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Abstract. Policy decisions are often motivated by results attained by a cohort of responders to a survey or a
test. However, erroneous identification of the reliability or the complimentary uncertainty of the test/survey
instrument, will distort the data that such policy decisions are based upon. Thus, robust learning of the
uncertainty of such an instrument is sought. This uncertainty is parametrised by the departure from
reproducibility of the data comprising responses to questions of this instrument, given the responders. Such
departure is best modelled using the distance between the data on responses to questions that comprise the two
similar subtests that the given test/survey can be split into. The paper presents three fast and robust ways for
learning the optimal-subtests that a given test/survey instrument can be spilt into, to allow for reliable
uncertainty of the given instrument, where the response to a question is either binary, or categorical � taking
values at multiple levels � and the test/survey instrument is realistically heterogeneous in the correlation
structure of the questions (or items); prone tomeasuringmultiple traits; and built of small to a very large number
of items. Our methods work in the presence of such messiness of real tests and surveys that typically violate
applicability of conventional methods. We illustrate our new methods, by computing uncertainty of three real
tests and surveys that are large to very-large in size, subsequent to learning the optimal subtests.

Keywords: Markov chains (discrete-time Markov processes on discrete state spaces) /
mathematical psychology / measurement and performance / partitions of sets
1 Introduction

A test attempts the measurement of ability in a relevant
subject, of examinees who are responding to the questions
of this test, while a survey measures traits and preferences
of the responders. Then it follows that as with all
measurements, the measurement of abilities and traits
of responders to a test or a survey (respectively), is
accompanied by noise or uncertainties of measurement [1].
Such “uncertainty” of a test/survey is interpreted as the
shortfall in reproducibility of the score data attained by a
given set of responders, to the questions in the instrument
that is the test/survey. Thus, one way to quantify this lack
of reproducibility of an instrument, would be to administer
the instrument a second time, although this practice is
expected to result in some learning during the inter-
administration time, potentially driving the uncertainty
to depend on this time gap, (affected as well by the
homogeneity of ability/traits amongst the responders [2]).
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Anotherpossibility is toadminister “similar” tests/surveys to
a given cohort, though it is difficult to design such similar
tests that maintain (quantified) sameness of quality. Such
concerns render the usage of a single administration of the
instrument, to a cohort, a more robust way for computing
uncertainty of the test/survey, [3]. Instead of two “similar”
copies of the administered test/survey, the instrument itself
is split intotwo “subtests”� eachcomprisingequalnumberof
questions (or items), such that (s.t.) distance between score
matrices obtained by the cohort in each of the subtests, is
sought, in rder toparametrise thereliabilityof thewhole test.
Indeed, uncertainty in the test data then depends on how
the test is dichotomised into these two subtests.

Policy decisions are often achieved subsequent to
consulting the data that comprises responses or scores
obtainedbyadministeringasurveyora test tochosencohorts
of responders. In the real-world, such test/survey instru-
ments are typically designed s.t. they endupmeasuring not a
single, but multiple abilities or traits, i.e. realistically,
instruments are multidimensional, and not unidimensional.
Characteristics � such as difficulty level, discriminatory
power, etc.� of the different questions in a real instrument,
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1 There exists another school of thought though in which
reliability computation of the entire test is recommended,using
the Spearman-Brown formula [15].
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are also, typically non-uniform across the whole test/survey,
s.t. correlation between the vectors of scores obtained by the
responders to apair of questions, is typicallydistinct fromthe
correlation between the score vectors for any other pair of
questions in general. Lastly, real tests and surveys can
comprise a very large number of questions� or items� and
can be responded to, by a very large cohort.

On the other hand, unidimensionality and uniform
inter-item correlaton structure, are requisite assumptions
for the applicability of conventional techniques used for the
computation of uncertainties. Additionally, success of
implementation of such techniques is also often driven by
the limited nature of the size of the score data of the
instrument. Thus, in a real-world situation, reliability of a
test or survey may be spuriously under-estimated or over-
estimated. In fact, if the uncertainty of the instrument is
wrongly computed, that is in general not discernible, s.t. it
is possible that erroneously learnt/estimated reliability,
misguides relevant policy decisions.

In thispaper,weoffer reliable and robustmethods for fast
estimation of uncertainty of a test/survey, without needing
to make unrealistic assumptions about the design of the
instrument. In particular, these methods are capable of
estimation of such uncertainty, even when the instrument
comprises a large number of items, answered by a very large
cohort of responders. Thus, in Section 7 we illustrate our
automated estimation of the uncertainty in the data
comprising scores on 667 items related to restaurant reviews
(on YELP), answered by 8848 responders. We show that
neither this large data set, nor a moderately large response
data to a real test, administered to about 1000 responders for
personnel recruitmentpurposes, (Sect. 5), is unidimensional,
i.e. each of these two real instruments, measures multiple
abilities. Again, another real survey� responses to items of
which are on a 5 point (Likert) scale � is multidimensional
(Sect. 6). Heterogeneity of the inter-item correlation
structure of this survey is also noted, as is the correlation
structure of the test discussed in Section 5. In other words,
our methods are robust to real-world departures from
unrealistic assumptions about tests/surveys.

As motivated above, the best way to quantify the
uncertainty of a test/survey instrument, is via a single
administration of the instrument, in which the instrument
is split into two subtests� each comprising half the number
of items as in the full test � s.t. the 2 subtests are “similar”
copies of each other. Then we parametrise the instrument
uncertainty as the normalised variance of the random
variable that is the distance between the datasets that
comprise scores attained by a cohort of responders, to the
items of the 2 subtests. In this paper, we advance novel
frequentist and Bayesian methods, that can be used to split
realistic, very large to small tests/surveys that do not
necessarily measure a single trait, nor manifest uniform
inter-item correlation structures, s.t. true scores of
different items of the instrument are not necessarily equal,
nor inter-related in any prescriptive and assumed fashion.
The splitting of the test is done into optimally-split subtests
by: optimising the inner product of the vectors of scores
obtained in the items of each of the 2 subtests; or
minimising the absolute difference between the mean item
scores attained in the 2 subtests; or by learning the integer-
valued indices of the items that make up one of the two
subtests, using Bayesian inference byMarkov ChainMonte
Carlo (or MCMC) techniques, [4], s.t. likelihood of these
unknown indices is defined as a decreasing function of the
distance between score vectors of items in the 2 subtest
items. Subsequent to our learning of the subtests of the
test/survey, we compute instrument reliability as comple-
mentary to the uncertainty� parametrised as proportional
to the variance of the difference between item scores in
these optimally-split subtests.

Our frequentist splitting that works by minimising the
mean difference between the subtest item scores, (Sect. 4.2)
borrows from solutions advanced for the “knap-sack”
problem in the literature [5–8], among others. [7] defines
the problem as partitioning a list of positive integers into a
pair of partitions, while minimising the difference between
the sum of entries in the 2 partitions. This method produces
the same splitting as partitioning by maximising the inner
product of the two partitioned vectors (Sect. 4.3), though
robustness to outliers in these two methods of partitioning,
is not the same. Details of our Bayesian learning of the
partitions is discussed in Section 4.4. Our splitting
techniques are compared to existing number partitioning
methods in Section 5 of the Supplement.

2 Background � test reliability

[9] suggests experimentally identifying the splitting of the
questions or items of the test/survey instrument, s.t. the
split-half reliability is maximised, though a specific
algorithmic protocol for finding this optimal splitting is
not provided, and this reliability is shown by [10] to be an
overestimate when the number of test items is large, or the
examinee sample size is small. [11] have shown that the
maximal split-half coefficient obtained from the splitting
method of [12], to be anything but robust � “badly”
overestimating the reliability under some conditions, and
underestimating it given other conditions. Increased non-
uniformity in the distribution of true scores across items in
the test/survey, implies increased inefficiency of an ad hoc
splitting of this test/survey. Thus, splitting by including
odd items in one subtest and even items in another [13–14],
fails if true scores in some items are likely to be higher than
in others, owing to (for example), such items being easier
than others1.

Indeed it is a hard problem to determine how to split a
single test/survey containing a given number of questions or
items, into two subtests that contain equal number of items,
where we need to ensure equality of quality of each subtest,
and ensure that the distance between the scores obtained by
thecohort in thetwosetsof itemsthat therespective subtests
comprise, is not an artefact of the splitting, but reflects
only theuncertaintyof the test/survey.Thus,giventhe score
datasetattainedbyacohortofN responders, toP items inthe
whole instrument, we seek to split this N�P-dimensional
score matrix by columns, such that the same number and
quality of items characterise each of the two sought subtests.
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Here N, P∈ℤ+. Indeed, difficulty of retaining the same
quality of questions/items in the two subtests will be driven
by diversity of quality amongst the items in the original test,
i.e. by the degree of inhomogeneity of the inter-item
correlation structure relevant to the original test. Such
difficultyof splittingwill also increase,as thenumberof items
of the original test increases.

This splitting is more demanding than stratified train-
test split [16], i.e. the splitting relevant to a Machine
Learning approach to a classification problem in which a
dataset is desired to be split into training and test datasets
in a way that preserves the same proportion of examples in
each class, as is manifest in the original dataset.

Maintenance of quality between the 2 subtests is
formalised by suggesting that the subtests be “parallel”, i.e.
all items of the test/survey measure the same latent
ability/trait, and the true score of each item is the same
constant. Maintaining this restrictive condition for paral-
lelity in real-life tests/surveys is difficult, and often
breached. The “tau-equivalent” model relaxes this by
allowing item-specific errors or deviations from the true
scores, though the true scores of all items are still held equal
to each other. The more relaxed, “essential tau-equivalent”
model allows item scores to differ from each other by an
item-specific additive constant. The congeneric model is
the least restrictive in that it allows a linear relationship
between scores s.t. true scores differ from each other by an
additive constant, and a scale [17].

If assumptions of the aforementioned essentially tau-
equivalent model are violated (eg. items measure the same
latent variable in different scales), Cronbach alpha will
underestimate the reliability of a given test score data, [17],
leading to the test/survey instrument being criticised (and
perhaps discarded) for not producing reliable results [18].
An even greater worry regarding the applicability of
Cronbach alpha � as well as interpretability of its
computed value given a test/survey � is the fact that
while increased alpha necessarily implies a higher measure
of uni-dimensionality of the test/survey (i.e. the test/
survey measures a unique latent variable), multi-dimen-
sional tests do not necessarily imply a lower alpha than a
uni-dimensional test [19,20]. Limitations of Cronbach’s
alpha have been discussed extensively [15,21-24]. Thus,
alpha computed for the whole of heterogeneous test/
survey, can distort our understanding of its reliability,
where such distortion is data-dependent, s.t. a universally-
applicable correction is not possible for all instruments.
Reliability computed using one of our frequentist splitting
methods, is noted in general to be different from reliability
computed using Cronbach alpha. Our Bayesian learning of
the splitting, offers 95% Highest Probability Density
credible regions on the computed reliability, and alpha
may or may not be included within this credible region.

In Section 3 of the Supplement, we show that our
definition of test/survey uncertainty, and thereby of
instrument reliability, reduces to the congeneric definition
of reliability advanced by [25].
3 Model setup

Hereon, we refer to the instrument simply as a test, though
the methodology developed below applies to tests and
surveys. Similarly, all responders, will be referred to as
examinees. As per convention, the variable name is denoted
a capital letter while its realisation, the corresponding
small letter of the alphabet.

Let us consider a test s.t. the total number of test items
is P∈ℕ, and number of examinees is N∈ℕ. Here we first
consider multiple-choice tests, s.t. score obtained by the
i-th examinee, in the j-th item is X jð Þ

i ∈ 0; 1f g. Item-score of

the j-th item is tj ¼
Xn
i¼1

X
jð Þ
i . Here i=1, … , n, j=1, … , p.

Let the itemscorevectorofagiven testbet=(t1, t2,… , tp)
T.

Let the p number of items be arranged so that half of
these comprise one subtest (that we refer to as the g-th
subtest) that the given test is split into, with the
remaining p/2 items, comprising the h-th subtest. Thus,
the methodology exposition that we undertake, is done by
considering an even P; generalising applicability of our
methods to odd P will be discussed in Section 4.1 and
Section 4 of Supporting Materials. Item scores of items
that are assigned to the m-th subtest are t

mð Þ
1 ; . . . ; t

mð Þ
p=2 ;

m= g,h. Similarly, the score of the i-th examinee across all
the items of the m-th subtest is X

mð Þ
i ; i=1, … , n. The

examinee score vector in the m-th subtest is
Xm ¼ ðX mð Þ

1 ; . . . ;X mð Þ
n ÞT ; m= g, h. For the i-th examinee,

the “error” ei in their score is defined as the difference
between scores attained in the g-th and h-th subtests, i.e.
ei :¼ X

gð Þ
i �X

hð Þ
i .

The methodologies that we advance below are for
attaining optimal-splitting of a given test into 2 subtests.
This implies that we are effectively seeking to minimise the
absolute difference between sums of subtest item scores

jPp=2
j¼1 t

gð Þ
j � t

hð Þ
j

� �
j ¼ jPn

i¼1 X
gð Þ
i �X

hð Þ
i

� �
j ¼ jPn

i¼1 eij,
where the first of these equalities stems from Theorem 3
below, and the second from the definition ei :¼ X

gð Þ
i �X

hð Þ
i .

Our classically defined uncertainty is complementary to
the reliability rtt, and is defined as:

1� rtt ¼ S2
e

S2
X

¼
Xn

i¼1
e2i

n
�

Xn

i¼1
ei

n

 !2
0
@

1
A=S2

X; ð1Þ

where the error in the i-th examinee’s response is

ei :¼ X
gð Þ
i �X

hð Þ
i ; ð2Þ

and the test variance of the observed test scores is

S2
X :¼

Xn

i¼1
Xið Þ2

n
�

Xn

i¼1
Xi

n

 !2

; ð3Þ
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Then it follows from equations (1) and (2) that
reliability is

rtt ¼ 1�
kXgk2 þ kXhk2 � 2

XN

i¼1
X

gð Þ
i X

hð Þ
i �

Xn

i¼1
X

gð Þ
i �X

hð Þ
i

� �h i2
=n

nS2
X

:

ð4Þ
We discuss the connection of the data-driven reliability

defined above in equation (4). Also, in Section 6, splitting
of the test is extended to responses to a survey that is on a
k-point Likert scale, where k∈ℕ.

4 Our methods

Estimation of uncertainty of a test score data is extensively
studied within Classical Test Theory (CTT), with the
complementary test reliability defined as that proportion of
the variance of the score attained in a test, that is
attributable to the “true score”, where such true score differs
from the attained or observed score by an additive error, in
the CTT paradigm. This theoretical definition then
naturally poses the fundamentally difficult problem with
implementation, given that the true score is itself unknown
[26]. In this paper, we address this conundrum by suggesting
fast and reliable solutions for real tests and surveys.

4.1 Splitting a test by exchanging items in the same
row of the 2 subtests

We seek to split a given test (constituting r items), into the
two subtests g and h, s.t. sumof absolute differences between
the scores attained in the items of subtests g and h,

is minimised, i.e. jPp=2
j¼1 t

gð Þ
j � t

hð Þ
j

� �
j is minimised, where

the same number of items (p/2) constitute each subtest.
If we face a test with an odd number of items, we ignore

the last item for the purposes of test dichotomisation.
While our splitting algorithm deals with partitioning of an
odd-number of elements into the two subtests (Sect. 5 of
the Supplement), it is our application-specific requirement
of maintaining a same number of items in each subtest that
drives us to work with even p values only.

In what follows, Theorem 1 equates minimisation of the
absolute difference between sums of item scores in the g-th
and h-th subtests, with minimisation of absolute difference
between sumsof examinee scoresattained inthese2 subtests.
On the othr hand,Theorem2 below, discusses implication of
thisminimisationontheabsolutedifferencebetweenthe sum
of squares of examinee scores attained in these two subtests.

Theorem 1 Minimising the absolute sum S of differ-
ences between item scores attained in the r/2 items of the
pair of subtests that are generated by splitting the given test
into subtests g and h, implies minimising the absolute
difference between means of scores attained by n examinees
in the g-th and h-th subtests, i.e.

minimising
Xp=2

j¼1
jt gð Þ

j � t
hð Þ
j j⇒minimisingj

Pn
i¼1X

gð Þ
i

n
�
Pn

i¼1 X
hð Þ
i

n
j:
The proof of this theorem is provided in Section 1 of the
Supporting Materials.

Theorem 2 In a test with binary responses, absolute
difference between sums of squares of examinee scores in
the g-th and h-th subtests is of the order of
e2 ∓ 2T e∓ p=2ð Þ2Tpe0, where: absolute difference between
sums of examinee scores is e; difference between the sum of
probabilities of correct examinee response to items in the 2
subtests is e’; Tp is the sum of probabilities of correct
examinee response to items in one subtest, and Tis the sum
of scores in one of the subtests.

The proof of this theorem is provided in Section 2 of the
attached Supporting Materials.

To summarise, the definition of reliability that we
delineate in equation (4), is amodel that treats the variance
of the variable Xg�Xh, as the (unnormalised) uncertainty
of the given test data, (with the normalisation provided by
the test examinee score variance S2

X).
4.2 Splitting using minimisation of absolute difference
between sums of subtest item scores

Partitioning a set of positive integers into two groups, s.t.
difference between sums of elements in the two groups is
minimised, has been addressed before; (Sect. 6 of
Supplementary Materials). Putting this into the context
of our problem, one partition is the subtest g and the other
h, which contains an equal number of elements as in g. Our
method of splitting is akin to the differencing method (or
the KK-heuristics method) presented by [27].

In Algorithm 1 we present our algorithm for identify-
ing the 2 constituent subtests of a given test, by
minimising the sum S of absolute difference between
the scores obtained in these 2 subtests, i.e. by minimising
S ¼Pp=2

j¼1 jt gð Þ
j � t

hð Þ
j j. We implement such splitting, by

using an accept-reject idea based on differencing between
the item-wise scores in the two subtests, over the Niter
iterations that we undertake, where the l-th iteration
comprises a total of r/2 “swaps”, where a swap is defined in
definition 1.

Definition 1A “swap” constitutes the exchange of the j-
th item in the current g-th subtest, with the j-th item of the
current h-th subtest; j=1, ..., p/2 ;ℓ=1, 2, ..., Niter Value
of S at the j-th swap during the ℓ-th iteration is S (l� 1)
p/2+ j. A proposed swap may or may not be accepted
depending on whether or not, it results in a lower value
of S, which is the absolute difference between sum of
components of item score vectors in the 2 subtests, (see
Algorithm 1).

Definition 2 In the 0-th iteration, the item-wise scores
are sorted in an ascending order, resulting in the ordered
sequence {t1, t2, ..., tp}. Following this, the item with the
highest total score is identified and allocated to the g-th
subtest. The item with second highest total score is then
allocated to the h-th test, while the item with the third
highest score is assigned to h-th test and the fourth highest to
the g-tah test, and so on. Thus, initial allocation of items is
as follows.



Subtest g Subtest h Difference in
subtest scores

t1 t2 t1–t2 ≥ 0
t4 t3 t4 � t3 � 0

..

. ..
.

S.N. Chakrabartty et al.: Int. J. Metrol. Qual. Eng. 15, 4 (2024) 5
Subtests obtained after this very first dichotomisation
of the sequence tj

� �p
j¼1

; following this suggested pattern,
are called the “seed subtests”.

Definition 3 Once all Niter iterations are undertaken,
we identify values of (ℓ� 1) p/2+ j that minimise
S ¼Pp=2

j¼1 jt gð Þ
j � t

hð Þ
j j. Such values of (ℓ� 1) p/2+ j are:

ð~l � 1Þp=2þ ~J :¼ arg
ðl�1Þp=2þj ½min

�
Sðl�1Þp=2þj

�
�:

Then the maximal reliability of the given test, obtained
by minimising S, is defined as:

r
ðminSÞ
tt :¼ r

ð~l
tt � 1Þr=2þ ~j:

[] 1. In the 0-th iteration, test is split into “seed
subtests”, (according to Definition 2). Compute S=Sseed2
(a). In the l-th iteration, the j-th swap, produces a proposed
subtest g* and h*. 2(b). At the j-th swap within the l-th
iteration, current value of S isS (ℓ�1)p/2+j.

After the j-th swap, compute proposed value s* of S,
where

S� : j t g�ð Þ
1 � t

h�ð Þ
1

h i
þ :::þ t

g�ð Þ
p=2 � t

h�Þ�j:ð
p=2

h
if*< S (ℓ�1)p/2+j: then � update value of S from the

current value S (ℓ�1)p/2+j, to S*,� update current subtest g
to g*,� update current subtest h by h*.� increment j by 1.
� increment j by 1, � proceed to the j+1-th swap with
current value S (ℓ�1)p/2+j of S, and current subtests g and h.
2(c). At the l-th iteration, and j-th swap, identify examinee
score vectors in the current g-th and current h-th subtests
and implement in equation (4), to compute reliability
r

ℓ�1ð Þp=2þjð Þ
tt . Continue till p/2 swaps have been undertaken
within the l-th iteration. 3. Set iteration index l to l+1, and
proceed till Niter iterations are undertaken.
4.3 Splitting a test by swapping items across rows

We have considered splitting of a given test, using other
methods as well, namely, splitting of a given test, while
maximising the correlation between the item scores of the
resulting subtests, i.e. maximising sr :¼

Pp=2
j¼1 t

gð Þ
j t

hð Þ
j . It is

clear that swapping the j-th item of g-th subtest, with the
j-th item of the h-th subtest, will not produce any change in
Sp, for j∈ { 1, ..., p/2 }, as Sp is symmetric in the j-th item of
either subtest, by definition. However, swapping the j-th
item of the g-th subtest with the j-th item of the h-th
subtest, will induce a change in Sp, if j

/≠ j, j, j/∈ { 1, ...,
p/2 } Thus, the maximisation of Sp is brought about by
exchanging differently-indexed items between the 2
subtests. The algorithm for implementing splitting using
the maximisation of the item score vector inner product, is
given in Algorithm 4.3.

Algorithm1Algorithm underlining our combinatorial
splitting methodology that works by maximising inner
product of the subtest item score vectors.

1. In the 0-th iteration, test is split according into the
“seed subtests” (Definition 2). Computesr=Sseedp.

2(a). In the l-th iteration, the j-th swap, produces a
proposed subtest g* and h* where j-th swap comprises: �
exchanging j-th item of current g-th subtest with j-th item
of current h-th subtests, with j a uniform random integer
s.t. j/∈ { 1, ..., j1, j+1, ...p/2 }2(b). At the j-th swap within
the l-th iteration, current value of Sr is Sri (ℓ�1)p/2+j.

After the j-th swap, compute proposed value s�p of Sp,
where.

S�
r :¼ t

g�ð Þ
1 t

h�ð Þ
1

h i
þ :::þ t

g�ð Þ
p=2 t

h�ð Þ
p=2

h i
:

if S� < S; ℓ�1ð Þp=2þj: then � update value of S, from the
current value S;(ℓ�1)p/2+j, to S

�,� update current subtest g
to g*,� update current subtest h by h*.� increment j by 1,
� proceed to the j+1-th swap with current value S;(ℓ�1)p/2

+j of S, and current subtests g and h.
2(c). At the l-th iteration, and j-th swap, identify examinee
score vectors in the current g-th and current h-th subtests
and implement in equation (4), to compute reliability
r

ℓ�1ð Þp=2þjð Þ
tt . Continue till p/2 swaps have been undertaken
within the l-th iteration.
3. Set iteration index l to l + 1, and proceed till Niter
iterations are undertaken.

Definition 4 As in Definition 3, once the iterations are
done, identify the (ℓ� 1) p/2+ j values that maximise Sr,

using ð~l~� 1Þr=2þ ~I~ :¼ arg
ðl�1Þr=2þj ½

�
Sðl�1Þp=2þj

�
�;, and de-

fine r
ð max SrÞ
tt : r

ð~l
tt~� 1Þp=2þ ~J~ as the maximal

reliability of the given test obtained by maximising Sr.
Theorem 3 states that the minimisation of S is

equivalent to the maximisation of Sr.
Theorem 3 Splitting a given test into the g-th and h-th

subtests bymaximising the absolute of the inner productof the
itemscore vectors tg and th in these 2 subtests is equivalent to
the splitting of the test by minimising the absolute sum of
differences between the components of these item score
vectors, where item score vector in the m-th subtest is

tm ¼ t
mð Þ
1 ; :::; t

mð Þ
p=2

� �T
;, with t mð Þ

j :¼Pn
i¼1 X

mjð Þ
i ;m∈ g;hf g.

In other words, maximising j⟨tg;th⟩j ¼ jPp=2
j¼1 t

gð Þ
j t

hð Þ
j j is

equivalent to minimising jPn
j¼1 t

gð Þ
j � t

hð Þ
j

� �
j.

Proof of Theorem 3 (using Cauchy Schwartz), is in
Section 4 of the Supplement.

It is to be noted that the S-minimisation strategy,
causes the same subtest-pair to be generated after every
(p/2+2) (p/2+1)/2 swaps. This periodicity stems from the
fact that the total number of possible splittings of a test
with p items is(p/2+1)+ p/2+ ... + 1= (p/2+2)
(p/2+1)/2. Thus, there is a repetition in the value of
S (and reliabilities), with a maximal period of (p/2+2)
(p/2+1)/2. We identify this as the maximal period, since
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it is possible even prior to the undertaking of all the
(p/2+2) (p/2+1)/2 swaps, that 2 distinct subtest-pairs
result in the same value of S. A similar repetition is then
noticed in results obtained using splitting bymaximising Sp.

Algorithm 2: Algorithm underlining our Bayesian test
splitting methodology that works by learning indices of the
items of one subtest, with likelihood defined as a smoothly
declining function of squared Euclidean distance between
subtest item score vectors.

1. In 0-th iteration, test is split into “seed subtests”
(Definition 2).

2. In the k-th iteration, propose g
k�ð Þ
j Binomial

p;C k�ð Þ� �
; ∀j ¼ 1; :::p=2, c∼Uniform [0.5� a, 0.5+ a] ,

with fixed a; 0< a� 0.4.
3. Identify h

�ð Þ
1 ; :::;h

�ð Þ
p=2∈{1; 2; :::; p};h

�ð Þ
1 ; :::;h

�ð Þ
p=2∉{g

k�ð Þ
1 ;

:::; g
k�ð Þ
p=2 };; sort identified h

�ð Þ
1 ; :::;h

�ð Þ
p=2 as proposed item

indices of h-th subtest. Let current parameters be
g

k�1ð Þ
j ; j ¼ 1; :::; p=2 and c (k�1).

4. Compute acceptance ratio as:

a ¼
P

p=2
j¼1 k� 1ð Þð Þ c k�1ð Þ� �g k�1ð Þ

j 1� c k�1ð Þ� �p�g
k�1ð Þ
j

� 	

P
p=2
j¼1 k� 1ð Þð Þ c k�ð Þ� �

1� c k�ð Þ� �p�g
k�ð Þ
j

� 	

�
P

p=2
j¼1p g

k�ð Þ
1 :::g

k�ð Þ
p=2 j{x ℓð Þ

i }n;pi¼1;ℓ¼1

� �h i
P

p=2
j¼1p g

k�1ð Þ
1 :::g

k�1ð Þ
p=2

� �
j{x ℓð Þ

i }n;pi¼1;ℓ¼1

h i ;
where for uniform priors,

pðgi; . . . ; gp=2j{x ℓð Þ
i }n;pi¼1;ℓ¼1Þ∝∏p=2

j¼1exp �
t

gð Þ
j � t

hð Þ
j

� �2
2s2

2
64

3
75;

while usage of Binomial (p,0.5) priors imply multiplying
this likelihood to said priors.

5. a≥ u∼Uniform [0, 1] g
kð Þ
j ← g

k⭑ð Þ
j ; ∀j ¼ 1; . . . ; p=2.

g
kð Þ
j ← g

k�1ð Þ
j , ∀j=1, … , p/2.

6. Continue till k=Niter.

4.4 Our new Bayesian splitting of a given test to
attain minimum S

In our Bayesian approach, we learn the indices g1, g2, …,
gp/2 of items that comprise the g-th subtest that a given
test of p items is split into, s.t. the remaining p/2 items
constitute the h-th subtest. We learn indices g1, g2,…, gp/2,
given the test score data {x jð Þ

i }n;pi¼1;j¼1, using Independent
Sampler Metropolis Hastings algorithm, [4]. In any
iteration, with indices of the items of the test delineated in
ascending order, the test itemwith the smallest value that is
not identifiedasmemberof theg-th subtest, is thefirst itemof
the h-th subtest, (designated h1), and so on, till all the left-
over test items have been pulled into the h-th subtest.

We define the likelihood of these index parameters,
given the data, as a smoothly declining function of the
Euclidean norm of the difference between the item score
vector of the current g-th and that of the current h-th
subtests, s.t. likelihood of the index parameters given the
data is a maximum when this distance is 0, and the
likelihood is 0, when this distance approaches infinity.
Given these constraints, we define the likelihood as

L∝exp � ðktg�thkÞ2
2s2

� �
; where k⋅ k denotes the Euclidean

norm, and s2 is the experimentally fixed variance of this
Gaussian likelihood. Thus,

L∝ exp

"
�

t
gð Þ
1 � t

hð Þ
1

� �2
þ . . .þ t

gð Þ
p=2 � t

hð Þ
p=2

� �2
2s2

#

¼ ∏p=2
j¼1exp

"
�

t
gð Þ
j � t

hð Þ
j

� �2
2s2

#
:

Here, t
gð Þ
j :¼

Xn
i¼1

x
gjð Þ

i ;∀j ¼ 1; . . . ; p=2; where gj is an

unknown parameter that we attempt to learn. t
hð Þ
j is

similarly defined.
We place Binomial(p,0.5) priors on gj, ∀j=1, … , p/2,

The likelihood and the priors are used in Bayes rule to
define the joint posterior probability
pðg1; . . . ; gp=2j{x jð Þ

i }n;pi¼1;j¼1Þ, of the unknown indices g1,…,
gp/2, given the test score data. We generate posterior
samples using Metropolis Hastings.

Then using the values of g1,…, gp/2 that are current at
the end of the k-th iteration, the h1,…, hp/2 indices are
identified. This is equivalent to identifying the g-th and h-
th subtests in the k-th iteration. Here k=0, 1, … , Niter.
Having identified the items that comprise each of the 2
subtests, the score attained by the i-th examinee in each
of the items in either of the current subtests, is identified
in the k-th iteration, ∀i=1, … , n. This allows us to
compute the reliability r

kð Þ
tt in the k-th iteration, using our

definition of the reliability, as per equation (4).
In the k-th iteration, let the current value of the

parameter gj be g
k�1ð Þ
j , and its value proposed in this

iteration is g k⭑ð Þ
j , where we propose

g
k⭑ð Þ
j ∼Binomial p;c k⭑ð Þ

� �
;

where the rate parameter of this Binomial proposal pmf is
the parameter c, the current value of which is c (k�1) and
the proposed value of c (k⭑). We do not have any
information that permits preference of some values of this
rate parameter, to others, though we rule out a probability
of <0.5� a and >0.5+ a for any proposed item in the g-th
subtest to be correctly answered in this k-th iteration,
where a=0.4 (or a=0.2 in another set of experiments), i.e.
rule out this rate parameter to be <0.5–a and >0.5+ a.
This motivates the model that c (k⭑)∼Uniform [0.5� a,
0.5+ a] , with a fixed to 0.4 and 0.2 in two separate sets of
experiments. Thus, for a given j, the acceptance ratio
includes the ratio of the Binomial pmf with rate parameter
c (k�1), to the Binomial pmf with rate parameter c (k). To
compute the logarithm of the posterior, we compute
logarithm of these Binomial pmfs using Stirling’s approxi-
mation. Thus, in the k-th iteration, the acceptance ratio of
Metropolis Hastings includes this ratio of the proposal



Fig. 1. Results of splitting of the real test data DATA-I, into g-th and h-th subtests of equal (=25) number of items, using
minimisation of S, i.e. minimisation of the absolute difference between sum of components of item score vectors in the 2 subtests. Lower
left: plot of value s of S at the t-th splitting of the test into the g-th and h-th subtests, where the current splitting index t : =25 (ℓ� 1)+ j,
with l the current iteration number, and j the current swap number; ℓ=1,… , 50, j=1,… , 25. An iteration comprises 25 distinct swaps,
where a “swap” is defined for this method, in Definition 1. Lowermiddle: plot against t of value sr of Srwhich is the inner product of item
score vectors of g-th and h-th subtests. Lower right: plot of linearly transformed S and Sr values, against splitting index t, to empirically
verify the equivalence between maximisation of Sr and minimisation of S (in thin solid lines). scaling and translation of S and Sr are
undertaken to allow the transformed variables to be plotted within a given interval that allows for their easy visual comparison. Also, to
enable such visualisation, we focus on a sub-interval of the values of t relevant to this run (≥500). Upper right: plot of reliability rtt as
computed by our definition (Eq. (4)), against splitting index t. Upper left: histogram of the rtt values obtained from this run that
attains splitting of the given DATA-I test dataset, using minimisation of S.Upper middle: histograms of examinee scores obtained at
the last accepted swap, in the g-th (in dark solid lines) and h-th subtests (in grey, or red in the electronic version of the paper),
identified in this step.
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densities at the current values (g k�1ð Þ
1 ; . . . ; g

k�1ð Þ
p=2 ), to the

proposed values (g k⭑ð Þ
1 ; . . . ; g

k⭑ð Þ
p=2 ), of the index parameters,

as well as the posterior pðg1; . . . ; gp=2j{x jð Þ
i }n;pi¼1;j¼1Þ of the

proposed to the current values of the parameters.
As diagnostics, traces of the joint posterior, and of

current reliability are included. Tests are carried to check
on results of varying a, s2 and priors.

The algorithm for implementation of the Bayesian
learning of indices of one of the subtests, and the resulting
test reliability, is provided in Algorithm 4.3.
5 Empirical illustration on a real data set DATA-I

In this section, we present results of applying our
frequentist number partitioning methods, as well as the
Bayesian method of splitting a real test into a pair of
subtests, to then compute values of the reliability
parameter. We undertake a direct comparison of our
results with the Cronbach alpha reliability that is
computed for the given test.

This real test data was obtained by examining 912
examinees in a multiple choice examination that was
administered with the aim of achieving selection to a
position. This test has 50 items, the response to which
could be either correct or incorrect, and maximum time
allowed for answering this test was 90min. This test
data has a mean score of about 10.99 and a sample
variance of about 19.63. We refer to this dataset as
DATA-I.

For the real test data DATA-I, the results obtained by
splitting the test viaminimisation of the absolute difference
S between the sum of components of the item score vectors
in the resulting subtests, are shown in Figure 1. Sample
mean, or ~r~tt of values of rtt depicted in the upper middle
panel of this figure is about 0.6119 and its sample standard
deviation (sd) is about 0.0203. We identify r minSð Þ

tt ≈ 0:6589.
The results of splitting by maximisation of the inner
product Sr of the item score are depicted in Figure 2. The
mean reliability achieved by this method of splitting is
about 0.5829 and the empirical standard deviation is about

0.0394. We identify r
maxSrð Þ

tt ≈ 0:6596. Again, results of
splitting this real dataset using the Bayesian learning of the
indices of the items of the g-th subtest, are depicted in
Figure 3. Histogram of learnt reliability values is presented
in the top left panel of this figure, where the learnt 95%
Highest Probability Density credible region is
[0.5475,0.6525] approximately, with a modal reliability
of about 0.6325.



Fig. 2. As in Figure 1, but in this run, splitting of real test data DATA-I is undertaken to maximise the value Sr of the inner product
Sr of item score vectors in the g-th and h-th subtests. Here, the lower right panel displays a plot against the splitting index t, of the value
S2 of the absolute difference between sum of squares of components of the item score vectors in the current g-th and the current h-th
subtests. N.B. Due to the permitted swapping of the j-th item of the current g-th subtest by the j0-th item of the current h-th subtest,
(j ≠ j0), under splitting by maximisation of Sr, sum of components of the 2 subtest item score vectors, can be more different, than when
swapping across rows of the 2 subtests is not permitted, as under splitting by minimising S.

Fig. 3. Figure representing results of splitting the real test dataset DATA-I that comprises responses of n= 912 examinees in 50 items,
using Bayesian learning of the indices of the items in the g-th subtest. The remaining items constitute the h. �th subtest. Posterior
sampling is performed with Independent Sampler Metropolis Hastings, in which each item index of the g-th subtest is proposed from a
Binomial (50, c), with c∼Uniform [0.5� a, 0.5+ a]; in this run, a=0.2. At every iteration, reliability is computed using equation (4).
Traces of this reliability, of c, and of the likelihood are presented in the lower right, top right and lower left panels respectively; the
traces indicate convergence.
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Fig. 4. Figure showing results of PCA of real test data DATA-I. On the right histogram of the eigenvalues is displayed, while the left
panel depicts the eigenvalues (ranked by weights) needed to explain the fraction of the total variance.

Fig. 5. Figure showing results for each of the 351 possible splittings of the read test data DATA-I, where the said results include the
absolute difference S between sums of components of the item score vectors in the 2 subtests that result from the splitting, (left panel);
inner product Sr of the subtest score vectors (middle panel); reliability rtt computed using the examinee score vectors implied by the
current splitting of the test data, in equation (4) (right panel). These results are plotted against the splitting index, which takes values
of 1,2,…351 for DATA-I. Our results by minimising S are overplotted in solid lines, on these results, in the right panel. Cronbach alpha
for DATA-I is also computed and overplotted upon the computed reliability values in the right panel, in broken lines.
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5.1 Comparing our results to Cronbach alpha

As discussed in Section 1, an underlying assumption for
Cronbach alpha is uni-dimensionality of the test, i.e. the
test measures one single latent ability/trait variable.
We undertake a Principle Component Analysis (PCA) of
the test dataset DATA-I to probe the relevance of a
Cronbach alpha computation for the internal consistency
of the real test data DATA-I. The results of this PCA are
presented in Figure 4. These results demonstrate that for
the dataset DATA-I, multiple components are relevant; in
fact, the score of each of the 4th and 6th components, is in
excess of half of that of the 3rd component, with other
components also relevant (2nd, 5th, 7th, 8th). This
indicates that this real test is not uni-dimensional.
Equivalently, the figure indicates that the 20th centile of
the variance in this dataset is explained by the first 3 to 4
eigenvalues, ranked by weight. Thus, the PCA of DATA-I
helps us appreciate that the assumption of uni-dimension-
ality that underlies the correct usage of Cronbach alpha, is
violated in this real-world example.

In Figure 5, we compare the Cronbach alpha value for
test data DATA-I, with reliability obtained by minimising
the absolute difference S between sums of components of
item score vectors of the subtests that result from splitting
of test data DATA-I.We also undertake such a comparison
with reliabilities obtained from all other possible splittings
of this test data. There are in fact, (p/2+1) (p/2+2)/2
number of splittings possible in total for a test with p
number of items. For DATA-I then, 26� 27/2=351
splittings are possible in total. We undertake each of these
distinct 351 splittings of DATA-I into 2 subtests, and for
each splitting � indexed by a “splitting index” � we
compute values of S; Sr; and reliability rtt (using Eq. (4)).
Cronbach’s alpha for this real test dataset is compared to
such computed reliabilities in Figure 5.



Fig. 6. Left: figure to bring out robustness to outliers, of the different techniques for computing reliability. Reliability computed by
deleting the q-th highest scoring pair of items� from the data on responses to the learnt subtests of the test/survey� is plotted against
the deletion index q. Results otained with subtests learnt via minimisation of S are in black filled circles, joined by a black solid line); via
maximisation of Sr are in open circles joined by a broken line, (in blue in the electronic version); and via Bayesian inference on the
indices of the items that comprise the g-th subtest are in filled circles joined by a grey solid line, (in green in the electronic version).
Reliability computed by Cronbach alpha is also plotted in each case (in filled triangles joined by a broken line� in red in the electronic
version). Right: the fractional change in reliability (over the reliability computed using a given method/definition for the whole test
data DATA-I comprising 50 items), is plotted in the right panel, in corresponding line type and symbols (and colour). Variance of this
fractional change (expressed as a percentage) is then computed for each of the 4 cases, and the Bayesianly identified reliability is the
most robust, with a variance of about 2.452, while the reliability computed using splitting by maximising Sr is the least robust (with a
variance of about 3.252) The reliability computed by minimising S and Cronbach alpha are nearly equally robust, with variances of
about 2.962 and 2.952 respectively.
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One way of establishing the advantage of a method, is
to seek its robustness to outliers. With the aim of
identifying the robustness of reliability computed using
our methods and Cronbach alpha to outliers in the test
data, at each deletion of the q-th highest scoring pair of
items from the test data DATA-I, we undertook computa-
tion of reliability by minimising S; reliability by max-
imising Sr; reliability learnt Bayesianly; and Cronbach
alpha. Thus, this exercise comprises p/2=25 steps for our
real data DATA-I, s.t. in the q-th step, i.e. for “deletion
index” q, the q-th highest scoring item pair is omitted from
the data; q=1,…,25. Thus, there are 48 items in the data
DATA-I at any step. The reliability values computed using
the 4 different methods, at each item-pair deletion, are
plotted against deletion index q, in Figure 6.
6 Reliability of a real survey with categorical
responses � HSQ
In this section, we generalise our methods for computing
reliability, to a survey, responses to the items of which are
on a k-point Likert scale. However, we will continue to refer
to this instrument as a “test” and the responders as
“examinees”. That the Likert scale is not equidistant does
not affect our reliability computation (defined in Eq. (4)),
since our parametrisation of uncertainty of a test is the
variance of the variable X (g)�X (h). We demonstrate the
Bayesian learning of the indices g1,… , gp/2∈ {1,… , p/2} of
the g-th subtest, using the method discussed in Section 4.4,
and the publicly available data that is reported by [28],
where this data comprises responses to an online
questionnaire called the “Humour Styles Questionnaire”
(or HSQ) that was formulated to collect responses (on a
5-point Likert scale) to questions on responders’ attitudes
towards humour in different contexts. The exact state-
ments of the questions can be found in the file codebook.txt
that is a component of the package submitted with the
HSQ data, available at https://openpsychometrics.org/
_rawdata/. The responses are assigned ranks 1,2,3,4,5
following this scheme: 1= “Never or very rarely true”,
2=“Rarely true”, 3=“Sometimes true”, 4=“Often true”,
5=“Very often or always true”. In the original dataset with
1037 responders, there was the rank�1 assigned to an item
for which a responder did not select an answer. However,
for our empirical demonstration, we deleted responses from
any responder who left one or multiple items unanswered.
This left us with n=1022 responders. There were 32
questions, i.e. 32 items in this dataset. Thus, for this
application, p=32, and the responses from the i-th
responder is x

jð Þ
i ∈ 1; 2; 3; 4; 5f g ∀j=1, … , p=32 and

∀i=1, … , n=1022.
We use the generic term “test” to refer to this survey,

and “examinees” as responders. Figure 7 depicts results
obtained by splitting this real test dataset HSQ, using our
Bayesian learning of g1,…,gp/2, leaving the remaining test
items to build up the g-th subtest. All parameters of the
Metropolis Hastings chain are as used for the Bayesian
learning given DATA-I (Sect. 4.4). As in Figures 3 and 7,
we depict traces of the likelihood, and the reliability that is
computed at each iteration from the splitting of the full test
into the g-th and h-th subtests, done at each iteration.
We also display the histograms of the examinee scores in
the g-th and h-th subtests that are identified during the last

https://codebook.txt
https://openpsychometrics.org/_rawdata/
https://openpsychometrics.org/_rawdata/


Fig. 8. Marginal posterior probability density of the 1st, 5th, 9th and 13th item indices of an identified subtest between the subtest
pair that real test data HSQ is split into. The marginals are represented as histograms here.

Fig. 7. Figure representing results of Bayesian splitting the real survey dataset HSQ that comprises responses on a 5-point Likert
scale.We use responses from n=1022 responders (whowe refer to generically as “examinees”) who answered every one of the 32 items of
this test. Here we Bayesianly learn the indices of the items that comprise one of the subtests that the full test data is split into�we refer
to this as the g-th subtest. The remaining items constitute the h-th subtest. Posterior sampling is performed with Independent Sampler
Metropolis Hastings, in which each item index of the g-th subtest is proposed from a Binomial (32, c), with c∼Uniform [0.5� a,
0.5+ a]; in this run, a=0.2. At every iteration, reliability is computed using (Eq. (4)). Traces of this reliability, and of the likelihood are
presented in the lower right, and lower left panels respectively. Histograms of examinee scores in the 2 subtests identified in the last
iteration of our Bayesian inference, are shown in solid and broken lines on the top right.
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iteration of this MCMC chain. Histogram of learnt
reliability values is presented in the top left panel of this
figure, where the learnt 95% Highest Probability Density
credible region is about [0.847,0.915], with the modal
reliability of about 0.907. Ultimately, we compare the
results we get for reliability for this test with the Cronbach
alpha that can be computed even for tests, responses of
which are on a k-point Likert scale. This computed value
for the Cronbach alpha (of about 0.88) falls close to the left
edge of the 95% Highest Probability Density credible
region of about [0.847,0.915] on our Bayesianly learnt
reliability; at about 0.88, alpha is less than the Bayesianly
learnt modal reliability of about 0.907. Marginal posterior
probability density of g1,g5,g9,g13, given the data HSQ are
represented as histograms, and displayed in Figure 8.
6.1 Heterogeneous correlation of real test data
DATA-I and HSQ

In this section we present Figure 9 that displays surface
plots of inter-item variance-covariance values of the test
data DATA-I (left panel of the figure) and HSQ (right
panel), for the j � j0-th item pair, where j0 � j, j=1,2,…,p.
p=32 for HSQ and p=50 for DATA-I. Thus, the figure
displays the lower triangles of the variance-covariance
matrices of these datasets. The two real datasets DATA-I
and HSQ are differently heterogeneous in their inter-item
covariance values.

One way that we choose to parametrise the non-
uniformity of the sample covariance of two item scores, is
to compute C that gives the number of inter-item covariance



Fig. 9. Surface plot of covariance between pairs of items in the given test data (DATA-I on the left, and HSQ in the right panel),
plotted against item indices. Here only the lower-triangle of the inter-item variance-covariance matrix is plotted, i.e. covariance
between the j-th and j0-th item is plotted ∀j/� j ; j=1, 2, … , p; p=50 for DATA-1 and p=32 for HSQ. Non-uniformity in the
covariance values are displayed in the plots. Outlying inter-item covariance values are parametrised by C, (discussed in Sect. 6.1). For
HSQ, C ≈ 20%, while the inter-item covariance sample of DATA-I, causes C to about 8.7%.
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values that occur in the sample, with �0.05 times the
frequencyof themodal inter-itemcovariance inthetestdata�
normalised by the number of all sample covariance values.

Then the ratio C gives the normalised sum of
covariances of the outlying items in the given test. The
extent of heterogeneity in inter-item correlation structure
of the HSQ data is manifest in outlier covariance values
that contribute to about 20% of the weighted average of the
inter-item covariance of the full test. The sample inter-item
covariance in DATA-I corresponds to C ≈ 2.3 times lower
in HSQ.

7 Reliability of a very large binary data using
minimisation of S and comparison to Cronbach
alpha

With the aim of demonstrating our splitting method on a
very large test dataset (or a survey) that comprises binary
responses, we looked for such large real life test data in the
literature. We found this in an attempt by [29], that is
designed to address the problem of classifying reviews
about restaurant businesses written on Yelp, which is a
business directory and review service, enabled with social
networking capacity. The ulterior aim of building this
classifier is that an independent user can then use the
categorised information that they are presented with, to
make an informed decision about considered restaurants,
without wading through wordy textual reviews.
This addressed problem is an example of multi-label
classification, since the aim in this work is to classify the
Yelp restaurant reviews into the categories: “Food”,
“Service”, “Ambience”, “Deals/Discounts” and “Worthi-
ness”. Textual features of 10,000 Yelp reviews are extracted
as 375 unigrams (that occur with frequency in excess of a
pre-set threshold); 208 bigrams; 108 trigrams. Star ratings
input by the reviewers were also extracted, into 3 binary
features for the ratings: “1 to 2” stars; “3 stars”; “4 to 5” stars.
In the training data that exists at http://mondego.ics.
uci.edu/projects/yelp/files/train.arff, the extracted fea-
tures are used to define p=676 binary attributes. Values of
each such binary attribute, for n=8848 reviews are
included in the training data. We refer to this data that
contains information about Yelp restaurant reviews, as
DATA-YELP. A pdf of the technical report of the work
exists at http://mondego.ics.uci.edu/projects/yelp/files/
technical_report.pdf.

Here we use the reference “test” to this dataset, in the
general sense of referring to a test/survey data as “test
data”, as stated above in Section 3. For this real data
DATA-YELP, the mean of the examinee scores is about
162415 and the sample variance of the examinee scores
is 717.

We undertook a PCA of the test data DATA-YELP, to
check for the correctness of Cronbach alpha for the
computation of the internal consistency of such a very large
real dataset. The results of this PCA are indicated in
the lower panels of Figure 10. The histogram of the
eigenvalue weights indicate that the 1st and 2nd
eigenvalues are almost of comparable magnitudes, with
the 3rd to the 6th eigenvalue not of negligible weights
either. So this real test data DATA-YELP is not uni-
dimensional. In fact, when we sort the eigenvalues by
weights, we find that the first 3 eigenvalues contribute to
about 20% of the total variance. The Cronbach alpha for
this data is computed to be about 0.91.

From our splitting of the data DATA-YELP, using
minimisation of S, we obtain results in r

minsð Þ
tt ≈ 0:9258. The

splitting that corresponds to the minimum S, gives rise to
the examinee score vectors in the 2 resulting subtests.
Histograms of the examinee scores in the 2 subtests are
overplotted in the upper left panel of Figure 10. Difference

http://mondego.ics.uci�.�edu/projects/yelp/files/train.arff
http://mondego.ics.uci�.�edu/projects/yelp/files/train.arff
http://mondego.ics.uci�.�edu/projects/yelp/files/technical_report.pdf
http://mondego.ics.uci�.�edu/projects/yelp/files/technical_report.pdf


Fig. 10. Figure representing results obtained using the very large real dataset DATA-YELP that comprises binary responses on 676
variables (or items), by 8848 responders (or examinees). The eigenvalue weight distribution is shown by the histogram in the lower right
panel. Relevance of at least 6 of eigenvalues is indicated by this result. Indeed, when eigenvalues, ranked by their weights, are
monitored, (lower left panel), it is found that to explain 20% of the total variation, about 3 eigenvalues need to be used. This plot of
eigenvalues against explained fractional variation, is drawn by undertaking the PCA for 4424 rows of the data, and then for the full
dataset; results from the latter analysis is plotted in black full circles and results for half the dataset is then overplotted in open grey
(or red in the electronic version) circles. The upper panels display results of the splitting done by minimising S. In the upper left panel,
histograms of the examinee score vectors in the 2 subtests that result from the splitting of DATA-YELP test data, are overplotted in
black broken lines and grey (or red in the electronic version) solid lines. The upper right panel then displays the differences between the
examinee scores in the j-th items of the g-th and h-th subtests, plotted against j; here j=1,…,676/2= 338. Reliability corresponding to
the minimisation of S is about 0.93, while Cronbach alpha for this data is about 0.91.
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between the examinee score attained in the j-th itemof the g-
th subtest, and the j-th item of the h-th subtest, are plotted
against item pair index, in the upper right of this figure.
8 Conclusions

We present multiple data-driven methods for learning the
optimally similar pair of subtests that comprise a given
test/survey, in order to enable the computation of
uncertainty in the data on responses to questions of
large/small, heterogeneous, multi-dimensional real-life
test/survey instrument � where the response is either
binary or categorical � without needing to invoke
restrictive model assumptions that cannot be practically
adhered to, and are typically, not adhered to in reality.

The splitting methods that we advance, are not affected
bymessiness that typifies real test/surveyresponsedata,and
by practical limitations of test design, as evidenced by our
implementation of the splitting of a very large real test data;
of real-world multidimensional tests; and of real tests with
non-uniformly correlated items. Tackling such existent
problems, is howeverwhat limits implementation of existing
reliability models, (including that of Cronbach alpha). We
illustrate by splitting a real test data that our Bayesian
learningof the reliabilityof this test ismore robust tooutliers
amongst the test items, when compared to Cronbach alpha,
while splitting by minimisation of S is comparably robust.

Above, we have advanced 3 different methods of
splitting a test or a survey into 2 subtests, s.t. variance
of the difference between responders’ scores attained in the
2 subtests, normalised by the variance of the responses tohe
full test, is defined as uncertainty of the test data; the test
reliability is then complementary to this uncertainty.The 3
methods are essentially equivalent, and operate by learning
the 2 optimally-similar subtests that a given test/survey
instrument is split into, where such optimal splitting is
undertaken: by minimising the absolute difference S
between the means of the subtest item score vectors, or;
maximising the inner product of subtest item score vectors,
or; by Bayesianly learning the positive-definite, integer-
valued indices of the items in one of the identified subtests,
with the likelihood defined as a smoothly declining function
of the Euclidean distance between subtest item score
vectors. We offer a fully objective protocol for implemen-
tation of each method, and illustrate these on real-world
datasets comprising responses to a test relevant to
recruitment of personnel for a real position; to a survey
relevant to an undertaken psychometric task; and to a
survey on restaurant reviews input by customers. We
forward our methods towards fast, automated and reliable
uncertainties of real test and surveys.
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