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A B S T R A C T   

With conventional thermodynamic models, it is challenging to estimate the solubility of a gas in the presence of 
impurities such as water (H2O). Intelligent models can be utilised for this goal in a computationally efficient 
manner. In this paper, the carbon dioxide (CO2) solubility in ionic liquids (ILs) containing water is predicted 
using three intelligence models: artificial neural network (ANN), support vector machines (SVM), and least 
square support vector machine (LSSVM). The shuffled complex evolution (SCE) is used to optimise the intelligent 
models SVM and LSSVM hyperparameters (σ2 and γ), whereas trial and error are used to determine the optimum 
numbers of neurons and layers for the ANN. To identify the most efficient model, the capabilities of applied 
intelligent models for determining solubility were compared. The findings show agreement between the 
experimental values and model estimations. Given that the coefficient-of-determination (R2) and root-mean- 
squared-error (RMSE) were found to be, respectively, 0.9965 and 0.0104 for the test data points, ANN is 
shown to be moderately more accurate than SVMs or LSSVM at predicting solubility. It can also be inferred that 
from a statistical point of view, when fed with parameters such as R2, RMSE, standard deviation (STD), and 
average-absolute-percentage-deviation (AARD), the ANN model demonstrated superior precision in predicting 
gas solubilities compared to the SVM and LSSVM models.   

1. Introduction 

The utilisation of ILs for carbon capture and sequestration has 
received a great deal of interest recently, as these liquids provide several 
advantages over traditional solvents. Ionic liquids have low vapor 
pressure [1], and high thermal stability [2], making them environ-
mentally benign gas absorbents that ensure there is no concurrent loss of 
the liquid into the gas that could potentially pollute the atmosphere. One 
of the greatest benefits of ILs is that their chemical structures are highly 
malleable, allowing them to reversibly capture acid gases such as CO2 
[3], SO2 [4]. The solubility of these gases should be analysed in the 
presence of a third phase or material, as these solvents typically contain 
impurities, the process of making ILs introduces a third material into the 
ILs system, or the high cost of preparing ILs necessitates the use of these 
green solvents in conjunction with another liquid. This increases the 
number of crucial parameters in the study of solubility, rendering 
standard thermodynamics inapplicable to the analysis of the adsorption 
process. 

Absorption is among the most effective methods for removing CO2 

from the atmosphere [5]. Conventional solvents such as inorganic base 
solutions [6], limestone [7], and aqueous amines [8] have disadvan-
tages for the removal of CO2 since these solvents as adsorbents react 
irreversibly with CO2 or release organic pollutants into the water and 
atmosphere [9]. Conventional solvents’ high volatility, toxicity, insta-
bility, and difficulty in regeneration impose high operational costs and 
energy consumption, necessitating the development of an alternative 
absorbent capable of removing carbon dioxide from the atmosphere. 
Despite some drawbacks, such as toxicity, higher prices, hazardous 
handling, and unsafe preparation, ILs are receiving increasing interest. 
This increasing attention is due to their numerous advantages, including 
low vapor pressure, negligible loss, and ease of regeneration. Further-
more, ILs have the potential to absorb greenhouse gases, such as CO2 and 
nitrous oxide (N2O), from gaseous mixtures [10–12]. Recent research 
has explored the solubility of nitrous oxide in ILs, indicating their 
effectiveness in mitigating nitrogen oxide emissions in the chemical 
industry. The knowledge about the solubility of CO2 in ILs can be an 
effective tool for the estimation of CO2 capture performance either from 
an industrial or environmental point of view. CO2 is the main suspect of 
the global warming crisis, and it is one of the most problematic 
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impurities in natural gas treatment and transmission. Hence knowing 
the solubility of this gas in ILs as absorbents is of great value. The con-
ventional laboratory techniques for determining solubilities are com-
plex, time-intensive, and costly. Developing precise numerical models 
for solubility estimation is a priority. Although thermodynamic studies 
can provide precise solubility estimations across various conditions, 
their calculations are labor-intensive and numerically challenging, given 
the multitude of parameters involved. By applying various methods of 
analysis such as the van der Waals equation of states (EoS), 
Peng-Robinson equation of state, and perturbed chain statistical asso-
ciating fluid theory (PC-SAFT) [13] researchers have managed to 
effectively model the gas solubilities including CO2, and N2O, under 
various thermodynamic conditions [14,15]. However, these thermody-
namic models are not as versatile as intelligent predictive models, 
requiring multiple adjustable parameters that are fine-tuned based on 
empirical data within limited condition ranges (such as temperature, 
pressure, and composition). 

Developing a highly accurate, universal method for predicting the 
thermochemical states of CO2 and N2O in connection with ILs is crucial 
to determining solubility values under varying conditions. Gas solubility 
in liquids is a thermodynamic property influenced by numerous factors. 
Intelligent models can accomplish thermodynamic tasks uniquely and 
more cost-effectively. Some notable intelligent models including ANNs 
[16,17], SVM [18], and LSSVM [19], have garnered considerable in-
terest in addressing various engineering challenges. These models can 
tackle certain non-linear, mathematically undefined, complex, and sto-
chastic issues while exhibiting a high degree of accuracy in predicting 
the solubility of CO2 and hydrogen sulfide (H2S) in ILs [20–27]. The 
ANNs are increasingly being utilised to resolve numerous engineering 
and scientific problems, mimicking the training procedure of the 
corporeal cortex in response to experiments. However, ANNs have 
limitations, such as slow convergence rates and the requirement for 
optimal parameter values [28]. Innovative intelligent models such as 
SVM [29] and LSSVM [30] offer robust alternatives that can encompass 
all ANNs features while effectively addressing ANNs’ limitations. These 
models represent a suite of related supervised learning analyses for 
recognising patterns in specific data sets. There are several studies in the 
literature that utilised ANN as a tool to predict the solubility of gases 
particularly CO2 in ILs. Namely, Abdollahi et al. [31] analysed fabrica-
tion modelling of industrial CO2 IL absorbers by artificial neural net-
works. Eslamimanesh et al. [32] have used ANN for the prediction of the 
solubility of CO2 in 24 different ILs to develop a predictive model with 
an optimised three-layered feed-forward ANN with the critical 

properties of CO2 and IL. Alvarez and Saldana [33] used Segment Ac-
tivity Coefficient (COSMO-SAC) and ANN to predict the solubility of CO2 
and CF3 in ILs. Tatar et al. [34] used radial basis function (RBF) neural 
networks with a multi-layered perceptron approach to predict the CO2 
solubility of ILs. Song et al. [35] combined the ANN and SVM tools to 
fabricate a new predictive tool for anticipation of the CO2 solubility of 
ILs. Balchandani and Dey [36] in their recently published work, evalu-
ated the solubility of CO2 in 22 IL bends with amines with a non-rigorous 
and ANN-based modelling. The main advantages of their model were 
their underlying simplicity and minimal requirement of input data, such 
as temperature and pressure. 

Although there are reported works on applying ANNs for the pre-
diction of CO2 solubility in different ILs, there are research gaps that 
have not yet been addressed. As known in the field, the results of ANN 
models can’t be perfectly replicated due to the due to the inherent na-
ture of the applied ANN algorithm. Nevertheless, a comprehensive 
dataset is imperative for researchers to closely reproduce results. Many 
published papers that utilise ANN models fail to provide detailed in-
formation (such as data, flowchart, architecture, etc.) and the applied 
algorithm for the model’s functionality. In this study, we’ve ensured full 
transparency of our ANN modelling process to facilitate reproducibility. 
Furthermore, a review of the literature suggests a scarcity of compara-
tive studies on the performance of leading predictive tools like ANN, 
SVM, and LSSVM. This study is thus designed to evaluate the relative 
strengths of these three predictive models, aiming to identify the most 
effective tool for predicting CO2 solubility in ILs for carbon capture 
technologies by discerning the interrelationship between solubility and 
variables through a numerical procedure that is different from tradi-
tional classical thermodynamics. The other goal of the study is to 
intelligently find the model parameters and to project CO2 solubility in 
six individual ILs. Input data will also consider the IL type, and it will be 
used to boost the versatility of the established numerical algorithm in 
accommodating a variety of ionic liquids for carbon capturing and 
sequestration. In the end, the efficiency of the intelligent models in 
predicting carbon dioxide solubility is analysed, and the most suitable 
model for this application is determined. 

2. Intelligent model generation 

The solubility of CO2 in six unique ILs was examined using artificial 
neural networks and support vector machines. Input datasets for these 
models include variables such as temperature (T), pressure (P), and ionic 
liquids properties such as acentric factor (ω), molecular weight (MW), 

Nomenclature 

Abbreviations 
AARD Average absolute relative deviation 
ANN Artificial neural network 
IL Ionic liquid 
LSSVM Least square support vector machine 
MLP Multilayer perceptron 
QP Quadratic programming 
RBF Radial basis function 
RMSE Root mean square error 
SCE Shuffled complex evolution 
STD Standard deviation error 
SVM Support vector machine 

Variables 
ak (a*

k) Lagrangian multiplier 
C Adjustable parameter of SVM model 
ek Error of LSSVM in training phase 

Pc Critical pressure of ionic liquid 
Tc Critical temperature of ionic liquid 
wT Weight vector 
xk Input vector at the train sample k 
xn Normalised data 
yk Target vector at the train sample k 

Greek symbols 
γ Regularisation parameter 
ε Adjustable parameter of SVM model 
ξk (ξ*

k) Slack variable 
σ2 Squared bandwidth 
φ(x) Kernel function 
ω Acentric factor of ionic liquid 

Subscripts 
Exp Experimental 
Max Maximum value 
Pred Predicted  
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critical temperature (Tc), and critical pressure (Pc). 

2.1. Data acquisition 

In evaluating the proficiency of models in solubility estimation, a 
substantial dataset of CO2 solubility in various ionic liquid systems was 
gathered across a broad pressure spectrum. The dataset, obtained from 
the literature, includes 546 data points for six unique ILs, as illustrated 
in Table 1 [37–43]. This table includes the experimental solubility data 
for different ILs at different conditions. It covers the solubility over a 
wide range of operating points. 

Table 2 lists the ionic liquid’s chemical formulas and IUPAC names. 
For the solubility estimation, the type of ionic liquid is factored into the 
input, enhancing the model validation’s dependability. Accordingly, 
ionic liquid properties, such as critical pressure (Pc), molecular weight 
(Mw), critical temperature (Tc), and arsenic factor (ω), are considered as 
input to the numerical schemes, allowing the models to distinguish be-
tween different ionic liquids. Valderrama procedure [44,45], namely the 
method group contribution, is implemented to estimate those ILs 
properties which are not available in the literature. The range of input 
and output data is showcased in Table 3. 

2.2. Artificial neural network 

One model that we’ve employed in this investigation to assess the 
solubility of CO2 in ionic liquids is the artificial neural network (ANN). 
The ANN algorithm is responsible for creating a nonlinear relationship 

between the input variables and the expected outcomes [46]. The 
model’s efficacy in establishing a trustworthy and robust network 
heavily relies on the precision of data manipulation [47]. Among 
various types of neural network architectures, multilayer perceptron 
(MLP) feedforward neural networks are quite common. This technique 
converts sets of input data into outcomes that apply to solubility in-
vestigations. Within this architectural design, the flow of information is 
unidirectional, moving exclusively from the input towards the output. 
An MLP ANN generally comprises of minimum three layers: 1) an inlet 
layer, 2) one or more hidden layers, and 3) an outlet layer. Each layer in 
the MLP features a fully interconnected cluster of units, commonly 
referred to as neurons. The count of neurons in the inlet-outlet layers 
correlates directly with the number of data points for model generation. 
Determining the neuron’s number in the middle-hidden layer often in-
volves a process of iterative testing. The inlet layers communicate with 
the hidden layer through the transmission of signals, forming the link 
between sets of input and output data. These signals undergo processing 
within the hidden layers before being directed towards the layer in the 
output. 

A back-propagation multilayer feed-forward neural network is 
characterised by a complex web of connections, allowing this system to 
recognise linearly separable datasets and estimate almost any nonlinear 
relationship [48]. For the network to perform optimally, it must undergo 
a training process that adjusts the weights for each interconnecting node 
and bias terms to align the output layer neuron values as closely as 

Table 1 
List of experimental data points used in this study.  

Reference Number of data points Ionic liquid index Temperature, K Pressure, Kpa Mole fraction of H2O Mole fraction of CO2 

min max min max min max Min max 

(Afzal et al., 2014) [43] 123 IL-1 313.15 333.15 1000 2500 0.0011 0.2041 0.0820 0.6580 
(Fu et al., 2006) [37] 56 IL-2 293.1 373.2 785 10004 0.6739 0.9875 0.0018 0.1331 
(Kumełan et al., 2011) [38] 84 IL-3 273.1 333.15 0.7 2821 0 0.8300 0.0318 0.6080 
(Lin et al., 2013) [40] 85 IL-4 288.1 303.1 504 2835 0.9641 0.9938 0.0030 0.0162 
(Muromachi et al., 2015) [41] 77 IL-4 286.15 298.15 200 4000 0.9640 1 0.0005 0.0234 
(Wang et al., 2011) [39] 97 IL-5 248.75 283.1 100 100 0.2857 0.9074 0.0099 0.5000 
(Yasaka and Kimura, 2016) [42] 24 IL-6 298 324 870 3973 0.6931 0.8266 0.0920 0.4320  

Table 2 
Names and chemical formulas for ionic liquids used in this study.  

IUPAC name Index 
number 

Molecular 
Weight 

Chemical 
formula 

1-butyl-3-methylimidazolium 
hexafluorophosphate 

IL-1 284.18 C8H15F6N2P 

1-butyl-3-methylimidazolium 
methylsulfate 

IL-2 250.32 C9H18N2O4S 

N,N,N-triethylbutanaminium acetate IL-3 217.35 C12H27NO2 

tetrabutylammonium bromide IL-4 322.37 C16H36BrN 
tetrabutylphosphonium formate IL-5 304.45 C17H37O2P 
trihexyltetradecylphosphonium bis 

(2,4,4-trimethylpentyl)phosphinate 
IL-6 773.27 C48H102O2P2  

Table 3 
Type and range of studied data points.  

Type of data Property Minimum Maximum 

Inputs Temperature, K 248.75 373.2 
Pressure, Kpa 0.7 25000 
Tc,K 719.4 1878.7 
Pc, Kpa 5500 3610 
ω 0.014 0.940 
Molecular weight of ionic liquid 217.35 773.27 
Mole fraction of H2O 0 1 

Output Mole fraction of CO2 0.0005 0.6580  

Fig. 1. Structure of studied MLP neural network.  
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possible with the actual outputs [49]. The network utilises back-
propagation, a learning methodology that is supervised, to instruct the 
system. The training algorithm modifies parameters like synaptic 
weights and biases using network error as a reference point [48]. The 
MLP neural network’s training commences with initial estimates for 
synaptic weights and biases and uses an iterative optimisation proced-
ure. This process continues across numerous iterations until the squared 
weights and errors reach a minimum [50,51]. 

The arrangement of MLP used in this study is depicted in Fig. 1. The 
definition of the network’s mean square error is as follows: 

MSE =
1
2
∑G

k=1

∑m

j=1

(
Yj(k) − Tj(k)

)2 1 

Here, m represents the total output points and nodes, G signifies the 
count of samples for training, and Yj(k) symbolises the true output data. 
The likelihood of data overfitting is a potential complication linked with 
the nonlinear regression technique, which might amplify this algo-
rithm’s error. To tackle this predicament, the pre-processed data were 
partitioned into datasets for training and validation. Neural networks 
are generated exclusively utilising training data. Validation data are 
exploited to authenticate the generated algorithm precision with 
unmodeled data. Optimal selection of neurons in the hidden layer can 
also be an effective strategy to counter the overfitting problem. 

2.3. SVM model description 

Originally introduced by Vapnik [29], SVM stands out among the 
most potent theoretical instruments suited for discerning patterns, cat-
egorising, and regressing datasets. The SVM is constructed on the 
foundational principles of structural risk minimisation (SRM) and sta-
tistical learning theory (SLT). Initially, SVMs were devised to tackle 
pattern recognition challenges; however, the scope of the SVM algo-
rithm has since been broadened and is presently utilised to address a 
multitude of nonlinear regression issues [52]. SVM achieves the map-
ping of input variables to a higher dimensional domain landscape ac-
cording to the kernel function and discerns a hyperplane via nonlinear 
mapping [53,54]. This approach enables addressing a nonlinear prob-
lem within a linear space by executing a linear mapping in the feature 
domain. The overall functionality of SVM relies heavily on the kernel 
function, kernel model variables, and model parameters. Both SVM 
parameters also steer the dispersion of the training sample in the feature 
space context. SVM model derives results through quadric programming 
(QP), and the global result is obtained in local optima even when 
additional regression analysis techniques are employed. Nonetheless, 
this method can be somewhat time-intensive as it needs to unravel a 
variety of nonlinear correlations [55]. The mentioned approach can be 
evolved by the machine-learning community. 

In the training data setpoints {xk,yk,k = 1,2,...,N
⃒
⃒xk ∈ Rn,yk ∈ R}, xk 

indicates the ith input, yk signifies the output that aligns with a specific 
series of input data, and N is indicative of the number of samples for 
training. The SVM technique’s goal in this context is to pinpoint the 
function f(x) for a regression that is suitably fitted to the proposed 
training sample composed of N data points: 

f (x)=wT φ(x) + b 2 

Given that x indicates the inlet vector having the dimensions of N x n 
(with n being the count of inlet parameters), wT denotes the vector for 
weight, φ(x) stands for the kernel function, and b represents a term for 
bias. To calculate wT and b, the subsequent cost function is established 
and is then minimised [56]: 

Cost function=
1
2
wT + c

∑N

k=1

(
ξk − ξ*

k

)
3 

To derive values for the constraints, the ensuing conditions should be 
upheld: 

⎧
⎪⎪⎨

⎪⎪⎩

yk − wT φ(xk) − b ≤ ε + ξk k = 1, 2, ...,N
wT φ(xk) + b − yk ≤ ε + ξk k = 1, 2, ...,N
ξk, ξ*

k ≥ 0 k = 1, 2, ...,N
4 

The symbols xk and yk represent the inlet vector at the kth training 
sample and its corresponding target data sample points, respectively. ε 
establishes the fixed accuracy for function estimation, and the terms ξk 

(or ξ*
k) are slack variables. The SVM tuning parameter is indicative of the 

numerical difference from the sought ε. A Lagrange formula is utilised to 
minimise the cost function in the manner outlined below: 

L(a, a*)= −
1
2
∑N

k,I=1

(
ak − a*

k

)(
aI − a*

I

)
K(xk, xI)

− ε
∑N

k=1

(
ak − a*

k

)
+
∑N

k=1
yk
(
ak − a*

k

)
5 

The symbols ak and a*
k are for Lagrangian multipliers. After deriving 

the coefficients from the Lagrange equation, we arrive at the eventual 
format of the SVM function as shown below: 

f (x)=
∑N

k,I=1

(
ak − a*

k

)
K(x, xk)+ b 6 

The values for (ak, a*
k, and b) are determined by resolving a QP 

problem. As a result, the SVM model’s calibration parameters include ε, 
c, and a kernel function parameter. For this solubility regression issue, 
Gaussian Radial Basis Kernel (RBF) was employed as it offers efficiency 
and speed during the training phase: 

K(u, v)= exp
(
− r× |u − v|2

)
7 

Kernel parameter (r) plays a role in bridging the gap between two 
independent variables, u and v. The Gaussian radial basis kernel func-
tion, used for this solubility regression problem, requires a fine-tuned 
Gaussian width. The optimisation of the SVM model performance de-
mands a meticulous examination of parameters C, r, and ε. The constant 
parameter C acts as a balancing factor between optimising the margin’s 
width and minimising training error. When the C value is low, the al-
gorithm doesn’t highly prioritise fitting the training data, but as C in-
creases, the algorithm overfits the training data. The noise within the 
data typically influences the ε value, which often remains unknown. The 
exact count of support vectors is also reliant on the perfect ε value, an 
essential component in successfully forming the regression function. In 
most cases, a lower number of support vectors corresponds to smaller ε 
values, resulting in a simplified regression structure. 

2.4. LSSVM model structure 

LSSVM was developed by Suykens and Vandewalle [30] as a more 
efficient alternative to the complex SVM algorithm, which necessitates 
solving a set of nonlinear correlations for input-output data using QP. 
This causes the SVM model development both time-consuming and 
intricate. On the other hand, the LSSVM method, while maintaining the 
precision benefits of the SVM, uses a simpler and more accessible al-
gorithm to analyse the data. The primary function of LSSVM is to 
discover a nonlinear function that can transform a series of training data 
from the input space to a multidimensional space, thereby determining 
the nonlinear relationships between the data sets. 

Provided the training set {xk, yk}, k = 1, 2, ...,N where xk ∈ R stands 

for the t′th input data in the input space and yk ∈ R indicates the output 
for a specified magnitude of the input parameter {i.e.xk} and N signifies 
the number of training samples, the ensuing linear regression function is 
formulated as follows: : 

y=wT φ(x)+ b with w∈R, b∈R,φ(0) ∈R → Rnh , nn→∞ 8 
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In this equation, w demonstrates the weighted vector, and b is 
showing the bias term. Importantly, the superscript n represents the 
input space dimensions, while nn denotes the passive feature space di-
mensions. For the LSSVM to apply to a data series, a novel correlation for 
problem optimisation can be established. 

Cos t function=
1
2
wT w +

1
2

γ
∑N

k=1
e2

k 9  

where, γ symbolises the regularisation factor, which is considered a 
tuning parameter, while ek represents LSSVM error during the training 
phase. For minimisation of eq. (9), a corresponding equality correlation 
is established: 

yk =wT φ(xk)+ b + ek 10 

To determine the optimisation solutions indicated in eq. (9) and its 
associated correlation delineated in eq. (10), the Lagrangian equation is 
utilised: 

L(w, b, e, a)=
1
2
wT w+

1
2

γ
∑N

k=1
e2

k −
∑N

k=1
ak
(
wT φ(xk)+ b+ ek − yk

)
11 

Given that ak represents the Lagrange multipliers or support values. 
To find the answers, the eq. (10) derivatives need to be set to zero, 
yielding the subsequent equations: 

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂L
∂w

= 0 ⇒ w =
∑N

k=1
akφ(xk)

∂L
∂b

= 0 ⇒
∑N

k=1
ak = 0

∂L
∂ek

= 0 ⇒ ek = γek k = 1, 2, ...,N

∂L
∂ak

= 0 ⇒ wT φ(xk) + b + ek − yk = 0 k = 1, 2, ...,N

12 

LSSVM equation variables are derived by resolving the system of 
equations outlined in eq. (12). This system comprises 2 N + 2 correla-
tions and an equal number of undefined variables (ak, ek, w, and b). 
These linear correlations are restructured into a matrix format as 
follows: 
[

0
1ν

1T
ν

Ω + γ− 1I

][
b
a

]

=

[
0
y

]

13 

provided y = [y1...yN]
T, 1N = [1...1]T, α = [α1...αN]

T, and I represents 
the identity matrix, Ω is equal to φ(xk)

T, where φ(xk) = K(xK,xl) ⊎ k, l =

1,2, ...,N. K(xK, xl) represents the kernel function which has a limit, the 
Mercer limit [57]. Another function, namely the radial basis function 
(RBF) Kernel, is employed in our calculations, and is represented by: 

Fig. 2. Schematic presentation of SCE-SVM and SCE-LSSVM models.  
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K(x, xk)= exp
(
− ‖xk − x‖2

σ2

)

14  

where σ2 stands for the squared bandwidth. Lastly, it is important to 
note that the LSSVM can be precisely affected by an adjustable param-
eter σ2 and a regularisation parameter (γ). During the training process, 
the first parameter is quantified using an external optimisation tech-
nique (Fig. 2). The ultimate version of the model is represented from: 

y(x)=
∑N

k=1
akK(x, xk) + b 15  

2.5. Data normalisation 

The data set points are standardised, scaled, and normalised between 
0 and 1 to avoid the effects of larger input variables on smaller ones. 
Normalisation is performed using the following formula: 

Xn =
(X − Xmin)

(Xmax − Xmin)
16 

In this formula, Xn signifies the data in a normalized form. Xmin and 
Xmax denotes the minimum and maximum data values, respectively, and 
X signifies the actual data value. The process for normalisation of data 
doesn’t alter the model’s results. After normalisation, the data values are 
eventually reverted to the initial quantities. 

2.6. Numerical algorithms 

The SVM and LLSVM models are established by dividing the data set 
into training and testing sets in a random manner. The training set, 
which is used to develop the model structure, is composed of a randomly 
selected 75% of the data points. Test sets of data represent around 25% 
of the data, which is employed to assess the model’s validity and per-
formance. Seven input parameters - mass fraction of water, temperature, 
pressure, IL’s critical pressure, IL’s critical temperature, IL’s acentric 
factor and IL’s molecular weight, - serve as the numerical algorithm 
input parameters to investigate the CO2 solubility in ILs. The input data 
points are employed to build the numerical algorithm and develop the 
models. The ANN model’s structure is obtained by comparing various 
networks. SVM and LSSVM tuning parameters (SVM: c, ε, and σ2, 
LSSVM: γ and σ2) are parameterised using the training data through the 
implemented optimisation tools [58]. After locating the optimal pa-
rameters, the data are processed using support vector machines. These 
models are used to generate predictions by incorporating the test data 
samples. The accuracy of these models is confirmed through these 
forecasted outcomes. 

2.7. Models’ accuracy and comprehensiveness 

A combination of statistical graphical accuracy analysis and assess-
ments is applied to evaluate the model’s reliability. The procedure for 
examination of errors encompasses R2, RMSE, AARD, and STD. 

The formulae for these statistical metrics are as follows: 

R2 = 1 −

∑N
i=1

(
xpred(i) − xExp(i)

)2

∑N
i=1

(
xpred(i) − xExp(i)

)2 17  

%AARD=
100
N
∑N

i=1

(∑N
i=1

(
xpred(i) − xExp(i)

)

xExp(i)

)

18  

RMSE =

(∑N
i=1

(
xpred(i) − xExp(i)

)2

N

)0.5

19  

STD=
∑N

i=1

((
xpred(i) − xExp(i)

)2

N

)0.5

20 

In these equations, xexp is the observed CO2 solubility and xpred 

correspond to the estimated CO2 solubility, while xexp stands for the 
solubility-arrhythmic-averaged-values. 

The cross plots and error graphs visually validate the predictive 
models being examined. These cross-plot distribution curves juxtapose 
the values predicted by our computational models with the actual 
experimental figures. Evaluating the model’s consistency involves a 
close data examination congregating over the line defined by y = x, 
showing an ideal prediction. By examining the dispersion of errors 
around the line of zero error, we can gain insights into the error pattern. 

2.8. Statistical analysis 

To determine the goodness of the fit of the models applied, The Chi- 
squared test along with Fisher’s exact test (F-test) has been applied to 
the whole data and the test data used in ANN, SVM, and LSSVM models. 
The Chi-squared test is a statistical test used to determine if the collected 
data is following the expected data. Accordingly, it is used to accept or 
reject the null hypothesis based on the comparison of the calculated t 
value. The null hypothesis expresses that “there is no difference or sig-
nificant relationship between two investigated parameters”. Hence if the 
null hypothesis is valid, then it can be said with a determined degree of 
confidence that there is no significant difference between the two sets of 
parameters. It is used to determine the goodness of the fit if valid. 
However, if it is rejected by the results of statistical analysis, nothing can 
be said about the goodness of the fit because in that case, it will be 
evident that there is a significant difference between the two sets of data, 
but the extent of this difference is statistically unknown. The F-test has 
also the same functionality as the Chi-squared test but with variations in 
statistical measurements of the important parameters and differences in 
distribution curves. An F test is a test statistic used to check the equality 
of variances between two populations and if the two variances are equal 
the null hypothesis stands, otherwise, it will be rejected. 

The Chi-square parameter is defined as: 

χ2 =
∑k

i=1

(
βexp − βmod

)2

βexp  

where βexp is the experimental data (the solubility of CO2 in ILs 
extracted from literature) and βmod is the modelling data (estimated CO2 
solubility of ILs by each of ANN, SVM, and LSSVM). 

In order to determine the statistical significance of the difference 
(goodness of the fit) of the data, the χ2 value for each model applied 
must be calculated. Subsequently, the critical χ2 values based on the 
degree of freedom (number of data points::1) and degree of confidence 
level (90%, 95%, 99%, etc) are extracted from statistical tables or 
CHISQ.INV.RT function in Microsoft Excel software. The p-value related 
to both the Chi-squared test and F-test are calculated by Microsoft Excel 
software using CHISQ.TEST and F.TEST functions, respectively. 

3. Results and discussion 

Initial analysis indicates that the most suitable ANN structure com-
prises a hidden layer containing eight neurons. This structure minimises 
numerical inaccuracies in the data. The optimal ANN model structure 
was determined through trial-and-error evaluation of various networks. 
As depicted in Fig. 1, the optimal neural network consists of an inlet 
layer, an outlet layer, and a single hidden layer. Eight distinct parame-
ters in the middle layer (hidden layer), acting as neurons, connect the 
input to output data sets. The Shuffled complex evolution was used for 
LSSVM and SVM model parameter adjustment. Fig. 2 demonstrates the 
flow chart diagrams of generated models for the combination of SCE and 
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Fig. 3. Crossplot of predicted CO2 solubility data points for LSSVM, SVM, and ANN models at both train and test sets.  

Fig. 4. The error distribution between experimental and predicted CO2 solubility data point for LSSVM, SVM and ANN models.  
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SVMs (LSSVM and SVM). For the original support vector machine, the 
optimised values for c, ε and σ2 are 8481.7367, 0.00057, and 0.05673, 
respectively. For σ2 and γ, the optimum LSSVM parameters are 2.7172 
and 5000, respectively. 

Figs. 3 to 6 display the predictive error of the solubility models. Fig. 3 
exhibits the predicted (xexp) and calculated (xcal) solubility data, aligning 
perfectly with all numerical algorithms generated. The training data 
includes a wide spectrum of CO2 solubility in aqueous ILs. Given the 
handful quantity of experimental data set points that could be extracted 
from the scientific literature, the data of the solubility shows minor 
model discrepancy from the line of equality, which slightly reduces the 
performance of the generated models for high solubility ranges. Another 
crucial point about this study is that the key characteristics of selected 
ILs remain consistent within the training and testing ranges. This con-
sistency allows the intelligent models to perfectly incorporate the impact 
of ILs into their predictions, which is a significant advantage of these 
applied intelligent models. Fig. 3 illustrates the experimental values of 
CO2 solubility in various ILs against the predictions from the neural 
networks system, support vector machine, and least square support 
vector machine for both training and testing types of data. The propa-
gated data points around the line of equality affirm the precision and 
accuracy of the constructed models used for solubility prediction. 
Illustrated in Figs. 4 and 5 are assessments of error, highlighting the 
discrepancies between the actual and forecasted values of CO2 solubil-
ity. In Fig. 4, the error variation, or the divergence between the deter-
mined and predicted data for both the training and testing subsets, is on 
display. The span of absolute error variation in investigated numerical 
schemes ranges roughly from -0.15 to 0.15. Despite the negligible ab-
solute error variation for both the training and testing subsets, this 
distinction doesn’t fully demonstrate the predictive accuracy of these 
intelligent models. To shed more light on the error aspect of these 
intelligent models, Fig. 5 shows the relative error variation between the 
forecasted and determined data subsets for both training and testing, 
concerning their experimental counterparts. Substances with greater 

solubility exhibit a smaller relative error variation, as ample experi-
mental data reduce the relative error variation value compared to sub-
stances with lesser solubility. Despite this, for solubility at lower 
concentrations, the predictive precision of intelligent models remains 
high, backed by the wealth of experimental data available in scientific 
resources. Fig. 6 demonstrates that intelligent models can closely esti-
mate the CO2 solubility in ionic liquids, as evidenced by the slight dif-
ferences in the estimated solubility values. These models’ precision can 
be attributed to the variety of data types, the selection of input param-
eters, and the terms used to categorise each ionic liquid within the 
model. Fig. 6 also offers a comparison of the forecasted and experi-
mental CO2 solubility levels during the testing and training phases of the 
intelligent models. This graph plots the mole fraction of CO2 against an 
arbitrary index number, which lacks physical significance. Upon in-
spection, this graph confirms a satisfactory level of accuracy in the 
predictions provided by these generated models. For further scruti-
nisation of the solubility prediction capabilities of the intelligent models 
and comparison of their performances, four statistical measures 
described in the section are calculated for the artificial neural network 
and support vector machines. The parameters for the solubility estima-
tion are enlisted in Table 4. In the training subsets, the R2 values for the 
multi-layered artificial neural network, support vector machine and 
least square support vector machine models are 0.9973, 0.9957, and 
0.9921, while in the testing subsets, they are 0.9965, 0.9873, and 
0.9806, respectively. The distribution of these statistical values indicates 
that all the studied intelligent models effectively emulate the solubility 
of CO2 in ionic liquids. Yet, SVM seems to perform marginally better 
than LSSVM and ANN. This might be due to SVM’s unique method of 
tackling model inaccuracy. Instead of training error minimisation, the 
structural risk minimisation in support vector machines concentrates on 
curtailing the upper limit of the generalization error. This gives SVM a 
slight edge over the other generated models in terms of solubility pre-
diction accuracy. 

The results of statistical analysis for the goodness of fit based on the 
Chi-squared tests are presented in Table 5. 

Fig. 5. The relative error distribution between experimental and predicted CO2 solubility data point for LSSVM, SVM and ANN models.  
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As can be seen in this table, the critical Chi-squared value for three 
different confident levels of 90%, 95% and 99% are calculated and 
presented in this table for 136 data points considered for testing pur-
poses. The Chi-squared values calculated for the whole 564 data points 
and 136 tested data points are also presented in the table for all three 

ANN, SVM and LSSVM models. It is clear that the calculated Chi-squared 
values are significantly lower than the critical Chi-squared values in any 
considered confidence level. This demonstrates that the null hypothesis 
in these cases is strongly valid meaning that there is no statistically 
significant difference between experimental and model data sets. Hence, 

Fig. 6. Comparison between the experimental data and the results of intelligent models for all data points. a) LSSVM model; b) SVM model and c) ANN model.  
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this demonstrates the model can predict the experimental results with 
acceptable accuracy. The calculated p-values of Chi-square tests for all 
three models are exactly or nearly unity. These values are very larger 
than the α values of 0.1, 0.05 and 0.01 for confidence levels of 0.9, 0.95 
and 0.99 respectively. Accordingly, the null hypothesis is accepted 
meaning that there is no significant difference between the model and 
the predicted data points. The calculated p-value of F tests for whole 
data points and for tested data points which are all below critical F test 
values in all confidence levels considered shows that there is good 
agreement between F test and Chi squared test results (see Table 6). 

The accuracy of the three models applied in this study was compared 
with the accuracy of the other similar models proposed in the literature 
for the determination of CO2 solubility in ILs. The results of this com-
parison are presented in Table 7. 

As can be seen, compared with results by Song et al. [35] our models 
exhibited higher R2 in the cases of both ANN and SVM modeling and the 
errors are comparable with each other although they are not reported on 
the same basis. In the work by Deng et al. [59] three different designs of 
neural networks (DNN, CNN and RNN) along with XGBoost machine 
learning approach were applied for CO2 solubility prediction in ILs. 
Evidently, their R2 values are comparable with the obtained R2, but their 

RMSE values in all four cases investigated are significantly higher than 
what was achieved in this study. Valleh-e-Sheyda et al. [60] also 
employed ANN for a similar objective as delineated in this study. Their 
R2, and RMSE were comparable to our results. Notably, however, the 
number of data points in their study was smaller than our data points. 
Dashti et al. [61] applied PSO-ANFIS and CSA-LSSVM modeling for CO2 
and CH4 solubility estimation in ILs. They applied the model on large 
numbers of data points and obtained accurate results in terms of R2, 
however, their RMSE was relatively high mainly due to the scattered 
data points involved in modelling. Mesbah et al. [62] similarly used 
large numbers of data points in ANN modelling which caused a loss of 
accuracy and a rise of RMSE. The error and accuracy of the present study 
is also the same order of magnitude with the intelligent models for 
calculation of N2O solubility [12], property estimation [63,64], and 
phase behaviour of three different ternary systems [65–67]. 

4. Conclusion 

Sophisticated computational models, including artificial neural net-
works (ANN), support vector machines (SVM), and least squares support 
vector machines (LSSVM), were used in this study to investigate the 

Table 4 
Values of statistical parameters for intelligent models.  

Model Train Test 

R2 RMSE % AARD STD R2 RMSE % AARD STD 

LSSVM 0.9921 0.0160 20.0247 0.1726 0.9806 0.0240 19.4997 0.1808 
SVM 0.9957 0.0118 5.5777 0.1752 0.9873 0.0198 11.0448 0.1803 
ANN 0.9973 0.0094 8.9379 0.1756 0.9965 0.0104 10.8228 0.1800  

Table 5 
The calculated, critical and p-value of Chi-squared tests for ANN, SVM and LSSVM models.  

Model 
used 

Number of 
whole data 
points 

Number of 
test data 
points 

Critical Chi- 
squared value 
(90% confidence 
level) 

Critical Chi- 
squared value 
(95% confidence 
level) 

Critical Chi- 
squared value 
(99% confidence 
level) 

Chi-squared 
value for 
whole data 
points 

Chi-squared 
value for test 
data points 

p-value of Chi 
squared test 
for whole data 

p-value of Chi 
squared test 
for test data 

ANN 546 136 156.4 163.1 176.1 0.5 0.23 1 1 
SVM 546 136 156.4 163.1 176.1 0.92 0.44 1 ≃1 
LSSVM 546 136 156.4 163.1 176.1 1.33 0.67 1 ≃1  

Table 6 
The calculated, critical and p-value of F-tests for ANN, SVM and LSSVM models.  

Model 
used 

Number of whole 
data points 

Number of test 
data points 

Critical F-test value (90% 
confidence level) 

Critical F-test value (95% 
confidence level) 

Critical F-test value (99% 
confidence level) 

p-value of F-test 
for whole data 

p-value of F-test 
for test data 

ANN 546 136 1.25 1.32 1.49 0.967 0.942 
SVM 546 136 1.25 1.32 1.49 0.944 0.925 
LSSVM 546 136 1.25 1.32 1.49 0.921 0.9013  

Table 7 
The accuracy of the presented model in comparison with the similar models presented in literature.  

Model used Number of whole data points RMSE MAE R2 STD Reference 

LSSVM 546 0.0240 – 0.9806 0.1808 This work 
SVM 546 0.0198 – 0.9873 0.1803 This work 
ANN 546 0.0104 – 0.9965 0.1800 This work 
ANN-GC 8093 – 0.0202 0.9836 – (Song et al., 2020) [35] 
SVM-GC 8093 – 0.0240 0.9783 – (Song et al., 2020) [35] 
CP-DNN 728 0.758 0.291 0.984 – (Deng et al., 2020) [59] 
CP-CNN 728 0.206 0.145 0.999 – (Deng et al., 2020) [59] 
CP-RNN 728 0.651 0.25 0.988 – (Deng et al., 2020) [59] 
XGBoost 728 0.586 0.175 0.981 – (Deng et al., 2020) [59] 
MLFNN 430 0.018 0.005 0.995  (Valeh-e-Sheyda et al., 2021) [60] 
PSO-ANFIS 1119 0.39 – 0.939 2.45 (Dashti et al., 2018) [61] 
CSA-LSSVM 1119 0.1 – 0.985 2.52 (Dashti et al., 2018) [61] 
MLP 1386 0.63 – 0.998 – (Dashti et al., 2018) [61]  
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solubility of CO2 in ionic liquids under water-enriched conditions. To 
inform the models, a comprehensive collection of experimental data on 
CO2 solubility in ionic liquids (ILs) was compiled. The models used the 
thermodynamic states and inherent properties of the ionic liquids as 
input parameters to predict solubility as the output. The ANN model 
parameters were determined through trial and error, while the support 
vector machine algorithms were optimised using the Shuffled Complex 
Evolution (SCE) algorithm. All three computational models accurately 
predicted nitrous oxide solubility in ILs, as confirmed by graphical and 
statistical error analyses. The ANN model showed the best match with 
real data, with a higher correlation coefficient and low RMSE (0.0104), 
AARD% (10.8228), and STD (0.1800). The results from a statistical 
analysis of the uncertainty of the results by Chi-squared test and F-test 
showed that there is no significant difference between the modelled and 
observed experimental data, attesting to the model’s accuracy. Upon 
juxtaposing our findings with those from other research entities, it be-
comes evident that our model exhibits superior, or at the very least 
comparable, predictive capability in forecasting CO2 solubility in ILs. 
These computational models are valuable tools for developing efficient 
CO2 removal processes in water-rich ionic liquids, enhancing our un-
derstanding of CO2 solubility behaviour, and advancing CO2 capture 
technologies. In the face of the challenge of mitigating climate change, 
these tools are of paramount importance. 

Data availability 

Experimental, predicted, and input data used to build the intelligent 
framework models are accessible from Brunel University London re-
pository at: https://doi.org/10.17633/rd.brunel.23908371.v1. 

References 

[1] Y.U. Paulechka, G.J. Kabo, A.V. Blokhin, O.A. Vydrov, J.W. Magee, M. Frenkel, 
Thermodynamic properties of 1-butyl-3-methylimidazolium hexafluorophosphate 
in the ideal gas state, J. Chem. Eng. Data 48 (2003) 457–462. 
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