mean-group IV estimator (MGIV) and established√
N -consistency and asymptotic normality.
We have compared and contrasted the asymptotic expressions of our 2SIV estimator,

IPC of Bai (2009), PC and CA of Westerlund and Urbain (2015) and Pesaran (2006),
for models with homogeneous slopes. Under conditions similar to those in Bai (2009),
we showed that 2SIV is free from asymptotic bias, whereas the remaining estimators
suffer from asymptotic bias. In addition, it is revealed that 2SIV is asymptotically as
efficient as the bias-corrected versions of PC and CA, while the relative efficiency of
the bias-corrected IPC estimator is generally indeterminate. The theoretical results are
corroborated in a Monte Carlo simulation exercise, which shows that 2SIV and MGIV
perform competently and can outperform existing estimators.
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Table 1: Bias, root mean squared error (RMSE) of the estimators of β1, and size and power of
the associated t-tests when πu = {1/4, 3/4} and N = T = 200.

Homogeneous Slopes Heterogenous Slopes
Estimator Bias

(×100)
S.D.

(×100)
RMSE
(×100)

Size Power Bias
(×100)

S.D.
(×100)

RMSE
(×100)

Size Power

πu = 3/4
2SIV 0.003 0.586 0.586 5.5 100.0 0.583 0.960 1.122 7.9 100.0
BC-IPC −0.149 0.805 0.818 21.9 100.0 0.238 1.246 1.268 10.0 100.0
IPC 0.020 0.528 0.528 6.1 100.0 0.408 1.061 1.137 6.4 100.0
BC-PC 0.306 0.885 0.937 19.7 100.0 0.891 1.181 1.479 17.9 100.0
PC −0.638 0.589 0.868 21.2 100.0 −0.081 0.969 0.973 4.5 100.0
CA 1.859 0.806 2.026 80.1 100.0 2.469 1.131 2.716 64.3 100.0
MGIV 0.000 0.593 0.592 5.1 100.0 0.014 0.958 0.958 4.2 100.0
MGPC −0.650 0.595 0.882 21.5 100.0 −0.636 0.963 1.154 8.7 100.0
MGCA 1.623 0.722 1.776 72.4 100.0 1.693 1.064 1.999 38.3 100.0

πu = 1/4
2SIV −0.002 0.573 0.572 6.0 100.0 0.559 0.992 1.138 9.0 100.0
BC-IPC −0.073 0.438 0.444 6.1 100.0 0.100 1.645 1.648 8.7 100.0
IPC −0.073 0.437 0.443 6.3 100.0 0.107 1.645 1.648 8.8 100.0
BC-PC 2.786 2.520 3.756 72.4 100.0 3.446 2.785 4.430 65.8 100.0
PC −0.638 0.576 0.859 20.2 100.0 −0.097 0.993 0.998 4.7 100.0
CA 2.083 0.920 2.278 84.4 100.0 2.645 1.229 2.916 69.0 100.0
MGIV −0.002 0.582 0.582 5.4 100.0 −0.008 0.980 0.979 4.5 100.0
MGPC −0.646 0.586 0.872 20.3 100.0 −0.649 0.983 1.177 9.5 100.0
MGCA 1.789 0.788 1.955 76.5 100.0 1.827 1.111 2.138 42.4 100.0
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Table 2: Bias, root mean squared error (RMSE) of the estimators of β1, and size and power of
the associated t-tests when πu = 3/4, N = 200, T = 25 and N = 25, T = 200.

Homogeneous Slopes Heterogeneous Slopes
Estimator Bias

(×100)
S.D.

(×100)
RMSE
(×100)

Size Power Bias
(×100)

S.D.
(×100)

RMSE
(×100)

Size Power

N = 200, T = 25
2SIV 0.126 1.941 1.944 6.7 99.8 1.519 2.156 2.637 12.4 100.0
BC-IPC −1.180 2.610 2.864 23.6 97.6 −0.070 2.911 2.911 17.1 98.1
IPC 0.374 1.870 1.906 8.7 99.9 1.301 2.234 2.585 12.9 100.0
BC-PC 0.825 2.746 2.867 12.7 99.8 2.185 2.842 3.584 20.9 100.0
PC −0.211 2.756 2.763 11.6 99.7 1.145 2.842 3.063 12.6 99.8
CA 2.084 2.000 2.888 21.4 100.0 3.404 2.218 4.062 37.8 100.0
MGIV 0.482 2.534 2.578 9.9 99.4 0.606 2.687 2.754 10.8 99.6
MGPC −0.414 2.554 2.587 9.0 99.0 −0.279 2.737 2.751 9.9 98.0
MGCA 1.850 2.127 2.819 15.9 100.0 1.914 2.334 3.018 14.8 100.0

N = 25, T = 200
2SIV 0.016 1.715 1.715 9.2 99.9 0.480 2.736 2.777 8.7 97.7
BC-IPC −2.552 9.303 9.644 65.0 79.1 −2.679 10.032 10.381 51.4 69.5
IPC 0.639 2.883 2.953 14.8 98.2 0.939 3.885 3.996 13.2 91.1
BC-PC 2.547 5.525 6.083 29.5 95.7 2.910 6.102 6.759 24.5 87.7
PC −5.703 2.103 6.078 82.5 57.8 −5.413 3.011 6.194 42.6 33.2
CA 5.971 3.267 6.805 64.3 100.0 6.277 4.086 7.489 39.9 99.7
MGIV 0.038 1.742 1.742 6.6 99.9 0.036 2.725 2.725 5.6 94.7
MGPC −6.047 2.179 6.427 83.6 48.3 −5.997 3.018 6.713 48.3 26.5
MGCA 4.705 2.610 5.380 54.6 100.0 4.689 3.416 5.801 32.0 99.5

Table 3: Climate shocks and economic growth
2SIV FE CA IPC

(A) (B) (A) (B) (A) (B) (A) (B)

β̂1
-.427∗

(.241)
.530∗

(.315)
-.328
(.285)

.262
(.311)

-.412∗

(.230)
.194
(.232)

-.093
(.176)

.392∗

(.202)

β̂2 − -1.946∗∗∗

(.534) − -1.610∗∗∗

(.485) − -1.764∗∗∗

(.528) − -1.368∗∗∗

(.306)

γ̂1
-.089∗∗

(.041)
-.079∗

(.046)
-.008
(.044)

-.083∗

(.050)
-.009
(.052)

-.083
(.083)

-.012
(.034)

-.052
(.047)

γ̂2 − -.016
(.088) − .153∗

(.078) − .068
(.102) − .064

(.069)

β̂1 + γ̂1
-1.417∗∗∗

(.429)
-1.348∗∗∗

(.408)
-1.570∗∗∗

(.474)
-.976∗∗∗

(.272)

β̂2 + γ̂2 − -.033
(.056) − .070∗

(.042) − -.015
(.060) − .012

(.046)
r̂2 1 3 − − − − 2 2
r̂1 3 3 − − − − − −
J

13.21
[.040]

4.42
[.352] − − − − − −

Notes: Standard errors in parentheses and p-values in square brackets. * p<0.10, ** p<0.05, *** p<0.01.

In column (B), the effect on developing economies is obtained as β̂1 + γ̂1 (or β̂2 + γ̂2).
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