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Abstract. This paper investigates the possibility of using complex operations to perform 
speech enhancement task in time domain. To that end, first, the Hilbert transform is utilized to 
prepare the complex input in time domain. After that, the complex temporal convolutional 
network (CTCN) is developed to conduct complex convolutions. By cascading the TCN and 
the CTCN modules, the final proposed network form an encoder-decoder structure, which 
performs an end-to-end speech enhancement task. The results demonstrate that utilizing 
complex information in time domain indeed improves the enhancement performance. 
Compared to other approaches, the proposed network also demonstrates a superior 
performance in terms of objective evaluations. 
Keywords: Speech Enhancement; Single-channel; Complex network; Time domain.  

1. Introduction 
Speech enhancement is one of highly expected tasks in modern speech applications. It aims to separate 
the target voice from mixture speech signal. In recent years, we have all witnessed that deep learning 
based approaches have outperformed traditional methods in speech enhancement. The noisy signals 
can be enhanced in both time-frequency domain and time domain. The time domain enhancement 
networks can be classified into two methods, which are direct regression approaches[1] and adaptive 
front-end methods[2]-[3]. The regression approach directly learns the regression function from the 
mixture to rebuild the target speech, and the adaptive front-end method usually uses convolutional 
encoder and decoder or a U-shaped network, which is similar to Fourier transform and its inversion.  
As a different strategy, speech enhancement can also be conducted in frequency domain using 
spectrogram. The training methods in the frequency domain are mainly classified into two categories, 
namely mask-based and mapping-based approaches. For the masking methods, ideal binary masking 
(IBM)[4] and ideal ratio masking (IRM)[5] often use the amplitude between clean speech and mixed 
speech to perform enhancement. However, they only pay attention to amplitude information the 
magnitude spectrum and ignore the phase information because it was believed that the phase 
information was difficult to estimate. Due to that, the phase information was thus used to reconstruct 
target speech. This bounds the upper limit of network performance, for the phase deviation also 
increases interferences. Recently, several networks have adopted the phase reconstruction concept and 
seen certain improvements. For that, the deep complex U-Net[7] that simultaneously utilizes 
magnitude spectrum and phase spectrum based on a proposed variant of U-Net[8] was developed to 
process complex spectrogram. Soon after, the deep complex convolution recurrent network 
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(DCCRN)[9] adapted the complex multiplication rules to the LSTM part of the enhancement module 
on the basis of DCUNet. 
Inspired by the complex network, this paper attempts to design a complex network in time domain, 
which means it is an end-to-end system. To do that, the real-valued time-domain signal is passed to 
Hilbert transform to produce the imaginary part of the corresponding real part. A complex TCN 
structure, termed as complex temporal convolutional network (CTCN), that uses the time modeling 
capability of TCN to process complex-valued information in the time domain, is developed.In our 
experiments, it is found that the addition of time-domain imaginary part information improves the 
speech quality of the reconstructed target signal and achieves a better performance than the other 
networks on the DNS1 Challenge dataset. 
The rest of article is organized as follows. Section II introduces the descriptions of enhancement task. 
In Section III, we describe the proposed CTCN model. Section IV describes the experimental details 
and results. Section V summarizes the article. 

2. Mathematical Background 

2.1. Signal Model and Preparation 
The single-channel speech denoising problem can be described as estimating the original clean source 
x(t), using the noisy mixture y(t), given by: 

 
)t()t()t(y nx 

 (1) 

where n(t) is the unwanted noise. 
If the denoising network is conducted in frequency domain, one can transform the signal in(1) to 
spectrogram using short-time Fourier transform (STFT), and the resulting signal is complex that 
contains both real and imaginary parts. Based on that, the DCCRN network is developed that utilizes 
complex information[9]. Taking a different strategy, we attempt to perform speech enhancement in 
time domain by a use of complex network. To that aim, the imaginary signal needs to be generated 
from the real-valued time domain inputs. 
According to Hilbert transform, an imaginary signal can be produced by its real-valued one, given by: 

 
)t(*)t()]t([)t(x hxxi 

 (2) 

where H[·] and * respectively represents the Hilbert transform and convolution, and subscript i 
indicates the imaginary part. 
In (2), h(t) is the impulse response of the transform, given by: 

 

-1)()t(h t
 (3) 

From the point of view of the frequency spectrum, this transform multiplies the positive frequency part 
of our original signal by -i, that is, while keeping the amplitude constant, the phase is shifted by -90 
degree, and for negative frequency components is 90 degree. 
Finally, performing Hilbert transform on both sides of (1) and putting the real and imaginary parts 
together, one obtains 

 
)()t()t(y ,i,i,r tnx irr 

 (4) 

where r and i represent the real and imaginary parts of each signal after transformation. The real part 
represents the original time domain signal, and the imaginary part is the result of the real part signal 
shifted by a 90 degree. 
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2.2. Training Target 
The model we propose runs in an end-to-end manner and it directly reconstructs the original signal to 
produce speech enhancement results. In this work, both the real part represented by the clean signal 
and the imaginary part of the signal after the Hilbert transform are used as training targets. The 
objective function uses a weighted scale-invariant source-to-noise ratio (SI-SNR). The SI-SNR is 
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where ŝ and s are the estimator and original clean sources, and 
2

s  represents the energy of the signal. 

By taking the complex signal into account, the final weighted loss function is 

 
)(L)1()(LaJ SNR-SISNR-SI ir XaX 

 (6) 

Where L function is to calculate the SI-SNR of the estimator and the target. To ensure the real and 
imaginary parts play the equal importance, empirically, a is set to 0.5. 

3. Proposed Time Domain Network 

3.1. Complex Temporal Convolutional Module 
The temporal convolutional network (TCN) module can be used to solve sequentially prediction[2]. 
Each TCN block includes a 1*1-conv operation, followed by a dilation convolution operation, and 
finally a skip connection path to avoid the problem of gradient disappearance, as shown in Figure 1.  
Despite the excellent performance of TCN, it only takes real signal as its input and real convolutions 
are conducted. To develop our time domain complex network, our building block is also TCN, but it 
takes complex signal as input and complex convolutions are performed, termed as complex temporal 
convolutional network module (CTCN), which is provided in Figure 2. Compared with original TCN, 
CTCN adds an imaginary branch to the ordinary real-valued TCN, and at the same time, introducing 
complex multiplication in the output part to simulate the correlation between magnitude and phase. 

 

 

Figure 1. The diagram of each layer in 
original TCN 

 Figure 2. The diagram of each layer in the 
proposed CTCN 

From Figure 2, the CTCN block simulates complex convolutions with real-value TCN, where CTCN 
consists of two real-value TCN operations, which controls the complex information from inputs.  
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3.2. Convolutional Time-domain Complex Speech Enhancement Network 
The proposed network is an essentially causal convolutional architecture with a separation module. 
First, short segments of the input waveform are converted into intermediate high-dimensional features 
by an encoder that combines one-dimensional convolution and nonlinear activation functions. After 
that, the separation module stacked by 1-D dilated convolutional blocks is used to estimate the high-
dimensional feature mask corresponding to the source. Finally, the decoder is used to transform the 
masking characteristics of  the enhancement and reconstruct the time-domain waveform. 
Specifically, the enhancements block is shown Figure 3. First, we perform Hilbert transform on the 
time domain signal to obtain the imaginary part information. The real and imaginary parts share the 
same one-dimensional convolutional encoder for feature modeling, and a speech enhancement module 
estimates the mask of the enhancement, where the last TCN module are replaced with CTCN module. 
The complex multiplication rule is used on the CTCN module to combine the real and imaginary parts. 
The network structure resembles the Conv-Tasnet and therefore, the proposed network is named as 
CTCN-Tasnet in this work。 

 

Figure 3. The structure of enhancement block 

4. Evaluation Results and Comparisons 

4.1. Datesets 
In our experiments, we first evaluate the proposed model and several baselines on the Interspeech2020 
DNS challenge dataset (DNS1)[9]. We use the script provided by DNS1 to generate training, 
validation, and evaluation sets, which are 40, 10, and 12.5 hours of utterance, respectively.  The 
mixture in train and verification is generated by randomly selecting utterances from the speech set and 
noise set, and mixing them at a random signal-to-noise ratio (SNR) of -5 dB to 20 dB. An evaluation 
set is generated under 5 typical SNR of (0, 5, 10, 15, 20)dB. 

4.2. Training Setup and Baselines 
The time domain model cuts all audio into 2 ms segments, and the frequency domain model uses the 
original best configurations of each model.We adopt four state-of-the-art baselines for comparisons, 
and they are CRN [10], Conv-TasNet [2], DPRNN[3]. All the models are tested with their best 
configurations based on the suggestions in their papers. 

4.3. Results and Analysis 
We now compare the proposed model to different models with PESQ [11] and the results are provided 
in Table 1. 
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Table 1. PESQs with various numbers of CTCN on DNS1 dataset. 

 

         Model 
 
 

SNR

0db 5db 10db 15db Ave 

Noisy 1.860 2.167 2.495 2.803 2.331 

CRN 2.541 2.832 3.033 3.323 2.932 

Conv-TasNet 2.623 2.974 3.151 3.432 3.043 

DPRNN 2.682  3.022 3.237  3.504 3.115 

DCCRN 2.752 3.043 3.277 3.513 3.144 

CTCN-TasNet 2.801 3.097 3.326 3.537 3.184 
From Table 1, It can be found that the performance of the CTCN-TasNet outperforms the baselines of 
CRN, Conv-TasNet, and DPRNN, which demosnrates the effectiveness of exploring the imaginary 
information in the signal. In addition, the performance of the CTCN-TasNet network is similar to 
DCCRN. In the low SNR case, the CTCN-TasNet is superior to the DCCRN, whereas in high SNR 
scenario, the DCCRN network is slightly better than the CTCN-TasNet. On average, however, they 
produce the same performance. 

Table 2. PESQ under different future frames on the DNS datasets with SNR = 0 dB. 

Model 
Causality 

(look head) 
DNS1
PESQ

DNS3
PESQ

Noisy  1.86 2.51
Conv-TasNet nocausal 2.62 3.02
Conv-TasNet 21.25ms 2.55 2.96
Conv-TasNet 1.25ms 2.42 2.86

CTCN-TasNet nocausal 2.80 3.07
CTCN-TasNet 21.25ms 2.72 3.05
CTCN-TasNet 1.25ms 2.57 2.99

To further show the performance improvement of the CTCN-TasNet over Conv-TasNet, we conduct 
the experiments on the DNS1 and DNS3 datasets at the same time allowing to access different future 
frames. For the TCN network, by applying causal convolution, the network can be easily modified to 
access limited future frames. We let the first few layers be non-causal, while the remaining layers are 
causal. In Conv-TasNet and CTCN-TasNet, when L = 40 (convolution kernel size) and N = 512 
(channels of encoder and decoder) adopting 1/2 overlapping coding, the number of non-causal layer is 
three, and the number of causal layer is five and the rest of the hyperparameter settings are the same as 
the paper. By calculations, the future information accessed by the algorithm is 
(40*8+40/2)/16000=21.25 ms. Table 2 shows PESQ of different methods on DNS datasets with SNR 
= 0 dB. 
As we can see from Table 2, the proposed CTCN-TasNet outperforms Conv-TasNet in all the cases 
considered. On the DNS1 dataset, CTCN-TasNet achieves an average improvement of 0.17 in terms of 
PESQ, whereas on the DNS3, CTCN-TasNet achieves an average of 0.09 in terms of PESQ. These 
results show that accessing future frame information can effectively promote the result of the network, 
but network still needs to be tuned for different scenarios.  

5. Conclusion 
This paper proposes a new way to process time-domain speech waveforms using complex operations. 
Given only the real waveform is available, Hilbert transform is utilized to construct the corresponding 
imaginary part. With both the real and imaginary signals in time domain, the CTCN module is 
developed to efficiently perform complex convolutions. The proposed CTCN-TasNet outperforms 
other networks in terms of PESQ for a smaller model size. It is of interest to point out that this 
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transform is independent of the subsequent networks used and can be applied to different structures, 
which is our future work. 
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