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Abstract: Gray wolf optimizer (GWO) is a new heuristic algorithm. It has few parameters and strong 
optimization ability and is used in many fields. However, when solving complex and multimodal 
functions, it is also easy to trap into the local optimum and premature convergence. In order to 
boost the performance of GWO, a tent chaotic map and opposition-based learning Grey Wolf 
Optimizer (CO-GWO) is proposed. Firstly, some better values of the population in the current 
generation are retained to avoid deterioration in the next generation. Secondly, tent chaotic map 
and opposition-based（OBL）are introduced to generate values that can traverse the whole feasible 
region as much as possible, which is conducive to jumping out of local optimization and 
accelerating convergence. Then, the coefficient a   is dynamically adjusted by the polynomial 
attenuation function of the 2-decay method. Finally, the proposed algorithm is tested on 23 
benchmark functions. The results show that the proposed algorithm is superior to the conventional 
heuristic algorithms, GWO and its variants in search-efficiency, solution accuracy and convergence 
rate. 
Keywords: Gray wolf optimizer, Opposition-based Learning, tent chaotic map, Polynomial decay 
function 

1. Introduction  

Bionics was founded in the mid-1950s. Many scientists seek new inspiration from biology for 
optimizing systems. The simulated evolutionary algorithm, which is suitable for the optimization 
of complex problems in the real world, has been developed by some scientists from the mechanism 
of biological evolution. For example, simulated annealing (SA)[1] was first used to optimize 
combinatorial problems by Kirkprtricrk et al. It overcomes the shortcoming that the hill-climbing 
(HC) method is very easy to fall into local solutions. In recent years, the main development direction 
of SA is to combine with other algorithms to form new hybrid algorithms to take full advantage of 
jumping and avoiding local solutions. Ant Colony Algorithm (ACA) was first proposed by Italian 
scholar Dirgo et al[2]. It is a new simulated evolutionary algorithm. The method is also used to 
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solve the Traveling Salesman Problem (TSP), Assignment Problem, and Scheduling Problem, and a 
series of better experimental results are obtained. Influenced by it, ACA gradually attracted the 
attention of other researchers and used the algorithm to solve some practical problems. Later, 
more and more biomimetic algorithms were proposed and used in more fields. 

Heuristic algorithms are becoming more and more mature, and it is an algorithm with global 
optimization performance and strong versatility that is suitable for parallel processing. It is used in 
engineering, aerospace, medicine, management, economics and many other fields. Heuristic 
algorithms are inspired by human intelligence, the social nature of biological groups and the laws 
of natural phenomena, and can be divided into evolutionary algorithms and group intelligence 
algorithms. Including Genetic Algorithm (GA)[3], Differential Evolution algorithm (DE)[4], Immune 
Algorithm (IA)[5], Ant Colony Optimization algorithm (ACO)[6], Particle Swarm Optimization 
(PSO)[7], Artificial Bee Colony (ABC)[8], Firefly Algorithm (FA)[9], Bat Algorithm[10], Grey Wolf 
Optimization (GWO)[11], Shuffled frog-leaping algorithm(SFLA)[12] , etc. According to different 
search capabilities, heuristic algorithms are divided into global search and local search . Therefore, 
different heuristic algorithms should be used for different problems. The optimal value or 
approximate optimal value can be found by a heuristic algorithm in a certain period of time. 
Optimization problems can be divided into two categories: (1) Solving the optimal problem of a 
function. (2) A combinatorial optimization problem with optimal objective function value in a 
solution space. Typical combinatorial optimization problems include the Traveling Salesman 
Problem (TSP), Scheduling Problem, Knapsack Problem, Bin Packing Problem, etc. 

Most search algorithms have problems such as falling into local optimal and slow convergence 
speeds when dealing with complex problems.For example, the GWO search method is simple and 
difficult to deal with complex issues.The GA search method is complicated and the search time is 
long. So this paper proposes an CO-GWO. The main contributions of this paper are as follows:  

⚫ Increase the probability of the population spreading over the feasible region, which is 
conducive to quickly finding the optimal value and accelerating the convergence speed. 

⚫ the gray wolf can exploration as much as possible in the early stage to avoid falling into 
local optimization. 

⚫ Through comparative experiments with DE, PSO, ABC, etc, it is proved that CO-GWO 
performs well in solving simple and complex problems. 

The rest of the paper is organized as follows:  

Section 2 presents a literature review of GWO. Section 3 gives an overview of GWO, OBL and 
tent map. Section 4 outlines the proposed GWO algorithm. The results and discussion of 
benchmark functions are in Section 5. Finally, Section 6 concludes the work. 

2. Literature review and Related work 

2.1 Literature review 

GWO was developed based on the social class and hunting mechanism of the gray wolf. It has 
been successfully applied to solve the NP-hard problem, such as economic scheduling issues[13], 
time forcases[14]. Like traditional heuristic algorithms, when GWO is used to optimize complex 
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multimodal functions, its performance will be worse and it is easy to fall into local optimization. 
And its performance for some unimodal functions is not as good as other conventional heuristic 
algorithms. Therefore, in order to improve the performance, many improvement methods had 
been proposed. According to the references, it is divided into the following four types: 
1) Improve population 

The population generated by the iteration affects the current optimal value and the 
convergence speed. OBL is introduced into GWO for the initial population and the iteratively 
generated population to generate opposing populations so that the generated values are as close 
to the optimal values as possible[15]. For high-dimensional space, if each dimension is opposed, it 
may generate bad values, so selective use of OBL can generate better values [16]. In addition, 
chaotic mapping enables the population to be uniformly distributed, laying the foundation for a 
diverse global search[17]. 
2) Improve the balance between exploration and exploitation 

In the conventional GWO, the parameter a  is a crucial coefficient, which implements the 
process from exploration to exploitation. When the parameter a   decay rate is slow, the 
proportion of gray wolf exploration will be greater than the development proportion, which is 
conducive to global search. On the contrary, it is conducive to local search. In order to balance 
exploration and exploitation, an exponential function is used to decay a  throughout iterations, 
exploitation and exploration are 30% and 70%, respectively[18]. To balance exploitation and 
exploration more flexibly, an adaptive-based nonlinear function is used to adjust the parameters 
a   [15][19][20]. These improvements perform well to some extent, but will still fall into local 
optimization, so other improvements are needed. 
3) Improve the position-updated strategy 

Improved position updating has a positive effect on the performance of the algorithm. Various 
improvement methods have been proposed. In the memory-based Grey Wolf Optimizer (mGWO), 
the search mechanism of the wolves is modified based on the personal best history of each wolf, 
crossover and greedy selection [21]. In the GWO based on the extended model (E-GWO), the next 
wolves select and update their positions according to the previous and the first three wolves in 
each iteration [22]. In the GWO based on the incremental model (I-GWO), each wolf updates its 
position based on all the wolves selected before it [22]. In the GWO based on the Group-based 
Synchronous-Asynchronous, the method incorporates a synchronous-asynchronous processing 
scheme, a set of different nonlinear functions and an operation to increase diversity [23]. 
4) Hybrid algorithms 

In addition,  the mixed-use of the heuristic optimization algorithm is an important means to 
improve the algorithm. The improvement of this method will often play to the strengths of their 
respective algorithms to avoid shortcomings. For example, mixing PSO with GWO[24][25], DE and 
GWO mixing [26], GA and GWO hybrid[27], etc. 

2.2. Related Work 

2.2.1 Tent map 

In the heuristic optimization algorithm, the randomness and uniformity of the initial 
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population are very important to the optimal solution. When the initial population spreads over 
the whole feasible region, the generated initial population likely contains the optimal solution or 
the value near the optimal solution, which improves the convergence speed and the accuracy of 
the optimal value. Meanwhile, chaotic maps are used to generate chaotic sequences, which are 
nonlinear, ergodic, random, and sensitive to the initial value. Therefore, it can be used as an 
alternative to pseudo-random number generators in the field of optimization, and often achieves 
better results than pseudo-random numbers [17]。 

Reference [28] states that tent map has better ergodicity, regularity and faster speed than a 
logistic map. And it is also proved by rigorous mathematical reasoning that the tent map has a 
prerequisite for optimizing the chaotic sequence of algorithms. Tent map is a piecewise linear 
mapping, named for its shape like a tent. Moreover, it is a 2D chaotic mapping, which is widely 
used in chaotic encryption systems. 

In this paper, tent mapping is used to generate the initial population. The Tent map function 
is given by Eq (2.1)： 
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 （2.1） 

where nx  is the value of the variable x  in the nth  iteration, n  is the number of the iterative 

step, and a  is the system parameter and takes 0.5 generally. In addition, 
1 [0,1]

n
x +  . 

2.2.2 OBL 

OBL is to generate an opposition population based on the current population, which helps to 
jump out of the local optimum and improve the probability of finding the global optimum. In 
heuristic algorithms, the initial population is generally generated randomly. If the randomly 
generated initial population is far from the optimal value, the convergence is slow and may fall into 
the local optimal value. However, the position of the opposing population generated by the OBL is 
the opposite position of the original population, so that the population is more evenly distributed 
in the feasible region, it will be beneficial to the global search and accelerate the convergence 
speed. The opposition value is generated by Eq. (2.2) as follows[15].  

 x̂ a b x= + −  （2.2） 

Where x  is the original value, x̂  is the opposition value, a  and b  are the upper and lower 
bounds of x , respectively. 

Of course, for a D-dimensional search space, (1, )i D , where OBL is also used to generate 
opposing populations, there is an Eq. (2.3) 

 ˆ
i i i i

x a b x= + −  （2.3） 

Where ˆix  is the opposition value of ix  in the ith  dimension, ia  and 
ib  are the upper 

and lower bounds of the ith  dimension respectively.  
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2.2.3 Polynomial decay function based on the 2-Decay method 

Polynomial decay function is a commonly used learning rate decay method. Its general form 
is given by the following Eq. (2.4) as follows[29]： 

 

( ) ( )0 1

N

e e

t
L t L L L

T

 = − − + 
 

 （2.4） 

where 
0L  is the initial learning rate, 

e
L  is the termination learning rate, t  is the number 

of current iterations, T  is the total number of iterations, and N  is the exponent of the decay 
function( 0;N N  ). When 1N  , the overall trend of changes in the learning rate is steep 
first and then flat. When 1N  , the overall trend of changes in the learning rate is gentle first and 
then steep, which means that the learning rate in the early stage has not changed much. When 

1N = , a constant rate of change is maintained. 
When 1N  , in order to increase the decay rate of its early learning rate, there is a polynomial 

decay function based on the 2-decay method[29]. Its general form is given by the following Eq. 
(2.5)： 

 ( ) ( ) ( )2

0 1
2

N

e e

t
L t L L L t Tt

T

  = − − + + − 
 

 （2.5） 

Where    is the amount of translation, in order to meet the decay condition    should be 
taken within a certain range, otherwise it will exceed the upper and lower bounds 

0L  and 
e

L . 

For example, 74 e = − , 0 2L = , 0
e

L = , 100T = , 0.3N = , the attenuation trend is shown 

in Fig.1 below. It can be seen from the figure that the learning rate of the first 900 times decays 
very slowly, and that of the next 100 times decays very fast. 

 

Fig.1 Polynomial decay function trend chart of the 2-decay method 

2.2.4Grey Wolf Optimizer 

GWO is a heuristic optimization algorithm proposed by Seyedali Mirjalili et al. in 2014 [11]. 
The core idea of the algorithm is the behavior of gray wolves in searching and capturing prey. 
According to the behavior of gray wolves in hunting, gray wolves are divided into four 
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categories:alpha wolf (α), beta wolf (β), delta wolf (δ) and omega wolf (ω). α is the head wolf of 
the whole wolf pack, with the best position advantage. β and δ are the followers of α, and the 
location advantages are second and third, respectively. ω is the worst position. 

During the capturing prey , the gray wolf knows the specific location of the prey and surrounds 
the prey . The following Eqs. (2.6)-(2.10) will describe this process： 

 * ( ) ( )PD C X t X t= −  （2.6） 

 ( 1) ( ) *
p

X t X t A D+ = −  （2.7） 

 
12 *A a r a= −  （2.8） 

 
22*C r=  （2.9） 

where t  indicates the current iteration, X  is the position vector of a grey wolf and 
PX  

indicates the position vector of the prey, A  and C  are two coefficient vectors, both 
1r  and 

2r  

are random vectors in [0,1], the coefficient a  is decreased from 2 to 0 in Eq(2.10). 

 

max

2(1 )
t

a
Iter

= −  （2.10） 

Where t  is the current iteration, 
maxIter  is the total number of iterations. 

When the prey position is known, the gray wolf ( )X t  is based on the equivalent (2.6) and 

(2.7) to update its position according to the target prey
PX . Different places around the best agent 

can be reached with respect to the current position by adjusting the value of A  and C   vectors 
according to equations (2.8) and (2.9). As the position of the gray wolf is updated, A  and C  

gradually become smaller, making the position of the final gray wolf ( 1)X t +   gradually close to 

the target prey 
PX . 

When searching for prey, the location of the prey is unknown. The position of ω in the pack 
will update the position according to the three elite wolves α, β and δ, making the updated position 
better than the current position. The three elite wolves are the best three wolves after each 
position update, so α, β and δ are subject to change. The update method is shown in the following 
Eqs. (2.11)-(2.13). 

 1 2 3* , * , *D C X X D C X X D C X X     = − = − = −   （2.11） 

 1 1 2 2 3 3*( ), *( ), *( )X X A D X X A D X X A D     = − = − = −  （2.12） 
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 1 2 3(t 1)
3

X X X
X

+ +
+ =  （2.13） 

where 
1 2 3, ,C C C  

and 
1 2 3, ,A A A  

are three coefficient vectors respectively, X
, X 

, 

X  are positions of the alpha wolf (α), beta wolf (β), and delta wolf (δ) in the search space. X  

is the position vector of a current grey wolf. (t 1)X +  is the updated position vector. 
The pseudo code of the GWO algorithm is presented in Fig.2. 

Initialize the grey wolf population 
i ( 1,2,3,..., )X i n=  and initialize a , A and C  

Calculate the fitness of each search agent and find X , X 
and X  

X =the best search agent 

X 
=the second best search agent 

X =the third best search agent 
while ( t<Itermax) 

for ((i=0; i<N1+N2+N3; i++) 
Update the position of the current search agent by equation (2.11), (2.12) and (2.13) 

end  

Update a , A , and C  

Calculate the fitness of all search agentsUpdate X , X   and X , 
1t t= +  

end  

return  X
 

Fig.2. Pseudo code of the GWO algorithm 

3 The proposed algorithm 

In this paper, CO-GWO is proposed, which improves the population generation mode and the 
balance between exploitation and exploration. The population is divided into two parts. Part A is 
to keep the better values of the current population without any treatment, and directly use it for 
subsequent iterative updates. Part B is generated by the tent map and OBL. And the two parts add 
up to a population size equal to the initial population. Then the polynomial decay function of the 
2-decay method is used to update the parameter a   to balance the relationship between 
development and exploration. 

3.1 The population generation mode improvement 

For the conventional GWO, the initial population 1 2{ , ,..., ,..., }
i i i ij iD

X x x x x= , (1, )i N ,

(1, )j D  is randomly generated in the search space, where N  is the population size, D  is 
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the dimension of the problem. Here, we divide the population into two parts, as follows: 
1) Part A： 

The population fitness values are sorted, and most of the better individuals of the population  
are preserved. Here, the number of better values to be retained is determined according to Eqs. 
(3.1) and (3.2), so that better and better values are retained during the iteration process. Part one 

of the population is represented as 
1P , and its population number is 

1N . 

 ( )1 *N round N=   （3.1） 

 ( )0 01
t

T
 =  + −  （3.2） 

where N   in Eq. (3.1) denotes the population size,    denotes the ratio of the number of 

retained better values to the population size, 0  in Eq. (3.2) is the initial percentage of retained 

better values to the population, t  is the current iteration, T  is the total number of iterations, 
and round  denotes rounding to the nearest whole number.  

2) Part B： 

A value 
0X  is randomly selected as the initial value of the tent map in the population P1. 

And the tent map is performed using Eq. (3.3), where the number of populations generated by 

chaos is 
2N . 

2N  will decreases gradually with the iteration, so that the values generated in the 

later stage will no longer diverge. And the later population is composed almost entirely of the best 
individuals of each iteration, making the value of fitness gradually approach the optimal value, 
which is conducive to convergence to the optimal value at a later stage, as calculated in Eq. (3.4). 

Then the opposite population of the mapped population is generated by Eq. (2.3), and 
3N  

opposite values are obtained, where
2 3N N= . Therefore, the size of the population is 

2 2 3P N N= + . 

 

( )
1

,    0  

1
,   a  1

1

ij

ij

ij

ij

p

p

p

ij p

p

x
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a
x

x
x

a

+


 

= 
−

  −

 （3.3） 

 1
2

1
=

2

N
N

−
 （3.4） 

In Eq. (3.3), 2[1, ]p N . In addition, to avoid scale-inconsistent data leading to instability of 

the algorithm, the initial Tent map value by selected randomly needs to be normalized to [0,1] 

using eq (3.5), 1 [0,1]p

ijx
+  . And the mapped value needs to be inversely normalized to the upper 

and lower bounds of ij
x  by Eq. (3.6).  
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1

1

p

ij jp

ij

j j

x a
Y

a b

+
+ −
=

−
 （3.5） 

 
1 1 *p p

ij ij j j jX Y a b a
+ += − +  （3.6） 

where j
a  and j

b  are the lower and upper bounds of ij
x  in the jth  dimension respectively. 

Finally, the complete population [ 1, 2]P P P=  is used for later iterations. 

3.2 Improve the balance between exploration and exploitation 

In GWO, the value of A  determines the exploration and exploitation behavior of the Gray 

Wolf. When 1A  , the gray wolf is committed to exploration to conduct a global search, which 

easily jumps out of the local optimum. When 1A  , the gray wolf is committed to exploitation to 

conduct a local search to find the optimum at the current location. Therefore, in order to increase 
the number of explorations in the early stage, the polynomial decay function of the 2-decay 
method is used to update parameter a   following Eq. (3.7). And then the parameter A   is 
controlled according to Eq. (2.8), so that there are enough exploration times in the early stage of 
the algorithm. This method is conducive to a comprehensive search in the whole feasible region 
to avoid getting trapped in local optimum and locating the optimal value more accurately. 

 ( ) ( )2

0 1
2

N

e e

t
a B B B t Tt

T

 = − − + + − 
 

 （3.7） 

where 0B   is the upper bound of a  , 
e

B   is the lower bound of a  , t   is the number of 

current iterations, T  is the total number of iterations, and N  is the exponent of the decay 
function( 0;N N   ).Where    is the amount of translation, in order to meet the decay 
condition   should be taken within a certain range, otherwise it will exceed the upper and lower 
bounds 

0B  and 
e

B .  

3.3 Overall process of CO-GWO 

Based on the above analysis, the pseudo code of the proposed CO-GWO can be presented as 
follows in Fig.3 and the main flowchart of the proposed algorithm is demonstrated in Fig.4. 

Initialize the population randomly P0 in the search space and initialize parameters； 

While(t<Itermax) 
    Calculate fitness values and arrange them  

    P1:N1 better value in P0 is retained By Eqs. (3.1) and (3.2) 
    Randomly select an individual x0 in P1 as the initial value of tent map 

    Generate N2 chaotic populations by Eq. (3.3) 
    Generate the N3 opposite population of chaotic populations by Eq. (2.3) 
    Combine N2 and N3 into P2 
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    Combine P1 and P2 as the current population P 

    Find the X = the best search agent 

    Find the X  = the second best search agent 

    Find the X = the third best search agent 

    Update a  according to Eq. (3.7) 
    Update A  and C  according to Eqs. (2.8) and (2.9) 
    For (i=0; i<N1+N2+N3; i++) 
      Update the position of wolves according to Eqs. (2.11), (2.12) and (2.13) 

end 

return X  

    t = t + 1; 
end 

return X  

Fig.3 pseudo code of theCO- GWO algorithm 
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start

initialization parameters 

and population P0

Calculate fitness values 

and arrange them

P1:N1 better value in 

P0 is retained By Eqs. 

(3.1)\(3.2)

Find Xα, Xβ, Xδ, and Xα 

is the current best 

value

Update the population by 

Eqs (2.11)\(2.12)\(2.13)

Condition 

satisfied?
Output the Xα

end
Update parameters by Eqs. 

(3.7)\(2.8)\(2.9)

P2:N2 values are 

generated using Tent 

map and OBL by Eqs. 

(2.3)\(3.3)\(3.4)

Combined population 

P1 U P2=P

Y

N

 

Fig.4 The main flowchart of CO-GWO  

After calculating fitness and sorting, CO-GWO retains the population P1 corresponding to the 
better fitness according to Section 3.1 of the article, uses tent chaotic mapping and OBL to generate 
population P2, and combines population P1 and P2 to obtain population P. Find the best three 

values X , X  , X  of the current generation in the population P. Use part 3.2 of the article 

to control parameter a , and update the population according to part 2.2.4 of the article until the 
conditions are met to output the optimal value. The improved algorithm enables the population 
to traverse the entire feasible region as much as possible without changing the bad condition, and 
at the same time increases the gray wolf's exploration opportunities, which is conducive to jumping 
out of the local optimum and speeding up the search and convergence speed. 

4. Tests and analysis 

In this section, the proposed algorithm is tested on 23 benchmark functions. Although the 
function is simple, it can compare our results. Table 1 shows unimodal benchmark functions, Table 
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2 shows multimodal benchmark functions, and Table 3 shows fixed-dimension multimodal 

benchmark functions. Where Dim  denotes the dimension, Range  denotes the range of values, 

and 
minf  denotes the minimum value of the function. In addition, we also choose some classical 

heuristic optimization algorithms for comparisons, such as DE, PSO, ABC, GSA, and Whale 
Algorithm (WOA)[30]. Meanwhile, others improved GWO are also compared, for example, 
GWO[11], OGWO[15] and IGWO[17]. 

The population size of each algorithm is 50 and the number of iterations is 1000. In order to 
make the comparison more accurate, each algorithm is run 100 times to calculate the average value 
and variance and then compared. The parameters of each algorithm are shown in Table 4. 

In addition, let coefficients of the polynomial decay function of the 2-decay method as follows 

74 e = − , 
0 2B = , 0

e
B = , 100T = , 0.3N = . 

Function Dim  Range  
minf  

2

1 1
( )

n

ii
f x x

=
=  30 [-100,100] 0 

2 11
( )

n n

i i ii
f x x x==
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( )2

3 1 1
( )

n i

ji j
f x x

= =
=   30 [-100,100] 0 
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( ) ( )21 22

5 11
( ) [100 1 ]

n

i i ii
f x x x x

−
+=
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n
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f x x

=
= +  30 [-100,100] 0 

4

7 1
( ) [0,1)

n

ii
f x ix random

=
= +  30 [-1.28,1.28] 0 

Table .1. Unimodal benchmark functions 

 

Function Dim  Range  
minf  

( )8 1
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n
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=
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Table. 2. Multimodal benchmark functions 
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4 8
f x x x x x

  
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=
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( )( )
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22 1
( )

T

i i ii
f x X a X a c

−

=
 = − − − +   4 [0,10] -10.4028 

( )( )
110

23 1
( )

T

i i ii
f x X a X a c

−

=
 = − − − +   4 [0,10] -10.5363 

Table .3. Fixed-dimension multimodal benchmark functions 

 

Algorithms The parameters 

PSO 
1 2 2C C= = , 0.5 =  

DE 0.5F = , 0.3CR =  

ABC 60T = , 0.2ER =  

GSA 0 100G =  

WOA 2a = , 1b =  

Table. 4. The parameters of algorithms. 

4.1 Compared with other classical heuristic algorithms 

Table 5, Table 6 and Table 7 show the means and variances of the 23 benchmark functions in 
different heuristic algorithms, respectively. As can be seen from Table 5, the CO-GWO is very 
friendly to unimodal benchmark functions for finding the optimal value. Only F6 has the best 
performance of GSA. Among them, the CO-GWO is particularly prominent in F1, F2, F3, F4, F5 and 
F7, and has the fastest convergence, as can be seen in Fig. 5. 

  DE GSA ABC PSO WOA CO-GWO 

F1 
Mean 9.166e-12 4.273e-16 3.566e-01 3.778e-01 2.320e-16 2.067e-129 

Std 5.180e-12 1.169e-16 1.506e-01 1.424e-01 6.177e-16 1.032e-128 

        

F2 
Mean 1.147e-07 2.523e-02 4.697e-02 2.327 6.306e-10 1.928e-75 

Std 3.094e-08 2.523e-01 1.137e-02 6.577e-01 3.825e-09 2.854e-75 

        

F3 
Mean 2.797e+04 3.568e+02 3.497e+04 8.073e-01 1.817e+01 3.881e-30 

Std 3.428e+03 1.197e+02 4.603e+03 3.294e-01 1.875e+01 2.612e-29 

        

F4 
Mean 1.293 5.864e-02 1.946e+01 3.294e-01 6.204 7.921e-33 

Std 2.355e-01 2.204e-01 6.119 6.049e-02 3.370 5.593e-32 

        

F5 
Mean 2.976e+01 4.506e+01 3.851e+02 6.889e+01 3.693e+01 2.654e+01 

Std 1.302e+01 6.866e+01 1.656e+02 1.577e+01 4.554e+01 5.164e-01 

        

F6 
Mean 9.544e-12 4.479e-16 3.579-01 1.618 8.814e-06 4.609e-01 

Std 4.729e-12 1.074e-16 1.190e-01 0.569e-01 3.563e-05 2.634e-01 

        

F7 
Mean 2.150e-02 3.357e-02 1.022e-01 1.147 2.563e-02 3.380e-04 

Std 5.232e-03 2.262e-02 2.642e-02 4.378e-01 9.336e-03 2.092e-04 

Table. 5. Results of unimodal benchmark functions 
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Fig.5.  Convergence diagram of F1, F2, F3, F4, F5 and F7 

 

Table 6 shows the multimodal benchmark functions in each heuristic optimization algorithm. 
CO-GWO is relatively friendly to most multimodal functions. And F9 and F11 are directly their 
optimal values 0. It can be seen that CO-GWO has a very strong optimization ability, can well jump 
out of local optimization and converge quickly. Figure 6 shows the convergence of F9, F10 and F11, 
which shows that the convergence of CO-GWO is much faster than other optimization algorithms. 
However, F12 and f13 are more prominent in DE. 

 

  DE GSA ABC PSO WOA CO-GWO 

F8 
Mean -9.530e+03 -2.736e+03 -7.548e-03 -1.285e+03 -5.677e+03 -4.504e+03 

Std 5.892e+02 4.043e+02 1.222e+03 1.867e+02 1.459e+02 2.850e+02 
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F9 
Mean 8.598e+01 1.682e+01 2.153e+02 7.306+01 9.430e+01 0 

Std 7.766 5.228 1.877e+01 1.730e+01 6.461e+01 0 

        

F10 
Mean 8.494e-07 1.344e-08 2.444e-01 1.168 1.963e+01 7.638e-15 

Std 2.110e-07 1.601e-09 7.334e-02 3.030e-01 2.282 1.184e-15 

        

F11 
Mean 3.693e-10 4.893 6.488e-01 1.750e-02 1.227e-02 0 

Std 1.584e-09 2.047 1.188e-01 7.127e-03 1.680e-02 0 

        

F12 
Mean 3.158e-12 1.153e-01 1.116 1.132e-01 4.138e-01 2.153e-02 

Std 1.846e-12 2.064e-01 9.338e-01 5.618e-02 6.167e-01 1.351e-02 

        

F13 
Mean 1.136e-11 2.053e-02 3.445 1.528 7.961e-03 2.795e-01 

Std 7.163e-12 1.604e-01 2.591 4.518e-01 1.668e-02 1.718e-01 

Table. 6.  Results of multimodal benchmark functions 

 

  

 

 

Fig.6. Convergence diagram of F9, F10 and F11 

 

As can be seen from Table 7, for fixed-dimension multimodal benchmark functions, the 
performance of each heuristic algorithm is similar. In the end, they converge near the optimal value. 
However, CO-GWO converges faster than the other algorithms, especially the functions F14, F15, 
F17 and F18, as shown in Figure 7. 

 

 



17 

 

  DE GSA ABC PSO WOA CO-GWO 

F14 
Mean 9.980e-01 3.539 9.980e-01 1.267e+01 9.980e-01 9.980e-01 

Std 2.566e-15 2.291 2.566e-15 1.492e-13 9.383e-16 6.147e-07 

        

F15 
Mean 3.744e-04 4.491e-03 7.117e-04 3.535e-04 2.388e-03 3.149e-04 

Std 1.788e-04 2.564e-03 7.151e-05 1.455e-04 5.345e-03 2.719e-05 

        

F16 
Mean -1.031 -1.031 -1.031 -1.031 -1.031 -1.031 

Std 1.562e-15 1.337e-15 1.562e-15 1.560e-15 1.522e-15 5.181e-06 

        

F17 
Mean 3.978e-01 3.978e-01 3.978e-01 3.978e-01 3.978e-01 3.978e-01 

Std 1.060e-15 1.060e-15 1.060e-15 1.060e-15 1.060e-15 6.730e-05 

        

F18 
Mean 3 3 3 3 3 3 

Std 1.338e-15 6.657e-15 9.004e-16 8.993e-16 1.329e-15 2.388e-06 

F19 
Mean -3.004e-01 -0.300 -3.004e-01 -3.187 -3.004e-01 -3.005e-01 

Std 3.905e-16 3.905e-16 3.905e-16 5.513e-01 3.905e-16 3.905e-16 

        

F20 
Mean -3.318 -1.973 -3.318 -3.255 -3.251 -3.223 

Std 1.892e-2 5.587e-01 1.783e-02 5.931e-02 7.517 5.315e-02 

        

F21 
Mean -1.007e+01 -4.885 -8.883 -5.157 -7.237 -9.823 

Std 7.470e-01 7.695 2.273 7.173e-01 2.837 7.267e-01 

        

F22 
Mean -1.040e+01 -7.650 -9.737 -5.193 -7.371 -1.025e+01 

Std 1.543e-14 2.743 1.651 7.478e-01 3.010 5.929e-01 

        

F23 
Mean -1.053e+01 -1.053e+01 -1.023e+01 -5.290 -7.170 -1.0203e+01 

Std 1.426e-14 1.145e-14 1.173 9.271e-01 2.952 5.883e-01 

Table .7. Results of fixed-dimension multimodal benchmark functions 
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Fig.7.  Convergence diagram of F14, F15, F17and F18 

 

F1~F7 are unimodal benchmark functions, which have no obvious local solution. Many 
optimization algorithms can converge to the optimal value, but CO-GWO can converge to a better 
optimal value. F8~F13 are multimodal benchmark functions, which have multiple local solutions. 
It is easy to fall into local optimal values when optimizing such functions. However, CO-GWO can 
always jump out of the local optimal solution and converge to the overall optimal solution, which 
has great advantages. F14~F23 are fixed-dimension multimodal benchmark functions. For such 
functions, many optimization algorithms can converge to the optimal value, but CO-GWO 
converges faster in most cases. 

4.2 Compared with other improved gray wolf algorithms 

At present, there are some improved gray wolf algorithms, such as OGWO and IGWO. And 
they also performed well in their respective periods. Therefore, the current CO-GWO algorithm is 
compared with other improved gray wolf algorithms. 

As can be seen from Table 8, each of the improved algorithms performs very well in the 
unimodal benchmark functions for finding the best. However, CO-GWO performs the most 
outstandingly and shows an amazing result in finding the optimum. Both in the optimal value and 
convergence speed, it far exceeds the other improved algorithms. Figure 8 shows the convergence 
of unimodal benchmark functions in each improved gray wolf algorithm. 

 

  GWO OGWO IGWO CO-GWO 

F1 
Mean 3.435e-70 7.223e-92 1.061e-97 2.066e-129 

Std 9.357e-70 2.148e-91 3.708e-97 1.031e-128 

      

F2 
Mean 4.961e-41 5.434e-54 1.936e-56 1.928e-75 

Std 7.120e-41 8.305e-54 3.354e-56 2.853e-75 

      

F3 
Mean 1.253e-19 8.157e-24 3.080e-27 3.881e-30 

Std 4.972e-19 3.786e-23 1.675e-26 2.612e-29 

      

F4 Mean 1.850e-17 1.405e-23 2.591e-29 7.921e-33 
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Std 2.653e-17 3.095e-23 7.275e-29 5.592e-32 

      

F5 
Mean 2.649e+01 2.652e+01 2.674e+01 2.653e+01 

Std 6.977e-01 6.604e-01 7.130e-01 5.163e-01 

      

F6 
Mean 3.380e-01 3.495e-01 1.305 4.609e-01 

Std 2.590e-01 2.641e-01 4.249e-01 2.634e-01 

      

F7 
Mean 5.412e-04 3.543e-04 3.391e-04 3.380e-04 

Std 3.072e-04 2.871e-04 2.627e-04 2.092e-04 

Table .8. Results of unimodal benchmark functions 

 

  

  

  

Fig. 8. Convergence diagram of F1, F2, F3, F4, F5 and F7 
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Similarly, it can be seen from Table 9 that the optimization results of CO-GWO in most 
multimodal functions are better than other improved gray wolf optimization algorithms. Only F8 is 
slightly worse. In addition, the convergence rate of CO-GWO is also fast. Figure 9 shows the 
convergence of F10, F12 and f13. 

  GWO OGWO IGWO CO-GWO 

F8 
Mean -6.260e+03 -5.271e+03 -4.835e+03 -4.504e+03 

Std 9.322e+02 1.493e+03 1.353e+03 2.850e+02 

      

F9 
Mean 0 0 0 0 

Std 0 0 0 0 

      

F10 
Mean 1.342e-14 8.277e-15 8.252e-15 7.638e-15 

Std 2.786e-15 1.399e-15 1.784e-15 1.184e-15 

      

F11 
Mean 1.325e-03 0 0 0 

Std 4.645e-03 0 0 0 

      

F12 
Mean 2.363e-02 2.538e-02 7.320e-02 2.153e-02 

Std 1.552e-02 1.340e-02 3.262e-02 1.351e-02 

      

F13 
Mean 3.380e-01 2.879e-01 7.964e-01 2.795e-01 

Std 1.717e-01 1.636e-01 1.866e-01 1.718e-01 

Table. 9. Results of multimodal benchmark functions 
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Fig. 9. Convergence diagram of F10, F12 and F13 

 

It can be seen from Table 10 that the optimization results of each improved gray wolf 
optimization algorithm on the fixed-dimension multimodal benchmark functions are similar. CO-
GWO is only slightly outstanding in F14, F15 and F18. Moreover, CO-GWO is exploitated further at 
the current optimal value only after traversing the entire feasible region in the early stage, so it will 
hardly jump out of the current position almost during the exploitation process, so the convergence 
rate of CO-GWO is fast. Fig. 10 shows the convergence of some functions. 

 

 

  GWO OGWO IGWO CO-GWO 

F14 
Mean 2.991 2.395 2.803 9.980e-01 

Std 3.154 2.490 3.147 6.147e-07 

      

F15 
Mean 3.262e-03 2.742e-03 3.228e-04 3.149e-04 

Std 7.001e-03 6.541e-03 9.379e-05 2.719e-05 

      

F16 
Mean -1.031 -1.031 -1.031 -1.031 

Std 3.841e-09 1.457e-06 2.027e-05 5.181e-06 

      

F17 
Mean 3.978e-01 3.978e-01 3.978e-01 3.978e-01 

Std 1.896e-07 4.306e-07 4.464e-11 6.730e-05 

      

F18 
Mean 3 3 3 3 

Std 5.381e-06 2.493e-06 4.558e-06 2.388e-06 

      

F19 
Mean -3.004e-01 -3.004e-01 -3.004e-01 -3.004e-01 

Std 3.905e-16 3.905e-16 3.905e-16 3.905e-16 

      

F20 
Mean -3.261 -3.247 -3.201 -3.223 

Std 7.363e-02 6.935e-02 9.254e-02 5.315e-02 

      

F21 
Mean -9.482 -9.643 -8.407 -9.823 

Std 1.745 1.531 2.450 7.267e-01 
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F22 
Mean -1.034e+01 -1.024e+01 -10.030 -1.025e+01 

Std 5.273e-01 9.065e-01 1.363 5.929e-01 

      

F23 
Mean -1.037e+01 -1.042e+01 -10.152 -1.020e+01 

Std 1.141 7.607e-01 1.409 5.883e-01 

Table .10. Results of fixed-dimension multimodal benchmark functions 

 

  

  

Fig.10. Convergence diagram of F14, F15, F17 and F18 

 

Compared with other improved gray wolf optimization algorithms, CO-GWO performs well in 
unimodal benchmark functions, multimodal benchmark functions and fixed-dimension 
multimodal benchmark functions. For unimodal benchmark functions, it can always converge to a 
better optimal value quickly. For multimodal benchmark functions, it can easily jump out of the 
use of OBL and local optimal value and quickly converge to the global optimal value. For the fixed-
dimension multimodal benchmark functions, although the optimal value is similar to that of other 
improved algorithms, its convergence speed is better than that of other improved algorithms.  

In the previous period, tTent mapping enables the individuals in the population to traverse 
the entire feasible region, resulting in the optimal value of each generation being found from the 
global range. And the individuals of the next iteration will only be the better part of the individuals 
in this iteration. This makes the next-generation individuals always better than the previous-
generation individuals, which helps to accelerate the convergence speed, so CO-GWO excels in 
unimodal benchmark functions. In addition, the algorithm combines the polynomial decay 
function of 2-Decay method, which makes the parameters a   decay slowly and increases the 
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number of exploration of gray wolves, which is good for jumping out of local optimum, so CO-GWO 
performs well in multimodal benchmark functions. 

5. Conclusions 

CO-GWO is proposed to ensure that the local optimization can be jumped out in time and a 
better optimal value can be obtained. The population of the algorithm is composed of two parts, 
one is to retain the better part of each iteration, and the other is generated by tent map and OBL. 
This makes the value of each iteration not get worse, but also traverses the whole feasible region 
to search for a better value of the next generation. It accelerates the search speed and optimization 
ability. In addition, in order to better balance the relationship between exploration and exploitation, 
the polynomial decay function based on the 2-decay method is used to control parameter a .  

23 benchmark functions are tested, and CO-GWO is compared with five classical heuristic 
optimization algorithms, GWO and its variants. Experimental results show that the optimization 
performance and stability of CO-GWO are better than other optimization algorithms.  
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