
AN ERROR TERM IN THE CENTRAL LIMIT THEOREM FOR
SUMS OF DISCRETE RANDOM VARIABLES.

DMITRY DOLGOPYAT1∗ AND KASUN FERNANDO2

(*) corresponding author

(1) Department of Mathematics, University of Maryland, College Park MD, USA
email: dmitry@math.umd.edu

(2) Centro De Giorgi, Scuola Normale Superiore, Pisa PI 56126, Italy
email: buddhima.akurugodage@sns.it

Abstract. We consider sums of independent identically distributed random vari-
ables whose distributions have d + 1 atoms. Such distributions never admit an
Edgeworth expansion of order d but we show that for almost all parameters the
Edgeworth expansion of order d− 1 is valid and the error of the order d− 1 Edge-
worth expansion is typically of order n−d/2.

1. Introduction.

Let X be a random variable with zero mean and variance σ2. Let Sn =
n∑
j=1

Xj where

Xj are independent identically distributed and have the same distribution as X. The
Central Limit Theorem says that for each z

lim
n→∞

P
(

Sn
σ
√
n
≤ z

)
= N(z)

where

N(z) =

∫ z

−∞
n(y)dy and n(y) =

1√
2π
e−y

2/2.

A classical problem in probability theory is computing higher order approximations

to P
(

Sn
σ
√
n
≤ z

)
. In particular, the order r Edgeworth series of Sn is an expression

of the form

Er(z) = N(z) + n(z)
r∑

k=1

Pk(z)

nk/2
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where Pk are polynomials such that the characteristic function φ(t) = E(eitX) and

the Fourier transform Êr of Er satisfy

φ

(
t

σ
√
n

)n
− Êr(t) = o

(
n−r/2

)
.

In particular,

E1(z) = N(z) + n(z)
E(X3)

6σ3
√
n

(1− z2),

E2(z) = N(z) + n(z)

[
E(X3)

6
√
nσ3

(1− z2) +
E(X4)− 3σ4

24nσ4
(3z − z3)

−E(X3)2

72nσ6
(15z − 10z3 + z5)

]
.

We say that Sn admits an order r Edgeworth expansion if for all z

(1.1) lim
n→∞

nr/2
[
P
(

Sn
σ
√
n
≤ z

)
− Er(z)

]
= 0.

Recall that a lattice random variable is a discrete random variable taking values on
a set of points of the form a + nh, n ∈ Z, where h > 0, a ∈ R. It is known that Sn
admits the first order Edgeworth expansion if and only if X is non-lattice (see [12]).
The problem of higher order expansion is more complicated. For example, a sufficient
condition for Sn to admit the order r Edgeworth expansion is that E(|X|r+2) < ∞
and X has a density. But this condition is far from necessary. We refer the reader
to [13, Chapter XVI] for discussion of these and related results. We also note that
[2, 5] discusses a weak Edgeworth expansion where the LHS of (1.1) is convolved with
smooth compactly supported functions.

In this paper, we consider a case which is opposite to X having a density, namely we
suppose that X has a discrete distribution with d + 1 atoms where d ≥ 2. d = 2 is
the simplest non-trivial case since the distributions with two atoms are lattice, and
as a result, they do not admit even the first order Edgeworth expansion.

Thus we suppose that X takes values a1, . . . , ad+1 with probabilities p1, . . . , pd+1,
respectively. Since X should have zero mean we suppose that our 2(d + 1)−tuple
(a,p) belongs to the set

Ω = {pi > 0, p1 + · · ·+ pd+1 = 1, p1a1 + · · ·+ pd+1ad+1 = 0}.
It is easy to see that Sn never admits the order d Edgeworth expansion. Indeed,

(1.2) Pa,p(Sn ≤ z) =
∑

mi≥0,
∑
mi=n∑

miai≤z

n!

m1! . . .md+1!
pm1

1 . . . p
md+1

d+1 .

The Local Central Limit Theorem (see [18, Theorem 2.1.1]), applied to the time
homogeneous Zd-random walk which jumps to ei from the origin 0 with probability
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pi for i = 1, . . . , d and stays at 0 with probability pd+1, gives us that for all ε there is
n0 ∈ N such that for all n ≥ n0 and all m ∈ Zd

(1.3)

∣∣∣∣∣P(Tn = m)− 1√
(2πn)d detΓ

e−
(m−nq).Γ−1(m−nq)

2n

∣∣∣∣∣ ≤ ε

nd/2

where Tn is the position of the random walk after n steps, Γ is the associated co-
variance matrix and q = (p1, . . . , pd). Also, if m1, . . .md,md+1 are integers such that
m1 + · · ·+md+md+1 = n and mi ≥ 0, then, taking m = (m1, . . . ,md), we have

P(Tn = m) =
n!

m1! . . .md+1!
pm1

1 . . . p
md+1

d+1 .

As a result, if ∑
miai = n

∑
aipi +O(

√
n),

then in (1.3), the exponent of e is O(1), and hence, for sufficiently large n,

nd/2P(Tn = m) = nd/2
n!

m1! . . .md+1!
pm1

1 . . . p
md+1

d+1

is uniformly bounded from below. Accordingly, from (1.2), it follows that Pa,p(Sn ≤ z)

has jumps of order n−d/2. On the other hand, Ed(z) is a smooth function of z. So,
it can not approximate both Pa,p(Sn ≤ z − 0) and Pa,p(Sn ≤ z + 0) at the points

of jumps without making an error of O(n−d/2). This means that it is not true that
Pa,p(Sn ≤ z) = Ed(z) + o(n−d/2) for all z, showing that the order d Edgeworth
expansion fails.

However, in this paper, we show that for typical (a,p) this failure of the order d
Edgeworth expansion happens just barely. We present two results in this direction.
For the first result, let

bj = aj − a1, for j = 2, . . . , d+ 1.

Then, the characteristic function of X, φ, satisfies

φ(s) = eisa1ψ(s) where ψ(s) = p1 + p2e
isb2 + · · ·+ pd+1e

isbd+1 .

Set

d(s) = max
j∈{2,...,d+1}

dist(bjs, 2πZ).

We say that a is β-Diophantine if there is a constant K such that for |s| > 1,

d(s) ≥ K

|s|β
.

It follows from the classical Khinchine-Groshev Theorem (see e.g. [17, Theorem 1.1]

or [23]) that almost every a is β-Diophantine provided that β >
1

d− 1
.
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Theorem 1. If a is β-Diophantine and

(1.4) 2

(
R− 1

2

)
β < 1

then

lim
n→∞

nR
[
Pa,p

(
Sn
σ
√
n
≤ z

)
− Ed−1(z)

]
= 0

uniformly in z ∈ R.

Thus, for almost every a the order (d − 1) Edgeworth expansion approximates the

distribution of
Sn
σ
√
n

with error O(nε−d/2) for any ε.

Note that Theorem 1 applies for all βs, and in particular, for βs which are much

larger than
1

d− 1
. However, if β is large, then the statement of the theorem can be

simplified. Namely, let r be the integer such that r < 2R ≤ r + 1. (Note that (1.4)

can be rewritten as 2R <
1

β
+1. So, provided that 2R is sufficiently close to

1

β
+1 we

can take r =

〈
1

β

〉
+ 1 where 〈s〉 denotes the largest integer which is strictly smaller

than s.) Then,

Pa,p

(
Sn
σ
√
n
≤ z

)
= Ed−1(z) + o

(
1

nR

)
= Er(z) + o

(
1

nR

)
+O (Ed−1(z)− Er(z)) .

Since
r + 1

2
> R the first error term dominates the second and we obtain the following

result.

Corollary 1.1. Suppose that a is β-Diophantine, r = 1+

〈
1

β

〉
, and r < 2R <

1

β
+1.

Then

lim
n→∞

nR
[
Pa,p

(
Sn
σ
√
n
≤ z

)
− Er(z)

]
= 0

uniformly in z ∈ R.

Corollary 1.1 shows that for almost every a and for r ∈ {1, . . . , d − 1}, the order r
Edgeworth expansion is valid. Our next results show that

(1.5) Pa,p

(
Sn
σ
√
n
≤ z

)
− Ed(z)

is typically of order O(n−d/2) but the O(n−d/2) term has wild oscillations. To for-
mulate this result precisely, we suppose that our 2(d + 1)-tuple is chosen at random
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according to an absolutely continuous distribution P on Ω. Thus, (1.5) becomes a
random variable.

Theorem 2. There exists a smooth function Λ(a,p) such that for each z the random
variable

ez
2/2 nd/2

Λ(a,p)

[
Ed(z)− Pa,p

(
Sn
σ
√
n
≤ z

)]
converges in law to a non-trivial random variable X (defined below in Lemma 1.2)
whose distribution is independent of z and P.

The formulas for the normalizing factor Λ(a,p) and the limiting random variable X
are quite complicated and the next few pages are devoted to their definitions.

The normalization is defined as follows:

(1.6) Λ(a,p) =
|ad+1 − a1|

(2π)d+ 1
2

√
det(Da,p) σ(a,p)

where σ(a,p) denotes the standard deviation of the distribution of the random vari-
able taking value aj with probability pj and Da,p is a (d− 1)× (d− 1) matrix defined
as follows.

The matrix Da,p. Fix p1, . . . , pd+1 and consider a map

ζ(y) =

∣∣∣∣∣
d+1∑
j=1

pje
iyj

∣∣∣∣∣
2

where y = (y1, . . . , yd+1) ∈ Rd+1. Let Y be a random variable taking values yj with
probability pj. Then, for small y we have

E
(
eiY
)

= 1− E(Y 2)

2
+ iE(Y ) +O

(
‖y‖3

)
.

Hence,

(1.7) ζ(y) = 1− E(Y 2) + E(Y )2 +O
(
‖y‖3

)
= 1− V (Y ) +O

(
‖y‖3

)
where V (·) is the variance.

Next, consider the quadratic form given by Q(y,y) = V (Y (y)). Let x, a ∈ Rd+1 be
fixed. In order to maximize s 7→ ζ(x+sa), we want to minimize s 7→ Q(x+sa,x+sa).
We have

Q(x + sa,x + sa) = Q(x,x) + 2sQ(x, a) + s2Q(a, a).

It follows that the minimum is achieved at s∗ = −Q(a,x)

Q(a, a)
and its value is

D(x,x) = Q(x,x)− Q(x, a)2

Q(a, a)
=
Q(x,x)Q(a, a)−Q(a,x)2

Q(a, a)
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=
V (Y (x))V (X)− Cov2(X, Y (x))

V (X)

where X is the random variable taking values aj with probability pj. Note that
D(x,x) > 0 on the subspace x1 = xd+1 = 0 since Cov2(X, Y (x)) = V (X)V (Y (x)) iff
Y (x) = c1X+c2. Note that the RHS takes (d+1) different values if c1 6= 0 and it takes
a single value if c1 = 0. On the other hand, the LHS takes at most d different values
on {x1 = xd+1 = 0} and it takes a single value only at 0. This implies that Q(x) 6= 0
unless x = 0 , and hence, Q is non degenerate. Then Da,p is the (d − 1) × (d − 1)
positive definite matrix such that −4Da,p is the Hessian of Rd−1 3 x̃ 7→ ζ(0, x̃, 0).
The formula for Da,p will be proven in Section 6 (see (6.8)).

We note that the infinitesimal computation described above is relevant because we
will show, in the course of proving Theorem 2, that the main contribution to the error
term come from the resonant points where the Taylor expansion could be used. See
Section 6 for more details.

To define X , we need some notation. Let M be the space of pairs (L, χ) where
L is a unimodular lattice in Rd and χ is a character, that is, a homomorphism
χ : L → T.

The Haar measure on M. The Haar measure µ on M can be defined in two
equivalent ways. First, note that χ is of the form χ(w) = e2πiχ̃(w) for some linear
functional χ̃ ∈ (Rd)∗. SLd(R) acts on Rd ⊕ (Rd)∗ by the formula

A(w, χ̃) = (Aw, χ̃A−1).

Observe that if A(w, χ̃) = (ŵ, χ̂) then

(1.8) χ̃(w) = χ̂(ŵ).

The above action of SLd(R) induces the following action of SLd(R)n(Rd)∗ on M
(A, χ̃)(L, χ) = (AL, e2πiχ̃ · (χ ◦ A−1)).

This action is transitive because SLd(R) acts transitively on unimodular lattices and
(Rd)∗ acts transitively on characters. This allows us to identify M with

(SLd(R) nRd)/(SLd(Z) n Zd)

and so M inherits the Haar measure from SLd(R) nRd.

The second way to define the Haar measure is to note that the space M of unimod-
ular lattices is naturally identified with SLd(R)/SLd(Z), and so, it inherits the Haar
measure from SLd(R). Next, for a fixed L the set of homomorphisms χ : L → T is
a d dimensional torus. So, it comes with its own Haar measure. Now, if we want to
compute the average of a function Φ(L, χ) with respect to the Haar measure then we
can first compute its average Φ̄(L) in each fiber and then integrate the result with
respect to the Haar measure on the space of lattices. In the proof of Lemma 1.2 given
in Section 10, the averaging inside a fiber will be denoted by Eχ and the averaging
with respect to the Haar measure on the space of lattices will be denoted by EL.
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The random variable X . Given a vector w ∈ Rd, we denote by y(w) its first
coordinate and by x(w) its last d − 1 coordinates. We also denote by ‖ · ‖ the
standard Euclidean norm.

Lemma 1.2. For almost every pair (L, χ) ∈M with respect to the Haar measure the
following limit exists

(1.9) X (L, χ) = lim
R→∞

∑
w∈L\{0}, ‖w‖≤R

sin(2πχ(w))

y(w)
e−‖x(w)‖2 .

In this formula and below, we identify T with segment [0, 1) equipped with addi-
tion modulo one, and thus, the characters χ(w) are (after this identification) real
valued.

In particular, the proof of Lemma 1.2 shows that for almost every L, whenever w 6= 0,
y(w) 6= 0 (see Section 10) and that each individual summand in (1.9) is finite almost
everywhere on M. In order to simplify the notation, we will abbreviate expressions
such as (1.9) by

(1.10) X (L, χ) =
∑

w∈L\{0}

sin(2πχ(w))

y(w)
e−‖x(w)‖2

even though (1.10) does not converge absolutely.

If we assume that the pair (L, χ) is distributed according to the Haar measure on M
then X , defined by (1.9), becomes a random variable. This is the variable mentioned
in Theorem 2. Note that the distribution of X depends neither on P nor on z.

Next, we describe how we can use the second representation of Haar measure to
describe X . Let w1, . . . ,wd be the shortest spanning set of L, i.e., w1 is the shortest
non zero vector in L and, for j > 1, wj is the shortest vector in L that is linearly
independent of w1, . . . ,wj−1. Given m = (m1, . . . ,md) ∈ Zd, let

(1.11) (y,x)(m) := m1w1 + · · ·+mdwd ∈ L
where y ∈ R and x ∈ Rd−1. Let θj = χ(wj). Then θj are uniformly distributed on T
and independent of each other. Set

(1.12) θ(m) := m1θ1 + · · ·+mdθd.

Now, X (see definition in Lemma 1.2) can be rewritten as

(1.13) X =
∑

m∈Zd\{0}

sin(2πθ(m))

y(m)
e−||x(m)||2

where L is uniformly distributed on the space of lattices, (y,x)(m) is defined by
(1.11), and (θ1, . . . θd) is uniformly distributed on Td and independent of L. We will
use the representation (1.13) in Sections 8 and 9 in our proofs and in Section 10 when
establishing the convergence of X .
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Theorems 1 and 2 have analogues in case we are interested in probability that Sn
belongs to a finite interval. In particular, our results have applications to Local Limit
Theorems.

Theorem 3. Let z1(n) and z2(n) be two uniformly bounded sequences such that
|z1(n)− z2(n)|nd/2 →∞. Then the random vector

(1.14)
nd/2

Λ(a,p)

(
ez

2
1/2

[
Ed(z1)− Pa,p

(
Sn
σ
√
n
≤ z1

)]
, ez

2
2/2

[
Ed(z2)− Pa,p

(
Sn
σ
√
n
≤ z2

)])
converges in law to a random vector (X (L, χ1),X (L, χ2)) where X (L, χ) is defined by
(1.10) and the triple (L, χ1, χ2) is uniformly distributed on (SLd(R)/SLd(Z))×Td×Td.

Here and below the uniform distribution of (L, χ1, χ2) means that L is uniformly
distributed on the space of lattices, and for a given lattice, χ1 and χ2 are chosen
independently and uniformly from the space of characters.

Theorem 4. Let z1(n) < z2(n) be two uniformly bounded sequences such that ln =
z2(n)− z1(n)→ 0.

(a) If ln ≥ Cnε−d/2 for some ε > 0 then

Pa,p(z1 <
Sn
σ
√
n
< z2)

lnn(z1)
→ 1

almost surely.

(b) If lnn
d/2 →∞ then

Pa,p(z1 <
Sn
σ
√
n
< z2)

lnn(z1)
⇒ 1

(here and below “⇒” denotes the convergence in law).

(c) If ln =
c|ad+1 − a1|
σ(a,p)nd/2

then H(a,p)

[
Pa,p(z1 <

Sn
σ
√
n
< z2)

lnn(z1)
− 1

]
⇒ Y where

H(a,p) = (2π)d
√

det(Da,p)

and

Y(L, χ, c) =
1

c

∑
w∈L\{0}

sin(2πχ(w))− sin(2π[χ(w)− cy(w)])

y(w)
e−‖x(w)‖2 ,

L, χ are as in Theorem 2 and Da,p is from (1.6).
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Remark 1.3. The normalization in Theorem 4(c) comes from the following compu-

tation. Denote ∆n(z) = Ed(z)− P
(

Sn
σ
√
n
≤ z

)
. Then, Theorem 2 can be informally

restated as

∆n(z) ≈ Λ(a,p)
√

2π n(z)

nd/2
X .

Then under the assumption of part (c) of Theorem 4 we have

∆n(z2)−∆n(z1)

ln
≈ Λ(a,p)

√
2π

lnnd/2
[n(z2)X2 − n(z1)X1].

Since
Λ(a,p)

√
2π

lnnd/2
=

1

cH(a,p)
we can rewrite the above equation as

cH(a,p)
∆n(z2)−∆n(z1)

lnn(z1)
≈ n(z2)

n(z1)
X2 −X1.

Thus, the proof of Theorem 4 proceeds by describing the asymptotics of the joint
distributions of nd/2∆n(z1) and nd/2∆n(z2) while Theorem 2 gives the marginal dis-
tributions.

The intuition behind the results of Theorem 4 is the following. Call yn δ-plausible
if P(Sn = yn) ≥ δn−d/2. The discussion following (1.2) shows that for each δ there
are about C(δ)nd/2 δ-plausible values. Therefore, if ln � n−d/2 then the interval
[z1(n), z2(n)] would typically contain no plausible values. Hence, we should not expect
a Local Limit Theorem (LLT) to hold on that scale. Theorem 4 shows that as soon
as interval [z1(n), z2(n)] contains many plausible values then an LLT typically holds
for this interval.

Recall that

Pa,p(Sn ∈ [z1, z2]) =
∑

mi≥0,
∑
mi=n

z1≤
∑
miai≤z2

n!

m1! . . .md+1!
pm1

1 . . . p
md+1

d+1 .

So, in Theorem 4, we just count the number of visits of a random linear form
∑

miai
to a finite interval with weights given by multinomial coefficients. It is also interesting
to consider counting with equal weight. In this case the analogue of Theorem 4(c)
is obtained in [19] while for longer intervals only partial results are available, see
[10, 15].

The layout of the paper is the following. Theorem 1 is proven in Section 2. The proof
is a minor modification of the arguments of [13, Chapter XVI]. The bulk of the paper
is devoted to the proof of Theorem 2. In Section 3, we provide an equivalent formula
for X . This formula looks more complicated than (1.10) but it is easier to identify
with the limit of the error term. Section 4 contains preliminary reductions. Namely,
we show that the integration in the Fourier inversion formula could be restricted to
a finite domain. In Section 6, we show that the main contribution to the error term
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comes from resonances where the characteristic function of Sn is close to 1 in absolute
value. The proof relies on the asymptotic analysis of the resonant term performed in
Section 5. Several technical estimates used in our analysis are established in Section 7.
In Section 8, we use dynamics on homogenuous spaces in order to show that the
contribution of resonances converges to (1.10) completing the proof of Theorem 2.
The proofs of Theorems 3 and 4 are similar to the proof of Theorem 2. The necessary
modifications are explained in Section 9. Finally, Section 10 contains the proof of
Lemma 1.2.

As a notational remark, in the paper the constants denoted by c, C, or other implied
constants may change from line to line or even within the same line.

2. Edgeworth Expansion under Diophantine conditions.

Theorem 1 is a consequence of Lemma 2.1 and Theorem 5 below.

Note that the characteristic function of X is given by

(2.1) φ(s) = p1e
isa1 + · · ·+ pd+1e

isad+1

and recall that d(s) = max
j∈{2,...,d+1}

dist(bjs, 2πZ) where bj = aj − a1.

Lemma 2.1. There exists a positive constant c such that

(2.2) |φ(s)| ≤ 1− c d(s)2.

Proof. Since

1− |φ(s)| = 1− |φ(s)|2

1 + |φ(s)|
≥ 1− |φ(s)|2

2
,

it suffices to show that

(2.3) |φ(s)|2 ≤ 1− 2c d(s)2.

Note that

|φ(s)|2 =
∑
j

p2
j + 2

∑
j<k

pjpk cos((aj − ak)s).

Taking a constant c̄ such that cos(t) ≤ 1− c̄ t2 for |t| ≤ π and letting c = c̄(min
j
pj)

2

we obtain

|φ(s)|2 ≤ 1− 2c
∑
j<k

dist2((aj − ak)s, 2πZ)

proving (2.3). �

Theorem 5. If the distribution of X has d+2 moments and its characteristic function
φ satisfies

(2.4) |φ(s)| ≤ 1− K

|s|γ
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and R <
d

2
is such that

(2.5)

(
R− 1

2

)
γ < 1

then

(2.6) lim
n→∞

nR
[
P
(

Sn
σ
√
n
≤ z

)
− Ed−1(z)

]
= 0.

In particular, if X is discrete with d+1 atoms a = (a1, . . . , ad+1) , a is β−Diophantine

and

(
R− 1

2

)
β <

1

2
, then (2.6) holds.

Theorem 5 follows easily from the estimates in [13, ChapterXVI] but we provide the
proof here for completeness.

Proof. Denoting

∆̄n = P
(

Sn
σ
√
n
≤ z

)
− Ed−1(z)

we get, from the estimate (3.13) in [13, Chapter XVI], that for each T

(2.7) |∆̄n| ≤
1

π

∫ T
σ
√
n

− T
σ
√
n

∣∣∣∣∣φn(s)− Êd−1(sσ
√
n)

s

∣∣∣∣∣ ds+
C

T
.

Choose T = BnR with B =
C

ε
. Then,

C

T
=

ε

nR
. Take a small δ and split the integral

in the RHS of (2.7) into two parts.

(2.8)
1

π

∫ δ

−δ

∣∣∣∣∣φn(s)− Êd−1(sσ
√
n)

s

∣∣∣∣∣ ds+ 1

π

∫
δ<|s|<BnR−1/2/σ

∣∣∣∣∣φn(s)− Êd−1(sσ
√
n)

s

∣∣∣∣∣ ds.
From the proof of Theorem 2 in Section 2 and Theorem 3 in Section 4 of [13, Chapter
XVI], we have that the first integral of (2.8) is O

(
n−d/2

)
.

Also,

∫
|s|>δ

∣∣∣∣∣ Êd−1(sσ
√
n)

s

∣∣∣∣∣ ds has exponential decay as n→∞. Put

J = {s : δ < |s| < Bσ−1nR−1/2}.
Thus, we only need to estimate

(2.9)

∫
J

∣∣∣∣φn(s)

s

∣∣∣∣ ds ≤ 1

δ

∫
J

|φn(s)| ds ≤ C

δ

∫
J

exp
(
−b n1−(R− 1

2)γ
)
ds

where the last inequality is due to (2.4). By (2.5) the integral decay faster than any
power of n. The result follows. �
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Remark 2.2. The fact that the Edgeworth expansion of order (d − 1) holds for
almost every a is obtained in [1, Section 4] (with a weaker error bound). [5] shows,
among other things, that a Diophantine condition with any exponent is sufficient for
obtaining a weak Edgeworth expansion for sufficiently smooth functions. [6, 14] obtain
similar results for dependent random variable including finite state Markov chains.
The relation between the Edgeworth expansions and Diophantine approximations are
utilized in [1, 3, 4] to show that Edgeworth expansions hold for almost every member
of several multi-parameter families.

3. Change of variables.

Here, we deduce Theorem 2 from:

Theorem 2* For each z the random variable

nd/2
[
Ed(z)− Pa,p

(
Sn
σ
√
n
≤ z

)]
converges in law to X̂ where

X̂ (a, p,L, χ) =

(3.1) e−z
2/2 |ad+1 − a1|

2σ(a, p)
√

2π3

∑
w∈L\{0}

sin 2πχ(w)

y(w)
e−4π2x(w)Da,p·x(w) ,

(L, χ) is distributed according to µ, the Haar measure on M, a = (a1, . . . , ad+1),
p = (p1, . . . , pd+1) and (a, p) ∈ Ω are distributed according to P, (a, p) and (L, χ) are
independent, and Da,p and σ(a, p) are defined immediately after (1.6).

We note that the convergence of (3.1) for almost every (L, χ) follows1 from Lemma 1.2,
see Step 1 in the proof of Theorem 2 below.

Proof of Theorem 2 assuming Theorem 2*. We divide the proof into three steps.

Step 1. We will show that ez
2/2 X̂

Λ(a, p)
has the same distribution as X (see (1.9)). To

this end, we rewrite the sum in (3.1) as

(3.2)
1

(2π)d−1 det(
√
Da,p)

∑
w∈L\{0}

sin(2πχ(w))

y(w)/((2π)d−1 det(
√
Da,p))

e−4π2‖
√
Da,p x(w)‖2 .

Let A be the linear map such that

(3.3) A(y,x) =

(
y

(2π)d−1
√

det(Da,p)
, 2π

√
Da,p x

)
.

1Lemma 1.2 shows that the convergence holds if the sum in (3.1) is understood as a limit as
R → ∞ of the sums restricted to the domain ‖Aw‖ ≤ R where A is the matrix given by (3.3).
However, the proof of Lemma 1.2 shows that this sum could also be understood as the limit of sums
over domains ‖w‖ ≤ R.
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Put (L̄, χ̄) = A(L, χ). Then, using (1.8), (3.2) can be rewritten as:

1

(2π)d−1 det(
√
Da,p)

∑
w̄∈L̄\{0}

sin(2πχ̄(w̄))

y(w̄)
e−||x(w̄)||2 .

Since det(A) = 1, the pair (L̄, χ̄) is distributed according to the Haar measure on M.
Thus, using (1.6),

X̂ (a, p,L, χ) = e−z
2/2Λ(a, p)

∑
w̄∈L̄\{0}

sin(2πχ̄(w̄))

y(w̄)
e−||x(w̄)||2

where (L̄, χ̄) is distributed according to the Haar measure on M. So, from (1.9)

ez
2/2 X̂

Λ(a, p)
and X have the same distribution.

Step 2. Denote

(3.4) ΩM
κ = {(a,p) ∈ Ω : ∀i κ ≤ pi, |ai| ≤M and ∀i 6= j |ai − aj| ≥ κ},

∆n = Ed(z)− P
(

Sn
σ
√
n
≤ z

)
, ∆̃n = ez

2/2 ∆n

Λ(a,p)
.

We claim that it is enough to prove Theorem 2 under the assumption that P has
smooth density supported on ΩM

κ for some κ and M. Indeed, let p be the original
density of P. Let f : R → R be a smooth compactly supported function. Given ε

there exists a smooth density p̃ supported on some ΩM
κ such that ‖p̃−p‖L1 ≤ ε

2‖f‖∞
.

If Theorem 2 holds for smooth compactly supported densities then we can find n0 ∈ N
such that for n ≥ n0 ∣∣∣∣∫∫ f

(
nd/2∆̃n

)
p̃ da dp− E(f(X ))

∣∣∣∣ ≤ ε

2
.

Since∣∣∣∣∫∫ f
(
nd/2∆̃n

)
p̃ dadp−

∫∫
f
(
nd/2∆̃n

)
p da dp

∣∣∣∣ ≤ ||p− p̃||L1||f ||L∞ ≤
ε

2

it follows that ∣∣∣∣∫∫ f
(
nd/2∆̃n

)
p dadp− E(f(X ))

∣∣∣∣ ≤ ε.

Since ε is arbitrary, Theorem 2 follows for an arbitrary L1 density.

Step 3. By Step 2, we can and will assume that (a,p) is distributed according to a
smooth density supported on ΩM

κ for some κ and M. Let f be a smooth compactly
supported test function. Divide ΩM

κ into small cubes {Qj} such that if (aj,pj) denotes
the center of Qj, then for each j, each (a,p) ∈ Qj and each ∆ ∈ R we have∣∣∣∣f ( ∆

Λ(a,p)

)
− f

(
∆

Λ(aj,pj)

)∣∣∣∣ ≤ ε.
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Such a partition exists since Λ is continuous and bounded away from 0 on ΩM
κ . Then∫∫

f
(
nd/2∆̃n

)
p da dp =

∫∫
ΩMκ

f

(
ez

2/2n
d/2∆n

Λ(a,p)

)
p da dp

=
∑
j

∫∫
Qj

f

(
ez

2/2 nd/2∆n

Λ(aj,pj)

)
p da dp + δ(n)

where |δ(n)| ≤ ε for large n.

Applying Theorem 2* in the case where (a,p) is distributed according to P condi-
tioned on Qj, we get

lim
n→∞

∫∫
Qj

f

(
ez

2/2 nd/2∆n

Λ(aj,pj)

)
p da dp = P(Qj)E

(
f

(
ez

2/2 X̂
Λ(aj,pj)

))

=

∫∫
Qj

E

(
f

(
ez

2/2 X̂
Λ(a, p)

))
p da dp + δj

where |δj| ≤ εP(Qj).

By Step 1, ∫∫
Qj

E

(
f

(
ez

2/2 X̂
Λ(a, p)

))
p da dp = P(Qj)E(f(X )).

Summing over j we conclude that for large n∣∣∣∣∫∫ f
(
nd/2∆̃n

)
p da dp− E(f(X ))

∣∣∣∣ ≤ 3ε.

Since ε is arbitrary, Theorem 2 follows. �

Remark 3.1. The argument of Step 3 provides the following extension of Theorem 2:

The triple
(
nd/2∆̃n(a,p), a,p

)
converges in law as n → ∞ to the triple (X , a, p)

where X has the distribution described in Theorem 2, and (a, p) is distributed according
to P and is independent from X .

Remark 3.2. The argument of Step 2 shows that it suffices to prove Theorem 2* in
the case P has smooth density supported on ΩM

κ for some κ and M.

Sections 4–8 are devoted to the proof of Theorem 2*. Note that similarly to (1.13)
we have

X̂ = e−z
2/2 |ad+1 − a1|

2σ(a, p)
√
π3

∑
m∈Zd\{0}

sin 2πθ(m)

y(m)
e−4π2x(m)Da,p·x(m).
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Remark 3.3. The statements of Theorems 2 and 2* look similar, however, there
is an important distinction. Namely, the proof of Theorem 2* is constructive. In
the course of the proof, given n, a and z, we construct a lattice L(a, n) and a char-
acter χ(a,p, n, z) such that the expression n−d/2X (a,p,L(a, n), χ(a,p, n, z)) well-
approximates the error in the Edgeworth expansion. We believe that such a construc-
tion could be made for more general distributions where the Edgeworth expansion
fails, and this will be a subject of a future investigation. So, the difference between
Theorems 2 and 2* is that in the first case, we have only an approximation in law,
while in the second case, we are able to obtain an approximation in probability.

4. Cut off.

Here we begin the proof of Theorem 2∗. By Remark 3.2, we may and will assume that
P has a smooth density supported on ΩM

κ for some κ and M. Moreover, all constants,
including the implied ones in O-estimates, may depend on d, κ,M and P.

As in the previous section, let

∆n = Ed(z)− Fn(z) where Fn(z) = Pa,p

(
Sn
σ
√
n
≤ z

)
.

Denote by vT (x) =
1

π
· 1− cosTx

Tx2
and let V(s, T ) =

(
1− |s|

T

)
1|s|≤T be its Fourier

transform.2

We use the approach of [13, Section XVI.3]. Let T2 = σn2d+6. Note that σ = σ(a,p)
is random. Since we assume that (a,p) ∈ ΩM

κ , σ is uniformly bounded, and bounded
away from 0. So, T2 = O(n2d+6) uniformly in (a,p), i.e., there exist constants c, C > 0
such that lim

n→∞
T2/n

2d+6 ∈ (c, C).

Decompose

(4.1) −∆n = [Fn − Ed] ? vT2(z) + [Fn − Fn ? vT2 ] (z)− [Ed − Ed ? vT2 ] (z).

To estimate the last term, we split

[Ed − Ed ? vT2 ] (z) =

∫
|x|≤1

[Ed(z)− Ed(z − x)] vT2(x)dx(4.2)

+

∫
|x|≥1

[Ed(z)− Ed(z − x)] vT2(x)dx.

The first integral in (4.2) equals to∫
|x|≤1

E ′d(z)x vT2(x)dx−
∫
|x|≤1

E ′′d (y(z, x))

2
x2vT2(x)dx

2We use

∫
eisxf(s) ds as definition of the Fourier transform of f ∈ L1 as in [13, Chapter XVI].
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= −
∫
|x|≤1

E ′′d (y(z, x))

2

(
1− cosT2x

πT2

)
dx = O

(
1

T2

)
= O(n−(2d+6))

where the first equality uses that vT is even.

Since both Ed and cosine are bounded the second integral in (4.2) is bounded by

C

∫
|x|≥1

dx

T2x2
=
C

T2

= O(n−(2d+6)).

Thus, the last term in (4.1) is O(n−(2d+6)). Here and below, the constant C do not
depend on the choice of (a,p).

To estimate the second term in (4.1), we split the integral in Fn ? vT2 into regions

{|x| ≥ 1/
√
T2} and {|x| ≤ 1/

√
T2}. The contribution of {|x| ≥ 1/

√
T2} is bounded

by

C

∫ ∞
1/
√
T2

dx

T2x2
=

C√
T2

= O(n−(d+3)).

On the other hand ∫
|x|≤1/

√
T2

[Fn(z)− Fn(z − x)] vT2(x)dx = 0

unless there is a point of increase of Fn inside the interval

J2 =
[
z − 1/

√
T2, z + 1/

√
T2

]
.

The probability that J2 contains a point of increase of Fn is bounded by

(4.3)
∑

m1+···+md+1=n

P(Bm)

where

Bm :=

{
m1a1 + · · ·+md+1ad+1

σ
√
n

∈
[
z − 1/

√
T2, z + 1/

√
T2

]}
.

Note that Bm =
{∣∣m · a− σz√n∣∣ ≤ σ

√
n/T2

}
. Since σ is bounded on ΩM

κ there is

a constant L = L(M,κ) such that Bm ⊂ B̄m :=
{∣∣m · a− σz√n∣∣ ≤ L

√
n/T2

}
. To

estimate P(B̄m) we consider the following variables on ΩM
κ :

ζ = (a1, . . . , ad+1, p1, . . . , pd−1).

Since ζ is distributed according to the bounded density it suffices to estimate the
Lesbegue measure of B̄m in these coordinates. Without loss of generality we may
assume that m1 is the maximal among (m1, . . . ,md+1), whence m1 > n/(d+1). Then
for large n we have that∣∣∣∣ ∂∂a1

[
m · a− σz

√
n
]∣∣∣∣ =

∣∣∣∣[m1 − z
√
n
∂σ

∂a1

]∣∣∣∣ ≥ n

2d
.
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The last inequality follows because the second term is O(
√
n). Accordingly, for each

fixed value of (a2, . . . , ad+1, p1, . . . , pd−1) the measure of a1 such that ζ ∈ B̄m belongs

to the segment of length O(
√
n/T2) is O(

√
1/nT2). Hence, each term in (4.3) is

O
(

1√
nT2

)
, and so, the sum is O

(
nd√
nT2

)
. Thus, with probability 1 −O

(
1

n7/2

)
,

we have that −∆n = ∆n,2 +O
(
T
−1/2
2

)
where

∆n,2 =
1

2π

∫ T2

−T2

[
φn
(

t
σ
√
n

)
− Êd(t)

]
it

V(t, T2)e−itzdt

=
1

2π

∫ T2
σ
√
n

− T2
σ
√
n

e−iszσ
√
n φ

n(s)− Êd(sσ
√
n)

is
V(s, n, T2)ds ,

V(s, n, T )=1−
∣∣∣∣sσ√nT

∣∣∣∣ and φ(s) is the characteristic function ofX given by (2.1).

Let T1 = σK1n
d/2 for some constant K1 > 0, and define

∆n,1 =
1

2π

∫ T1
σ
√
n

− T1
σ
√
n

e−iszσ
√
n φ

n(s)− Êd(sσ
√
n)

is
V(s, n, T2) ds.

Note that T1 = O(nd/2) with the implied constant independent of (a,p) ∈ ΩM
κ . Let

Γn = ∆n,2 −∆n,1. Put J1 = [T1/(σ
√
n), T2/(σ

√
n)] and

Γ̃n =
1

2π

∫
|s|∈J1

e−iszσ
√
n φ

n(s)

is
V(s, n, T2) ds .

Note that, due to the exponential decay of Êd,

|Γ̃n − Γn| ≤ C

∫
|s|∈J1

|Êd(sσ
√
n)|

|s|
ds ≤ C

∫
|s|∈J1

e−ncs
2σ2

|s|
ds ≤ C e−cT

2
1 log |T2/T1|.

Hence, there exists ε > 0 such that Γn = Γ̃n +O
(
e−εT

2
1

)
.

Further, note that T1/(σ
√
n) and T2/(σ

√
n) do not depend on (a,p). Thus, Γ̃n is an

integral over the union of the two intervals J1 and −J1 whose lengths are independent
of (a,p).

The main result of Section 4 is the following.

Proposition 4.1.

(4.4)
∥∥∥Γ̃n

∥∥∥
L2
≤ C√

T1nd/2
.

The proof of Proposition 4.1 relies on the following estimates.
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Lemma 4.2. For each integer l there is a constant C = C(l) such that

E
(∣∣φn−l(s)∣∣) ≤ C

nd/2

for all |s| ≥ 1.

Lemma 4.3. If I is a finite interval with length of order 1 and l be an integer then∫
I

|φn−l(s)| ds = O
(

1√
n

)
(where the implicit constant depends on l and on the length of I but not on its
location).

Lemmas 4.2 and 4.3 will be proven in Section 7 and Section 5, respectively.

Proof of Proposition 4.1. Note that V is an even function in s and φ(s) = φ(−s).
Therefore, the complex conjugate of Γ̃n is

Γ̃n =
1

2π

∫
|s|∈J1

eiszσ
√
n φ

n
(s)

−is
V(s, n, T2) ds

=
1

2π

∫
|−s|∈J1

ei(−s)zσ
√
n φ

n
(−s)
is

V(−s, n, T2) ds

=
1

2π

∫
|s|∈J1

e−iszσ
√
n φ

n(s)

is
V(s, n, T2) ds = Γ̃n.

To estimate the L2-norm of Γ̃n, we write

E(Γ̃2
n) =

1

4π2
E

(∫
|s|∈J1

e−iszσ
√
n φ

n(s)

is
V(s, n, T2) ds

)2

= − 1

4π2

∫∫
|s1|,|s2|∈J1

E
(
e−i(s1+s2)zσ

√
nφn(s1)φn(s2)

) Vn(s1) ds1

s1

Vn(s2) ds2

s2

where

(4.5) Vn(s) = V(s, n, T2) = 1−
∣∣∣∣sσ√nT2

∣∣∣∣ =

(
1− |s|

n2d+ 11
2

)
is independent of σ , and 0 ≤ Vn ≤ 1 on J1.

We split this integral into two parts.

(1) In the region where |s1 + s2| ≤ 1, we use Lemma 4.3 to estimate the integral by
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E

(∫
|s1|∈J1

|φn(s1)|
∫ 1−s1

−1−s1
|φn(s2)| ds2

|s2|
ds1

|s1|

)
= O

(∫
|s1|∈J1

1√
ns2

1

E (|φn(s1)|) ds1

)
.(4.6)

Plugging the estimate of Lemma 4.2 into (4.6) and integrating we see that the con-

tribution of the first region to E(Γ̃2
n) is O

(
1

T1nd/2

)
.

(2) Consider now the region where |s1 + s2| ≥ 1.

Recall that on Ω,

(4.7) p1 + · · ·+ pd+1 = 1, and p1a1 + · · ·+ pd+1ad+1 = 0.

We use the 2d-dimensional coordinates (a1,ν) where ν := (p1, p3, . . . , pd, b2, . . . , bd+1).

Then there exists a compactly supported density ρ = ρ(a1,ν) such that the contri-
bution of the second region is∫∫

|s1|,|s2|∈J1
|s1+s2|≥1

(∫∫
g(s1, s2, a1,ν) ρ da1 dν

)
Vn(s1) ds1

s1

Vn(s2) ds2

s2

where
g(s1, s2, a1,ν) = e−i(s1+s2)zσ

√
nein(s1+s2)a1ψn(s1)ψn(s2).

To estimate this integral, we integrate by parts with respect to a1. Note that for each
k we have

eisna1 =

[
1

isn

d

da1

]k
eisna1 .

Fix a large k (for example, we can take k = 8d + 25). The integration by parts

amounts to applying

(
d

da1

)k
to e−i(s1+s2)zσ

√
nρ[ψ(s1)ψ(s2)]n which leads to terms

formed by products of{(
d

da1

)k1 [
e−i(s1+s2)zσ

√
n
]}

,

{(
d

da1

)k2

[ρ]

}
, and

{(
d

da1

)k3

[ψ(s1)ψ(s2)]n
}

where k1 + k2 + k3 = k. Note that all of the above expressions depend implicitly on
a1 because p2 and pd+1 depend on a1 due to the second equation in (4.7). Rewriting
that equation in the form

a1 +
d+1∑
j=2

pjbj = 0 ,

we obtain
∂pj
∂a1

= −1/bj, j = 2 or d+ 1. We also observe that when we integrate by

parts, the boundary terms vanish because ρ is smooth and has compact support.
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Thus, the contribution of the above term to the integral is bounded by the expectation
of

C

∫∫
|s1|,|s2|∈J1
|s1+s2|≥1

n(k1/2)+k3

|s1 + s2|k−k1nk
∣∣φn−k3(s1)

∣∣ ∣∣φn−k3(s2)
∣∣ds1

|s1|
ds2

|s2|
.

To estimate the above integral we consider two cases, k1 ≥ k − 3 and k1 < k − 3.

In the first case, we use trivial bounds |s1| ≥ 1, |s2| ≥ 1, |s1 + s2|k−k1 ≥ 1 and∣∣φn−k3(s2)
∣∣ ≤ 1, and Lemma 4.2 to estimate3 E(

∣∣φn−k3(s1)
∣∣) to obtain the upper

bound:

C

nd/2+k−k1/2−k3

∫∫
|s1|,|s2|∈J1

ds1 ds2 ≤
C|J1|2

n(d+k−3)/2
≤ CT 2

2

n(d+k−1)/2
=

CT 2
2

n9d/2+12
≤ C√

T1nd/2
.

Since T1 = O(nd/2), T2 = O(n2d+6) and k = 8d + 25, we have the last inequality. In
the second case, we observe that |s1 + s2|k−k1 ≥ |s1 + s2|3. We divide the integration
region into two parts.

(a) |s1 + s2| ≥ 0.1|s2|. In this case the integrand is bounded by

C

|s1||s2|4
∣∣φn−k3(s1)

∣∣ .
Using Lemma 4.2 to estimate the expectation of the last term and then performing
the integration, we obtain the bound

n3/2 lnn

nd/2T 3
1

=
1

nd/2T1

× n3/2 lnn

T 2
1

.

The second factor is smaller than 1 since T 2
1 = K2

1σ
2nd and d ≥ 2.

(b) |s1 + s2| ≤ 0.1|s2|. In this case si’s are of the same order:

1

2
≤
∣∣∣∣s1

s2

∣∣∣∣ ≤ 2.

Accordingly, the integrand is bounded by

1

s2
1

|s2 + s1|−3
∣∣φn−k3(s1)

∣∣ ∣∣φn−k3(s2)
∣∣ .

To perform the integration over s2, we divide the domain of integration into segments
Il(s1) of length of order 1, so that there exists c, C > 0 such that on Il,

c|l| ≤ |s2 + s1| ≤ C|l|.
Using Lemma 4.3 on each segment, we obtain

(4.8)

∫
s2∈J2,|s1+s2|<0.1s2

|φn−k3(s2)|
|s1 + s2|3

ds2 ≤
∑
l

C

l3
√
n
≤ C√

n

3Here we use the fact that Lemma 4.2 applies to any absolutely continuous distribution of (a,p).
In particular, it applies to the integration with respect to the (normalized) Lebesgue measure.
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where the constant C does not depend on s1. We now perform the integration over
s1. Using Lemma 4.2 we bound the expectation of the integral by

(4.9)
C

nd/2

∫
|s1|≥T1/(σ

√
n)

ds1

s2
1

=
C
√
n

nd/2T1

.

Multiplying the bounds of (4.8) and (4.9), we obtain that the integral over region (b)
is also within the bounds of Proposition 4.1. �

Proposition 4.1 shows that (by taking K1 sufficiently large) the contribution from Γ̃n
to the L2−limit of nd/2∆n can be made arbitrarily small. On |s| ≤ T1/σ

√
n, due to

(4.5), we have

V(s, n, T2) =

(
1− |s|

n2d+ 11
2

)
.

Hence, ∆n,1 = ∆̂n + o(n−3d/2) where

(4.10) ∆̂n :=
1

2π

∫
|s|≤T1/σ

√
n

φn(s)− Êd(sσ
√
n)

is
e−iszσ

√
nds.

In summary, the analysis of Section 4 shows that nd/2‖∆̂n −∆n‖L2 → 0 as n → ∞.
Hence, we only need to analyze nd/2∆̂n for large n.

5. Contribution of resonant intervals.

5.1. Definition of resonant intervals. Denote

sk =
2πk

|bd+1|

and let Ik be the segment of length
2π

|bd+1|
centered at sk. Let K2 be a constant such

that K2 � K1. Due to the results of the previous section, it is sufficient to study

∆̂n =
∑

|k|≤K2n(d−1)/2

Ĩk

where

Ĩk =
1

2πi

∫
Ik

e−iszσ
√
n φ

n(s)− Êd(sσ
√
n)

s
1|s|≤T1/σ

√
nds.

Ĩ0 = o(n−d/2) due to [13, Section XVI.2]. Next, Êd(sσ
√
n) decays exponentially with

respect to n outside of I0. So, its contribution to Ĩk is negligible for k 6= 0. Accord-
ingly,

∆̂n =
∑

0<|k|≤K2n(d−1)/2

Ik + o

(
1

nd/2

)
where

Ik =
1

2πi

∫
Ik

e−iszσ
√
n φ

n(s)

s
1|s|≤T1/σ

√
n ds.
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Write

s̄k = arg max
s∈Ik
|φ(s)|, φ(s̄k) = rke

iφk .

Call the interval Ik resonant if rnk ≥ n−100d and call it non-resonant otherwise. By
definition, if the interval Ik is non-resonant, then Ik = O(n−100d). Since there are
O(n(d−1)/2) number of intervals (both resonant and non-resonant), the total contribu-
tion of the non-resonant intervals is at most O(n−(199d+1)/2) which is negligible. So,
from now on, we focus only on the contribution of the resonant intervals.

5.2. Asymptotics of the resonant terms. The following lemma is similar to the
results of [8, Section 5.2].

Lemma 5.1. Suppose that

(5.1) rnk ≥ n−100d

and

(5.2) ± T1

σ
√
n
6∈ Ik.

Then

Ik =
1

i
√

2πnσ

rnk
s̄k
e−z

2/2 einφk−is̄kzσ
√
n

(
1 +O

(
ln3 n√
n

))
.

Proof. Let eis̄kaj = ei(φk+βj(k)) with |βj(k)| ≤ π. Then

(5.3) rk =
d+1∑
j=1

pj cos βj(k),

and

(5.4)
d+1∑
j=1

pj sin βj(k) = 0.

From (5.1), we have

(5.5) rk ≥ 1− C lnn

n
.

(5.5) along with (5.3) give

(5.6)
d+1∑
j=1

pjβj(k)2 ≤ C lnn

n
,
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and hence, |βj(k)| ≤ C

√
lnn

n
. Combining this with (5.4) we obtain

(5.7)
d+1∑
j=1

pjβj(k) = O

(
ln3/2 n

n3/2

)
.

Next, by the definition of s̄k,
∂

∂δ

∣∣∣
δ=0

φ(s̄k + δ) is perpendicular to φ(s̄k) and whence

(5.8)
∑
j

pjaj sin βj(k) = 0.

Let s ∈ Ik, then s = s̄k + δ for some δ. Using Taylor expansion,

ei(s̄k+δ)aj = eiφkeiβj(k)

(
1 + iajδ −

a2
jδ

2

2

)
+O

(
δ3
)

= eiφk
(

cos βj(k) + i sin βj(k) + iδaj cos βj(k)− δaj sin βj(k)

)
− eiφk (cos βj(k) + i sin βj(k))

a2
jδ

2

2
+O

(
δ3
)
.

Thus,

φ(s̄k + δ) =
d+1∑
j=1

pje
i(s̄k+δ)aj =

eiφkrk + eiφk
d+1∑
j=1

pj cos βj(k)

(
iajδ −

a2
jδ

2

2

)
+O

(
ln3/2 n

n3/2
+ δ3

)

(5.9) = rke
iφk

(
1− σ2δ2

2

)
+ iδeiφk

d+1∑
j=1

pjaj(cos βj(k)− 1)

−δ
2

2
eiφk

d+1∑
j=1

pja
2
j(cos βj(k)− rk) +O

(
ln3/2 n

n3/2
+ δ3

)
where we have used (5.4), (5.7), (5.8) as well as

p1a1 + · · ·+ pd+1ad+1 = 0 and p1a
2
1 + · · ·+ pd+1a

2
d+1 = σ2.

The main term in (5.9) is the first one since

| cos βj(k)− rk| ≤ | cos βj(k)− 1|+ |1− rk| = O
(
βj(k)2 +

lnn

n

)
.
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Hence, using (5.6), we obtain

φ(s̄k + δ) = rke
iφk

(
1− σ2δ2

2

)
+O

(
(δ + δ2)

lnn

n

)
+O

(
ln3/2 n

n3/2
+ δ3

)

= rke
iφk

(
1− σ2δ2

2

)
+O

(
ln3/2 n

n3/2
+ δ3

)
.

In summary,

(5.10) φ(s̄k + δ) = rke
iφk

(
1− σ2δ2

2

)
+O

(
ln3/2 n

n3/2
+ δ3

)
.

Next, split Ik = I ′k∪I ′′k where I ′k is the part of Ik where

{
|δ| ≤ C lnn√

n

}
and I ′′k = Ik\I ′k.

Note that, if (5.5) holds, then Lemma 2.1 shows that s̄k is close to sk. So, the set{
|δ| ≤ C lnn√

n

}
is completely contained in Ik. Lemma 2.1 also shows that for s ∈ I ′′k ,

|φ(s)|n ≤ n−c lnn. So, the contribution of I ′′k to Ik is negligible.

Next, on I ′k the error term in (5.10) is O
(

ln3 n

n3/2

)
. Hence, the contribution to Ik from

I ′k is

rnk
2πis̄k

ei(nφk−
√
nσzs̄k)

∫
|δ|<C lnn/

√
n

(
1− σ2δ2

2
+O

(
ln3 n

n3/2

))n
(1 +O(δ)) e−iσzδ

√
ndδ

=
rnk

2πis̄k
ei(nφk−

√
nσzs̄k)

∫
|δ|<C lnn/

√
n

e−σ
2δ2n/2−iσδ

√
nzeO(ln3 n/

√
n) (1 +O(nδ4 + δ)

)
dδ

=
rnk

2πis̄k
ei(nφk−

√
nσzs̄k)

(
1 +O

(
ln3 n√
n

))∫
|δ|<C lnn/

√
n

e−σ
2δ2n/2−iσδ

√
nz dδ.

Making the change of variables σδ
√
n = t, we can rewrite the last expression as

rnke
−z2/2

2πis̄kσ
√
n
ei(nφk−

√
nσzs̄k)

(
1 +O

(
ln3 n√
n

))∫
|δ|<Cσ lnn

e−(t+iz)2/2 dt

=
rnke
−z2/2

2πis̄kσ
√
n
ei(nφk−

√
nσzs̄k)

(
1 +O

(
ln3 n√
n

))∫
R
e−(t+iz)2/2 dt

=
rnke
−z2/2

√
2πis̄kσ

√
n
ei(nφk−

√
nσzs̄k)

(
1 +O

(
ln3 n√
n

))
.

This completes the proof of the lemma. �

5.3. Proof of Lemma 4.3.
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Proof. Note that if |φn(s)| ≤ n−100d then |φn−l(s)| ≤ n−50d and if |φn(s)| ≥ n−100d

then |φ(s)| ≥ 1− C lnn

n
, and hence, |φ−l(s)| ≤ 2. Therefore

(5.11) |φn−l(s)| ≤ 2|φn(s)|+ 1

n50d
.

Thus it suffices to prove the result for l = 0. We can cover I by a finite number of
intervals Ik. For the intervals where rnk < n−100d, we have∑

rnk<n
−100d

∫
Ik

|φn(s)| ds ≤ C
|I|
n100d

.

For resonant intervals where rnk ≥ n−100d and k 6= 0, the proof of Lemma 5.1 shows
that ∑

rnk≥n−100d

∫
Ik

|φn(s)| ds ≤ C

∫
|δ|<C lnn/

√
n

(1− cδ2)n dδ +O
(
n−c lnn

)
= O

(
1√
n

)
.

Finally, the case k = 0 is analyzed in [13, Section XVI.2]. �

6. Simplifying the error term.

As noted above, in the resonant case, Lemma 2.1 gives d(s̄k) ≤ C

√
lnn

n
. In particular,

dist(bd+1s̄k, bd+1sk) ≤ C

√
lnn

n
because bd+1sk ∈ 2πZ. So, ξk := s̄k − sk satisfies

|ξk| ≤ C

√
lnn

n
.

Since d(sk) = d(s̄k) +O(sk − s̄k), we also have d(sk) ≤ C

√
lnn

n
.

Noting that bjsk =
2πkbj
|bd+1|

we define ηj,k =
2πkbj
|bd+1|

+ 2πlj,k, for j = 2, . . . , d+ 1 , where

lj,k is the unique integer such that

(6.1) − π < 2πkbj
|bd+1|

+ 2πlj,k ≤ π.

Then, ηd+1,k = 0 and the foregoing discussion gives

(6.2) |ηj,k| ≤ C

√
lnn

n
.

Define the random vector
Xk =

√
nηk

where ηk is the vector with components (η2,k, . . . , ηd,k), and let

Yk =
k

n(d−1)/2
.
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Also, for the remainder of the paper, we fix a constant α:

(6.3) α =
1

2(d− 1)
.

The main result of Section 6 is the following.

Proposition 6.1. Let ∆̃n(δ,K) :=

|bd+1|e−z
2/2

nd/2σ
√

2π3

∑
k∈S(n,δ,K)

sin
(

2πnd/2

|bd+1|
(
√
na1 − zσ)Yk + (

√
nq + zσω) ·Xk

)
Yk

e−XkDa,p·Xk

where

(6.4) S(n, δ,K) = { k > 0 | δ < Yk < K, |Yk|α‖Xk‖ < 2K+1 }
and the vectors ω = (ω2, . . . ,ωd) and q = (q2, . . . ,qd) satisfy

(6.5) ωm =
2
∑d+1

l=1 plpm(bl − bm)∑d+1
j=1

∑d+1
l=1 plpj(bl − bj)2

, qm = pm , m = 2, . . . , d.

Then, given ε we can find δ,K such that

P
(
|∆̂n − ∆̃n(δ,K)| > ε/nd/2

)
< ε.

Before proving this, we obtain an approximation for rk and use it to obtain an ap-
proximation for Ik.

Sublemma 6.2. There exists a (d− 1)× (d− 1) matrix Da,p such that

rk = 1− ηkDa,p · ηk +O(‖ηk‖3) .(6.6)

Proof. Writing r2
k = ψ(s̄k)ψ(s̄k), s̄k = sk + ξk and substituting ηj,k + bjξk for bj s̄k, we

obtain,

r2
k =

d+1∑
j=1

p2
j + 2

∑
l>j,j 6=1

plpj cos[(bl − bj)ξk + ηl,k − ηj,k] + 2pd+1p1 cos bd+1ξk

+ 2
d∑
j=2

pjp1 cos(bjξk + ηj,k).

Therefore,

r2
k = 1−

∑
l>j,j 6=1

plpj[(bl − bj)ξk + ηl,k − ηj,k]2 − pd+1p1b
2
d+1ξ

2
k

−
d∑
j=2

pjp1(bjξk + ηj,k)
2 +O

(
ξ3
k +

d∑
l=2

η3
l,k

)
.
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Note that the implied constants here and below can be chosen to be independent of
(a,p) ∈ ΩM

κ .

Taking η1,k = b1 = 0, we can write the above as

r2
k = −ξ2

k

∑
l>j

plpj(bl − bj)2 − 2ξk
∑̂

plpj(bl − bj)(ηl,k − ηj,k)

+ 1−
∑̂

plpj(ηl,k − ηj,k)2 +O

(
ξ3
k +

d∑
l=1

η3
l,k

)

where the sum in
∑̂

is taken over the pairs (l, j) such that l > j and (l, j) 6= (d+1, 1).

Since r2
k is approximated by a quadratic polynomial in ξk (the unknown) we can

approximate ξk by determining argmax r2
k(ξ), obtaining

ξk = −
∑̂

plpj(bl − bj)(ηl,k − ηj,k)∑
l>j plpj(bl − bj)2

+O
(
‖ηk‖2

)
= −

∑d+1
j=1

∑d+1
l=1 plpj(bl − bj)ηj,k

1
2

∑d+1
j=1

∑d+1
l=1 plpj(bl − bj)2

+O
(
‖ηk‖2

)
.(6.7)

We recall that b1 = 0 and η1,k = ηd+1,k = 0. Substituting back we find rk in terms of
ηj,k only. Namely,

r2
k = 1−

∑̂
plpj(ηl,k − ηj,k)2 +

[∑̂
plpj(bl − bj)(ηl,k − ηj,k)

]2∑
l>j plpj(bl − bj)2

+O

(
d∑
l=1

η3
l,k

)
.

Put R =

[∑
l>j

plpj(bl − bj)2

]−1

. Then,

r2
k = 1 +

∑̂
plpj

[
plpj(bl − bj)2R− 1

]
(ηl,k − ηj,k)2

+
∑

l>j,m>m̄
(l,j)6=(m,m̄)

(l,j),(m,m̄)6=(d+1,1)

plpjpmpm̄(bl− bj)(bm− bm̄)R(ηl,k− ηj,k)(ηm,k− ηm̄,k) +O

(
d∑
l=1

η3
l,k

)

(6.8) := 1− 2
d∑

l,j=2

Dl,j(a,p)ηl,kηj,k +O

(
d∑
l=1

η3
l,k

)
.

Thus,

rk = 1−
d∑

l,j=2

Dl,j(a,p)ηl,kηj,k +O

(
d∑
l=1

η3
l,k

)
= 1− ηkDa,p · ηk +O(‖ηk‖3)
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where Da,p is the (d− 1)× (d− 1) matrix with

(6.9) [Da,p]i,j = Di,j(a,p) ,

proving (6.6). �

Lemma 6.3. The matrix Da,p defined by (6.9) satisfies

Ik =
e−z

2/2

i
√

2πnσ

(1− ηkDa,p · ηk +O(‖ηk‖3))n

s̄k
einφk−iskzσ

√
n (1 + o(1))

where ηk = (η2,k, . . . , ηd,k).

Proof. Follows directly from Lemma 5.1 and (6.6). �

We next consider the Ik at the two ends. Let B(a,p) be the contribution of these

boundary terms, i.e. from k such that ± T1

σ
√
n
∈ Ik. By Lemma 4.3,

B(a,p) ≤ C

T1

.

Recalling that T1 = K1σn
d/2, we see that we can make nd/2B(a,p) as small as we

wish by taking K1 large. So, from now on, we ignore these terms.

Lemma 6.4. Let

Ik,l = Ik1|k|αn1/4‖ηk‖∈[2l,2l+1].

For all sufficiently large K > 0, there is a constant c̃ such that

E

 ∑
0<|k|<Kn(d−1)/2

∑̂
l
|Ik,l|

 = O
(

1

nd/2
2K(d−1) exp

(
−c̃22K

))

where the sum in
∑̂

is over l satisfying l > K and 2l <
Kkα
√

lnn

n1/4
.

Remark 6.5. We could restrict to l satisfying l > K and 2l <
Kkα
√

lnn

n1/4
since, by

the discussion at the beginning of Section 6, it is enough to consider the intervals
satisfying (6.2) and we can take K > C where C is the constant from (6.2).

The proof of the above lemma will be given in Section 7. Lemma 6.4 shows that we
should focus on the contribution of Ik,l with

0 < |k| < K2n
(d−1)/2 and l ≤ K2.

Next, we prove a result that allows us to simplify ∆̂n even further. Recall that we
are dealing with resonant k, that is, we assume that rnk ≥ n−100d.
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Lemma 6.6. (a) sk = sk − ω · ηk +O(‖ηk‖2) where ω = ω(a,p) is the 1× (d− 1)
vector defined in (6.5).

(b) If ‖ηk‖ = O
(

lnn√
n

)
then nφk = nska1 + np2η2,k + · · ·+ npdηd,k + o(1).

Proof. Since sk − sk = ξk part (a) follows by (6.7).

Recall that φ(s̄k) = rke
iφk , and by (5.10)

φk = arg φ(sk) +O

(
|s̄k − sk|3 +

ln3/2 n

n3/2

)
.

Note that,

φ(sk) = eiska1(p1 + p2e
iη2,k + · · ·+ pde

iηd,k + pd+1).

Thus,

arg(φ(sk)) = ska1 + tan−1

(
p2 sin η2,k + · · ·+ pd sin ηd,k

p1 + p2 cos η2,k + · · ·+ pd cos ηd,k + pd+1

)
= ska1 +

d∑
l=2

plηl,k +O(‖ηk‖3)

since the denominator in the first line is 1 +O(‖ηk‖2). Part (b) now follows easily. �

Proof of Proposition 6.1. First, we show that it is enough to consider Ik,l when

δn(d−1)/2 ≤ |k| < K2n
(d−1)/2 and l ≤ K2

for appropriately chosen δ and K2.

Recall from Section 5.1 that

∆̂n =
∑

0<|k|≤K2n(d−1)/2

Ik + o

(
1

nd/2

)
for K2 � K1. By Lemma 6.4, the contribution of Ik,l with

0 < |k| < K2n
(d−1)/2 and l > K2

can be made arbitrarily small by choosing K2 large.

Next, we claim that the distribution of ηk has bounded density. Since (a,p) has a
bounded density on4 ΩM

κ , the vector

b =

(
b2

|bd+1|
, . . . ,

bd
|bd+1|

)
4Recall that ΩMκ is defined by (3.4).
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has a bounded density on V M
κ :=

{
(x1, . . . , xd−1)|∀j κ(2M)−1 ≤ xj ≤ 2Mκ−1

}
. Let

L denote the supremum of the density of b. Since ηk is obtained by rescaling b by
2πk and taking mod 2π, its density is bounded by

(6.10)
L

2πk
×
⌈

4πMk

κ

⌉
≤ 4ML

κ

where the second factor on the LHS accounts for the multiplicity of the fractional
part on V M

κ . Since the RHS of (6.10) is independent of k, the claim follows.

Next, define

A1 = {(a,p)| Ik,l = 0 ∀k, l s.t. 0 < |k| < δn(d−1)/2 and l ≤ K2}.
Then

Ac1 = {(a,p)| ∃k, l s.t. 0 < |k| < δn(d−1)/2, l ≤ K2, 1|k|αn1/4‖ηk‖∈[2l,2l+1) = 1}
= {(a,p)| ∃k s.t. 0 < |k| < δn(d−1)/2, |k|αn1/4‖ηk‖ < 2K2+1}.

Thus,

P(Ac1) ≤
∑

0<|k|<δn(d−1)/2

P
(
|k|αn1/4‖ηk‖ < 2K2+1

)
(6.11)

≤
∑

0<|k|<δn(d−1)/2

C 2(K2+1)(d−1)

|k|(d−1)αn(d−1)/4
= O

(√
δ 2(K2+1)(d−1)

)
where α = [2(d−1)]−1 (see (6.3)) and the probability estimate follows from ηk having
a bounded density.

Hence, for K2 and δ such that
√
δ2(K2+1)(d−1) is small, we can approximate ∆̂n by the

sum of Ik’s with δ ≤ |k|n−(d−1)/2 < K2 and |k|αn1/4‖ηk‖ < 2K2+1.

Combining terms corresponding to k and −k, we obtain the following approximation
to the distribution of ∆n for large n

|bd+1|e−z
2/2

nd/2σ
√

2π3

∑
k∈S(n,δ,K)

sin(nφk − skzσ
√
n)

Yk
e−XkDa,p·Xk

for appropriate choices of K and δ, and where S(n, δ,K) is defined in (6.4). The
restriction Y > δ in S(n, δ,K) comes from (6.11), the upper bound Y < K comes
from (4.10), and the restriction |Yk|α‖Xk‖ < 2K+1 comes from Lemma 6.4. We have
also used Lemma 6.6(a) and the fact that |sk| > cδn(d−1)/2 in the region we consider
to replace s̄k by sk.

Recall (see (6.5)) that q := (p2, . . . , pd). Lemma 6.6(b) shows that

nφk − skzσ
√
n = sk(na1 − zσ

√
n) + nq · ηk + zσ

√
nω · ηk + o(1)

=
2πnd/2

|bd+1|
(
√
na1 − zσ)Yk + (

√
nq+zσω) ·Xk + o(1).
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Therefore, for large n and K and δ such that
√
δ2(K+1)(d−1) is very small, the distribu-

tion of ∆̂n is well approximated by ∆̃n(δ,K) completing the proof of the proposition.
�

7. Expectation of the characteristic function.

Proof of Lemma 4.2. As in the proof of Lemma 4.3, the inequality (5.11) shows that
is suffices to consider the case l = 0. Recall that d(s) = max

2≤j≤d+1
d(bjs, 0) where the

distance is computed on the torus R/(2πZ). Lemma 2.1 shows that there is a positive
constant c such that

(7.1) |φn(s)| ≤ e−cnd(s)2

.

To prove the lemma we decompose E
(
e−cnd(s)2)

into the pieces where d(s)
√
n is of

order 2l for some l ≤ (log2 n)/2.

Since P has a bounded density, the distribution of the (b2s, . . . , bd+1s) has bounded
density on Td where the bound is uniform for |s| ≥ 1. Hence

P(c1 ≤ d(s) ≤ c2) = O
(
cd2 − cd1

)
for all 0 ≤ c1 < c2 < 1 uniformly in |s| ≥ 1. Therefore,

E (|φn(s)|) ≤ CP

(
d(s) <

1√
n

)
+ C

(log2 n)/2∑
l=0

P
(
d(s)
√
n ∈ [2l, 2l+1)

)
e−c4

l

≤ C

nd/2
+ C

(log2 n)/2∑
l=0

2dl

nd/2
e−c4

l ≤ C

nd/2

where the constant C can be chosen uniformly for all |s| ≥ 1. This completes the
proof. �

Proof of Lemma 6.4. Since, by (6.6), rk = 1 − ηkDa,p · ηk + O(‖ηk‖3) where the

implied constant is independent of (a,p) ∈ ΩM
κ and |k|αn1/4‖ηk‖ ∈ [2l, 2l+1), we have

rk ≤ 1− c 4l

|k|2α
√
n
,

where c is independent of (a,p). Accordingly,

rnk ≤ Ce
− c2

2l√n
|k|2α .

Also, similarly to the proof of Lemma 4.2, we get

P(|k|αn1/4‖η‖ ∈ [2l, 2l+1)) ≤ C2l(d−1)√
|k|n(d−1)/4

.
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Hence,

E(|Ik,l|) ≤
Ce
− c2

2l√n
|k|2α

√
n|k|

2l(d−1)√
|k|n(d−1)/4

=
C2l(d−1)e

− c2
2l√n
|k|2α

|k|3/2n(d+1)/4
.

Thus, ∑̂
l

E(|Ik,l|) ≤
C2K(d−1)e

− c2
2K√n
|k|2α

|k|3/2n(d+1)/4
.

Therefore, we need to estimate

∑
0<|k|<Kn(d−1)/2

C2K(d−1)e
− c2

2K√n
|k|2α

|k|3/2n(d+1)/4

(7.2) =
C

nd/2

∑
0<|k|<Kn(d−1)/2

1

|k|

√
22K(d−1)n(d−1)/2

|k|
e
− c2

2K√n
|k|2α .

Split the sum over

(7.3) |k| ∈
[
Kn(d−1)/2

2q+1
,
Kn(d−1)/2

2q

)
for q ∈ N. Then, for a fixed q we have

|k|2α = O

(
K

1
d−1
√
n

2
q
d−1

)
.

So, each term in the sum (7.2) is of order

2K(d−1)+(3q/2)

K3/2n(d−1)/2
exp

(
−c2

2K+ q
d−1

K
1
d−1

)
.

The number of terms in (7.3) is O
(
Kn(d−1)/2

2q

)
. Hence, the sum over k in (7.3) is

O

(
2K(d−1)+q/2

√
K

exp

(
−c2

2K+ q
d−1

K
1
d−1

))
=

O
(

2K(d−1)

√
K

exp

(
− c2

2K

K
1
d−1

))
×O

(
2q/2 exp

[
−
(
c2q/2√
K

)2/(d−1)
])

.

Since5

(7.4)
∑
q

2q/2 exp

[
−
(
c2q/2√
K

)2/(d−1)
]
≤ C
√
K

5To see this, one can, for example compare the sum in (7.4) with the integral∫ ∞
0

exp
(
−c(x/

√
K)2/(d−1)

)
dx = O

(√
K
)
.
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we obtain the lemma upon taking c̃ < c/K
1
d−1 . �

8. Relation to homogeneous flows.

Given u ∈ Rd−1, v ∈ R consider the following function on the spaceM of unimodular
lattices in Rd:

(8.1) Z(L; u, v) =
∑

(y,x)∈L\{0}

sin 2π(u · x + vy)

y
e−4π2xDa,p·x 1{δ<y<K, 2π yα‖x‖<2K+1}.

Define γ =

(
b2

|bd+1|
, . . . ,

bd
|bd+1|

)
. Introduce the following matrices

Hγ =

(
1 γ

0T Id−1

)
, Gt =

(
e−(d−1)t 0

0T etId−1

)
.

Then, we get

(8.2) nd/2∆̃n(δ,K) =
|bd+1|e−z

2/2

σ
√

2π3
Z(L(n, a); u, v),

where

(8.3) u =
√
nq + zσω, v =

nd/2

|bd+1|
(
√
na1 − zσ),

ω and q are given by (6.5), and L(n, a) is the unimodular lattice Zd Hγ G ln(n)
2

.

To see this, note that, for an arbitrary vector (k ,m2,k , . . . ,md,k) ∈ Zd,

(k ,m2,k , . . . ,md,k) Hγ G ln(n)
2

= (k ,m2,k , . . . ,md,k)

(
n−(d−1)/2

√
nγ

0T
√
n Id−1

)
=

(
k

n(d−1)/2
,
√
n k γ +

√
n (m2,k , . . . ,md,k)

)
=
(
Yk , (2π)−1Xk +

√
n (m2,k − `2,k , . . . ,md,k − `d,k)

)
where Yk and Xk are as in Proposition 6.1 and lj,k are given by (6.1). Note that the
second term has norm at least

√
n unless mj,k = `j,k for j = 2, . . . , d. It follows that

the only term which contributes to the RHS of (8.1) is the term with mj,k = `j,k
justifying (8.1) and (8.2).

Let wj(n, a) = (yj(n, a),xj(n, a)), j = 1, . . . , d with yj ∈ R and xj ∈ Rd−1 be the
shortest spanning set of L(n, a). Put

θj(n, (a,p)) = u · xj(n, a) + vyj(n, a), j = 1, . . . , d.

Proposition 8.1. If (a,p) is distributed according to P then the distribution of the
random vector

((a,p),L(n, a),θ(n, (a,p)))
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converges to P× µ as n→∞, where µ is the Haar measure on

[SLd(R)/SLd(Z)]× Td.

If we restrict our attention only to ((a,p),L(n, a)) then the result is standard (see
[20, Theorem 5.8], as well as [11, 16, 21]). We refer the readers to [7, Theorem
3], [24] and the references therein for extensions to [SLd(R)/SLd(Z)] × (Td)p under
various conditions. Our proof of Proposition 8.1 follows the approach of the proof of
Proposition 5.1 in [9].

Proof. We need to show that for each bounded smooth test function f ,

(8.4)

∫
Ω

f((a,p),L(n, a),θ(n, (a,p))) dP→
∫

Ω×M×Td
f((a,p),L,θ) dP dL dθ

as n→∞. Write the Fourier series expansion of f with respect to θ

(8.5) f((a,p),L(n, a),θ) =
∑

k=(k1,...,kd)∈Zd
fk((a,p),L(n, a)) e2πik·θ.

Then, it is enough to prove (8.4) for individual terms in (8.5).

If k = 0 then by [20, Theorem 5.8] we can conclude that∫
Ω

f0((a,p),L(n, a)) dP→
∫

Ω×M×Td
f0((a,p),L) dP dL dθ

as n→∞.

Next, assume that k 6= 0. Since Ω is 2d dimensional, we can use

(a1,ν) := (a1, (p1, p3, . . . , pd, b2, . . . , bd+1))

as local coordinates. In these coordinates, L is independent of a1. Hence, yj’s and
xj’s are independent of a1. Note that there exists a compactly supported density
ρ = ρ(a1,ν) such that

(8.6) Jn,k =

∫
fk e

2πik·θ dP =

∫ ∫
e2πi(v

∑
yjkj+zσ

∑
kjω·xj+

√
n
∑
kjq·xj)(fk ρ) da1 dν

where we recall that v is defined in (8.3). Note that∫
Td×Ω×M

fk e
2πik·θ dθ1 . . . dθd dP dL = 0

because ∫
Td
e2πik·θdθ1 . . . dθd = 0.

Therefore, it is enough to prove that Jn,k converges to 0 as n→∞.

To this end, we use integration by parts as follows. Define

g(a1,ν) = e
2πi

n(d+1)/2 ∑
yjkj

|bd+1|
a1

= ein
(d+1)/2φ(ν)a1
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where φ(ν) =
2π
∑
yjkj

|bd+1|
, and

h(a1,ν) = (fk ρ)(a1,ν) e
−2πi

((
nd/2

∑
yjkj

|bd+1|
−4π

∑
kjω·xj

)
zσ(a1,ν)−

√
n
∑
kjq·xj

)
.

Then, the inner integral in (8.6) is

∫
g(a1,ν)h(a1,ν) da1 .

Let ε > 0. On the set Qk = {φ(ν) > ε}, we can write

g(a1,ν) da1 =
1

iφ(ν)n(d+1)/2
deia1n(d+1)/2φ(ν).

Integrating by parts onQk (note that h has compact support) and using trivial bounds
on Qc

k, we can conclude that

|Jn,k| ≤ C max
ν

∣∣∣∣∣
∫
eia1n(d+1)/2φ(ν)

iφ(ν)n(d+1)/2

∂h

∂a1

(a1,ν) da1

∣∣∣∣∣+ CP({φ(ν) ≤ ε})

≤ C

εn(d+1)/2

∫
max
ν

∣∣∣∣ ∂h∂a1

(a1,ν)

∣∣∣∣ da1 + CP({φ(ν) ≤ ε})

for small enough ε. But
∂h

∂a1

(a1,ν) = O(nd/2),

and hence, the first term is Oε(1/
√
n). Therefore, first taking n→∞ and then taking

ε→ 0 we have the required result. �

Recall the definitions of (y,x)(m) and θ(m) given by (1.11) and (1.12), respec-
tively. With this notation, Proposition 8.1 implies that as n→∞ the distribution of
nd/2∆̃n(δ,K) converges to the distribution of

(8.7) X̂ (K,δ)(L, χ) :=
|ad+1 − a1|e−z

2/2

2σ(a, p)
√

2π3

∑
m∈Zd\{0}

sin 2πθ(m)

y(m)
e−4π2xDa,p·x1UK,δ

where6

(8.8) UK,δ = {δ < |y(m)| < K, 2π |y(m)|α‖x(m)‖ < 2K+1}
and (L, χ) ∈M is distributed according to µ. Therefore, Theorem 2* follows from the
result below.

Lemma 8.2. X̂ (K,δ) converges in law as K →∞ and δ → 0 to the random variable
X̂ given by (3.1).

Lemma 8.2, proven in Section 10, completes the proof of Theorem 2*.

6Note that (8.7) contains an additional factor of 2 in the denominator comparing with (8.2). This
is because in (8.7) the sum is over all lattice vectors (see (8.8)) while in (8.2) we only consider the
vectors with positive y coordinate.
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9. Finite Intervals.

The proofs of Theorems 3 and 4 are similar to the proofs of Theorems 1 and 2 so we
just explain the necessary changes leaving the details to the readers.

Proof of Theorem 3. The random vector (1.14) can be approximated by (Z(1),Z(2))
where Z(i) are defined as in (8.1) but with u and v replaced by

u(i) =
√
nq + ziσω and v(i) =

nd/2

|bd+1|
(
√
na1 − ziσ)

respectively. Define θ(i) as in Proposition 8.1 but u and v replaced by u(i) and v(i).

To complete the proof, we prove an analogue of Proposition 8.1. Namely, we prove
that the distribution of

((a,p),L(n, a),θ(1)(n, (a,p)),θ(2)(n, (a,p)))

converges to P× µ′ as n→∞ where µ′ is the Haar measure on [SLd(R)/SLd(Z)]×
Td × Td.

As in the proof of Proposition 8.1, we prove that for individual terms in the Fourier
series of a smooth function f on [SLd(R)/SLd(Z)]× Td × Td∑

(k1,k2)∈Zd×Zd
fk1,k2((a,p),L(n, a)) e2πi[k1·θ(1)+k2·(θ(1)−θ(2))]

we have

Jn,k1,k2 :=

∫
Ω

fk1,k2((a,p),L(n, a))e2πi[k1·θ(1)+k2·(θ(1)−θ(2))] dP

n→∞−−−→
∫

Ω×M×Td×Td
fk1,k2((a,p),L)e2πi[k1·θ1+k2·(θ1−θ2)] dP dL dθ1dθ2.

The case k1 = k2 = 0 follows from [20, Theorem 5.8]. Note that

k2 · (θ(1) − θ(2)) = (z2(n)− z1(n))

(
nd/2

|bd+1|
∑

yjk2,j −
∑

k2,jω · xj
)
σ.

If k1 = 0 choose appropriate local coordinates in which σ is a coordinate. Integrating
by parts with respect to σ = σ(a,p) and using |z1(n)− z2(n)|nd/2 →∞, we see that
Jn,0,k2 → 0 as n→∞.

If k1 6= 0, then using the same local coordinates (a1,ν) as in the proof of Proposi-
tion 8.1, we can integrate by parts to conclude that Jn,k1,k2 → 0 as n → ∞. The

proof follows through because the leading term of k1 · θ(1) + k2 · (θ(1) − θ(2)) is still
n(d+1)/2φ(ν)a1. �

Proof of Theorem 4. To prove part (a) pick ε̄ < ε. Applying Theorem 1 we obtain
that for almost every (a,p)

P(a,p)

(
z1 ≤

Sn
σ
√
n
≤ z2

)
= Ed−1(z2)− Ed−1(z1) +O

(
n−(d−ε̄)/2)
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= n(z1)ln +O(l2n) +O(ln/
√
n) +O

(
n−(d−ε̄)/2) .

According to the assumptions of part (a), the first term is much larger than the
remaining terms proving the result.

The proof of part (b) is similar except that we apply Theorem 3 instead of Theorem 1.
So, we only get convergence in law.

To prove part (c) we first prove the following analogue of Theorem 3 in the case where

z2 = z1 +
c|ad+1 − a1|

nd/2σ
:

nd/2

Λ(a,p)

(
ez

2
1/2

[
Ed(z1)− Pa,p

(
Sn
σ
√
n
≤ z1

)]
, ez

2
2/2

[
Ed(z2)− Pa,p

(
Sn
σ
√
n
≤ z2

)])
converges in law to a random vector (X̃1, X̃2)(L, θ, c) where

(X̃1, X̃2)(L, θ, c) =
∑

m∈Zd\{0}

e−‖x(m)‖2

y(m)

(
sin θ(m), sin(θ(m)− cy(m))

)
.

Once this convergence is established, the proof of part (c) is the same as the proof of
part (b). The proof of convergence is similar to the proof of Theorem 3 except that

θ(1) and θ(2) are now not independent. Namely, using the same notation as in the
proof of Theorem 3 we have that

(9.1) u(2) = u(1) +O
(
n−d/2

)
and v(2) = v(1) − c.

By Proposition 8.1 (L(n, a),θ(1)(n, a)), converges as n→∞ to (L∗,θ∗) where (L∗,θ∗)
is distributed according to the Haar measure on SLd(R)/SLd(Z) × Td. Combining

this fact with (9.1) we obtain that (L(n, a),θ(1)(n, a),θ(2)(n, a)) converges as n →
∞ to (L∗,θ∗, θ̂

∗
) where (L∗,θ∗) is distributed according to the Haar measure on

SLd(R)/SLd(Z)× Td and θ̂
∗
j = θ∗j − cyj. This justifies the formula for (X̃1, X̃2). �

10. Convergence of X .

We need some background information. Given a piecewise smooth compactly sup-
ported function g : Rd → R, its Siegel transform is a function on the space of lattices
defined by

S(g)(L) =
∑

w∈L\{0}

g(w).

An identity of Siegel, see ([19, Section 3.7] or [22, Lecture XV]) says that

(10.1) EL(S(g)) =

∫
Rd
g(w)dw.

In particular, if B is a (bounded) set in Rd with piecewise smooth boundary not
containing 0 then

(10.2) PL(L ∩B 6= ∅) ≤ PL(S(1B)(L) ≥ 1) ≤ EL(S(1B)) = Vol(B).
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We shall use the following consequence of this result.

Lemma 10.1. Let β > d. Then for almost every lattice L, there exist C = C(L)
such that for all w ∈ L \ {0} it holds |y(w)| > C‖w‖−β.

Proof. For k ≥ 1 let Bk ∈ Rd denote the following set

Bk = {(x, y) ∈ Rd−1 × R : ‖x‖ ∈ [k, k + 1), |y| < k−β} ,
and denote Dk = {L : L ∩Bk 6= ∅}. By (10.2), PL(Dk) ≤ Kkd−1−β. Since β > d,∑

k

PL(Dk) <∞ .

So, by the Borel-Cantelli Lemma, for almost every L, there exists k0(L) such that
L ∩ Bk = ∅ for k ≥ k0. Since L contains finitely many vectors satisfying ‖w‖ < k0,
we can choose C(L) ≤ 1 so small that |y(w)| ≥ C‖w‖−β for all non-zero w in the
ball of radius k0. The result follows. �

Proof of Lemma 1.2. Let L+ = {w ∈ L : y(w) > 0}. Since

sin(2πχ(w))

y(w)

is even, and almost every lattice contains no vectors w with y(w) = 0 and w 6= 0
(this follows immediately from Lemma 10.1), it is enough to restrict the attention
to w ∈ L+. Throughout the proof we fix two numbers ε > 0 and τ < 1 such that
ε� (1− τ)� 1.

By applying Lemma 10.1 with β = d+ 1, for almost all L we have∣∣∣∣∣∣
∑

w∈L+: ‖x(w)‖≥‖w‖ε

sin 2πχ(w)

y(w)
e−‖x(w)‖2

∣∣∣∣∣∣ ≤
∑
w∈L+

C‖w‖d+1e−‖w‖
2ε

converges absolutely. Hence, it suffices to establish the convergence of

X̄R :=
∑

w∈L+: ‖x(w)‖≤‖w‖ε<Rε

sin 2πχ(w)

y(w)
e−‖x(w)‖2 .

Let Rj,k = 2k + j2τk, j = 0, . . . , b2(1−τ)kc. To prove the convergence of X , we will
show that almost all L and almost all χ satisfy the two estimates below:

(10.3) ∀ sequences {jk}, X̄Rjk,k converges as k →∞,

(10.4) max
j

sup
Rj,k≤R<Rj+1,k

∣∣X̄R − X̄Rj,k∣∣→ 0 as k →∞.

To prove (10.3), let

Sj,k =
∑

w∈L+: ‖x(w)‖≤‖w‖ε, Rj,k≤‖w‖<Rj+1,k

sin 2πχ(w)

y(w)
e−‖x(w)‖2 .
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Using that Eχ(sin(2π(χ(w)))) = 0 and for w1 6= ±w2,

Eχ(sin(2π(χ(w1))) sin(2π(χ(w2)))) = 0,

we see that Eχ(Sj,k) = 0 and

Varχ(Sj,k) =
∑

w∈L+: ‖x(w)‖≤‖w‖ε,Rj,k≤‖w‖<Rj+1,k

e−2‖x(w)‖2

2y2(w)

≤ 1

22k+1
Card(w : ‖x(w)‖ ≤ ‖w‖ε, Rj,k ≤ ‖w‖ < Rj+1,k)

≤ C(L)

22k
Vol(w : ‖x(w)‖ ≤ ‖w‖ε, Rj,k ≤ ‖w‖ < Rj+1,k)

≤ C̄(L)2(τ+ε(d−1)−2)k.

Hence, by Chebyshev’s inequality for each j

Pχ

(
|Sj,k| ≥ 2−(1−τ+ε)k

)
≤ C̄(L)2(ε(d+1)−τ)k.

Therefore

Pχ

(
∃j : |Sj,k| ≥ 2−(1−τ+ε)k

)
≤ C̄(L)2(1+ε(d+1)−2τ)k.

Thus, if ε is sufficiently small and τ is sufficiently close to 1 then Borel-Cantelli Lemma
shows that for almost every χ, if k is large enough, then for all j, |Sj,k| ≤ 2−(1−τ+ε)k,

and thus,
∑
j

|Sj,k| ≤ 2−εk proving (10.3). Likewise,

sup
Rj,k≤R≤Rj+1,k

∣∣X̄R − X̄Rj,k∣∣ ≤ ∑
w∈L+: ‖x(w)‖≤‖w‖ε,‖w‖∈[Rj,k,Rj+1,k)

1

|y(w)|
e−‖x(w)‖2

≤ C(L)2−kVol(w : ‖x(w)‖ ≤ ‖w‖ε, Rj,k ≤ ‖w‖ < Rj+1,k) ≤ C̄(L)2(τ+ε(d−1)−1)k

proving (10.4). Lemma 1.2 is established. �

Proof of Lemma 8.2. Given a domain U ∈ Rd let

X̄U(L, χ) =
∑

m∈Zd\{0}

sin 2πθ(m)

y(m)
e−4π2xDa,p·x1U .

Then

X̂ (K,δ) =
|ad+1 − a1|e−z

2/2

2σ(a, p)
√

2π3
X̄UK,δ

where UK,δ is given by (8.8). Let ΓR = ABR where BR is the ball of radius R centered
at the origin and A is the linear map given by (3.3). Lemma 1.2 (after the change
of variables L 7→ AL) tells us that X̄ΓR(L, χ) → X̄ (L, χ) as R → ∞ almost surely
where X̄ = X̄Rd . Therefore it suffices to show that for each η there exist δ0 and K0

such if δ < δ0 and K ≥ K0 then

P
(∣∣∣X̄Γ

2K/δ2
− X̄UK,δ

∣∣∣ > η
)
< η .
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Note that UK,δ ⊂ Γ2K/δ2 (for sufficiently small δ) and so

(10.5) X̄Γ
2K/δ2

− X̄UK,δ =
∑

m∈Zd\{0}

sin 2πθ(m)

y(m)
e−4π2xDa,p·x1Γ

2K/δ2
\UK,δ .

Below, we choose K so large and δ so small that

(10.6) PL(Ac
K,δ) ≤ η/100

where AK,δ is the set of lattices L satisfying the following conditions:

(i) the shortest non-zero vector in L is longer than 3δε;

(ii) w = (x, y) ∈ L then |y| ≥ max(K, 1/δ)‖w‖−(d+1);

(iii) L contains no vectors (x, y) with |y| ≤ δ and 2π ‖x‖ ≤ δ−1/2d.

It is easy to see using (10.2) that the measure of lattices not satisfying at least one
of the above conditions is small (cf. the proof of Lemma 10.1). We now estimate the
contribution to (10.5) coming from six different regions in Γ2K/δ2 \ UK,δ.

(1) Consider first the terms with ‖x‖ ≥ ‖w‖ε. Then for L ∈ AK,δ each term in the

sum is bounded by C‖w‖d+1e−c‖w‖
2ε

. We now consider several cases depending on
the restrictions on y.

(a) If |y| ≥ K then ‖w‖ ≥ K and so the sum over this region is bounded (in absolute
value) by

W1a :=
∑

w∈L: ‖w‖≥K

C‖w‖d+1e−c‖w‖
2ε

.

By the Siegel identity, (10.1), EL(W1a1AK,δ) ≤ C̄e−c̄K
2ε

and so the contribution com-
ing from domain (1a) is negligible in view of the Markov inequality.

(b) If δ < |y| < K, then 2π |y|α‖x‖ ≥ 2K+1 whence ‖x‖ ≥ 2K/(πKα). Denoting by
W1b the contribution from this region we obtain using property (ii) of the definition
of AK,δ that

W1b ≤
∑

w∈L: ‖w‖≥2K/(πKα)

C‖w‖d+1e−c‖w‖
2ε

.

Hence, by (10.1), EL(W1b1AK,δ) ≤ C̄e−c̄2
2εK/Kεα

which shows that the contribution
from the region (1b) is negligible in view of the Markov inequality.

(c) If |y| ≤ δ , then ‖w‖ ≥ ‖x‖ ≥ δ−1/2d/(2π) because L ∈ AK,δ. Hence, if W1c

denotes the contribution of the terms from (1c), then, similarly to the case (1b),

EL(W1c1AK,δ) ≤ C̄e−c̄δ
−ε/d

and the contribution of region (1c) is negligible as well.

(2) Now we discuss the terms with ‖x‖ ≤ ‖w‖ε.

Again, we shall consider three cases:
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(a) |y| ≥ K. Note that in case (2) we have ‖x‖1/ε ≤ ‖w‖ ≤ ‖x‖ + |y|. Therefore
|y| ≥ ‖x‖1/ε − ‖x‖ ≥ (‖x‖/2)1/ε for sufficiently large ‖x‖. So, ‖x‖ ≤ 2|y|ε. Thus
taking the L2−norm and integrating first with respect to χ we get the L2−norm of
the terms in (2a) is bounded by

EL

 ∑
(x,y)∈L∩(Γ

2K/δ2
\UK,δ)∩{|y|≥K}

C

y2

 ≤ C

∫
‖x‖<2|y|ε,|y|≥K

1

y2
dw ≤ C

K1−εd

where the first inequality relies on (10.1).

(b) δ < |y| < K. In this case, ‖x‖1/ε < ‖x‖+K. Thus, K > ‖x‖1/ε−‖x‖ ≥ (‖x‖/2)1/ε

for sufficiently large ‖x‖. So, ‖x‖ ≤ 2Kε ≤ K , and hence, (x, y) ∈ UK,δ. So, the
region (2b) does not contribute to our sum.

(c) |y| ≤ δ. In this case, ‖w‖ ≤ ‖x‖ + |y| ≤ 3δε. However, (ii) implies that ‖w‖ ≥
δ−2/(d+1). Hence, this case is impossible.

Combining the six cases considered above, we obtain the result. �
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