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Abstract—Electroencephalography (EEG) enables online mon-
itoring brain activity, which can be used for neurofeedback. One
of the growing applications of EEG neurofeedback is to facilitate
meditation practice. Specifically, EEG neurofeedback can be
used to alert participants whenever they get distracted during
meditation practice based on changes in their brain activity.
In this study, we develop machine learning models to detect
moments of distraction (due to mind wandering or drowsiness)
during meditation practice using EEG signals. We use EEG data
of 24 participants while performing a breath focus meditation
with experience sampling and extract twelve linear and non-
linear EEG features. Features are fed to ten supervised machine
learning models to classify (i) Breath Focus Awake (BFA) vs
Breath Focus Sleepy (BFS), and (ii) BFA vs Mind Wandering
(MW). We observe that the linear features achieve a maximum
accuracy of 86% for classifying awake (BFA) and sleepy (BFS),
whereas non-linear features have more predictive ability for
classifying between BFA and MW with a maximum accuracy
of nearly 78% . In addition, visualization of unsupervised t-SNE
lower embeddings supports the evidence of distinct clusters for
each condition. Overall our results show that machine learning
algorithms can successfully identify periods of distraction during
meditation practice in novice meditators based on linear and
non-linear features of the EEG signal. Consequently, our results
have important implications for the development of mobile EEG
neurofeedback protocols aimed at facilitating meditation practice.

I. INTRODUCTION

Neurotechnology is the new frontier of neuroscience,
enabling complex neuro-sensor technology into consumer
wearable products. Electroencephalography (EEG) is a non-
invasive technology to record brain signals for clinical and
non-clinical purposes. Wearable EEG headset technology is
available for consumers for different purposes, one of which
is facilitating meditation practice.

Decades of research on meditation have shown significant
cognitive and health benefits [1]. A commonly adopted med-
itation technique consists on focusing on the breath. Novice
meditation practitioners often struggle with this kind of medi-
tation as they fail to detect periods of distraction (due to mind
wandering or drowsiness) during their practice.

There is a growing interest in the EEG correlates of medi-
tative states, since these could be used to develop EEG neuro-
feedback protocols aimed at facilitating meditation practice
[2], [3] (see Fig. 1 for a depiction of a protocol). In this
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Fig. 1. Exemplary EEG neurofeedback protocol to facilitate meditation
practice. A meditation practitioner can be alerted through a sound of moments
of distraction during meditation practice based on changes in the EEG signal.

way, a recent study identified significant EEG changes during
meditation practice corresponding to moments of distraction
in both expert and novice practitioners [4]. In the same line,
another recent study used machine learning to shown that the
EEG correlates of moments of distraction during meditation
practice can be identified across different meditation traditions.
[5].

In this study, we aim to develop machine learning models
that can distinguish moments of distraction during meditation
practice based on EEG features solely. For this purpose, we
analyze the EEG data of participants that reported their level
of distraction several times during a breath focus meditation.

II. DATA DESCRIPTION

The detailed description and availability of the dataset are
mentioned in Rodriguez-Larios et al. [6]. EEG of 19 sensors
with 512 Hz was used to collect recordings for meditation
with probe-caught experience sampling (60 min). Meditation
with experience sampling includes epochs classified by partic-
ipants as breath focus, mind wandering, and other distraction
moments (sound, discomfort, or others). A total of 58 par-
ticipants were included in this study comprising 29 controls
(no experience) and 29 meditators (experienced at least three
years). The motivation of this article is to develop models
for controls (beginner) to get alert on mind wandering in a
future EEG neurofeedback protocol. Hence, we extracted the
EEG signals of controls only. Participants were asked to close
their eyes and follow the breath focus instructions mentioned
in Kabat Zinn [7]. Bell sound rang after every brief period
within 30 to 90s, and participants were asked to answer the
following question: a) focusing on breath, b) distracted by
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TABLE I
FEATURES EXTRACTED ON EEG SIGNAL USING LINEAR AND

NON-LINEAR METHODS

Type Feature

Linear Mean, Variance, Standard Deviation, Skewness,
Kurtosis, Root Mean Square

Non-Linear
Katz Fractal Dimension, Higuchi Fractal Dimension,
Decorrelation Time, Hjorth Mobility, Hjorth Complexity,
Approximate Entropy

thoughts, c) distracted by something else. Any answer leads
to further two more questions on a scale of (1 to 7): (a) Level
of confidence low (1) to high (7) on the previous answer (b)
drowsiness level of fully awake (1) or falling asleep (7). A
total of 40 trials were obtained in 60 min. We performed the
preprocessing steps followed in the article [6] and code is
available in open framework platform [4]. EEG signals were
extracted between 2 and 30 Hz, and other frequencies were not
included to avoid artifacts from different non-neural sources.

III. METHODOLOGY

Feature Extraction: A wide range of EEG signals has been
analyzed from a linear and non-linear dynamics perspective.
EEG signals originate from neural activity, which represents
a chaotic non-linear dynamical system. Modern research has
been putting effort into understanding the underlying mecha-
nisms of the non-stationary change of electrical activity over
time. Each technique has a set of limitations regarding its
relationship to the data. Therefore, we applied 12 features
comprising six linear and six non-linear features. There have
been a growing number of research articles using non-linear
methods in meditation research [8], [9]. We presented the
feature extraction techniques in Table. I.
and code implementation is available at mne-features [10].

Data Segregation: We extracted the 5 seconds (before the
bell sound) epochs of breath focus (BF) and mind wandering
(MW). In this, we used the score of confidence and drowsiness
to segregate the epochs. All epochs of each subject for the
complete session was further binarized into awake and sleepy
by computing the median of the drowsiness score. Awake and
sleepy epochs were segregated for both conditions (BF/MW).

Fig. 2. [Left] Scalp EEG sensors are divided into three regions: Frontal,
Central, and Pareital, and combinations of these are used for analysis. Central
and Pareital areas include temporal and occipital electrodes, respectively.
[Right] Maximum classification accuracy is shown for both conditions,
including breath focus awake/sleepy (BFA/BFS) and mind wandering (MW)
for the region. FCP includes all 19 sensors covering all regions.

After this, we computed the features for each epoch, including
all 19 sensors. Features extracted for epochs for a participant
were mean weighted by confidence score and thus obtained
a mean weighted score of epochs respective to awake and
sleepy in both conditions. This approach aims to minimize
the influence of epochs where subjects were uncertain about
their conditions. Five participants were rejected due to the
unavailability of either awake or sleepy in both conditions.
Finally, we considered samples of 24 subjects for breath focus
in awake (BFA) and sleepy (BFS) and mind wandering of
awake state (MW).
Classification and t-SNE Visualization: We used the two
analyses to observe the differences between conditions using
supervised and unsupervised techniques. First, we built the
supervised classification models, and second using the unsu-
pervised technique to reduce the dimension of data to visualize
the differences in two dimension. Classification models were
built to discriminate neural oscillatory states of (i) Breath
Focus Awake (BFA) vs Breath Focus Sleepy (BFS) and (ii)
Breath Focus Awake vs Mind Wandering (MW). We trained
ten different linear and non-linear machine learning models to
classify the EEG feature representation. The models included
were AdaBoost, Decision Tree, Random Forest, Gaussian
Process, Linear SVM, RBF SVM, Naive Bayes, Nearest
Neighbour, Neural Net, and Quadratic Discriminant Analysis.
We used the five-fold cross-validation techniques and reported
the accuracy, precision, recall, and f1-score. We used t-
Distributed Stochastic Neighbour Embedding to reduce the
higher dimension of the data into two dimension to visualize
the differences between the states.

IV. RESULTS AND DISCUSSION

We present the findings using supervised machine learning
models and unsupervised t-SNE visualization. We reported the
accuracy obtained using different features and regions.
Region Analysis: We divided the scalp EEG sensors into
three regions, including Frontal, Central, and Parietal, as
shown in Fig. 2. We obtained the maximum classification
accuracy of 85.77% between awake (BFA) and sleepy (BFS)
by including FCP (all regions) with precision, recall, f1-score

Fig. 3. Max Classification accuracy of each feature is displayed for binary
classification.
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TABLE II
MAX ACCURACY OF CLASSIFIERS BETWEEN BREATH FOCUS AWAKE
(BFA) AND SLEEPY (BFS), AND BFA AND MIND WANDERING (MW)

.
Awake (BFA) vs Sleepy (BFS)
Classifier Frontal Central Parietal Frontal-Central Frontal-Pareital Central-Parietal FCP
AdaBoost 0.729 0.689 0.744 0.729 0.727 0.731 0.769
Decision Tree 0.729 0.771 0.751 0.711 0.773 0.729 0.767
Gaussian Process 0.753 0.753 0.753 0.773 0.776 0.733 0.776
Linear SVM 0.598 0.538 0.598 0.638 0.638 0.578 0.638
Naive Bayes 0.753 0.731 0.669 0.816 0.753 0.836 0.753
Nearest Neighbors 0.751 0.689 0.667 0.691 0.669 0.687 0.689
Neural Net 0.582 0.544 0.558 0.564 0.580 0.716 0.656
QDA 0.707 0.691 0.607 0.651 0.602 0.667 0.540
Random Forest 0.793 0.816 0.769 0.816 0.729 0.793 0.858
RBF SVM 0.773 0.791 0.753 0.796 0.753 0.773 0.753
Awake (BFA) vs Mind Wandering (MW)
AdaBoost 0.704 0.664 0.644 0.707 0.682 0.644 0.707
Decision Tree 0.627 0.667 0.589 0.622 0.771 0.664 0.622
Gaussian Process 0.691 0.582 0.620 0.644 0.667 0.711 0.709
Linear SVM 0.520 0.558 0.607 0.562 0.567 0.538 0.538
Naive Bayes 0.609 0.687 0.647 0.664 0.687 0.622 0.709
Nearest Neighbors 0.602 0.622 0.624 0.624 0.629 0.647 0.607
Neural Net 0.560 0.542 0.542 0.522 0.522 0.524 0.560
QDA 0.627 0.647 0.629 0.662 0.687 0.687 0.598
Random Forest 0.664 0.664 0.642 0.709 0.647 0.727 0.684
RBF SVM 0.689 0.729 0.624 0.669 0.602 0.684 0.649

Fig. 4. t-SNE lower dimension visualization of conditions

of 87.85%, 85.5%, 85.16%, respectively. The features included
from Central-Parietal showed an accuracy of 83.55%, followed
by the Central region. Frontal alone and with the combination
of Central showed accuracy around 80% and Central classified
with 81.55%. The model returned the minimum accuracy
of 77.5% with Frontal-Parietal. Classification between breath
focus awake (BFA) and mind wandering (MW) resulted in
the maximum accuracy of 77.11% in Frontal-Parietal with
precision, recall, f1-score of 80.02%, 77.5%, and 76.47%. We
obtained greater than 70% accuracy across all regions except
the Parietal. We obtained higher accuracy in classifying the
awake and sleepy conditions of breath focus compared to
classifying awake and mind wandering. These results showed
that the subject-invariant feature representation enables the
classification.
Feature Analysis: We achieved maximum accuracy of 85.77%
with mean features between BFA(awake) and BFS(sleepy) as
shown in Fig. 3. We observed features of kurtosis predicted
above 70% accuracy. Classification between BFA and MW
showed maximum accuracy of 77.11% with Decorrelation
Time. We obtained above 70% accuracy using Katz Fractal
Dimension and mean features. We observed a pattern that
linear feature mean was more predictive for classifying awake
and sleepy conditions of breath focus, whereas non-linear
feature Decorrelation Time had the greater predictive ability
for awake and mind wandering states.

Machine Learning model evaluation: In Table. II classi-

fiers accuracies are presented. Classification between BFA and
BFS resulted in accuracies from chance level to a maximum
of around 86%. Random Forest achieved maximum accuracy
in five regions, including Frontal, Central, Parietal, Frontal-
Central, and FCP. The accuracy of Naive Bayes was maximum
at Central-Parietal and followed by the Gaussian process in
Frontal-Parietal. The classification between BFA and MW
showed the maximum accuracies of 77% using the Decision
Tree in Frontal-Parietal. The accuracy above 70% was obtained
using Random Forest, RBF SVM, AdaBoost, and Gaussian
Process in other regions except for Parietal. The maximum
accuracy of around 65% was achieved in Parietal employing
Random Forest.
Low Dimensional Visualization: In Fig. 4, we presented
the results using the unsupervised t-SNE data visualization
technique. The labels were not provided to the model, and
the model learned itself the structure present in the higher
dimension. t-SNE projected the relationship of data points in
two-dimension and showed that BFA and BFS have significant
differences in the form of two distinct clusters. Similarly, we
reported the differences between BFA and MW. The visu-
alization provided strong evidence that there is a significant
difference between conditions.

V. CONCLUSION

This research shows that machine learning algorithms can
successfully identify moments of distraction during meditation
practice in novice meditators based on linear and non-linear
features of the EEG signal. The models developed here could
be used in future mobile EEG neurofeedback protocols aimed
at facilitating meditation practice.
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