
Chaos Gray Wolf global optimization algorithm
based on Opposition- based Learning
Zhiyong Luo

Chongqing University of Posts and Telecommunications
Mingxiang Tan

Chongqing University of Posts and Telecommunications
Zhengwen Huang

Brunel University London
Guoquan Li ( ligq@cqupt.edu.cn)

Chongqing University of Posts and Telecommunications

Research Article

Keywords: Gray wolf optimizer, Opposition-based Learning, tent chaotic map, Polynomial decay function

Posted Date: December 3rd, 2022

DOI: https://doi.org/10.21203/rs.3.rs-2327934/v1

License:   This work is licensed under a Creative Commons Attribution 4.0 International License.
Read Full License

Additional Declarations: No competing interests reported.

https://doi.org/10.21203/rs.3.rs-2327934/v1
mailto:ligq@cqupt.edu.cn
https://doi.org/10.21203/rs.3.rs-2327934/v1
https://creativecommons.org/licenses/by/4.0/

1

Chaos Gray Wolf global optimization algorithm based on

Opposition-based Learning

1Zhiyong Luo ,1Mingxiang Tan ,2Zhengwen Huang,3Guoquan Li

1School of Advanced Manufacturing Engineering,Chongqing University of Posts and
Telecommunications, Chongqing, 400065, China

2Department of Electronic and Electrical Engineering, Brunel University London, London UB8
3PH, UK

3School of Communication and Information Engineering, Chongqing University of Posts and
Telecommunications, Chongqing, 400065, China

luozy@cqupt.edu.cn, s202131002@stu.cqupt.edu.cn, Zhengwen.Huang@brunel.ac.uk,
ligq@cqupt.edu.cn

Abstract: Gray wolf optimizer (GWO) is a new heuristic algorithm. It has few parameters and strong
optimization ability and is used in many fields. However, when solving complex and multimodal
functions, it is also easy to trap into the local optimum and premature convergence. In order to
boost the performance of GWO, a tent chaotic map and opposition-based learning Grey Wolf
Optimizer (CO-GWO) is proposed. Firstly, some better values of the population in the current
generation are retained to avoid deterioration in the next generation. Secondly, tent chaotic map
and opposition-based（OBL）are introduced to generate values that can traverse the whole feasible
region as much as possible, which is conducive to jumping out of local optimization and
accelerating convergence. Then, the coefficient a is dynamically adjusted by the polynomial
attenuation function of the 2-decay method. Finally, the proposed algorithm is tested on 23
benchmark functions. The results show that the proposed algorithm is superior to the conventional
heuristic algorithms, GWO and its variants in search-efficiency, solution accuracy and convergence
rate.
Keywords: Gray wolf optimizer, Opposition-based Learning, tent chaotic map, Polynomial decay
function

1. Introduction

Bionics was founded in the mid-1950s. Many scientists seek new inspiration from biology for
optimizing systems. The simulated evolutionary algorithm, which is suitable for the optimization
of complex problems in the real world, has been developed by some scientists from the mechanism
of biological evolution. For example, simulated annealing (SA)[1] was first used to optimize
combinatorial problems by Kirkprtricrk et al. It overcomes the shortcoming that the hill-climbing
(HC) method is very easy to fall into local solutions. In recent years, the main development direction
of SA is to combine with other algorithms to form new hybrid algorithms to take full advantage of
jumping and avoiding local solutions. Ant Colony Algorithm (ACA) was first proposed by Italian
scholar Dirgo et al[2]. It is a new simulated evolutionary algorithm. The method is also used to

2

solve the Traveling Salesman Problem (TSP), Assignment Problem, and Scheduling Problem, and a
series of better experimental results are obtained. Influenced by it, ACA gradually attracted the
attention of other researchers and used the algorithm to solve some practical problems. Later,
more and more biomimetic algorithms were proposed and used in more fields.

Heuristic algorithms are becoming more and more mature, and it is an algorithm with global
optimization performance and strong versatility that is suitable for parallel processing. It is used in
engineering, aerospace, medicine, management, economics and many other fields. Heuristic
algorithms are inspired by human intelligence, the social nature of biological groups and the laws
of natural phenomena, and can be divided into evolutionary algorithms and group intelligence
algorithms. Including Genetic Algorithm (GA)[3], Differential Evolution algorithm (DE)[4], Immune
Algorithm (IA)[5], Ant Colony Optimization algorithm (ACO)[6], Particle Swarm Optimization
(PSO)[7], Artificial Bee Colony (ABC)[8], Firefly Algorithm (FA)[9], Bat Algorithm[10], Grey Wolf
Optimization (GWO)[11], Shuffled frog-leaping algorithm(SFLA)[12] , etc. According to different
search capabilities, heuristic algorithms are divided into global search and local search . Therefore,
different heuristic algorithms should be used for different problems. The optimal value or
approximate optimal value can be found by a heuristic algorithm in a certain period of time.
Optimization problems can be divided into two categories: (1) Solving the optimal problem of a
function. (2) A combinatorial optimization problem with optimal objective function value in a
solution space. Typical combinatorial optimization problems include the Traveling Salesman
Problem (TSP), Scheduling Problem, Knapsack Problem, Bin Packing Problem, etc.

Most search algorithms have problems such as falling into local optimal and slow convergence
speeds when dealing with complex problems.For example, the GWO search method is simple and
difficult to deal with complex issues.The GA search method is complicated and the search time is
long. So this paper proposes an CO-GWO. The main contributions of this paper are as follows:

⚫ Increase the probability of the population spreading over the feasible region, which is
conducive to quickly finding the optimal value and accelerating the convergence speed.

⚫ the gray wolf can exploration as much as possible in the early stage to avoid falling into
local optimization.

⚫ Through comparative experiments with DE, PSO, ABC, etc, it is proved that CO-GWO
performs well in solving simple and complex problems.

The rest of the paper is organized as follows:

Section 2 presents a literature review of GWO. Section 3 gives an overview of GWO, OBL and
tent map. Section 4 outlines the proposed GWO algorithm. The results and discussion of
benchmark functions are in Section 5. Finally, Section 6 concludes the work.

2. Literature review and Related work

2.1 Literature review

GWO was developed based on the social class and hunting mechanism of the gray wolf. It has
been successfully applied to solve the NP-hard problem, such as economic scheduling issues[13],
time forcases[14]. Like traditional heuristic algorithms, when GWO is used to optimize complex

3

multimodal functions, its performance will be worse and it is easy to fall into local optimization.
And its performance for some unimodal functions is not as good as other conventional heuristic
algorithms. Therefore, in order to improve the performance, many improvement methods had
been proposed. According to the references, it is divided into the following four types:
1) Improve population

The population generated by the iteration affects the current optimal value and the
convergence speed. OBL is introduced into GWO for the initial population and the iteratively
generated population to generate opposing populations so that the generated values are as close
to the optimal values as possible[15]. For high-dimensional space, if each dimension is opposed, it
may generate bad values, so selective use of OBL can generate better values [16]. In addition,
chaotic mapping enables the population to be uniformly distributed, laying the foundation for a
diverse global search[17].
2) Improve the balance between exploration and exploitation

In the conventional GWO, the parameter a is a crucial coefficient, which implements the
process from exploration to exploitation. When the parameter a decay rate is slow, the
proportion of gray wolf exploration will be greater than the development proportion, which is
conducive to global search. On the contrary, it is conducive to local search. In order to balance
exploration and exploitation, an exponential function is used to decay a throughout iterations,
exploitation and exploration are 30% and 70%, respectively[18]. To balance exploitation and
exploration more flexibly, an adaptive-based nonlinear function is used to adjust the parameters
a [15][19][20]. These improvements perform well to some extent, but will still fall into local
optimization, so other improvements are needed.
3) Improve the position-updated strategy

Improved position updating has a positive effect on the performance of the algorithm. Various
improvement methods have been proposed. In the memory-based Grey Wolf Optimizer (mGWO),
the search mechanism of the wolves is modified based on the personal best history of each wolf,
crossover and greedy selection [21]. In the GWO based on the extended model (E-GWO), the next
wolves select and update their positions according to the previous and the first three wolves in
each iteration [22]. In the GWO based on the incremental model (I-GWO), each wolf updates its
position based on all the wolves selected before it [22]. In the GWO based on the Group-based
Synchronous-Asynchronous, the method incorporates a synchronous-asynchronous processing
scheme, a set of different nonlinear functions and an operation to increase diversity [23].
4) Hybrid algorithms

In addition, the mixed-use of the heuristic optimization algorithm is an important means to
improve the algorithm. The improvement of this method will often play to the strengths of their
respective algorithms to avoid shortcomings. For example, mixing PSO with GWO[24][25], DE and
GWO mixing [26], GA and GWO hybrid[27], etc.

2.2. Related Work

2.2.1 Tent map

In the heuristic optimization algorithm, the randomness and uniformity of the initial

4

population are very important to the optimal solution. When the initial population spreads over
the whole feasible region, the generated initial population likely contains the optimal solution or
the value near the optimal solution, which improves the convergence speed and the accuracy of
the optimal value. Meanwhile, chaotic maps are used to generate chaotic sequences, which are
nonlinear, ergodic, random, and sensitive to the initial value. Therefore, it can be used as an
alternative to pseudo-random number generators in the field of optimization, and often achieves
better results than pseudo-random numbers [17]。

Reference [28] states that tent map has better ergodicity, regularity and faster speed than a
logistic map. And it is also proved by rigorous mathematical reasoning that the tent map has a
prerequisite for optimizing the chaotic sequence of algorithms. Tent map is a piecewise linear
mapping, named for its shape like a tent. Moreover, it is a 2D chaotic mapping, which is widely
used in chaotic encryption systems.

In this paper, tent mapping is used to generate the initial population. The Tent map function
is given by Eq (2.1)：

()1

, 0

1
, a 1

1

n
n

n

n

n

x
x a

a
x

x
x

a

+

  =  −   −

 （2.1）

where nx is the value of the variable x in the nth iteration, n is the number of the iterative

step, and a is the system parameter and takes 0.5 generally. In addition,
1 [0,1]

n
x +  .

2.2.2 OBL

OBL is to generate an opposition population based on the current population, which helps to
jump out of the local optimum and improve the probability of finding the global optimum. In
heuristic algorithms, the initial population is generally generated randomly. If the randomly
generated initial population is far from the optimal value, the convergence is slow and may fall into
the local optimal value. However, the position of the opposing population generated by the OBL is
the opposite position of the original population, so that the population is more evenly distributed
in the feasible region, it will be beneficial to the global search and accelerate the convergence
speed. The opposition value is generated by Eq. (2.2) as follows[15].

 x̂ a b x= + − （2.2）

Where x is the original value, x̂ is the opposition value, a and b are the upper and lower
bounds of x , respectively.

Of course, for a D-dimensional search space, (1,)i D , where OBL is also used to generate
opposing populations, there is an Eq. (2.3)

 ˆ
i i i i

x a b x= + − （2.3）

Where ˆix is the opposition value of ix in the ith dimension, ia and
ib are the upper

and lower bounds of the ith dimension respectively.

5

2.2.3 Polynomial decay function based on the 2-Decay method

Polynomial decay function is a commonly used learning rate decay method. Its general form
is given by the following Eq. (2.4) as follows[29]：

() ()0 1

N

e e

t
L t L L L

T

 = − − + 
 

 （2.4）

where
0L is the initial learning rate,

e
L is the termination learning rate, t is the number

of current iterations, T is the total number of iterations, and N is the exponent of the decay
function(0;N N ). When 1N  , the overall trend of changes in the learning rate is steep
first and then flat. When 1N  , the overall trend of changes in the learning rate is gentle first and
then steep, which means that the learning rate in the early stage has not changed much. When

1N = , a constant rate of change is maintained.
When 1N  , in order to increase the decay rate of its early learning rate, there is a polynomial

decay function based on the 2-decay method[29]. Its general form is given by the following Eq.
(2.5)：

 () () ()2

0 1
2

N

e e

t
L t L L L t Tt

T

  = − − + + − 
 

 （2.5）

Where  is the amount of translation, in order to meet the decay condition  should be
taken within a certain range, otherwise it will exceed the upper and lower bounds

0L and
e

L .

For example, 74 e = − , 0 2L = , 0
e

L = , 100T = , 0.3N = , the attenuation trend is shown

in Fig.1 below. It can be seen from the figure that the learning rate of the first 900 times decays
very slowly, and that of the next 100 times decays very fast.

Fig.1 Polynomial decay function trend chart of the 2-decay method

2.2.4Grey Wolf Optimizer

GWO is a heuristic optimization algorithm proposed by Seyedali Mirjalili et al. in 2014 [11].
The core idea of the algorithm is the behavior of gray wolves in searching and capturing prey.
According to the behavior of gray wolves in hunting, gray wolves are divided into four

6

categories:alpha wolf (α), beta wolf (β), delta wolf (δ) and omega wolf (ω). α is the head wolf of
the whole wolf pack, with the best position advantage. β and δ are the followers of α, and the
location advantages are second and third, respectively. ω is the worst position.

During the capturing prey , the gray wolf knows the specific location of the prey and surrounds
the prey . The following Eqs. (2.6)-(2.10) will describe this process：

 * () ()PD C X t X t= − （2.6）

 (1) () *
p

X t X t A D+ = − （2.7）

12 *A a r a= − （2.8）

22*C r= （2.9）

where t indicates the current iteration, X is the position vector of a grey wolf and
PX

indicates the position vector of the prey, A and C are two coefficient vectors, both
1r and

2r

are random vectors in [0,1], the coefficient a is decreased from 2 to 0 in Eq(2.10).

max

2(1)
t

a
Iter

= − （2.10）

Where t is the current iteration,
maxIter is the total number of iterations.

When the prey position is known, the gray wolf ()X t is based on the equivalent (2.6) and

(2.7) to update its position according to the target prey
PX . Different places around the best agent

can be reached with respect to the current position by adjusting the value of A and C vectors
according to equations (2.8) and (2.9). As the position of the gray wolf is updated, A and C

gradually become smaller, making the position of the final gray wolf (1)X t + gradually close to

the target prey
PX .

When searching for prey, the location of the prey is unknown. The position of ω in the pack
will update the position according to the three elite wolves α, β and δ, making the updated position
better than the current position. The three elite wolves are the best three wolves after each
position update, so α, β and δ are subject to change. The update method is shown in the following
Eqs. (2.11)-(2.13).

 1 2 3* , * , *D C X X D C X X D C X X     = − = − = − （2.11）

 1 1 2 2 3 3*(), *(), *()X X A D X X A D X X A D     = − = − = − （2.12）

7

 1 2 3(t 1)
3

X X X
X

+ +
+ = （2.13）

where
1 2 3, ,C C C  

and
1 2 3, ,A A A  

are three coefficient vectors respectively, X
, X 

,

X are positions of the alpha wolf (α), beta wolf (β), and delta wolf (δ) in the search space. X

is the position vector of a current grey wolf. (t 1)X + is the updated position vector.
The pseudo code of the GWO algorithm is presented in Fig.2.

Initialize the grey wolf population
i (1,2,3,...,)X i n= and initialize a , A and C

Calculate the fitness of each search agent and find X , X 
and X

X =the best search agent

X 
=the second best search agent

X =the third best search agent
while (t<Itermax)

for ((i=0; i<N1+N2+N3; i++)
Update the position of the current search agent by equation (2.11), (2.12) and (2.13)

end

Update a , A , and C

Calculate the fitness of all search agentsUpdate X , X  and X ,
1t t= +

end

return X

Fig.2. Pseudo code of the GWO algorithm

3 The proposed algorithm

In this paper, CO-GWO is proposed, which improves the population generation mode and the
balance between exploitation and exploration. The population is divided into two parts. Part A is
to keep the better values of the current population without any treatment, and directly use it for
subsequent iterative updates. Part B is generated by the tent map and OBL. And the two parts add
up to a population size equal to the initial population. Then the polynomial decay function of the
2-decay method is used to update the parameter a to balance the relationship between
development and exploration.

3.1 The population generation mode improvement

For the conventional GWO, the initial population 1 2{ , ,..., ,..., }
i i i ij iD

X x x x x= , (1,)i N ,

(1,)j D is randomly generated in the search space, where N is the population size, D is

8

the dimension of the problem. Here, we divide the population into two parts, as follows:
1) Part A：

The population fitness values are sorted, and most of the better individuals of the population
are preserved. Here, the number of better values to be retained is determined according to Eqs.
(3.1) and (3.2), so that better and better values are retained during the iteration process. Part one

of the population is represented as
1P , and its population number is

1N .

 ()1 *N round N=  （3.1）

 ()0 01
t

T
 =  + − （3.2）

where N in Eq. (3.1) denotes the population size,  denotes the ratio of the number of

retained better values to the population size, 0 in Eq. (3.2) is the initial percentage of retained

better values to the population, t is the current iteration, T is the total number of iterations,
and round denotes rounding to the nearest whole number.

2) Part B：

A value
0X is randomly selected as the initial value of the tent map in the population P1.

And the tent map is performed using Eq. (3.3), where the number of populations generated by

chaos is
2N .

2N will decreases gradually with the iteration, so that the values generated in the

later stage will no longer diverge. And the later population is composed almost entirely of the best
individuals of each iteration, making the value of fitness gradually approach the optimal value,
which is conducive to convergence to the optimal value at a later stage, as calculated in Eq. (3.4).

Then the opposite population of the mapped population is generated by Eq. (2.3), and
3N

opposite values are obtained, where
2 3N N= . Therefore, the size of the population is

2 2 3P N N= + .

()
1

, 0

1
, a 1

1

ij

ij

ij

ij

p

p

p

ij p

p

x
x a

a
x

x
x

a

+


 

= 
−

  −

 （3.3）

 1
2

1
=

2

N
N

−
 （3.4）

In Eq. (3.3), 2[1,]p N . In addition, to avoid scale-inconsistent data leading to instability of

the algorithm, the initial Tent map value by selected randomly needs to be normalized to [0,1]

using eq (3.5), 1 [0,1]p

ijx
+  . And the mapped value needs to be inversely normalized to the upper

and lower bounds of ij
x by Eq. (3.6).

9

1

1

p

ij jp

ij

j j

x a
Y

a b

+
+ −
=

−
 （3.5）

1 1 *p p

ij ij j j jX Y a b a
+ += − + （3.6）

where j
a and j

b are the lower and upper bounds of ij
x in the jth dimension respectively.

Finally, the complete population [1, 2]P P P= is used for later iterations.

3.2 Improve the balance between exploration and exploitation

In GWO, the value of A determines the exploration and exploitation behavior of the Gray

Wolf. When 1A  , the gray wolf is committed to exploration to conduct a global search, which

easily jumps out of the local optimum. When 1A  , the gray wolf is committed to exploitation to

conduct a local search to find the optimum at the current location. Therefore, in order to increase
the number of explorations in the early stage, the polynomial decay function of the 2-decay
method is used to update parameter a following Eq. (3.7). And then the parameter A is
controlled according to Eq. (2.8), so that there are enough exploration times in the early stage of
the algorithm. This method is conducive to a comprehensive search in the whole feasible region
to avoid getting trapped in local optimum and locating the optimal value more accurately.

 () ()2

0 1
2

N

e e

t
a B B B t Tt

T

 = − − + + − 
 

 （3.7）

where 0B is the upper bound of a ,
e

B is the lower bound of a , t is the number of

current iterations, T is the total number of iterations, and N is the exponent of the decay
function(0;N N ).Where  is the amount of translation, in order to meet the decay
condition  should be taken within a certain range, otherwise it will exceed the upper and lower
bounds

0B and
e

B .

3.3 Overall process of CO-GWO

Based on the above analysis, the pseudo code of the proposed CO-GWO can be presented as
follows in Fig.3 and the main flowchart of the proposed algorithm is demonstrated in Fig.4.

Initialize the population randomly P0 in the search space and initialize parameters；

While(t<Itermax)
 Calculate fitness values and arrange them

 P1:N1 better value in P0 is retained By Eqs. (3.1) and (3.2)
 Randomly select an individual x0 in P1 as the initial value of tent map

 Generate N2 chaotic populations by Eq. (3.3)
 Generate the N3 opposite population of chaotic populations by Eq. (2.3)
 Combine N2 and N3 into P2

10

 Combine P1 and P2 as the current population P

 Find the X = the best search agent

 Find the X  = the second best search agent

 Find the X = the third best search agent

 Update a according to Eq. (3.7)
 Update A and C according to Eqs. (2.8) and (2.9)
 For (i=0; i<N1+N2+N3; i++)
 Update the position of wolves according to Eqs. (2.11), (2.12) and (2.13)

end

return X

 t = t + 1;
end

return X

Fig.3 pseudo code of theCO- GWO algorithm

11

start

initialization parameters

and population P0

Calculate fitness values

and arrange them

P1:N1 better value in

P0 is retained By Eqs.

(3.1)\(3.2)

Find Xα, Xβ, Xδ, and Xα

is the current best

value

Update the population by

Eqs (2.11)\(2.12)\(2.13)

Condition

satisfied?
Output the Xα

end
Update parameters by Eqs.

(3.7)\(2.8)\(2.9)

P2:N2 values are

generated using Tent

map and OBL by Eqs.

(2.3)\(3.3)\(3.4)

Combined population

P1 U P2=P

Y

N

Fig.4 The main flowchart of CO-GWO

After calculating fitness and sorting, CO-GWO retains the population P1 corresponding to the
better fitness according to Section 3.1 of the article, uses tent chaotic mapping and OBL to generate
population P2, and combines population P1 and P2 to obtain population P. Find the best three

values X , X  , X of the current generation in the population P. Use part 3.2 of the article

to control parameter a , and update the population according to part 2.2.4 of the article until the
conditions are met to output the optimal value. The improved algorithm enables the population
to traverse the entire feasible region as much as possible without changing the bad condition, and
at the same time increases the gray wolf's exploration opportunities, which is conducive to jumping
out of the local optimum and speeding up the search and convergence speed.

4. Tests and analysis

In this section, the proposed algorithm is tested on 23 benchmark functions. Although the
function is simple, it can compare our results. Table 1 shows unimodal benchmark functions, Table

12

2 shows multimodal benchmark functions, and Table 3 shows fixed-dimension multimodal

benchmark functions. Where Dim denotes the dimension, Range denotes the range of values,

and
minf denotes the minimum value of the function. In addition, we also choose some classical

heuristic optimization algorithms for comparisons, such as DE, PSO, ABC, GSA, and Whale
Algorithm (WOA)[30]. Meanwhile, others improved GWO are also compared, for example,
GWO[11], OGWO[15] and IGWO[17].

The population size of each algorithm is 50 and the number of iterations is 1000. In order to
make the comparison more accurate, each algorithm is run 100 times to calculate the average value
and variance and then compared. The parameters of each algorithm are shown in Table 4.

In addition, let coefficients of the polynomial decay function of the 2-decay method as follows

74 e = − ,
0 2B = , 0

e
B = , 100T = , 0.3N = .

Function Dim Range
minf

2

1 1
()

n

ii
f x x

=
= 30 [-100,100] 0

2 11
()

n n

i i ii
f x x x==

= + 30 [-10,10] 0

()2

3 1 1
()

n i

ji j
f x x

= =
=  30 [-100,100] 0

 4 () max ,1i if x x i n=   30 [-100,100] 0

() ()21 22

5 11
() [100 1]

n

i i ii
f x x x x

−
+=

= − + − 30 [-30,30] 0

()2

6 1
() [0.5]

n

ii
f x x

=
= + 30 [-100,100] 0

4

7 1
() [0,1)

n

ii
f x ix random

=
= + 30 [-1.28,1.28] 0

Table .1. Unimodal benchmark functions

Function Dim Range
minf

()8 1
() sin

n

i ii
f x x x

=
= − 30 [-500,500] -418.9829 5

()2

9 1
() [10cos 2 10]

n

i ii
f x x x

=
= − + 30 [-5.12,5.12] 0

2

10 1

1

1
() 20exp 0.2

1
exp cos(2) 20

n

ii

n

ii

f x x
n

x e
n



=

=

 
= − −  

 
 − + + 
 




 30 [-32,32] 0

2

11 11

1
() cos 1

4000

n n i
i ii

x
f x x

i
==

 = − + 
 

 30 [-600,600] 0

13

()
() ()

()
()

()
()

()

1

1 2 2

12 11

2

1

10sin

() 1 1 10sin

1

,10,100,4

1
1

4

, , , 0 -

 -

n

ii

n

n

ii

i
i

m

i

i

m

i

y

f x yi y
n

y

u x

x
y

k x a xi a

u x a k m a xi a

k x a xi a


 −

+=

=

 
   = + − +  
 
+ −  

+

+
= +

 − 
=  


− − 




 30 [-50,50] 0

()
() ()

() ()

()

2

1

2 2

13 1

2 2

1

sin 3

() 0.1 1 1 sin 3 1

1 1 sin 2

,5,100,4

n

i ii

n n

n

ii

x

f x x x

x x

u x






=

=

 
   = + − + +  
 

 + − +   

+





 30 [-50,50] 0

Table. 2. Multimodal benchmark functions

Function Dim Range
minf

()

1

25

14 621

1

1 1
()

500 j

i iji

f x
j x a

−

=

=

 
 = +
 + − 




 2 [-65,65] 1

() 2
2

11 1 2

15 21
3 4

()
i i

ii
i i

x b b x
f x a

b b x x=

 +
 = −

+ +  
 4 [-5,5] 0.00030

2 4 6 2 4

16 1 1 1 1 2 2 2

1
() 4 2.1 4 4

3
f x x x x x x x x= − + + − + 2 [-5,5] -1.0316

2

2

17 2 1 1 12

5.1 5 1
() 6 10 1 cos 10

4 8
f x x x x x

  
   = − + − + − +   
   

 2 [-5,5] 0.398

()
()

()
()

2

18 1 2

2 2

1 1 2 1 2 2

2

1 2

2 2

1 1 2 1 2 2

() 1 1

19 14 3 14 6 3

30 2 3

18 32 12 48 36 27

f x x x

x x x x x x

x x

x x x x x x

= + + + 

− + − + + 

 + − 
 
 − + + − + 

2 [-2,2] 3

()()24 3

19 1 1
() expi ij j iji j

f x c a x p
= =

= − − −  3 [1,3] -3.86

()()24 6

20 1 1
() expi ij j iji j

f x c a x p
= =

= − − −  6 [0,1] -3.32

()()
15

21 1
()

T

i i ii
f x X a X a c

−

=
 = − − − +  4 [0,10] -10.1532

14

()()
17

22 1
()

T

i i ii
f x X a X a c

−

=
 = − − − +  4 [0,10] -10.4028

()()
110

23 1
()

T

i i ii
f x X a X a c

−

=
 = − − − +  4 [0,10] -10.5363

Table .3. Fixed-dimension multimodal benchmark functions

Algorithms The parameters

PSO
1 2 2C C= = , 0.5 =

DE 0.5F = , 0.3CR =

ABC 60T = , 0.2ER =

GSA 0 100G =

WOA 2a = , 1b =

Table. 4. The parameters of algorithms.

4.1 Compared with other classical heuristic algorithms

Table 5, Table 6 and Table 7 show the means and variances of the 23 benchmark functions in
different heuristic algorithms, respectively. As can be seen from Table 5, the CO-GWO is very
friendly to unimodal benchmark functions for finding the optimal value. Only F6 has the best
performance of GSA. Among them, the CO-GWO is particularly prominent in F1, F2, F3, F4, F5 and
F7, and has the fastest convergence, as can be seen in Fig. 5.

 DE GSA ABC PSO WOA CO-GWO

F1
Mean 9.166e-12 4.273e-16 3.566e-01 3.778e-01 2.320e-16 2.067e-129

Std 5.180e-12 1.169e-16 1.506e-01 1.424e-01 6.177e-16 1.032e-128

F2
Mean 1.147e-07 2.523e-02 4.697e-02 2.327 6.306e-10 1.928e-75

Std 3.094e-08 2.523e-01 1.137e-02 6.577e-01 3.825e-09 2.854e-75

F3
Mean 2.797e+04 3.568e+02 3.497e+04 8.073e-01 1.817e+01 3.881e-30

Std 3.428e+03 1.197e+02 4.603e+03 3.294e-01 1.875e+01 2.612e-29

F4
Mean 1.293 5.864e-02 1.946e+01 3.294e-01 6.204 7.921e-33

Std 2.355e-01 2.204e-01 6.119 6.049e-02 3.370 5.593e-32

F5
Mean 2.976e+01 4.506e+01 3.851e+02 6.889e+01 3.693e+01 2.654e+01

Std 1.302e+01 6.866e+01 1.656e+02 1.577e+01 4.554e+01 5.164e-01

F6
Mean 9.544e-12 4.479e-16 3.579-01 1.618 8.814e-06 4.609e-01

Std 4.729e-12 1.074e-16 1.190e-01 0.569e-01 3.563e-05 2.634e-01

F7
Mean 2.150e-02 3.357e-02 1.022e-01 1.147 2.563e-02 3.380e-04

Std 5.232e-03 2.262e-02 2.642e-02 4.378e-01 9.336e-03 2.092e-04

Table. 5. Results of unimodal benchmark functions

15

Fig.5. Convergence diagram of F1, F2, F3, F4, F5 and F7

Table 6 shows the multimodal benchmark functions in each heuristic optimization algorithm.
CO-GWO is relatively friendly to most multimodal functions. And F9 and F11 are directly their
optimal values 0. It can be seen that CO-GWO has a very strong optimization ability, can well jump
out of local optimization and converge quickly. Figure 6 shows the convergence of F9, F10 and F11,
which shows that the convergence of CO-GWO is much faster than other optimization algorithms.
However, F12 and f13 are more prominent in DE.

 DE GSA ABC PSO WOA CO-GWO

F8
Mean -9.530e+03 -2.736e+03 -7.548e-03 -1.285e+03 -5.677e+03 -4.504e+03

Std 5.892e+02 4.043e+02 1.222e+03 1.867e+02 1.459e+02 2.850e+02

16

F9
Mean 8.598e+01 1.682e+01 2.153e+02 7.306+01 9.430e+01 0

Std 7.766 5.228 1.877e+01 1.730e+01 6.461e+01 0

F10
Mean 8.494e-07 1.344e-08 2.444e-01 1.168 1.963e+01 7.638e-15

Std 2.110e-07 1.601e-09 7.334e-02 3.030e-01 2.282 1.184e-15

F11
Mean 3.693e-10 4.893 6.488e-01 1.750e-02 1.227e-02 0

Std 1.584e-09 2.047 1.188e-01 7.127e-03 1.680e-02 0

F12
Mean 3.158e-12 1.153e-01 1.116 1.132e-01 4.138e-01 2.153e-02

Std 1.846e-12 2.064e-01 9.338e-01 5.618e-02 6.167e-01 1.351e-02

F13
Mean 1.136e-11 2.053e-02 3.445 1.528 7.961e-03 2.795e-01

Std 7.163e-12 1.604e-01 2.591 4.518e-01 1.668e-02 1.718e-01

Table. 6. Results of multimodal benchmark functions

Fig.6. Convergence diagram of F9, F10 and F11

As can be seen from Table 7, for fixed-dimension multimodal benchmark functions, the
performance of each heuristic algorithm is similar. In the end, they converge near the optimal value.
However, CO-GWO converges faster than the other algorithms, especially the functions F14, F15,
F17 and F18, as shown in Figure 7.

17

 DE GSA ABC PSO WOA CO-GWO

F14
Mean 9.980e-01 3.539 9.980e-01 1.267e+01 9.980e-01 9.980e-01

Std 2.566e-15 2.291 2.566e-15 1.492e-13 9.383e-16 6.147e-07

F15
Mean 3.744e-04 4.491e-03 7.117e-04 3.535e-04 2.388e-03 3.149e-04

Std 1.788e-04 2.564e-03 7.151e-05 1.455e-04 5.345e-03 2.719e-05

F16
Mean -1.031 -1.031 -1.031 -1.031 -1.031 -1.031

Std 1.562e-15 1.337e-15 1.562e-15 1.560e-15 1.522e-15 5.181e-06

F17
Mean 3.978e-01 3.978e-01 3.978e-01 3.978e-01 3.978e-01 3.978e-01

Std 1.060e-15 1.060e-15 1.060e-15 1.060e-15 1.060e-15 6.730e-05

F18
Mean 3 3 3 3 3 3

Std 1.338e-15 6.657e-15 9.004e-16 8.993e-16 1.329e-15 2.388e-06

F19
Mean -3.004e-01 -0.300 -3.004e-01 -3.187 -3.004e-01 -3.005e-01

Std 3.905e-16 3.905e-16 3.905e-16 5.513e-01 3.905e-16 3.905e-16

F20
Mean -3.318 -1.973 -3.318 -3.255 -3.251 -3.223

Std 1.892e-2 5.587e-01 1.783e-02 5.931e-02 7.517 5.315e-02

F21
Mean -1.007e+01 -4.885 -8.883 -5.157 -7.237 -9.823

Std 7.470e-01 7.695 2.273 7.173e-01 2.837 7.267e-01

F22
Mean -1.040e+01 -7.650 -9.737 -5.193 -7.371 -1.025e+01

Std 1.543e-14 2.743 1.651 7.478e-01 3.010 5.929e-01

F23
Mean -1.053e+01 -1.053e+01 -1.023e+01 -5.290 -7.170 -1.0203e+01

Std 1.426e-14 1.145e-14 1.173 9.271e-01 2.952 5.883e-01

Table .7. Results of fixed-dimension multimodal benchmark functions

18

Fig.7. Convergence diagram of F14, F15, F17and F18

F1~F7 are unimodal benchmark functions, which have no obvious local solution. Many
optimization algorithms can converge to the optimal value, but CO-GWO can converge to a better
optimal value. F8~F13 are multimodal benchmark functions, which have multiple local solutions.
It is easy to fall into local optimal values when optimizing such functions. However, CO-GWO can
always jump out of the local optimal solution and converge to the overall optimal solution, which
has great advantages. F14~F23 are fixed-dimension multimodal benchmark functions. For such
functions, many optimization algorithms can converge to the optimal value, but CO-GWO
converges faster in most cases.

4.2 Compared with other improved gray wolf algorithms

At present, there are some improved gray wolf algorithms, such as OGWO and IGWO. And
they also performed well in their respective periods. Therefore, the current CO-GWO algorithm is
compared with other improved gray wolf algorithms.

As can be seen from Table 8, each of the improved algorithms performs very well in the
unimodal benchmark functions for finding the best. However, CO-GWO performs the most
outstandingly and shows an amazing result in finding the optimum. Both in the optimal value and
convergence speed, it far exceeds the other improved algorithms. Figure 8 shows the convergence
of unimodal benchmark functions in each improved gray wolf algorithm.

 GWO OGWO IGWO CO-GWO

F1
Mean 3.435e-70 7.223e-92 1.061e-97 2.066e-129

Std 9.357e-70 2.148e-91 3.708e-97 1.031e-128

F2
Mean 4.961e-41 5.434e-54 1.936e-56 1.928e-75

Std 7.120e-41 8.305e-54 3.354e-56 2.853e-75

F3
Mean 1.253e-19 8.157e-24 3.080e-27 3.881e-30

Std 4.972e-19 3.786e-23 1.675e-26 2.612e-29

F4 Mean 1.850e-17 1.405e-23 2.591e-29 7.921e-33

19

Std 2.653e-17 3.095e-23 7.275e-29 5.592e-32

F5
Mean 2.649e+01 2.652e+01 2.674e+01 2.653e+01

Std 6.977e-01 6.604e-01 7.130e-01 5.163e-01

F6
Mean 3.380e-01 3.495e-01 1.305 4.609e-01

Std 2.590e-01 2.641e-01 4.249e-01 2.634e-01

F7
Mean 5.412e-04 3.543e-04 3.391e-04 3.380e-04

Std 3.072e-04 2.871e-04 2.627e-04 2.092e-04

Table .8. Results of unimodal benchmark functions

Fig. 8. Convergence diagram of F1, F2, F3, F4, F5 and F7

20

Similarly, it can be seen from Table 9 that the optimization results of CO-GWO in most
multimodal functions are better than other improved gray wolf optimization algorithms. Only F8 is
slightly worse. In addition, the convergence rate of CO-GWO is also fast. Figure 9 shows the
convergence of F10, F12 and f13.

 GWO OGWO IGWO CO-GWO

F8
Mean -6.260e+03 -5.271e+03 -4.835e+03 -4.504e+03

Std 9.322e+02 1.493e+03 1.353e+03 2.850e+02

F9
Mean 0 0 0 0

Std 0 0 0 0

F10
Mean 1.342e-14 8.277e-15 8.252e-15 7.638e-15

Std 2.786e-15 1.399e-15 1.784e-15 1.184e-15

F11
Mean 1.325e-03 0 0 0

Std 4.645e-03 0 0 0

F12
Mean 2.363e-02 2.538e-02 7.320e-02 2.153e-02

Std 1.552e-02 1.340e-02 3.262e-02 1.351e-02

F13
Mean 3.380e-01 2.879e-01 7.964e-01 2.795e-01

Std 1.717e-01 1.636e-01 1.866e-01 1.718e-01

Table. 9. Results of multimodal benchmark functions

21

Fig. 9. Convergence diagram of F10, F12 and F13

It can be seen from Table 10 that the optimization results of each improved gray wolf
optimization algorithm on the fixed-dimension multimodal benchmark functions are similar. CO-
GWO is only slightly outstanding in F14, F15 and F18. Moreover, CO-GWO is exploitated further at
the current optimal value only after traversing the entire feasible region in the early stage, so it will
hardly jump out of the current position almost during the exploitation process, so the convergence
rate of CO-GWO is fast. Fig. 10 shows the convergence of some functions.

 GWO OGWO IGWO CO-GWO

F14
Mean 2.991 2.395 2.803 9.980e-01

Std 3.154 2.490 3.147 6.147e-07

F15
Mean 3.262e-03 2.742e-03 3.228e-04 3.149e-04

Std 7.001e-03 6.541e-03 9.379e-05 2.719e-05

F16
Mean -1.031 -1.031 -1.031 -1.031

Std 3.841e-09 1.457e-06 2.027e-05 5.181e-06

F17
Mean 3.978e-01 3.978e-01 3.978e-01 3.978e-01

Std 1.896e-07 4.306e-07 4.464e-11 6.730e-05

F18
Mean 3 3 3 3

Std 5.381e-06 2.493e-06 4.558e-06 2.388e-06

F19
Mean -3.004e-01 -3.004e-01 -3.004e-01 -3.004e-01

Std 3.905e-16 3.905e-16 3.905e-16 3.905e-16

F20
Mean -3.261 -3.247 -3.201 -3.223

Std 7.363e-02 6.935e-02 9.254e-02 5.315e-02

F21
Mean -9.482 -9.643 -8.407 -9.823

Std 1.745 1.531 2.450 7.267e-01

22

F22
Mean -1.034e+01 -1.024e+01 -10.030 -1.025e+01

Std 5.273e-01 9.065e-01 1.363 5.929e-01

F23
Mean -1.037e+01 -1.042e+01 -10.152 -1.020e+01

Std 1.141 7.607e-01 1.409 5.883e-01

Table .10. Results of fixed-dimension multimodal benchmark functions

Fig.10. Convergence diagram of F14, F15, F17 and F18

Compared with other improved gray wolf optimization algorithms, CO-GWO performs well in
unimodal benchmark functions, multimodal benchmark functions and fixed-dimension
multimodal benchmark functions. For unimodal benchmark functions, it can always converge to a
better optimal value quickly. For multimodal benchmark functions, it can easily jump out of the
use of OBL and local optimal value and quickly converge to the global optimal value. For the fixed-
dimension multimodal benchmark functions, although the optimal value is similar to that of other
improved algorithms, its convergence speed is better than that of other improved algorithms.

In the previous period, tTent mapping enables the individuals in the population to traverse
the entire feasible region, resulting in the optimal value of each generation being found from the
global range. And the individuals of the next iteration will only be the better part of the individuals
in this iteration. This makes the next-generation individuals always better than the previous-
generation individuals, which helps to accelerate the convergence speed, so CO-GWO excels in
unimodal benchmark functions. In addition, the algorithm combines the polynomial decay
function of 2-Decay method, which makes the parameters a decay slowly and increases the

23

number of exploration of gray wolves, which is good for jumping out of local optimum, so CO-GWO
performs well in multimodal benchmark functions.

5. Conclusions

CO-GWO is proposed to ensure that the local optimization can be jumped out in time and a
better optimal value can be obtained. The population of the algorithm is composed of two parts,
one is to retain the better part of each iteration, and the other is generated by tent map and OBL.
This makes the value of each iteration not get worse, but also traverses the whole feasible region
to search for a better value of the next generation. It accelerates the search speed and optimization
ability. In addition, in order to better balance the relationship between exploration and exploitation,
the polynomial decay function based on the 2-decay method is used to control parameter a .

23 benchmark functions are tested, and CO-GWO is compared with five classical heuristic
optimization algorithms, GWO and its variants. Experimental results show that the optimization
performance and stability of CO-GWO are better than other optimization algorithms.

References

[1] Steinbrunn, Michael, Guido Moerkotte, and Alfons Kemper. "Heuristic and randomized optimization for the

join ordering problem." The VLDB Journal 6.3 (1997): 191-208.

[2] Dorigo, Marco, Vittorio Maniezzo, and Alberto Colorni. "Ant system: optimization by a colony of cooperating

agents." IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics) 26.1 (1996): 29-41.

[3] Holland, John H. "Genetic algorithms." Scientific american 267.1 (1992): 66-73.

[4] Storn, Rainer, and Kenneth Price. "Minimizing the real functions of the ICEC'96 contest by differential

evolution." Proceedings of IEEE international conference on evolutionary computation. IEEE, 1996.

[5] Wang, Lei, Jin Pan, and Li-cheng Jiao. "The immune algorithm." ACTA ELECTONICA SINICA 28.7 (2000): 96.

[6] Dorigo, Marco, Vittorio Maniezzo, and Alberto Colorni. "Ant system: optimization by a colony of cooperating

agents." IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics) 26.1 (1996): 29-41.

[7] Eberhart, Russell, and James Kennedy. "Particle swarm optimization." Proceedings of the IEEE international

conference on neural networks. Vol. 4. 1995.

[8] Karaboga, Dervis, and Bahriye Basturk. "A powerful and efficient algorithm for numerical function

optimization: artificial bee colony (ABC) algorithm." Journal of global optimization 39.3 (2007): 459-471.

[9] Yang, Xin-She. "Firefly algorithm, stochastic test functions and design optimisation." International journal of

bio-inspired computation 2.2 (2010): 78-84.

[10] Yang, Xin-She. "A new metaheuristic bat-inspired algorithm." Nature inspired cooperative strategies for

optimization (NICSO 2010). Springer, Berlin, Heidelberg, 2010. 65-74.

[11] Mirjalili, Seyedali, Seyed Mohammad Mirjalili, and Andrew Lewis. "Grey wolf optimizer." Advances in

engineering software 69 (2014): 46-61.

[12] Eusuff, Muzaffar, Kevin Lansey, and Fayzul Pasha. "Shuffled frog-leaping algorithm: a memetic meta-heuristic

for discrete optimization." Engineering optimization 38.2 (2006): 129-154.

[13] Gandomi, Amir Hossein, and Amir Hossein Alavi. "Krill herd: a new bio-inspired optimization

24

algorithm." Communications in nonlinear science and numerical simulation 17.12 (2012): 4831-4845.

[14] Yusof, Yuhanis, and Zuriani Mustaffa. "Time series forecasting of energy commodity using grey wolf

optimizer." (2015): 25-30.

[15] Yu, Xiaobing, WangYing Xu, and ChenLiang Li. "Opposition-based learning grey wolf optimizer for global

optimization." Knowledge-Based Systems 226 (2021): 107139.

[16] Dhargupta, Souvik, et al. "Selective opposition based grey wolf optimization." Expert Systems with

Applications 151 (2020): 113389.

[17] Li, Yu, Xiaoxiao Lin, and Jingsen Liu. "An improved gray wolf optimization algorithm to solve engineering

problems." Sustainability 13.6 (2021): 3208.

[18] Mittal, Nitin, Urvinder Singh, and Balwinder Singh Sohi. "Modified grey wolf optimizer for global engineering

optimization." Applied Computational Intelligence and Soft Computing 2016 (2016).

[19] Long, Wen, et al. "An exploration-enhanced grey wolf optimizer to solve high-dimensional numerical

optimization." Engineering Applications of Artificial Intelligence 68 (2018): 63-80.

[20] Long, Wen, et al. "A modified augmented Lagrangian with improved grey wolf optimization to constrained

optimization problems." Neural Computing and Applications 28.1 (2017): 421-438.

[21] Gupta, Shubham, and Kusum Deep. "A memory-based grey wolf optimizer for global optimization

tasks." Applied Soft Computing 93 (2020): 106367.

[22] Seyyedabbasi, Amir, and Farzad Kiani. "I-GWO and Ex-GWO: improved algorithms of the Grey Wolf Optimizer

to solve global optimization problems." Engineering with Computers 37.1 (2021): 509-532.

[23] Rodríguez, Alma, et al. "Group-based synchronous-asynchronous grey wolf optimizer." Applied Mathematical

Modelling 93 (2021): 226-243.

[24] Tawhid, Mohamed A., and Abdelmonem M. Ibrahim. "A hybridization of grey wolf optimizer and differential

evolution for solving nonlinear systems." Evolving Systems 11.1 (2020): 65-87.

[25] Sundaramurthy, Shanmugam, and Preethi Jayavel. "A hybrid grey wolf optimization and particle swarm

optimization with C4. 5 approach for prediction of rheumatoid arthritis." Applied Soft Computing 94 (2020): 106500.

[26] Jayabarathi, T., et al. "Economic dispatch using hybrid grey wolf optimizer." Energy 111 (2016): 630-641.

[27] Daniel, Ebenezer. "Optimum wavelet-based homomorphic medical image fusion using hybrid genetic–grey

wolf optimization algorithm." IEEE Sensors Journal 18.16 (2018): 6804-6811.

[28] Kennedy, James, and Russell Eberhart. "Particle swarm optimization." Proceedings of ICNN'95-international

conference on neural networks. Vol. 4. IEEE, 1995.

[29] Zhang, Tao, and Wei Li. "k-decay: A new method for learning rate schedule." arXiv preprint

arXiv:2004.05909 (2020).

[30] Mirjalili, Seyedali, and Andrew Lewis. "The whale optimization algorithm." Advances in engineering

software 95 (2016): 51-67.

