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Abstract

Cloud analysis is a critical component of weather and climate science, impacting
various sectors like disaster management. However, achieving fine-grained cloud
analysis, such as cloud segmentation, in remote sensing remains challenging due to
the inherent difficulties in obtaining accurate labels, leading to significant labeling
errors in training data. Existing methods often assume the availability of reliable
segmentation annotations, limiting their overall performance. To address this
inherent limitation, we introduce an innovative model-agnostic Cloud Adaptive-
Labeling (CAL) approach, which operates iteratively to enhance the quality of
training data annotations and consequently improve the performance of the learned
model. Our methodology commences by training a cloud segmentation model using
the original annotations. Subsequently, it introduces a trainable pixel intensity
threshold for adaptively labeling the cloud training images on the fly. The newly
generated labels are then employed to fine-tune the model. Extensive experiments
conducted on multiple standard cloud segmentation benchmarks demonstrate the
effectiveness of our approach in significantly boosting the performance of existing
segmentation models. Our CAL method establishes new state-of-the-art results
when compared to a wide array of existing alternatives.

1 Introduction

Cloud understanding is indicative and critical in climate science, with significant application in
various sectors like renewable energy, disaster management, and environmental monitoring [1]. A
viable and scalable approach to this problem is leveraging remote sensing imagery data to examine
the patterns and characteristics of clouds over space and time. To that end, cloud segmentation is one
of the most fine-grained methods.

Traditionally, cloud segmentation primarily employed threshold-based techniques, hinging on pre-
existing knowledge and the distinction between Earth’s surface and clouds [2]. Nevertheless, these
methods exhibited vulnerability to intricate backgrounds, thereby constraining their efficacy. Addi-
tionally, the selection of the threshold in such methods typically entailed subjective human judgment
and expertise, resulting in performance disparities [3].

Recently, deep learning approaches have emerged as promising alternatives to threshold-based
methods. They excel in capturing intricate patterns and leveraging extensive datasets, resulting in
significant enhancements in cloud segmentation accuracy [4]. Deep learning mitigates the reliance on
subjective thresholding while adapting effectively to diverse atmospheric conditions and complex
cloud formations [5].
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Figure 1: Illustration of noisy cloud mask labeling. (a) A random training image; (b) The original
cloud mask label; (c) The mask label obtained using our proposed method.

Nonetheless, all the previous methods typically assume the availability of accurate mask annotations
of cloud, which is often largely invalid (see Figure 1 (a)). Making this assumption could generally
lead to degraded model performance, but it is still understudied in the literature.

In this paper, we propose an innovative model-agnostic Cloud Adaptive-Labeling (CAL) method to
address the mentioned fundamental challenge. Our approach starts by training a cloud segmentation
model using the original noisy training data. Subsequently, it introduces a trainable pixel intensity
threshold for adaptively labeling the training images on the fly. The newly generated labels are then
employed to fine-tune the model. Importantly, our pixel intensity threshold is dynamically adjusted
through an intuitive self-regulating mechanism in response to the evolving training loss: it increases
when the loss decreases and decreases when it increases. This objective-oriented thresholding strategy
challenges the conventional notion of a single optimal threshold and obviates the necessity for prior
threshold estimation. Extensive experiments demonstrate that our method iteratively enhances the
quality of training data annotations, leading to improvements in model performance and achieving
the new state of the art on a standard cloud segmentation benchmark.

2 Related work

Existing cloud segmentation techniques are categorized into three groups: Threshold-based, Machine
learning-based, and Deep learning-based. Threshold-based methods rely on differences in scattering
intensity between clouds and atmospheric particles in specific spectral bands [6]. The spectral
threshold approach is effective when combined with multi-band features like radiance, reflectance,
and normalized vegetation index [7, 8, 9]. These methods work well only when clouds have high
visible reflection and cooler infrared temperatures compared to the Earth’s surface. However, their
performance depends on prior knowledge and the contrast between clouds and the Earth’s surface.
Despite their effectiveness, threshold-based methods struggle to distinguish clouds in the presence of
atmospheric aerosols, dust, smoke, and hazy pixels caused by small-scale cumulus clouds or cloud
edges [3].

To address the limitations of threshold-based approaches, following-up works employed machine
learning algorithms, such as Support Vector Machines (SVMs) and random forests [10, 11], leveraging
texture features extracted from remote sensing images as input [12, 13]. However, these methods
heavily depended on manually crafted features. Recent advancements have witnessed the adoption
of deep learning techniques in cloud segmentation, with subsequent efforts focused on enhancing
network architecture and deep feature extraction [14, 15, 16]. For instance, Yao et al. [17] introduced
attention modules and boundary refinement blocks to comprehensively capture multi-scale context.

While deep learning-based cloud detection methods exhibit significant advantages over threshold-
based and traditional machine learning approaches, their outstanding performance hinges on the
availability of extensive, high-quality pixel-level cloud masks [18]. Nevertheless, the creation of such
datasets is a challenging and time-consuming endeavor, often resulting in the presence of substantial
noisy labels that can introduce uncertainties and negatives into research outcomes (see Figure 1).
Interestingly, this problem has never been systematically considered and investigated in the literature.
This study marks the inaugural endeavor to address the challenge of noisy cloud mask labeling by
introducing a model-agnostic CAL method within the deep learning domain.
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Figure 2: (a) Overview for our proposed Cloud Adaptive-Labeling (CAL) method. Our approach
begins with training a cloud segmentation model using the original training data, which inherently
contains noise. We then incorporate a trainable pixel intensity threshold to adaptively label the cloud
mask by applying this threshold to the input training images. These newly generated cloud mask
labels are subsequently used for fine-tuning the model. Importantly, our threshold is dynamically
adjusted based on the training loss: it increases when the loss decreases and decreases when the loss
increases. This innovative training objective-driven thresholding strategy not only challenges the
traditional assumption of a single optimal threshold but also eliminates the need for prior estimation
of an appropriate threshold. (b) Integrating CAL (i) during finetuning with existing labels (ii) after
finetuning with existing labels

3 Cloud Adaptive Labeling

Overview. Unlike previous methods, which prioritized improving model efficiency and capturing
image-label relationships, we propose a method to reduce noise in cloud segmentation datasets.
Our Cloud Adaptive-Labeling (CAL) is an efficient module that enhances existing cloud detection
approaches. CAL is typically plugged in as a post-processing block to relabel existing noisy cloud
labels into a refined version. When integrated into the training scheme, CAL boosts the performance
of existing pretrained models. As shown in Figure 2 (a), CAL mainly consists of a novel dynamic
thresholding module that mitigates the labeling noises.

Problem statement. Given a satellite image I , cloud detection predicts a pixel-level binary classifica-
tion of whether each pixel is a cloud, outputting a binary mask M . Formally, a training dataset Dtrain

contains image-mask pairs (I,M) used to train a cloud detection model, which is then evaluated on a
testing split Dtest.

CAL algorithm. Serving as a model-agnostic plug-in, our CAL is designed to gradually improve
mask labels during training, boosting model performance. We initialize a per-mini-batch threshold
parameter pth, which learns based on changes in model predictions. We use pth to binarize the
input images as Mcal = ϕ(I, pth) where ϕ(·) is the morphological image binarization operation.
We replace the original/previous mask labels with Mcal, which has better quality. We then further
fine-tune the model with the new labels using the same objective function as the baseline detection
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model, e.g., binary cross-entropy loss [19]. More details on our CAL algorithm are provided in
Appendix A.1.

Integrating CAL with existing methods. CAL can be integrated with existing cloud detection
models without altering the design or adding any learnable parameters (see Figure 2(b)). CAL can
be applied directly to any existing model without retraining. However, retraining with CAL has
demonstrated enhanced results.

4 Experiments

Dataset. In our experiments, we utilize the publicly accessible 38-Cloud dataset [20]. This dataset
comprises 38 Landsat-8 scenes, each with dimensions of 1000×1000 pixels, and includes manually
generated pixel-level cloud mask ground truths, albeit with some noise. The dataset is structured into
numerous patches, each measuring 384×384 pixels, and is composed of four spectral channels: Red,
Green, Blue, and Near Infrared (NIR). Specifically, there are 8,400 patches designated for training
purposes and an additional 9,201 patches allocated for testing.

Implementation details. We trained our CAL model using the Adam optimizer [21] with a learning
rate of 0.001 for 3 epochs. The initial threshold value was set to 60.0, with a step size of 2.0. We
defined the best loss as infinity and the lower bound as 45.0. Additionally, we updated the threshold
every 150 steps. As an illustration, we integrated CAL with the widely used U-Net [22], DeeplabV3
[23], and FCN [24] segmentation models.

Results. Table 1 reveals the following insights: (1) Our baseline models, U-Net, DeeplabV3, and
FCN, perform notably worse than specialized methods like LWCDnet. This discrepancy suggests the
presence of unique challenges in cloud segmentation. (2) Encouragingly, our CAL approach signifi-
cantly enhances the performance of U-Net, DeeplabV3, and FCN, demonstrating an improvement
of 20% or more in mIoU. This achievement positions our method as the top-performing solution
among all competitors, underscoring its effectiveness in mitigating the challenges posed by noisy
cloud labeling. In particular, U-Net+CAL achieves the best performance among all the competitors.
(3) In addition to this, our proposed CAL consistently improves the performance of FCN, DeeplabV3,
and U-Net-based cloud detection models by simply plugging in without any design changes, thus
making our algorithm model agnostic in nature.

Table 1: Performance comparison on the 38-Cloud dataset.
Method mIoU Precision Recall F1-Score OA

CD-CTFM [5] 84.13 91.09 89.22 90.15 95.45
CD-AttDLV3+ [17] 81.24 88.85 87.58 88.21 94.49
CloudAttU [25] 84.73 90.62 89.95 90.28 95.92
CloudFCN [18] 83.31 88.81 89.61 89.21 95.66
CD-Net [16] 89.70 94.30 94.70 94.50 95.40
LWCDnet [4] 89.90 95.10 94.30 94.70 95.30
FCN [24] 60.40 80.69 63.02 69.07 92.38
DeeplabV3 [23] 44.02 86.25 89.53 86.73 96.07
U-Net [22] 73.69 74.31 97.17 82.10 91.20

FCN + CAL 83.94 91.52 87.73 89.26 96.74
DeeplabV3 + CAL 83.95 85.95 94.17 89.38 96.77
U-Net + CAL 93.15 96.37 96.67 96.44 98.61

5 Conclusion

In this study, we tackle a key challenge associated with noisy training data in cloud analysis,
specifically focusing on cloud segmentation in remote sensing. We propose a novel model-agnostic
self-labeling approach that iteratively enhances the quality of training data annotations, resulting in
improved cloud segmentation model performance. Our method is designed to seamlessly integrate
with various existing segmentation approaches. Extensive experiments conducted on a widely
recognized cloud segmentation benchmark validate the effectiveness of our approach. Our method
outperforms existing methods, establishing a new state-of-the-art performance level.
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A Appendix

A.1 CAL: Algorithm details

We illustrate the dynamic thresholding-based CAL algorithm in detail. Here pth refers to the
learnable_threshold parameter, Mcal refers to the new_labels parameter, I refers to the raw
input satellite image images respectively. For each training iteration over a mini-batch, we optimize
the learnable_threshold parameter based on the loss criterion performance. If the loss is higher,
this indicates that the threshold is overpowering else it is underpowering. Based on this, our CAL
algorithm reduces/increases the threshold by a fixed incremental threshold delta_x respectively.

Algorithm 1: Cloud Adaptive Labeling

1 learnable_threshold = 60.0 // initial threshold
2 delta_x = 2.0 // step size
3 best_loss = float(’inf’)
4 lower_bound = 45.0
5 update_frequency = 150

6 while not done do
7 new_labels = binarize_image(images, threshold=learnable_threshold)
8 outputs = model(images)
9 loss = criterion(outputs, new_labels)

10 best_loss = min(best_loss, loss)
11 if (idx + 1) % update_frequency == 0 then
12 if loss > best_loss then
13 learnable_threshold -= delta_x // Decrease the threshold
14 learnable_threshold = max(lower_bound, learnable_threshold)
15 else
16 learnable_threshold += delta_x // Increase the threshold

Model agnosticity of CAL. Our proposed CAL works as a plug-and-play module on existing cloud
detection models like FCN, Deeplabv3, and U-Net respectively. From the results in Table 2, it is seen
that our CAL when plugged in improves consistently over the baseline model without CAL. This is
observed for all the models thus proving the model-agnosticity of our algorithm design.

Table 2: Performance comparisons of models with and without CAL.
Methods mIoU Precision Recall F1-Score OA

FCN 60.40 80.69 63.02 69.07 92.38
FCN + CAL (ours) 83.94 91.52 87.73 89.26 96.74

U-Net 73.69 74.31 97.17 82.10 91.20
U-Net + CAL (ours) 93.15 96.37 96.67 96.44 98.61

DeeplabV3 44.02 86.25 89.53 86.72 96.07
DeeplabV3 + CAL (ours) 83.95 85.95 94.18 89.39 96.77

Training convergence due to CAL. Existing labels provided by the model often have incorrect
cloud segmentation annotation as shown in Fig 1. Such faulty annotations make the model slower
to converge. As seen from Fig 3, the variant with CAL (Fig 3 (b)) converges faster than the variant
without CAL (Fig 3 (a)). This shows the efficacy of our adaptive thresholding improving the labels.
Additionally, our CAL improves the stability and accuracy of the model precision than the baseline
variant as shown from Fig 3 (c,d) respectively.
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Figure 3: (a) Training loss curve for finetuning U-Net (b) Training loss curve for fine-tuning U-Net
with CAL. Finetuning with CAL results in faster convergence than fine-tuning without CAL (c)
Precision curve for finetuning U-Net (d) Precision curve for fine-tuning U-Net with CAL. Finetuning
with CAL quickly stabilizes the precision as opposed to fine-tuning without CAL.
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