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Hidden-information extraction from layered structures
through terahertz imaging down to ultralow SNR
Yuqing Cui1, Yafei Xu1, Donghai Han1, Xingyu Wang1, Zhonglei Shen1, Yushan Hou1,
Junyan Liang2, Xianqiao Wang3, David S. Citrin4,5, Liuyang Zhang1*, Asoke K. Nandi1,6,
Ruqiang Yan1, Xuefeng Chen1

Noninvasive inspection of layered structures has remained a long-standing challenge for time-resolved imaging
techniques, where both resolution and contrast are compromised by prominent signal attenuation, interlayer
reflections, and dispersion. Our method based on terahertz (THz) time-domain spectroscopy overcomes these
limitations by offering fine resolution and a broadband spectrum to efficiently extract hidden structural and
content information from layered structures. We exploit local symmetrical characteristics of reflected THz
pulses to determine the location of each layer, and apply a statistical process in the spatiotemporal domain
to enhance the image contrast. Its superior performance is evidenced by the extraction of alphabetic characters
in 26-layer subwavelength papers as well as layer reconstruction and debonding inspection in the conservation
of Terra-Cotta Warriors. Our method enables accurate structure reconstruction and high-contrast imaging of
layered structures at ultralow signal-to-noise ratio, which holds great potential for internal inspection of cultural
artifacts, electronic components, coatings, and composites with dozens of submillimeter layers.
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INTRODUCTION
Imaging in the terahertz band (0.1 to 10 THz, equivalent to 3 mm to
30 μm in wavelength) has seen great growth in interest in recent
years due to its nonionizing nature as well as the high degree of
transparency in this spectral regime in many nonpolar dielectrics
(1–3). Terahertz time-domain spectroscopy (THz-TDS) has
become a leading nondestructive spectroscopic testing and 3D
imaging technique for determining the properties of a sample
probed by short pulses of THz electromagnetic radiation (4, 5).
Compared with x-ray tomography, optical coherent tomography,
and ultrasonic techniques, THz-TDS provides both fine resolution
(6) and broadband spectral signature (7) that can be used in the in-
spection of layered structures such as cultural artifacts (8, 9), phar-
maceutical tablets (10, 11), coatings (12, 13), as well as composite
structures (14–16).

Despite these advantages, THz-TDS still faces several challenges
for broad practical implementation. The submilliwatt power of
THz-TDS sources is too feeble to penetrate deeply layered material
for information extraction (17). The signal-to-noise ratio (SNR)
drops markedly in the wave-propagation pathway due to reflections,
scattering, and absorption. Moreover, multiple reflections generate
numerous small pulses and result in notable oscillations in the THz
time-domain signal, making it rather difficult to determine the ac-
curate position and amplitude of THz pulses (18). Other factors
such as layer distortion and nonlinear zero drift further decrease
the contrast and consistency of THz images (19), in some cases ren-
dering key information unrecognizable. In addition, when the layer

thicknesses are insufficiently large, temporal overlap of pulses re-
flected off adjacent interfaces takes place among deep layers due
to some serious dispersion (20). In THz imaging, those regions
with lower transmissivity in overlying layers cast shadows on
those below that can lead to artifacts in transverse imaging of
deeper-lying layers (21). Tremendous efforts have been devoted
for SNR enhancement with wavelet-based (22) or frequency-
domain (18) methods, but these methods fail in structures with
more than a dozen layers due to nonlinear changes of frequency
spectrum by out-of-focus and multiple reflections. Attempts have
also been made to improve the image contrast and consistency
under layer distortion using optimization techniques (19, 23).
However, such techniques typically rely on the expectation that
the detected THz signals strictly follow the given model, which
may no longer be valid in the presence of severe noise. Sparse-rep-
resentation methods have been introduced into THz imaging to
deal with severe pulse overlap (24), but the actual detected signal
may lose sparsity because of multiple reflections in deep layers. In
summary, THz inspection through dozens of layers remains a great
challenge despite its attractive features for various applications.

In this work, we propose a locating and imaging technique for
hidden-information extraction from layered structures in the case of
ultralow SNR. Our method uses the local symmetrical characteris-
tics of the THz signal and peak point cloud density to reconstruct
the stratigraphy of layered structures and uses a statistical process in
the spatiotemporal domain to enhance the image contrast and to
eliminate unwanted image superpositions. To demonstrate the ap-
proach to enable both stratigraphic reconstruction and imaging
within individual layers, we have successfully extracted hidden al-
phabetic characters from a layered paper stack and have accom-
plished the layer reconstruction and debonding inspection in the
conservation of Terra-Cotta Warriors. This approach provides an
innovative inspection technique with high image contrast and pro-
found penetration depth for layered structures prevalent in the in-
dustrial scenario and holds potential for other pulse imaging fields.

1State Key Laboratory for Manufacturing Systems Engineering, Xi’an Jiaotong Uni-
versity, Xi’an, Shaanxi 710049, People’s Republic of China. 2School of Chemistry,
Xi’an Jiaotong University, Xi’an, Shaanxi 710049, People’s Republic of China.
3School of ECAM, University of Georgia, Athens, GA 30602, USA. 4School of Electri-
cal and Computer Engineering, Georgia Institute of Technology, Atlanta, GA 30332,
USA. 5Georgia Tech-CNRS IRL2958, Georgia Tech Lorraine, 2 Rue Marconi, 57070
Metz, France. 6Department of Electronic and Electrical Engineering, Brunel Univer-
sity London, Uxbridge UB8 3PH, UK.
*Corresponding author. Email: liuyangzhang@xjtu.edu.cn

S C I ENCE ADVANCES | R E S EARCH ART I C L E

Cui et al., Sci. Adv. 9, eadg8435 (2023) 4 October 2023 1 of 9

mailto:liuyangzhang@xjtu.edu.cn


RESULTS
Measurement setup and processing framework
Figure 1 schematically shows the overall measurement setup and
processing framework in the experiment and analysis. A pair of
photoconductive antennas is set in a reflection geometry to
measure a 30-layer stack of paper written with alphabetic letters,
as shown in Fig. 1. The centers of these letters are not aligned
along the z axis. By taking the surface roughness of the paper
sheets into account, there exists a thin air gap between any two ad-
jacent paper sheets, and this gap can act as an interface. The emitted
THz pulse through the lens gets concentrated on the sample, while
the reflected THz signal is composed of a sequence of pulses orig-
inating at the various interfaces. THz-TDS captures the reflected
THz signal and provides both the time-of-flight and reflectivity in-
formation of the sample.

Signal analysis and physical explanation
Figure 2A shows a measured THz time-domain signal of the 30-
layer paper stack in Fig. 1. The measured signal raises three major
challenges for the information extraction, including severe signal
attenuation and drift, notable oscillations, as well as prominent
pulse overlap and shadows. First, it can be observed that signal am-
plitudes of even the first few layers are ~3.5% that of the incident
reference signal produced by our apparatus (red line in inset
plot), whereas the last several pulses barely discernable become sub-
merged in noise. The signal attenuation is mainly attributed to the
confocal setup of the instrument, water-vapor absorption, and
transmission losses in the paper stack. Meanwhile, despite the
zero-mean oscillatory nature of THz waves, the zero drift of the in-
strument causes a nonlinear change in the center of signal oscilla-
tion. This zero drift, which is of the same order ofmagnitude as THz
pulses, imposes additional challenges to identifying the
pulse profile.

Second, notable oscillation rises from the middle part of the re-
flected signal as the penetration depth increases. As shown in
Fig. 2B, the layered sample can be viewed as a structure composed

of odd-indexed layers with refractive index n1 and even-indexed
layers with refractive index n2 all with equal layer thickness d. The
transmissivity and reflectivity of each interface are defined as τ and

ρ, respectively. For normal incident waves, ρ ¼ n1� n2
n1þn2

� �2
and τ = 1 −

ρ. Thus, reflected signal s(t) can be expressed as the convolution of
the reference pulse sref(t) with the reflection impulse response r(t)
s(t) = sref(t) ∗ r(t) (19). Similar to single dielectric slab (25), the re-
flection impulse response contains a series of impulse functions
with amplitude ui being exponential to the number of transmissions
and reflections while the delay time ti is proportional to the optical
path length, r(t) =

P
uiδ(ti), where δ represents unit impulse

function.
As shown in Fig. 2B, there are numerous feasible propagation

paths corresponding to the terms in the reflection impulse response.
The left propagation path is the single reflection from the interface
between the sixth and seventh layers, which is generally considered
to be the seventh pulse in the reflected THz signal. The middle and
right propagation paths are examples of multiple reflections with
the same propagation length as the left one. These multiple reflec-
tions also generate pulses in the reflected THz signal, which can be
analyzed by calculating the reflection impulse response. For THz
waves that propagate through 2m layers and are reflected (2k + 1)
times (m ≥ k + 1, k ≥ 0), the total number of all feasible propagation
paths can be described as qðm; kÞ ¼ m� k

mðkþ1Þ ðC
k
mÞ

2, where C is the
symbol of combinatorial number (see section S1 for details). For

Fig. 1. Schematic diagram of information extraction process via THz imaging.
The measurement is conducted by THz-TDS in the reflection mode for raster scan.
The reflected signal composed of dozens of pulses provides both time-of-flight
and reflectivity information of the sample, which can be used for subsequent
stratigraphic reconstruction and transverse imaging within individual layers.

Fig. 2. Signal analysis and reflection model. (A) Example of a THz time-domain
signal reflected from the layered sample. The vertical axis indicates the amplitude
of the reflected electric field in arbitrary units (a.u.), and the horizontal axis repre-
sents the time of flight. The orange dashed line indicates the signal envelope. The
inset figure shows a comparison between the reference and reflected signals illus-
trating how weak the latter is by comparison with the former. The peak-to-peak
value of the reference pulse is 7.6. (B) Reflection model in periodic dielectric
layered stack. Yellow and brown indicate odd-indexed and even-indexed layers,
respectively. Black arrows represent some possible paths for THz waves passing
through 12 layers (m = 6). (C) The ratio of single- to multiple-reflection amplitudes
under various reflectivity ρ.
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each feasible propagation path, the amplitude of the impulse func-
tion can be expressed by uðm; kÞ ¼ ð� 1Þmþkþ1ρkþ1

2τm� k. The ampli-
tude would be negative when (m + k) is even due to the existence of
half-wave loss. For all propagation paths with the same m, the delay
time is almost equal when n1 is approximately equal to n2, and
therefore the reflection impulse response of these paths can be de-

termined by rm ¼
Xm� 1

k¼0
qðm; kÞuðm; kÞδ 2mn1d

c

� �
, where k = 0 repre-

sents single reflection and k ≥ 1 represents multiple reflections.
Theoretically, the impulse response amplitude u(m,k) decays ex-

ponentially with increasing k when τ ≫ ρ. Therefore, previous
studies usually simplified the reflected THz signal into the pulse se-
quence of single reflections without involving the effect of complex
multiple reflections (18). However, this simplified assumption is not
sufficient for structures with dozens of layers as the total number of
propagation paths q can be extremely large with the increasing layer
number. To demonstrate the impact of multiple reflections, Fig. 2C
shows the single-reflection amplitude to multiple-reflection ampli-
tude ratio (SMR) under various half number of passed layersm. For
a single reflection, m represents the index of interfaces at which the
reflection occurs. SMR exhibits three distinct stages as m is in-
creased: a smooth descent stage, an oscillating stage, and an oscil-
lating descent stage. Small reflectivity ρ leads to a large SMR in the
first stage, while SMR oscillates around 1 in the second stage regard-
less of the reflectivity. This can be explained by the counteractive
effect of multiple reflections as half-wave loss alternates with k for
the same m. Following the oscillating stage, SMR continues to de-
creasewith prominent oscillations, possibly reaching the limit of the
number of layers that can be detected by reflected pulse imaging
techniques. In addition, because of the random deviation of the
layer thicknesses of practical samples, the delay times ti of the
single-reflection and multiple-reflection pulses are not exactly
equal even for the same m, which means that complex pulses
caused by multiple reflections are scattered around a single-reflec-
tion pulse. These randomly distributed tiny pulses cause noticeable
oscillation in the THz signal to change the pulse shape and can be
considered as stochastic noise (zoomed view in the yellow box in
Fig. 2A). Therefore, the noise induced by irregular multiple reflec-
tions would exceed single-reflection signal in deep layers and causes
notable oscillation in the reflected signal, which will emerge extra
challenges for THz signal analysis and feature extraction.

Third, as each layer has a similar optical thickness, the reflected
signal consists of evenly spaced pulses. When the pulse width is not
sufficiently small compared to the optical path of one round trip
through a layer 2nd/c, prominent overlap of reflected pulses from
adjacent layers occurs, leading to a change in the pulse amplitudes.
Overlap, moreover, inevitably occurs in deep-layered structures due
to serious wave dispersion. In addition, when the THz plane wave
incidents into the planar slab with different reflectivities at different
positions, the wave amplitude is encoded with the transmissivity in-
formation about the slab. Regions with low transmissivity on the
slab can generate undesired shadows in the THz images of a few
subsequent layers, which degrades the image quality and hinders
feature discrimination. As shown in Fig. 2A, a strong reflected
pulse of the character (zoomed view in the green box) overlaps
with adjacent pulses reflected from blank areas and decreases the
energy of the transmitted THz wave, which reduces the pulse am-
plitude reflected off subsequent layers. Therefore, pulse overlap and

shadow exert special disturbance by mixing the contents between
different layers.

Layer-structure reconstruction
For layered samples tested by THz-TDS, pulse position is generally
used to reconstruct layer structure and to determine the appropriate
time slice for transverse imaging in the respective layer. The appro-
priate extraction of pulse position partially determines the image
quality. On account of the complexity of THz signals reflected
from structures with dozens of layers, deconvolution techniques
that have hitherto attracted the attention of the THz community
might be compromised because of serious pulse distortion resulting
from multiple reflections and dispersion. Time-domain features
such as pulse amplitude and derivative are susceptible to multi-
ple-reflection-induced oscillation and zero drift, leading to poor
performance in deep layers when the SNR is below one. The previ-
ous work has demonstrated that a double Gaussian mixture model
can be used to model the bipolar THz pulse (20), and thus, the re-
flected THz signal can be reasonably modeled as a series of Gauss-
ian pulses. As long as pulse overlap is not severe, every single
Gaussian pulse can be considered to be symmetrical around its
central peak.

On the basis of the local symmetry in the THz pulse sequence, we
develop a pulse position extraction algorithm, namely, local symme-
try peak finding (LSPF) (see sections S2 and S3 for details). Local
symmetry can be quantified by a local symmetry function (LSF),
which compares the left side with the right side of the neighborhood
point-by-point. For actual THz pulse sequences, peak points have
excellent local symmetry and appear as local minima in LSF. At
the rising and falling edge of THz pulses, the signal shows the
least local symmetry, and LSF reaches its local maxima. Thus,
time-domain peaks correspond to the local minima located
between two local maxima in the LSF. This provides a critical
threshold to identify authentic peaks and ensures the sparsity of ex-
tracted peaks. Detailed procedure of the LSPF algorithm can be
found in section S2 and algorithm S1 in the supplementary
material.

Figure 3 shows the compared results among different pulse ex-
traction techniques on the measured THz signals from layered
samples. Canny edge detection (26) and probabilistic pulse extrac-
tion (PPEX) (18) only detect two-thirds of the pages and fail in the
last dozen layers (Fig. 3, B and C). This can be explained that in deep
layers, SNR quickly drops below one and the recorded signal is
dominated by noise. Meanwhile, multiple-reflection-induced oscil-
lation serves as high-frequency noise to markedly modulate the de-
rivatives of the signal. Besides, nonlinear zero drift makes it difficult
to calculate the accurate pulse amplitude. Therefore, common fea-
tures such as pulse shape, amplitude, and derivative are no longer
suitable for layered structures with low SNR.

Figure 3D also shows that LSPF has successfully extracted up to
28 layers with high accuracy, with the last two sheets overshadowed
by intense broadened pulses reflected off the bottom metal sheet.
Compared with other time-domain peak finding techniques,
LSPF captures symmetrical features of THz pulses that are nearly
invariant under dispersion and oscillation. The point-by-point
comparison process in LSF not only suppresses high-frequency
components induced by multiple reflections and stochastic noise
but also eliminates the negative effect of zero drift. In addition, con-
ventional methods such as PPEX expect THz pulses with similar
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SNR for appropriate filtering and processing, while weak pulses may
be completely neglected. By contrast, LSF acts as a standardization
process to improve the consistency under different SNRs. This is
particularly critical because actual THz signals often consist of
many pulses subject to various noise levels. Moreover, LSPF does
not require the reference signal, and its computation speed would
be even faster than PPEX with a wavelet filter. Comparison of the
peak finding methods from the simulation perspective can be found
in section S4.

As a peak finding method, LSPF only extracts peak positions to
generate a peak point cloud without identifying the interface to
which they belong, and thus, layer segmentation is necessary to
group the peak point cloud corresponding to the layers. For flat
layers with uniform thickness, cloud segmentation can be common-
ly tackled by one-dimensional clustering. However, for structures
with dozens of layers, peak points are gradually scattered around
the actual interface as the peak finding accuracy degrades with the
depth, and layers are usually slightly distorted despite the align-
ment. Thus, when the layer thickness is insufficiently large, peak
points from different interfaces will mix to a large degree, which
results in catastrophic failure and complete loss of layer information
by traditional clustering algorithms. Therefore, we propose a local
minimum density segmentation (LMDS) algorithm based on the
periodic change of point cloud density (see section S5 for details).

In the peak finding process, peak positioning error is tightly de-
termined by the SNR of the THz signal and can be considered to
follow a Gaussian distribution as well. Consequently, the point
cloud tends to be of high density as peak points are more likely to
be distributed near the real interface. The common definition of
point cloud density counts the number of points in a certain interval

as d0ðtÞ ¼ 1
2α

Xn

i¼1
uðα � t þ piÞuðαþ t � piÞ, where u is the unit step

function, pi represents the point position in the peak point cloud, n
is the total number of points, and α is the interval length. The sharp
rectangular window composed of step functions can be replaced by

a Gaussian window dðtÞ ¼
Xn

i¼1
e� ðt� piÞ

2
to improve the smoothness

of the density function. From the redefined density function, local
maxima represent the interfaces while local minima represent the
segmentation boundary. The local mode of local minima is calcu-
lated subsequently to extract the boundaries, and all the points
between two adjacent boundaries will be labeled as the same inter-
face. Detailed procedure of the LMDS algorithm can be found in
section S5 and algorithm S2 in the Supplementary Materials.

Figure 4 shows the comparative analysis between LMDS and
typical clustering algorithms. For layered samples, deep layers can
lead to large peak positioning errors comparable to layer interval; in
other words, interclass distance and intraclass distance may fall in a
similar order of magnitude. In this case, K-means clustering is
highly unstable because of its sensitivity to the initial value when
the clusters are close to each other (Fig. 4A). Meanwhile, K-
means clustering requires prior knowledge of the cluster number
that is in practice unknown a priori, and actual layers with some
degree of warping blur the cluster center as well.

Density-based spatial clustering of applications with noise
(DBSCAN) is a density-based clustering method that defines the
cluster as the largest set of connected points (27). It performs well

Fig. 3. Comparison of pulse extraction ability of Canny, PPEX, and LSPF
methods. (A) B-scan of measured data at y = 1.25 mm. The first pulses of
different signals are aligned to the same delay time. Image intensity indicates
signal amplitude in arbitrary units. (B) Canny edge detection. (C) PPEX. (D) LSPF.
Blue points indicate that the THz time-domain signal amplitude is smaller than
that nearby, and red points indicate that the signal amplitude is greater. The right-
most points represent strong reflections from the bottom metal sheet.

Fig. 4. Comparison of layer segmentation ability of K-means, DBSCAN, and
LMDS method. (A) K-means initialized with K-means++. The point cloud consists
of the first 28 positive peaks extracted by applying the LSPF on measured data.
Blue points indicate odd-indexed layers, and red points indicate even-indexed
layers. (B) DBSCAN. (C) LMDS. (D) Comparison between various segmentation
methods on the simulated data. The location of the simulated point cloud is gen-
erated from a Gaussianmixture model with the same SD σ and center distance d of
each Gaussian distribution. The optimal boundary is set at the center of the mean
of adjacent Gaussian distributions.
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in the middle layers but fails at the shallow and deep layers (Fig. 4B).
In shallow layers, pulse distortion caused by out-of-focus induces
secondary peaks, which are mistakenly identified as directly
density-reachable terms and lead to the first two interfaces being
marked as the same interface. For the deep layers, the peak point
cloud is too sparse to be a core object, hence being ignored. These
drawbacks are mainly attributed to the density definition of
DBSCAN for being adaptable to high-dimensional data with
small distribution deviations. By contrast, the Gaussian density
function and local mode in LMDS are capable of suppressing con-
siderable noise and achieve excellent performance with the sample
composed of compacted thin layers (Fig. 4C).

Figure 4D provides quantitative comparisons among the above
segmentation methods under different point cloud dispersion con-
ditions. The degree of point cloud dispersion is evaluated by the
ratio of SD σ to layer interval d. The blue line indicates the error
rate of the optimal segmentation boundary. As σ/d increases, K-
means clustering quickly fails at the beginning, while DBSCAN
and LMDS perform well when the dispersion of the point cloud
is not so large. However, the accuracy of DBSCAN breaks down
at σ/d = 0.24 because large deviations change the density-reachable
relationship. LMDS method performs quite well even when the rel-
ative deviation reaches σ/d = 0.3. Following the peak finding of pulse
sequences, layer segmentation assists in the successful extraction of
layer interfaces from the point clouds to reconstruct the structure of
layered samples.

Layer image acquisition
After the reconstruction of the layer structure, transverse THz
images within various layers can be obtained by extracting the am-
plitude information from corresponding pulses. Ideally, THz
images can be obtained by simple amplitude mapping of the
peaks of reflected THz signals. However, the quality of deep-layer
images is seriously deteriorated by three main factors. First, mea-
surement errors add a layer of random noises to the reflected
signal. Second, the peak finding error introduces the amplitude
error. Last but not least, multiple reflections generate many small
pseudo pulses that are scattered around the original single-reflec-
tion pulse, thereby changing the original peak amplitude and
pulse shape to cause large oscillation in the image. As the energy
of multiple reflections reaches a single reflection in deep layers,
the image contrast drops drastically and becomes unrecognizable.

Fortunately, the random distribution of multiple-reflection
pulses only changes the amplitude of every single point, while the
integral of the pulse remains unchanged because of the linear super-
position nature of the signal. Therefore, pulse integration can
remove the randomness of multiple-reflection distribution in each
layer. In this case, we propose an average-amplitude THz imaging,
named pulse neighborhood average imaging (PNAI) method, to
obtain high-contrast THz images from structures with dozens
of layers.

PNAI uses the average value of the interval around the peak for
imaging, which also suppresses random noise and peak finding
error (see section S6 for details). To determine the appropriate
average interval, we introduce image kurtosis as a way to balance
the SNR and overlap to search for the highest image contrast corre-
sponding to optimal interval length (see section S7 for details).
After acquiring average values of all pulses, PNAI calculates the dif-
ference between positive and negative pulses to eliminate systematic

errors caused by long-term drift to improve the consistency of the
background region. The detailed implementation of the PNAI algo-
rithm can be found in section S7 and algorithm S3 in the Supple-
mentary Materials.

Figure 5A compares PNAI with other robust THz imaging
methods. Local peak-to-peak imaging (LPTP) is themost frequently
used imaging method for the THz time-domain signal that uses the
local extremum as the representative of pulse amplitude. However,
multiple reflections introduce notable oscillation in the images,
which gradually overshadows the attenuated content and makes
the image nearly unrecognizable. Time-gated spectral imaging
(TGSI) considers different frequency response of layers and
selects the optimal frequency component to improve the image con-
trast (18), which has a better performance than LPTP. However,
TGSI is extremely sensitive to both the position and the length of
the time slice. For instance, peak finding error leads to complete
failure of TGSI for the letter “W”. Moreover, the time-gated
Fourier transform can perform reasonably well in the first few
layers, but the spectrum is markedly disturbed in deep layers by
multiple reflections, pulse overlap, and out-of-focus.

PNAI uses the exact peak positions at different points to avoid
the unwanted content superposition caused by the warping of deep
layers (“T”, “W”, and “X”). Even if the peak finding error is consid-
erably large, the average process will reduce the amplitude deviation
and maintain the consistency of images, making it suitable for thin
warping layers. Moreover, the contrast enhancement of the averag-
ing process is substantial. As shown in Fig. 5B, more averaging
points lead to a better suppression effect on the stochastic noise
and multiple reflections and improves the consistency of the back-
ground region, while aggravating unfavorable pulse overlap as
shown by the negative image of the letter “Y” in the right panel.
The middle panel in Fig. 5B has the highest kurtosis, corresponding
to high contrast as well as minor overlap.

It is worth noting that several characters from other layers also
appear in the image (Fig. 5A). For example,“F” appears in the image
of layer 7, and “U” and “V” appear in the image of layer 20. This
superposition creates strong ambiguity for content recognition

Fig. 5. Performance of the imaging methods. (A) Comparison between three
robust imaging algorithms: PNAI, local peak-to-peak imaging (LPTP), as well as
time-gated spectral imaging (TGSI). Locations of the layers are provided by our pro-
posed layer-structure reconstruction method. The color bar indicates the normal-
ized field amplitude at time domain for PNAI and LPTP and the average of
contrasting spectral component amplitude in TGSI in arbitrary units. (B) Imaging
result of letter Z with various interval lengths.
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and seriously degrades the image quality. In most cases, the shadow
and pulse overlap can be regarded as a linear superposition of ad-
jacent layers. Therefore, their effect can be eliminated by a reverse
superposition process once the superposition coefficient is known.
For sample structures of a binary or ternary nature, it is possible to
determine the superposition coefficient from the image statistics
rather than the physical model. Consequently, we propose a
moment maximization method by introducing higher-order statis-
tics to represent the essence of data distribution.

For noiseless binary images with discrete statistics, the normal-
ized even-order central moments can be expressed by

MðXÞ ¼

X3

i¼1
pi½xi� EðXÞ�2r

DðXÞr , where EðXÞ ¼
X3

i¼1
pixi;

DðXÞ ¼
X3

i¼1
pi½xi � EðXÞ�2; x1, x2, and x3 represent the amplitude

of the content region, superposition region, and background
region respectively; p1, p2, and p3 represent the region proportion
respectively; 2r represents the order. The amplitude of the superpo-
sition region x2, as an independent variable, gradually changes
during the reverse superposition process. M reaches a local
maximum when x2 is equal to x3, which means that the image
superposition is fully compensated (see section S8 for details).
Actual images are influenced by noise, mostly Gaussian, which
transforms the statistics of the image into a continuous form. Al-
though the extremum condition of the discrete image may be no
longer valid, the coefficient error can be ignored when the SD of
the noise is less than half of the content amplitude, and the residual
superposition becomes nearly unrecognizable. Detailed procedure
of the moment maximization algorithm is described in section S8
and algorithm S4 in the Supplementary Materials.

Figure 6 reveals the performance of the moment maximization
algorithm for superposition elimination. The superimposed charac-
ters in layers 4 and 7 mainly originate from the shadow of the pre-
ceding layer, while those in layers 13 and 15 are mainly from the
overlap with the subsequent layer. Simple thresholding performs
poorly because the amplitude of the superposition region is close
to the background. Ourmoment maximizationmethod successfully
eliminates the unhelpful superpositions, and the quality of the

resulting THz images is comparable with optical images of the
letter on single sheets of paper.

After applying all the techniques mentioned above, THz images
of all the layers are successfully obtained with excellent consistency
and image quality as shown in Fig. 7A. The high contrast of the last
few sheets demonstrates that 26 layers do not reach the layer limit of
our method, while it is restricted by the range of optical delay line of
our THz-TDS system. Figure 7B shows the estimated SNR of THz
signals for each layer. Paper has a lower reflectivity than ink, hence
the lower SNR. The SNR of paper drops quickly in the first dozen
layers and then oscillates around −6 dB, which is consistent with the
multiple-reflection model. It also demonstrates that LSPF enables
accurate structure reconstruction even at SNR as low as −6 dB,
which outperforms conventional algorithms (fail after layer 16)
by at least 10 dB. Figure 7C uses the peak SNR (PSNR) to evaluate
the quality of THz images obtained by various imaging algorithms.
LPTP has a poor performance because the peak-to-peak value am-
plifies the noise under low SNR, and the warping of deep layers also
causes serious superposition. Compared with simple amplitude
mapping, the averaging process of PNAI results in a 7 dB enhance-
ment in the average PSNR and provides about 10 dB enhancement
for the last few layers, indicating that our proposed imaging method
provides a substantial improvement in image contrast.

To further demonstrate the inspection ability of our proposed
method, nine words “Xi’an,” “Jiaotong,” “University,” “Liuyang,”
“Zhang,” “Terahertz,” “Inspection,” “Research,” and “Group” are
written on the odd-indexed layers from layer 3 to 19 of the 22-
layer paper stack. THz images of corresponding layers are shown
in Fig. 8, with all the words clearly recognizable.

Applications in cultural heritages
Cultural artifacts, such as murals or canvas paintings, may also be
featured with layered structures due to the creation and restoration
processes. Our proposed method can inspect the layered structure,
internal defects, and hidden paint layers of the artworks and provide
internal information about the creation technique and the deterio-
ration process. For example, the Emperor Qin Shi Huang Mausole-
um in Xi’an has unearthed around 8000 Terra-CottaWarriors, most
of which are lavishly painted in a range of vibrant colors including
green, purple, red, and blue. The life-size Terra-Cotta Warriors are
displayed in the Mausoleum Site Museum in Fig. 9A. Since the ex-
cavation, however, the Terra-Cotta Warriors have been exposed to a
much less humid environment, causing the paint layers to shrink,
crack, and flake off the terra-cotta surface. Therefore, the structure
and aging condition of the paint layers needs to be examined to
protect and repair the warrior at an early stage. As shown in
Fig. 9B, our proposed method can properly visualize the top and
bottom surfaces of the paint layer on awarrior fragment. The refrac-
tive index of the pigment in the THz region is measured to be n =
2.9, and the average thickness of the paint layer can be known to be
140 μm. Two detected interfaces show that the paint layer on the
sample was painted at the same time. Once the layered structure
is determined, THz images at each interface can be obtained.
Figure 9C shows the THz image of the bottom surface, which is
the interface between the pigment and the clay. Because the reflec-
tion of THz waves between pigment and air is much stronger than
that between the pigment and clay, the amplitude of the THz image
can indicate the severity of the pigment detachment. As shown in
Fig. 9C, three areas at the edge of the sample are measured with an

Fig. 6. Performance of moment maximization algorithm. The left column
shows the original images, and the right column shows images after the superpo-
sition elimination. Images are normalized separately with the mean value set
to 0.4.
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optical microscope, the rightmost two of which correspond to high-
amplitude regions in the THz image. The result shows that high-
amplitude regions in the THz image of the underside indicate the
presence of pores and debonding under the paint layer, which pro-
vides a nondestructive inspection method for assessing the deterio-
ration of the paint layers in Terra-Cotta Warriors. Early
conservation can then be achieved by reinforcing large debonding
areas with a 5% polyacrylate binder.

To further demonstrate the applicability of our method to the
multilayer painted samples, we prepare a nine-layer test sample
using ochre and yellow ochre pigments bound with gelatin. To
prepare the sample, ochre pigments are first applied evenly to a
glass substrate. After drying for 20 min, another layer of ochre is
painted over the dried pigment, and the painting process is repeated
eight times. After each even-indexed layer of ochre has been applied,
one letter of “X,” “J,” “T,” and “U” is painted with the yellow ochre
pigment. Figure 10A shows the stratigraphic reconstruction and
imaging of the testing sample by our proposed method. Reflection
interfaces of THz pulses are formed between the pigments dried at
different times, and therefore, the extracted peak point cloud indi-
cates the position of the paint layers. As shown in the top right inset
in Fig. 10A, the local maxima marked by the red dots in the density
function correspond to the interface positions, and the segmenta-
tion boundaries can be set in the middle of adjacent interfaces. As
shown in the bottom plot, the hidden characters painted on the cor-
responding layers can be clearly recognized. Figure 10B shows the
formation of internal defects in the multilayer painted sample after
6 months of exposure to the atmosphere. In addition to the interface
between the pigment layers, the cracks and debonding also appear
as highly reflective interfaces of the THz pulses that can be identified

by the LSPF algorithm. The position of cross-layer cracks and de-
bonding between layer 9 and the substrate is shown in the top plot of
Fig. 10B, with two cracks propagating through layers 4 to 5 and
layers 6 to 8, respectively. The bottom plot shows the THz image
obtained at the defect positions, and the image amplitude indicates
the severity of the cracks and debonding. It can be concluded that
our proposed method successfully inspects the structure, internal
defects, as well as hidden content in the layered artworks, which
shows its large potential to evaluate the deterioration process and
extract the hidden information for layered cultural heritage.

DISCUSSION
Multiple reflections play the dominant role in the inspection of
layered structures that has been seldom investigated by previous
work. The multiple-reflection model reveals that the SNR is
highly dependent on the layer numbers. For structures with
dozens of layers, the energy attributed to multiple reflections

Fig. 7. Evaluation of THz imaging results. (A) THz images of each layer. The proposed method successfully obtained layer images with high contrast and consistency.
The image of the last pagewith the letter “Z” can be found in Fig. 5B. Images are normalized separately with themean value set to 0.4. (B) Estimated SNRof THz signals for
each layer. SNR is defined as 20log10 (As/An). The signal amplitude As is calculated from half of the difference between adjacent positive and negative peaks, and the noise
amplitude An is calculated from the SD of the nine-point neighborhood around the peak. (C) Evaluation of the THz image quality using the peak SNR (PSNR). PSNR is
calculated from the normalized mean square error between the THz image and the binarized optical image (reference).

Fig. 8. THz imaging of a document. The sample consists of 22 paper sheets, and
ninewords arewritten on the odd-indexed layers. Materials are the same as the 30-
layer sample. Images are normalized separately with the mean value set to 0.4.
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oscillates around a single reflection, and the SNR drops below one
regardless of the measurement system. This may be counterintuitive
because it is commonly believed that the penetration depth of the
layered structure is determined by the THz source power. However,
as multiple reflections are also proportional to the emitted pulse, the
noise induced by irregular multiple reflections increases at the same
rate as a single reflection. Therefore, robust peak finding and
imaging algorithms become rather important for layered structures.

In this work, inspired by the notable oscillation of reflected THz
signals from layered structures, we use the local symmetrical feature
of THz pulses rather than their amplitude, derivative, or shape for

the pulse position extraction, which enables accurate peak finding at
SNR as low as −6 dB and outperforms conventional algorithms by
at least 10 dB. The oscillation of THz signals also results in notice-
able noise in the peak point cloud. Therefore, we use the point cloud
density defined by the Gaussian function to robustly execute layer
segmentation. It is worth noting that the distribution of multiple-
reflection pulses can be roughly predicted after the reconstruction
of former layers, which might be helpful to filter this kind of noise.
Removal of such noise based on the multiple-reflection model can
be another topic of further study.

Subsequently, the PNAI method also fully considers multiple re-
flections to eliminate the noise caused by randomly distributed
pulses through averaging process, and the average PSNR increases
by approximately 7 dB in our experimental setup. PNAI may aggra-
vate overlap when the pulse interval is considerably small. However,
the unwanted content superposition can be mostly eliminated
through the moment maximization method. The idea of average
imaging can be easily extended to other time-domain imaging tech-
niques. For example, LPTP could use the average value around local
extrema instead of single-point amplitude to enhance the contrast
of THz images.

Last, the experiment demonstrates that our proposed framework
can extract hidden structural and content information from subwa-
velength layered paper with high resolution and contrast, which has
great potential for the detection of ancient documents. The method
also performs layer reconstruction and debonding inspection in the
conservation of Terra-Cotta Warriors and provides a new approach
to study the internal information of multilayer painted samples. The
proposed peak finding and imaging method provide fine image
quality. This work provides practical solutions for THz-TDS to
inspect conventional layered structures with submillimeter thick-
nesses and can be efficiently extended to other pulse imaging
techniques.

Fig. 9. Application to the Terra-Cotta Warriors. (A) Excavated Terra-Cotta Army
and conservation of life-sized warriors. (B) Structure reconstruction and thickness
measurement of warrior fragments. (C) THz imaging of the bottom surface. High-
amplitude regions in the THz image indicate pores or debonding.

Fig. 10. Application to multilayer painted samples. (A) Stratigraphic reconstruction and imaging of a nine-layer painted sample. Hidden characters painted on the
corresponding layers can be recognized. (B) Inspection of debonding and cross-layer cracks in the multilayer painted sample after 6-month aging. The bottom image
shows the relative severity of the cracks and debonding of the sample.
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MATERIALS AND METHODS
THz-TDS system specification
The data are collected using Teraview’s THz-TDS in the ambient
atmosphere. The measurement system has a bandwidth of 4 THz
with a center frequency of 1 THz. The time delay range of the me-
chanical delay line is up to 51 ps, and the time resolution is 23 fs.
The system uses photoconductive antennas pumped by a femtosec-
ond laser at 80-MHz repetition rate for the generation and detection
of THz waves with a dynamic range of 60 dB. The THz waves are
focused using lenses with a focal length of 18 mm. The acquisition
rate of the system is 15 waveforms per second.

Preparation of the layered sample
The sample consists of 30 layers of compacted plain paper sheets
with a thickness of 100 μm, and 26 English alphabetic letters
from A to Z are written with a black gel pen on one side of the
first 26 sheets, respectively. The THz beam is focused on the
middle layer of the sample, with a scan area of 57.5 mm by 14.4
mm and scan steps of 0.2 and 0.25 mm in the x and y axes,
respectively.

Signal alignment of the layered sample
After extracting the pulse positions using the LSPF algorithm, the
peak point cloud representing the layer structure can be obtained.
To improve the 1D divisibility of the point cloud, an alignment
strategy is applied to the point cloud and the THz time-domain
signal. This strategy aligns the first positive peak of different
signals by shifting the signals along the time axis. Figures 3 and 4
show the B-scan and point cloud after the alignment.

Supplementary Materials
This PDF file includes:
Sections S1 to S8
Figs. S1 to S6
Algorithm S1 to S4
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